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3Université du Québec en Abitibi-Témiscamingue (UQAT) 675, 1ère Avenue, Val-d’Or (QC) J9P 1Y3, Canada

Correspondence should be addressed to Hassan Smaoui; hassan.smaoui@cerema.fr

Received 31 December 2018; Accepted 11 June 2019; Published 29 July 2019

Academic Editor: Saeed Eftekhar Azam

Copyright © 2019 Hassan Smaoui et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The solution of inverse problems in groundwater flow has been massively invested by several researchers around the world. This
type of problem has been formulated by a constrained optimization problem and this constraint is none other than the direct
problem (DP) itself. Thus, solving algorithms are developed that simultaneously solve the direct problem (Darcy’s equation) and
the associated optimization problem. Several papers have been published in the literature using optimization methods based on
computation of the objective function gradients. This type of method suffers from the inability to provide a global optimum.
Similarly, they also have the disadvantage of not being applicable to objective functions of discontinuous derivatives. This paper is
proposed to avoid these disadvantages. Indeed, for the optimization phase, we use random search-based methods that do not use
derivative computations, but based on a search step followed only by evaluation of the objective function asmany times as necessary
to the convergence towards the global optimum. Among the different algorithms of this type of methods, we adopted the genetic
algorithm (GA). On the other hand, the numerical solution of the direct problem is accomplished by the CVFEM discretization
method (Control Volume Finite Element Method) which ensures the mass conservation in a natural way by its mathematical
formulation. The resulting computation code HySubF-CVFEM (Hydrodynamic of Subsurface Flow by Control Volume Finite
Element Method) solves the Darcy equation in a heterogeneous porous medium. Thus, this paper describes the description of the
integrated optimization algorithm called HySubF-CVFEM/GA that has been successfully implemented and validated successfully
compared to a schematic flow case offering analytical solutions. The results of this comparison are qualified of excellent accuracy.
To identify the transmissivity field of the realistic study area, the code HySubF-CVFEM/GA was applied to the coastal “Chaouia”
groundwater located in Western of Morocco. This aquifer of high heterogeneity is essential for water resources for the Casablanca
region. Results analysis of this study has shown that the developed code is capable of providing high accuracy transmissivity fields,
thus representing the heterogeneity observed in situ. However, in comparison with gradient method optimization the HySubF-
CVFEM/GA code converges too slowly to the optimal solution (large CPU-time consuming). Despite this disadvantage, and given
the high accuracy of the obtained results, the HySubF-CVFEM/GA code can be recommended to solve in an efficient and effective
manner the identification parameters problems in hydrogeology.

1. Introduction

The coastal aquifers play an important role in the socioe-
conomic development of the coastal plains [1–4]. These
costal aquifers are particularly exposed to over-exploitation
problems that can induce aquifer salinization [5–7]. Also, as
presented in the Intergovernmental Panel on climate change
(IPCC, 2007), climate changes will provide variations in the

sea level, temperature and rate and intensity of precipitation.
All these changes will affect freshwater resources, in terms of
both quantity and quality [8].

The climate change impacts are mainly evaluated using
numerical groundwater modeling for both flow and trans-
port phenomenon (Moustadraf et al., 2008). The numer-
ical groundwater modeling requires many hydrodynamic
parameters such as the water budget, the storativity, the
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piezometric level (also called the head), the transmissivity,
and specific yield. These parameters are usually obtained
from some in situ pumping field and/or laboratory tests.
However, in situmeasurements, which are usually performed
in a limited number of points of the study area (due to their
cost), may prove insufficient to deduct the transmissivity
coefficient. Besides this major inconvenience we also note
the difficulty of the logistic realization of the measurement
itself (access to the measurement site). Consequently, mea-
surements can be considered as not economically feasible
especially in the case where the funds for scientific research
are very limited.

Given these drawbacks, mathematical models have
emerged as powerful tools to complete lack of information
to estimate correctly the transmissivity coefficient. With
the spectacular advances in information technology, the
mathematical models combined with the optimization tools
became essential for geosciences modeling including flows
and associated transport in groundwater.

To ensure an optimal management of the groundwaters,
we need a good estimation of the head obtained by solving
the Darcy’s equation. The quality of this estimation depends
strongly on the quality of the transmissivity values (main
flow parameter). However, the accurate knowledge of this
parameter is difficult to obtain because of the heterogeneity
due to real geological formation of the aquifers and the nature
of the flows, or both. Consequently, themathematical models
and their discretization methods must be chosen judiciously
in order to best approximate the studied phenomena. For
a known transmissivity field, several codes solving Darcy’s
equation have been proposed to compute the hydraulic
potential (see for example PMWIN-MODFLOW, FEFLOW,
GMS, HySuf-FEM). This is called “the direct problem”.
However, a good prediction of the head requires prior
identification of parameters involved in the Darcy’s equation
(this is “the inverse problem”).

For over four decades inverse problem for groundwater
flow has been studied by different authors (here, we cite only
more recent studies: Katsifarakis et al., 1999; [9–16]) and a
good review of this strategy to solve the problem can be seen
in Yeh, 1986 andCarerra, 1988 [17, 18].The strategy to identify
the parameters by inverse problem consists of a combination
of a computer code for flow (hydrodynamic model) and an
optimization computer code. The optimization procedure
was approached by a large number of optimizers: determinis-
tic ones as gradient-based methods, Newton methods, quasi-
Newton with interior points methods or stochastic ones as
evolution strategies (ESs), artificial neural network (ANN)
or genetic algorithms (GAs). The flow can be performed by
different approximation methods as finite difference method
(FDM), finite element method (FEM), finite volume method
(FVM), meshless method, and many others.

In this paper, the CVFEM was chosen to compute the
hydraulic head. This choice was motivated by the ability of
this method to conserve the physical quantities involved in
the hydrodynamic model (as FVM) and also by its ability
to handle complex boundaries of the study area (as FEM).
For the optimization step, we adopted the genetic algorithm.
Although this type of algorithm is slower compared to

other algorithms (gradient-based algorithms), GA has been
selected in this paper for its capacity to converge to a global
optimum without using derivatives of the objective, also
because it is well suited in particular on non-convex, non-
separable, ill-conditioned, multi-modal or noisy objective
functions. In addition, note that the inverse problem in
groundwater flow is characterized by the identification of the
large-size parameters (number of mesh node of the direct
problem). It is also characterized by an objective function
having no analytical expression, but built from the simulation
results from the hydrodynamic model. These characteristics
make usually the inverse problem in groundwater flow
impossible to resolve by conventional deterministicmethods.
This is another reason which motivated our choice on a
stochastic method particularly the GA.

This paper is organized as follows: Section 2 outlines
the mathematical formulation that describes the CVFEM
method for the direct problem and the GA for optimization
procedure. Section 3 is devoted to the presentation of numer-
ical results (academic tests) on the validation of the direct
problem and the coupling “direct problem/optimization”
procedure. At the end of this section we present the applica-
tion of the combination “CVFEM/GA” to the realistic case of
a coastal aquifer to determine the transmissivity field. Finally,
discussion and conclusions are presented in the last section.

2. Mathematical Model

At the macroscopic scale, the rate at which the water flow in
a soil is quantified using a variable that is referred to as the
Darcy velocity or specific discharge →𝑞 . This variable, which
has the dimensions of velocity, is defined as the discharge per
unit cross area of soil that includes both the pore space and
the grains in a flow section. It is also defined as a vector in the
direction of flow, where its magnitude is equal to the volume
of water flowing per unit time through a unit cross-sectional
area normal to the direction of flow.

2.1. Governing Equations. Assume that the flow is stationary
or that both fluid and porous media are incompressible. By
themass conservation law, the continuity equation holds, i.e.,

∇.→𝑞 = 𝑓 (1)

where the function 𝑓 represents sources or/and sinks terms.
Inside the saturated zone if we assume that the specific

discharge →𝑞 is derived from a potential 𝜑 via the hydraulic
conductivity tensor 𝐾, we obtain the unsteady Darcy law
given by

𝜕𝜑𝜕𝑡 − ∇. (K∇𝜑) = 𝑆 (2)

where 𝑆 is the source (or sink) term.
An exact solution of a potential flow problem (2) can be

derived only in special cases. Therefore, numerical methods
are the major tool for solving such problems in practice. A



Mathematical Problems in Engineering 3

common approach is to rewrite this into the following partial
differential equation (PDE) with its boundary conditions:

(𝐷𝑃)
{{{{{{{{{{{{{{{{{

𝜕𝜑𝜕𝑡 − ∇. (K∇𝜑) = 𝑆 𝑖𝑛 Ω
𝜑 = 𝜑𝐷 𝑖𝑛 𝜕Ω𝐷→𝑛 .→𝑞 = 𝜑𝑁 𝑖𝑛 𝜕Ω𝑁
𝜑 (𝑥, 0) = 𝜑0 (𝑥) 𝑖𝑛 Ω

(3)

where Ω is the domain area, 𝜕Ω𝐷 is the boundary of the
imposed Dirichlet condition, 𝜕Ω𝑁 is the boundary of the
imposed Neumann condition, and →𝑛 is the outward normal
vector to the Neumann boundary 𝜕Ω𝑁.The equation (3) is
known by Darcy equation.The average velocity →V of the fluid
can be deducted from →𝑞 by →V = →𝑞 /𝑝, where 𝑝 is the porosity
of the studied area. Otherwise, we note that, according to
Ciarlet, [21], the problem (3) is a well-posed problem; i.e., the
solution exists, is unique, and depends continuously on the
data.

The vast majority of solvers of the Darcy equation use
finite difference, finite volume, or finite element approxi-
mation in space. Numerous numerical approaches can be
enumerated for solving equation (3). All these approaches
are based on a discrete partition of the spatial domain of
interest. The partition can be a structured grid or more
generally an unstructured mesh. The numerical scheme that
approximates the solution then consists in proposing an
approximation of this solution on the discretized domain.
In other words, we constrain the approximate solution to
verify the Darcy equation to achieve a linear system (or non-
linear) whose approximate solution is the unknown of such
a system. The Darcy equation has been massively solved
by classical methods (MDF, MEF, MVF). It is difficult to
conclude on the effectiveness of this or that method, but it
all depends on what one wishes to privilege between mass
conservation, accuracy or a minimum computation (CPU
time) [22, 23]. Today, we are witnessing a great growth in the
use of CFD to solve real problems (environmental, industrial,
etc.). To take into account the irregular boundaries of this
type of problem, it has become necessary to choose dis-
cretizationmethods allowing flexibility in themanagement of
boundary conditions on boundaries of complex geometries.
Some numerical methods based on orthogonal or curvilinear
coordinate structured meshes approaching boundaries are
frequently used to calculate flows in irregular geometries,
with satisfactory results. However, we also observe that
methods based on unstructured finite element meshes have
become the reference methods for the prediction of flows in
complex geometries.

In this work and to solve the Darcy equation, we adopt
the CVFEM method on a FEM type unstructured mesh. In
CFD, this method combines the advantages of finite volume
methods over regular mesh and finite element methods.
Indeed, the CVFEM formulation in terms of flows only
translates the physical principle of the local and global
conservation of a quantity evolving in a volume of elementary
control. But in particular, CVFEM allows efficient handling
of pressure/velocity coupling. On the other hand, when

CVFEM is formulated on afinite elementmesh,we inherit the
geometric flexibility and the use of the basis functions of the
Sobolev space to interpolate the solution on a control volume
[24, 25].

2.2. The CVFEM Discretization. Before beginning the math-
ematical formulation of this method, a brief description of
some spaces is necessary. Consider a limited open set Ω ⊂
R2 having an Lipschitzian and continue boundary 𝜕Ω. We
define 𝐿2(Ω) as being the space of real functions 𝑢 such 𝑢2
is measurable functions. square. We define𝐻1(Ω) also as the
subset containing functions of 𝐿2(Ω) whose first derivatives
are also in 𝐿2(Ω). Similarly, we define 𝐻1𝑔(Ω) the subset of
𝐻1(Ω)whose functions are equal to𝑔 on the on the boundary
𝜕Ω of Ω. Finally, we define the inner product of the space of
𝐿2(Ω)

∀𝑢, V ∈ 𝐿2 (Ω)
(𝑢, V)𝐿2(Ω)=∫

Ω
𝑢 (𝑥) V (𝑥) 𝑑𝑥 (4)

The numerical solution of equation (3) begins with the
arbitrary subdivision of the domain Ω into 𝑁𝑒 elements
(for example triangular elements) denoted (𝑇𝑘)𝑘=1,...,𝑁𝑒 and𝑁𝑛 nodes. The family of triangles 𝑇𝑘 forms what is called
the triangulation Tℎ, indexed by the parameter ℎ which
designates the length of the largest sides of all the triangles
of the mesh. This triangulation admits 𝑁𝑛 nodes which are
the vertices of the set of triangles covering the domain. In
the rest of this document, we omit the subscript “𝑘” of the
triangle 𝑇𝑘, but for any triangle we will note 𝑇 ∈ Tℎ. The
triangulationTℎ allows the approximation of the domain Ω
byΩℎ = ⋃𝑇∈Tℎ 𝑇. We can now give the piecewise linear finite
element spaces by

𝐻ℎ= {V ∈ C0 (Ωℎ) : ∀𝑇 ∈ Tℎ, V/𝑇 𝑖𝑠 𝑙𝑖𝑛𝑒𝑎𝑟} (5)

where C0(Ωℎ) is the set of continuous functions on Ωℎ and
V/𝑇 is the restriction of the function V on the triangle 𝑇. In
the same manner, we define𝐻ℎ,𝑔(Ω) = 𝐻ℎ ∩ 𝐻1𝑔(Ω).

The CVFEM method must be applied to the integral for-
mulation of the Darcy equation. This formulation translates
the physical principle of the conservation of the 𝜑 transferred
scalar quantity in the small control volumeV.

∫
V

𝜕𝜑𝜕𝑡 𝑑V − ∫V ∇. (K∇𝜑) 𝑑V = ∫V 𝑆𝑑V (6)

To preserve this important physical principle in the
numerical results, CVFEM uses a weighting function equal
to the unit on all the volume of control associated with the
node of the computation and zero elsewhere. Consequently,
the CVFEM discretization imposes naturally the physical
principle of conservation in the control volume V. Thus,
the CVFEM admits an easy physical interpretation and its
numerical solution meets the requirements of conservation
both locally and globally even in the case of use of a coarse
mesh.
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Figure 1: The construction of control volumes: (a) the cell-centered control volume; (b) the vertex-centered control volume, (c) the dual
mesh and (d) the sub-control volume. Notation (𝑖(1), 𝑗(2), 𝑘(3)) means that for a triangle 𝑇, the global numbering is (𝑖, 𝑗, 𝑘) and the local
numbering is (1, 2, 3).

CVFEM uses two volume control types: cell-centered
volume control and vertex-centered volume control.The first
type is to consider the triangular element as a control volume
(Figure 1(a)), while the second type builds support around
a node 𝑖 to use the dual mesh (Figure 1(c)). Several methods
have been used for the construction of the control volumeV𝑖
based on the support of nodes 𝑖. As far as we are concerned,
we use volumes of controls of the dual mesh built as follows:
for a node 𝑖 of the mesh, one searches all the triangles having
common node 𝑖. So the control volume V𝑖 will be formed
by joining the centers of gravity of all the triangles around
the node 𝑖 (Figure 1(b)). It is considered that the boundaryΓ𝑖 = 𝜕V𝑖 of the control volumeV𝑖 consists of 𝑝𝑖 elementary
facets 𝑓𝑚. We note the set of these facets by F𝑖 (card(F𝑖)
= 𝑝𝑖). It should be noted that if the control volume V𝑖 is
constructed from 𝑝𝑖 triangles, thenV𝑖 is the union of 𝑝𝑖 sub-
control volume (S𝑖,𝑚)𝑚=1,𝑝𝑖which is the quadrilateral (iagc)
(See Figure 1(d)).

2.3. The Control Volume Formulation. After the step of the
studied area discretization in elementary control volume, the
different numerical methods of approximations consist in
approaching the solution on the mesh nodes based on the
physical principle of conservation. Like the other methods
CVFEM applies this principle on the control volume V𝑖 to

the equation (6). By using the Gauss divergence theorem, we
have

∫
V𝑖

𝜕𝜑𝜕𝑡 𝑑V − ∫𝜕V𝑖 (K∇𝜑)→𝑛𝑑𝑙 = ∫V𝑖 𝑆𝑑V (7)

where →𝑛 is the outward unit normal vector to 𝜕V𝑖. For a
physical quantity 𝜓, the control volume average is defined by

𝜓𝑖 = 1𝑚𝑒𝑠 (V𝑖) ∫V𝑖 𝜓𝑑V (8)

where 𝑚𝑒𝑠(V𝑖) is the volume of V𝑖 (in 2D computation𝑚𝑒𝑠(V𝑖) = 𝑎𝑟𝑒𝑎(V𝑖)). Since V𝑖 = ⋃𝑝𝑖𝑚=1S𝑖,𝑚, the integral
(7) can be written in its discrete form by

𝜓 = 1𝑚𝑒𝑠 (V𝑖)
𝑝𝑖∑
𝑚=1

�̂�𝑚𝛿𝑚 (9)

where 𝛿𝑚 is the volume of the sub-control volume S𝑖,𝑚 and�̂�𝑚 is the average value of 𝜓 in S𝑖,𝑚. Note that, for the clarity
of the notation, we omit the bar from the average values of
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Figure 2: Three sub-control volumes S𝑖(1),S𝑗(2),S𝑘(3) contributing to the three control volumeV𝑖,V𝑗,V𝑘.

the variables. With these notations, equation (6) is written in
discrete form:

𝜕𝜑𝑖𝜕𝑡 𝑚𝑒𝑠 (V𝑖) − ∑
𝑚∈F𝑖

∫
𝑓𝑚

[K∇𝜑]
𝑓𝑚

→𝑛𝑚𝑑𝑙
= 𝑆𝑖𝑚𝑒𝑠 (V𝑖) ∀𝑖 = 1, . . . , 𝑁𝑛

(10)

Note that the approximation space 𝐻ℎ,𝑔(Ω) is a vector
space of finite dimension (𝑑𝑖𝑚(𝐻ℎ,𝑔(Ωℎ)) = 𝑁𝑛). This
space then admits piecewise affine basis functions noted as(𝜓𝑚)𝑚=1,...,𝑁𝑛 .The construction of this basis functions is based
on the Lagrange interpolation function given by

∀𝑖 = 1, . . . , 𝑁𝑛,
∀𝑚 = 1, . . . , 𝑁𝑛

(𝑥𝑚, 𝑦𝑚) ∈ Ωℎ,
𝜓𝑖 (𝑥𝑚, 𝑦𝑚) = {{{

1 𝑖𝑓 𝑖 = 𝑚
0 𝑖𝑓 𝑖 ̸= 𝑚

(11)

Consequently, for 𝜑 ∈ 𝐻ℎ,𝑔(Ωℎ) and for (𝑥, 𝑦) ∈ 𝑇, we
can write 𝜑(𝑥, 𝑦) = ∑3𝑚=1 𝜑𝑚𝜓𝑚(𝑥, 𝑦). It is quite clear that
the gradient ∇𝜑 that appears in the integral term in equation
(10) is constant (∇𝜑(𝑥, 𝑦) = ∑3𝑚=1 𝜑𝑚∇𝜓𝑚(𝑥, 𝑦)) since the
basis functions (𝜓𝑚)𝑚=1,...,𝑁𝑛 are affine on each triangle of
the mesh. By using one-point Gauss quadrature method, an
approximation of equation (10) is

𝜕𝜑𝑖𝜕𝑡 𝑚𝑒𝑠 (V𝑖) − ∑
𝑚∈F𝑖

[K∇𝜑]
𝑓𝑚

→𝑛𝑚𝐴𝑚 = 𝑆𝑖𝑚𝑒𝑠 (V𝑖)
∀𝑖 = 1, . . . , 𝑁𝑛

(12)

where 𝐴𝑚 is the length of the face 𝑓𝑚.

Expression (12) is the discrete algebraic equation of the
linear system with the unknown 𝜑𝑖 that determines the
solution of the Darcy equation. If we note by Ψ the solution
vector of components (𝜑𝑚)𝑚=1,...,𝑁𝑛 , equation (12) can be
written in matrix form as

𝑀
𝜕Ψ𝜕𝑡 +𝐾Ψ = b (13)

where𝑀 is the diagonal mass matrix (𝑀𝑖𝑖 = 𝑚𝑒𝑠(V𝑖), 𝑖 =1, . . . , 𝑁𝑛), 𝐾 is the stiffness matrix and b is the second
member vector containing the source/sink term and the
values of the boundary conditions.

The globalmatrixK of the linear system is a sparsematrix.
It is then necessary to adopt an optimal storage to store only
the non-zero matrix coefficients. We recall that from the
equation (12) we can naively construct the matrix 𝐾 line by
line without storing the null coefficients, but this way of doing
things proved to be very consuming in CPU time (much
more than the CPU time to solve the linear system itself).
The second way is to assemble the global matrix 𝐾 from the
elementary matrices calculated on each control volume V𝑖.
However, the assembly step is very laborious to implement
since the size of the elementarymatrices𝑝𝑖 is not constant (𝑝𝑖:
is the number of triangle around the node 𝑖). To avoid these
two computationally time expensive methods of assembling
the globalmatrix, we have adopted the conventional assembly
procedure inherent in FEM. Indeed, we will consider the
control volume V𝑖, but we will calculate the elementary
matrix on an isolated triangle from this control volume
V𝑖 (Figure 2). For a triangle of vertex (𝑖(1), 𝑗(2), 𝑘(3)), our
method consists of computing the simultaneous contribution
of the sub-control volume S𝑖(1),S𝑗(2),S𝑘(3) of the control
volume V𝑖,V𝑗,V𝑘, then one applies the classical FEM
procedure of assembly of elementary matrices𝐾𝑇 calculated
on a triangle 𝑇. Note that the global matrix 𝐾 obtained by
ourmethod is identical to those obtained by the twomethods
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described above. Indeed, the boundary of the control volume𝜕V𝑖 can be written in two different ways, namely,

𝜕V𝑖 =
𝑝𝑖⋃
𝑚=1

𝑓𝑚
𝑎𝑛𝑑 𝜕V𝑖 =

𝑝𝑖⋃
𝑚=1

𝜕S𝑖,𝑚 =
𝑝𝑖⋃
𝑚=1

[𝑎𝑚, 𝑔𝑚] ∪ [𝑔𝑚, 𝑐𝑚]
(14)

This is the second way to expressV𝑖 which allowed us to
assemble by the triangles constituting the control volumeV𝑖

2.4. The Elementary Matrix 𝑀𝑇,𝐾𝑇, 𝑏𝑇. To evaluate the
elementary matrices𝑀𝑇 et 𝐾𝑇 we consider the local num-
bering (1, 2, 3). Similarly, we assume that the studied porous
medium is isotropic (the hydraulic conductivity tensor 𝐾 is
diagonal) and finally the interpolation functions (𝜓𝑖)𝑖=1,2,3 are
affine on each triangle. It should be noted that 𝜓𝑖 are easily
determined from the equation (11). Thus, these assumptions
can be formulated by

𝐾 = [𝐾𝑥 0
0 𝐾𝑦]

𝑎𝑛𝑑 ∀ (𝑥, 𝑦) ∈ 𝑇,
𝜓𝑖 (𝑥, 𝑦) = 𝛼𝑇𝑖 𝑥 + 𝛽𝑇𝑖 𝑦 + 𝛾𝑇𝑖 𝑓𝑜𝑟 𝑖 = 1, 2, 3

(15)

For each triangle 𝑇, the mass matrix𝑀𝑇 is easy to eval-
uate. It is a main diagonal matrix whose diagonal coefficients
are none other than the area of each sub-control volume S𝑖
(Figure 2).

∀𝑇 ∈ Tℎ,

𝑀𝑇 = [[[
[

𝑚𝑒𝑠 (S1) 0 0
0 𝑚𝑒𝑠 (S2) 0
0 0 𝑚𝑒𝑠 (S3)

]]]
]

(16)

with𝑚𝑒𝑠(S1) = 𝑚𝑒𝑠(S2) = 𝑚𝑒𝑠(S3) = 𝑎𝑟𝑒𝑎(𝑇)/3.
To explicit the coefficients of the elementary stiffness

matrix 𝐾𝑇, we apply the Gauss divergence theorem to the
diffusive term of the equation (6), but this time successively
to the control sub-volumes S1, S2, S3.

For Sub-Control Volume S1

∫
𝑆1

∇. (K∇𝜑) 𝑑V = ∫
𝜕𝑆1

(K∇𝜑)→𝑛𝑑𝑙
= ∫
[𝑎,𝑔]

(K∇𝜑)→𝑛𝑑𝑙
+ ∫
[𝑔,𝑐]

(K∇𝜑)→𝑛𝑑𝑙
(17)

By using the expression of𝐾, and the interpolation functions𝜓𝑖, we can write

𝜑 (𝑥, 𝑦) = 3∑
𝑗=1

𝜑𝑗𝜓𝑗 (𝑥, 𝑦)

𝑎𝑛𝑑 ∇𝜑 (𝑥, 𝑦) = 3∑
𝑗=1

𝜑𝑗∇𝜓𝑗 (𝑥, 𝑦) = [𝛼
𝑇
𝑗

𝛽𝑇𝑗 ]
(18)

K∇𝜑.→𝑛 = 3∑
𝑗=1

𝜑𝑗 [𝐾𝑥 0
0 𝐾𝑦][

𝛼𝑇𝑗
𝛽𝑇𝑗 ] .

→𝑛

= 3∑
𝑗=1

𝜑𝑗 (𝐾𝑥𝛼𝑇𝑗 𝑛𝑥 + 𝐾𝑦𝛽𝑇𝑗 𝑛𝑦)
(19)

By adopting notation of the Figure 1(d), the integral term can
be approximated by

∫
[𝑎,𝑔]

(K∇𝜑)→𝑛𝑑𝑙 + ∫
[𝑔,𝑐]

(K∇𝜑)→𝑛𝑑𝑙 = 3∑
𝑗=1

𝜑𝑗
⋅ [(𝐾𝑥𝛼𝑇𝑗 𝑛𝑥11 + 𝐾𝑦𝛽𝑇𝑗 𝑛𝑦11)𝑝11 ℓ11
+ (𝐾𝑥𝛼𝑇𝑗 𝑛𝑥12 + 𝐾𝑦𝛽𝑇𝑗 𝑛𝑦12)𝑝12 ℓ12]

(20)

where ℓ11 and ℓ12 are respectively the length of the [𝑎, 𝑔] and[𝑔, 𝑐] segments, 𝑝11 and 𝑝12 are respectively the position of
the middle of the [𝑎, 𝑔] and [𝑔, 𝑐] segments and 𝑛𝑥11, 𝑛𝑦11 are
then x-component and y-component of the normal vector→𝑛 11. Note that all these parameters can be computed easily
from the mesh coordinates [26]. Moreover, we will need the
values of 𝐾𝑥 and 𝐾𝑦 at point 𝑝11 and 𝑝12. These values can
be estimated using interpolation functions such as

(𝐾𝑥)𝑝11 =
3∑
𝑗=1

𝐾𝑥,𝑗𝜓𝑗 (𝑥𝑝11, 𝑦𝑝11)

𝑎𝑛𝑑 (𝐾𝑦)𝑝11 =
3∑
𝑗=1

𝐾𝑦,𝑗𝜓𝑗 (𝑥𝑝11, 𝑦𝑝11)
(21)

where 𝐾𝑥,𝑗 and 𝐾𝑦,𝑗 are respectively the given values of 𝐾𝑥
and𝐾𝑦 at node 𝑗.

At this stage of development, we have completely defined
the coefficients of the first row of the elementary stiffness
matrix𝐾𝑇. By adopting the notations of the Figure 2, the two
other rows of the matrix𝐾𝑇 are obtained in a similar way by

For Sub-Control Volume S2

∫
[𝑏,𝑔]

(K∇𝜑)→𝑛𝑑𝑙 + ∫
[𝑔,𝑎]

(K∇𝜑)→𝑛𝑑𝑙 = 3∑
𝑗=1

𝜑𝑗
⋅ [(𝐾𝑥𝛼𝑇𝑗 𝑛𝑥21 + 𝐾𝑦𝛽𝑇𝑗 𝑛𝑦21)𝑝21 ℓ21
+ (𝐾𝑥𝛼𝑇𝑗 𝑛𝑥22 + 𝐾𝑦𝛽𝑇𝑗 𝑛𝑦22)𝑝22 ℓ22]

(22)
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For Sub-Control Volume S3

∫
[𝑐,𝑔]

(K∇𝜑)→𝑛𝑑𝑙 + ∫
[𝑔,𝑏]

(K∇𝜑)→𝑛𝑑𝑙 = 3∑
𝑗=1

𝜑𝑗
⋅ [(𝐾𝑥𝛼𝑇𝑗 𝑛𝑥31 + 𝐾𝑦𝛽𝑇𝑗 𝑛𝑦31)𝑝31 ℓ31
+ (𝐾𝑥𝛼𝑇𝑗 𝑛𝑥32 + 𝐾𝑦𝛽𝑇𝑗 𝑛𝑦32)𝑝32 ℓ32]

(23)

Finally a generalization of the elementary stiffness matrix𝐾𝑇
(3x3) gives

(𝐾𝑇)𝑖𝑗 = [(𝐾𝑥𝛼𝑇𝑗 𝑛𝑥𝑖1 + 𝐾𝑦𝛽𝑇𝑗 𝑛𝑦𝑖1)𝑝𝑖1 ℓ𝑖1
+ (𝐾𝑥𝛼𝑇𝑗 𝑛𝑥𝑖2 + 𝐾𝑦𝛽𝑇𝑗 𝑛𝑦𝑖2)𝑝𝑖2 ℓ𝑖2]

𝑖 = 1, 2, 3 𝑗 = 1, 2, 3
(24)

In the sameway, the second elementary element vector 𝑏𝑇
has the following components: (𝑆𝑚𝑚𝑒𝑠(S𝑚))𝑚=1,2,3. Where𝑆𝑚 is the value of the source term at the node𝑚. if we note by
ΨT=(𝜑1, 𝜑2, 𝜑3) the elementary solution vector, we can write

𝑀𝑇
𝜕ΨT𝜕𝑡 +𝐾𝑇ΨT = bT (25a)

[[[
[

𝑚𝑒𝑠 (S1) 0 0
0 𝑚𝑒𝑠 (S2) 0
0 0 𝑚𝑒𝑠 (S3)

]]]
]
𝜕ΨT𝜕𝑡

+ [[[
[

(𝐾𝑇)11 (𝐾𝑇)12 (𝐾𝑇)13(𝐾𝑇)21 (𝐾𝑇)22 (𝐾𝑇)23(𝐾𝑇)31 (𝐾𝑇)32 (𝐾𝑇)33
]]]
]
ΨT

=[[[
[

S1𝑚𝑒𝑠 (S1)
S2𝑚𝑒𝑠 (S2)
S3𝑚𝑒𝑠 (S2)

]]]
]

(25b)

To solve equation (13), global matrices𝑀, 𝐾, 𝑏 can now
be obtained by the classical FEM assembly procedure of the
elementary matrix by

𝑀 = ∑
𝑇∈Tℎ

𝑀𝑇

𝐾 = ∑
𝑇∈Tℎ

𝐾𝑇

𝑏 = ∑
𝑇∈Tℎ

𝑏𝑇

(26)

The sum sign in the expression (26) designates the assem-
bly operation. It should be noted that the code developed
in this study solves Darcy’s equation for stationary flow(i.e. 𝜕Ψ/𝜕t = 0). In this case the discrete linear system (13)
is reduced to

𝐾Ψ = b (27)

Finally, to solve the linear system resulting from the dis-
cretization procedure of the equation (3) (in steady state), we
tested several iterative methods for sparse matrices (Gauss-
Seidel, BiCG, BiCG-Stab, GMRES, . . .) with pre-conditioner
(diagonal, IC, ILU(k), MILU, . . .) but also the direct method
based on Gauss elimination for sparce matrices. From these
tests, it was concluded that it is the BiCGStab method
preconditioned by ILU(0) that provided the best results (con-
vergence obtained about 20 iterations for 10−16 of tolerance).

2.5. Optimization Procedure (Genetic Algorithm). Several
methods have been proposed to solve linear and nonlinear
optimization problems. These methods have been classified
into two categories: methods with gradients and methods
without gradients (Goldberg, 1989). The methods with gra-
dients of iterative type are efficient and less expensive in
computing time when the objective function is fairly regular.
However, this type ofmethod also suffers from the inability to
provide a global optimum.They also have the disadvantage of
not being applicable to objective functions of discontinuous
derivatives. The second category qualified to the random
search was proposed because of the shortcomings of the
first category. Thus, the optimization methods based on the
random search do not use any computation of derivatives,
but only based on a research step followed by objective
function evaluation as many times as necessary for the
convergence towards the global optimum. In this category the
most popular methods are genetic algorithms and evolution
strategy algorithms. We recall that in this study we adopted
the genetic algorithm to solve the optimization step to
identify the transmissivity field.

Genetic algorithms are inspired by the evolution of
species in their natural environments. These methods con-
sider that species adapt optimally to their living environments
in perpetual evolution: the individuals of each species must
reproduce to generate a new “better” individuals when some
improvement criteria are imposed. In the rest of the paper, we
will use a terminology borrowed from biologists and geneti-
cists to represent each of the concepts used in this paper.
Indeed, a population refers to a set of individuals. In the same
way, an individual will be a solution to the studied problem.
Moreover, a gene will designate a component of a solution,
therefore, of an individual. Finally, a generation is an iteration
of the algorithm seeking the global optimum of the problem.

As stated above, the GA operates on the Darwinian
principle of survival of the most able individual of a popu-
lation. GA starts with an initial population (generally chosen
randomly) that will evolve in order to improve its individuals.
Therefore, during the generation some individuals undergo
modifications while others disappear to give place to the
new, more efficient individuals (more fit). One understands
then that the GA operates on a population and is not on a
particular individual. Thus an GA takes place in five phases
that we explain below:

(i) The generation of the initial population;
(ii) The evaluation of individuals;
(iii) The creation of a new individual;
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(iv) The insertion of new individuals into the population;
(v) Reiterations of the generation.

The GA begins by generating in the search space an
initial population created randomly. Randomness is adopted
in order to diversify individuals to increase the chances
of generating the best possible solutions. The size of the
population 𝑁 is not restricted, but a size of 100 or 150
individuals is usually a good compromise between the quality
of the solutions and the execution time of the algorithm.

Once the population is created, the evaluation of its
individuals is made to decide the performance of those who
will be selected for the improvement of the population. So,
the evaluation stage consists of assigning a quality score
of individuals. There are several methods of evaluation, for
example, methods using the notion of dominance: in fact,
one individual dominates another if it is better in each of
the criteria on which the evaluation is based. An evaluation
method consists of measuring the rank of an individual who
is defined as the number of individuals who dominate it +1.
In the sense of this measure it is well understood that the best
individuals are those of the lowest rank. It should be noted
that the evaluation stage of the individuals can be carried out
before and/or after the crossover and mutation steps.

In order to diversify and enrich a new population, we
must create new individuals while keeping the efficient
individuals. This operation is performed by crossing individ-
uals selected by their rank to be able to participate in the
generation of new individuals. Thus the generated individual
results from the crossover operation of the few genes of
the two individuals in the current population. For example,
individual 1 has the genetic sequence (ABCDEFG), individual
2 has the genetic sequence (0123456), and a possible new
individual will carry the genes (ABCD456). This is what is
called a single crossover (only one crossing point, here is the
point between D and 4). Note that it is possible to consider a
multiple points crossover operation.

Despite all these improvements, it is possible that the
joint action of the selection and crossover operations does
not allow to converge to the optimal solution of the problem.
Indeed, assume a population with individuals of single chro-
mosome. Consider a particular gene of this chromosome,
called G. This gene has 2 possible alleles: 0 and 1; if no
individual in the initial population possesses allele 1 for this
gene, no possible crossover operation can introduce this
allele for the gene G. Consequently, if the optimal solution
of the problem is such that the gene G must have allele 1,
it will be impossible to reach this optimal solution only by
selection and crossover operations. In geneticist language,
this situation is known as genetic degeneration. To avoid
such situation during the implementation of GA, we must
introduce a new operation called “mutation”. This operation
consists in changing the allelic value of a gene according
to a very low probability 𝑝𝑚 (0.001 < 𝑝𝑚 < 0.01). In
other words, themutation operator reverses randomly one bit
(or several, but given the low probability to this operation,
it is extremely rare) of the chromosome sequence of an
individual. It is then understood that the mutation randomly
changes the characteristics of a solution. Like crossover

operation, the mutation operation allows to introduce and
maintain diversity in the solutions population. We can also
interpret the mutation as a “noise” randomly introduced into
the population.

Finally, note that the mutation is a very important
operation for the convergence of an GA towards the global
optimum. Indeed, this operation is analogous to the math-
ematical property of ergodicity which guarantees that any
element of the search space can be explored. By analogy, the
mutation acts randomly on any bit of the chromosome. As a
result, any inversion of the bit string can appear in the current
population and therefore any solution in the search space
can be reached. This observation then shows that mutation
ensures convergence towards the optimal solution of the
studied problem.

At this stage, new individuals have been generated jointly
by crossing operations and mutations. Now, it remains to
select among the newly created individuals those who will
participate in the improvement of the current population. In
addition, selection must be based on a measure of the per-
formance of new individuals. For example, performance can
be evaluated by calculating the rank of individuals defined
above. It should be noted that the size𝑁 of the pollution also
remains to be determined. Indeed, the choice of the size 𝑁
too low risks becoming progressively weaker as we advance
in the generation until the disappearance of the population.
Similarly, if size 𝑁 is large, it may increase significantly the
time execution of the algorithm. It is therefore recommended
to keep the same population size from one generation to the
next.

Once the new population is obtained, the process of
improving the individuals will be repeated to generate the
new population, and so on. The process will be stopped
as soon as we no longer observe a substantial evolution
of individuals in the current population (this corresponds
to a maximum number of generations). At the end of the
program, we obtain a population of solutions from which we
can extract the most efficient solution (measured by its rank).
It is this solution that approaches the global optimum of the
studied problem. Figure 3 illustrates the principle of building
an GA generation.

3. Application of HySubF-CVFEM/GA
Integrated Optimization Algorithm

Before applying the combination HySubF-CVFEM/GA to
identify the real transmissivity field, we first validate this
combination on a schematic case offering an analytical
solution. This is to solve the following problem:

(𝐼𝑃)

{{{{{{{{{{{{{{{{{{{{{{{

Minimize
K∈Ω𝐴

𝐹 (𝐾)
𝑢𝑛𝑑𝑒𝑟 𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

(𝐷𝑃)
{{{{{{{{{

−∇. (𝐾∇𝜑) = 𝑆 𝑖𝑛 Ω
𝜑 = 𝜑𝐷 𝑖𝑛 𝜕Ω𝐷→𝑛 .→𝑞 = 𝜑𝑁 𝑖𝑛 𝜕Ω𝑁

(28)
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Figure 3: The schematic diagram of one generation in GA.

where Ω𝐴 is the admissible set values of the tensor and 𝐹 is
the objective function given by

𝐹 (K) = 𝜑𝑜𝑏𝑠 − 𝜑 (𝐾) (29)

Figure 4 illustrates the computations sequence of the pro-
posed integrated optimization algorithm.The convergence of
this algorithmwill provide the optimal solution𝐾opt which is
none other than the desired transmissivity fields.

𝐾opt = min
K∈Ω𝐴

𝜑𝑜𝑏𝑠 − 𝜑 (𝐾) (30)

In addition to the stability problems that the HySubF-
CVFEM/GA coupling can generate by the use of the poor
accurate solution, it should be noted that the inverse prob-
lems can be confronted to the uniqueness solution problem.
Indeed, different hydrological configurations can provide
identical observations 𝜑𝑜𝑏𝑠. Therefore, it is difficult (if not
impossible) to uniquely identify a particular aquifer situation
solely from the observations. In Smaoui et al. 2018, the reader
will find some methods adopted to ensure the uniqueness of
the solution of the inverse problem in hydrogeology.

3.1. Numerical Test (Validation Case). To verify the perfor-
mance of the proposed coupling to identify by optimization
the transmissivity fields, we apply this methodology to an
inverse problem with an analytical solution. This exercise
allows us to validate the HySubF-CVFEM/GA coupling, but
also to estimate the error level by evaluating the difference
between the analytical and numerical solutions obtained
by the developed, integrated optimization model HySubF-
CVFEM/GA. It should be noted that we have made com-
parisons with the results of other authors [27] solving
the inverse problem for real cases by other optimization
methods based on gradient methods. These comparisons
were made to verify the ability of HySubF-CVFEM/GA

to reproduce the real case solution performed by these
authors. It emerges from these comparisons that theHySubF-
CVFEM/GA coupling has allowed to obtain the global opti-
mal solution with excellent accuracy, but with a convergence
speed approaching unity (significant computation time). It
should be noted that this validation test was studied by
Smaoui et al. [19], but for another integrated optimization
algorithm called HySubF-FEM/CMA-ES which differs from
the presentmodel both bymethod solving the direct problem
(finite element method) and by the optimization method
(CMA-ES: Covariance Matrix Adaptation Evolution Strat-
egy) that is based on evolution algorithms.Thedetails of these
comparisons are presented in Smaoui et al. [19].

In this paper, we present the results of an inverse problem
with an analytical solution. This is the solution of the 2D
direct problem on a rectangular domain Ω = [0, a] × [0, b]
with a given isotropic transmissivity linear field in the form
𝐾(𝑥, 𝑦) = 𝛼(𝑥 + 𝑦) and Dirichelet boundary condition type.
The problem to be solved can be formulated by

(𝐷𝑃){{{
−∇. (𝐾∇𝜑) = 𝑆 (𝑥, 𝑦) ∈ Ω
𝜑 = 𝜑𝐷 (𝑥, 𝑦) ∈ 𝜕Ω (31)

with form 𝑆(𝑥, 𝑦) = −6𝛼𝛽(𝑥 + 𝑦) and 𝜑𝐷(𝑥, 𝑦) = 𝜑𝑒𝑥𝑎𝑐𝑡(𝑥, 𝑦)
on the domain boundary 𝜕Ω. The exact solution of the
problem (31) reads

𝜑𝑒𝑥𝑎𝑐𝑡 (𝑥, 𝑦) = 𝛽 (𝑥2 + 𝑦2) (32)

It should be remembered that the aim of this exercise is
to solve the inverse problem.That is to say, given the solution𝜑𝑒𝑥𝑎𝑐𝑡 is the proposed HySubF-CVFEM/GA able to find the
optimal solution? which in this case is exactly the function

𝐾(𝑥, 𝑦) = [𝑇 (𝑥, 𝑦) 0
0 𝑇 (𝑥, 𝑦)]

𝑤𝑖𝑡ℎ 𝑇 (𝑥, 𝑦) = 𝛼 (𝑥 + 𝑦) .
(33)
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Figure 4: The integrated optimization algorithm (coupling of the HySubF-CVFEM/GAmodel).

This problem has already been studied by Smaoui et al.,
[19] with 𝑎 = 3500𝑚; 𝑏 = 2000𝑚; 𝛼 = 10−5; 𝛽 = 10−6. With
the 𝑎 and 𝑏 values, the function 𝑇 is bounded between 0 and𝛼(𝑎+𝑏). These two limit values were useful to use the version
of integrated optimization model HySubF-CVFEM/GA with
constraints to limit the research space to the admissible values
and thus saving time of computation.

It is the algorithm illustrated in Figure 4 that has been
applied to this test case. Analysis of simulation results showed
that the model has identified the field 𝑇 with excellent
accuracy. The 𝐿∞ absolute error is about 3.5 × 10−5𝑚2𝑠−1,
while the relative error (‖𝑇𝑒𝑥𝑎𝑐𝑡 −𝑇𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑‖/‖𝑇𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑‖) does
not exceed 1%.We also study the behavior of the convergence
of the proposed algorithm. Indeed, the evolution curve of the
objective function as a function of iteration numbers (not
shown here) shows that during the first 2500 generations
the value of the objective function is 10−3 to reach the value2.1 × 10−4 for 3200 generations. This observation allows us
to conclude that genetic algorithms are relatively fast at the
beginning of the research process, but stagnate when we
approach convergence. This finding is not surprising and is
inherent in the design of the GAs. Indeed, at the beginning of
the search stage the AG needs to look for an improvement
among a vast population. It is therefore easy to find better
solutions of the previous ones. However, as the process
progresses, there is a population with only the best solutions.
As a result, it becomes difficult to improve the solutions.
This translates into a minimal gain in accuracy at the end of
the search process. In other words, near convergence, AGs
continue to make generations to gain only a few significant
digits in precision.The slowness of GA near convergence has
already been observed by the several authors using genetic
algorithms as optimization tools [28].

Figure 6 summarizes the comparison between the ana-
lytical solution 𝑇𝑒𝑥𝑎𝑐𝑡 and the numerical solution 𝑇𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑.
It presents the identified transmissivity according to the
exact transmissivity. On this graph a 1: 1 straight slope curve
has been superimposed to assess the absolute difference
between the exact solution and the solution identified by our
code HySubF-CVFEM/GA. One can see a good agreement
between the two solutions. This figure illustrates also that
the relative error does not exceed 1% as mentioned above.
In our opinion the high accuracy of the results obtained for
this schematic case is due to the nature of the PDE equation
which governs the direct problem (second-order elliptic), but
also the schematic case treated by HySubF-CVFEM/GA is an
well-posed constrained optimization problem.

3.2. Realistic Case. The coastal aquifers play an important
role in the in the socioeconomic development of the coastal
plains. These costal aquifers are particularly exposed to
overexploitation problems that can induce aquifer salin-
ization. Also, as presented in the Intergovernmental Panel
on climate change (IPCC, 2007), climate changes that will
provide variations in the sea level, temperature and rate
and intensity of precipitation. All these changes will affect
freshwater resources, both in terms of quantity and quality
[8].

For several decades, observations by hydrogeologists in
the Chaouia region (Figure 7) have led to significant drops in
the water table, but also with the risk of saline invasion. It is
therefore urgent to have a numerical tool capable of simulat-
ing the behavior of this aquifer system. It is in this context
that we apply the integrated optimization model HySubF-
CVFEM/GA to the Chaouia coastal plain located along the
Atlantic coast of Morocco. It extends from Casablanca to
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Azemmour over a distance of 65𝑘𝑚 and awidth of 15 to 20𝑘𝑚
corresponding to a surface of about 1100𝑘𝑚2 [29]. This area
represents a fairly flat surface with only a few sandy dunes
parallel to the Atlantic Ocean (See Figure 7 for location). The
Chaouia coastal aquifer constitutes an important aquifer in
west Morocco where the irrigated agriculture farming is the
main economic resource of the region.This aquifer is subject
to intensivewater pumping andwater quality deterioration by
salinization. For these raisons, the hydrogeological modeling
became an important way to evaluate water resource and
quality for aquifers management. The HySuf-CVFEM/GA
code is used to identify the transmissivity field of the Chaouia
costal aquifer.

Based on the geological formation, groundwater in the
Chaouia aquifer exists from place to place in the Paleozoic
schist, in the Cretaceous or in the Plio-Quaternary formation
and for each aquifer, the thickness is included between 5
and 20𝑚 (Mostadraf et al., 2008). It is important to recall
that there are vertical and horizontal hydraulic communica-
tions between these aquifers. Different pumping tests were
performed in the studied area with the objective to evaluate
the aquifer transmissivity. The obtained values are included
between 10−5𝑚2𝑠−1and 3.62 × 10−2𝑚2𝑠−1 and the mean value
corresponds to 2.62 × 10−2𝑚2𝑠−1. Otherwise piezometric
maps of the Chaouia coastal aquifer were performed by
different authors showing that the water flow is uniformly
directed towards the Atlantic Ocean except in the southern
part of the groundwater where the water flows from the East
to the West.

It should be noted that the numerical model HySuf-
CVFEM was validated for hydrodynamics by comparison
with analytical solution, then by comparison with the results
of other numerical model massively used in modeling of the
underground flows.The analysis of the results of the compar-
isons showed that themodel HySuf-CVFEM reproduces with
a good precision the flow studied. From these comparisons, it
was also concluded that our numerical model provides good
mass conservation which is a fundamental property in fluid
flow. The results of these comparisons are not presented in
this paper, but can be found in Smaoui et al., [26]

The chosen area for HySuf-CVFEM/GA model applica-
tion is extended to an area about 800𝑘𝑚2. It is limited by the
Atlantic Ocean at the North-West, the Oum-Erbia river at the
South-West, the El Hank at the North-East and the Berrechid
plain to the South-East (Figure 7). Taking into account
the real geometry of the aquifer and its hydrogeological
characteristics, we have constructed a numerical model of
the Chaouia aquifer discretized in triangular mesh of 5100
nodes and 9922 elements. For boundary conditions, we have
adopted the following conditions.We impose the condition of
zero flux (Neumann condition) along El Hank at north-east
and at along the streamline connecting the upstream limit
to the Oum-Erbia river. On the Atlantic coastline we have
imposed a head (Dirichlet condition) corresponding to the
sea level which constitutes a natural outflowof thewater table.
Finally, at the Berrechid plain and Oum-Erbia river mixed
boundary condition was imposed depending on a given load.
To complete the data necessary for the calculation process,

we have estimated the recharge that is done by infiltration of
rainwater. This recharge corresponds to 15% of the rainfall.
The effective rainfall was thus calculated using daily precip-
itation to obtain 1.62 × 10−9ms−1 per triangular element. To
complete the data necessary for the calculation, infiltration
values were estimated from the daily water balance, which
were computed using theThornthwaitemethod.The effective
rainfall was thus calculated using daily precipitation to obtain12.6 × 10−3m3s−1 per triangular element.

3.3. Results Interpretation and Discussion. Calculated (red)
and measured (blue) piezometric level are presented in
Figure 8. This last figure shows a perfect agreement between
the two piezometric levels. The difference between these two
values does not exceed 2m at the 160m and the relative
error is about 1.0%. Considering the measurement errors of
the piezometric levels that are related to the wells elevations
and to water depths, these differences can be considered as
acceptable.

The calculated transmissivity using the proposed code is
shown in Figure 9. This figure indicates that the obtained
transmissivity has a heterogeneous distribution over the
studied area. These calculated values of this hydrogeological
parameter are included between 10−5 and 10−2m2/s.

Based on this transmissivity distribution, two distin-
guished areas can be identified:

(i) the first one, with high transmissivity that can reach
the values higher than 10−2m2/s; these are located: (i)
around and in the north coastal area of the Bir jdid
city and (ii) around Oum Rbia river;

(ii) the second areas with lower transmissivity values
(lower than 2.10−3m2/s) are located in the interme-
diate zone between coastal area and south part of the
studied area.

Different factors can explain the transmissivity distribution
in the studied area:

(i) The aquifer lithology: the higher transmissivity values
are related to Pliocene and Quaternary formations;
however, the lower transmissivity is related to pres-
ence of Cenomanian marly-limestone formation in
the southwest of the studied are and to Palaeozoic
bedrock formation in the east part of studied area;

(ii) The aquifers thickness which are included between 5
and 20m [30].

Finally, it is important to recall that the calculated values are
in the same range than those obtained using pumped test.

4. Conclusions

Most of the hydrogeological parameter identification prob-
lems have been formulated and solved by gradient optimiza-
tion methods. These methods may prove unusable when
the objective function is not regular enough. In addition,
when convergence towards the optimum is ensured, this type
of method generally converges towards a local optimum.
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Figure 8: Head comparison: measured and computed from the HySuf-CVFEM/GA model. (red line= measures, black line= computation).
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Figure 9: Identified transmissivity field of Chaouia aquifer by HySuf-CVFEM/GA model. (values must be multiplied by 10−7 factor).

In recent years we have been witnessing the emergence of
metaheuristic optimization methods and, more specifically,
genetic algorithms (GA). On one hand, this type of method
does not require a minimum of regularity of the objective
function; on the other hand, thesemethods converge towards
a global minimum. This paper deals with solving the inverse
problem by coupling two computation codes: the first is
the HySuF-CVFEM code to solve the direct problem and
the second is the code of the genetic algorithm to solve
the optimization problem. Our choice was for the GA for
the optimization phase is for not only to focus on demon-
strating the regularity of the objective function, but also to
ensure convergence towards a global optimum.The proposed
HySuF-CVFEM/GA integrated optimization algorithm has
been validated by comparison with analytical solutions.
This comparison showed that the code thus constructed
HySuF-CVFEM/GA is able to provide (by identification) a
real transmissivity field of excellent quality. This coupling
method has also been applied to the real case of the coastal
aquifer of the “Chaouia” region inWestern Morocco and has
identified complex domains characterizing the heterogeneity
of this aquifer. Nevertheless, it should be noted that the
major disadvantage of HySuF-CVFEM/GA coupling remains
the longer time required to reach convergence towards the
global optimum. To avoid this inconvenience, we plan to use

parallel computing techniques for HySuF-CVFEM/GA cou-
pling. Similarly, we will consider GA coupling with Kriging
methods that are beginning to emerge in the identification
parameters in hydrogeological research. Another interesting
way is to attempt model reduction techniques to reduce the
number of components of the variable vector. These tech-
niques will be based on orthogonal decomposition (POD)
and properly generalized decomposition (PGD) methods.
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côtier : Etude de l’impact de la sécheresse et de l’intrusion marine.
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