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Abstract: Spruce budworm (Choristoneura fumiferana) is the main defoliator of conifer trees in North
American boreal forests, affecting extensive areas and causing marked losses of timber supplies.
In 2017, spruce budworm affected more than 7 million ha of Eastern Canadian forest. Defoliation was
particularly severe for black spruce (Picea mariana (Mill.) B.S.P.), one of the most important commercial
trees in Canada. During the last decades, intensive forest exploitation practices have created vast
stands of young balsam fir (Abies balsamea (L.) Mill.) and black spruce. Most research focused on the
impacts of spruce budworm has been on mature stands; its effects on regeneration, however, have been
neglected. This study evaluates the impacts of spruce budworm on the defoliation of conifer seedlings
(black spruce and balsam fir) in clearcuts. We measured the cumulative and annual defoliation of
seedlings within six clearcut black spruce stands in Quebec (Canada) that had experienced severe
levels of defoliation due to spruce budworm. For all sampled seedlings, we recorded tree species,
height class, and distance to the residual forest. Seedling height and species strongly influenced
defoliation level. Small seedlings were less affected by spruce budworm activity. As well, cumulative
defoliation for balsam fir was double that of black spruce (21% and 9%, respectively). Distance to
residual stands had no significant effect on seedling defoliation. As insect outbreaks in boreal forests
are expected to become more severe and frequent in the near future, our results are important for
adapting forest management strategies to insect outbreaks in a context of climate change.

Keywords: black spruce; balsam fir; clearcut; edge effect; forest damages; forest dynamics; global
change; natural disturbances; sustainable forest management; seedlings

1. Introduction

Natural and anthropic disturbances determine the dynamics, structure, and composition of forests
and control the functioning of forested ecosystems [1,2]. In forests with long fire cycles, disturbances
such as insect outbreaks and windthrow play major roles in forest landscapes [3–5]. Insect outbreaks
must be considered in forestry planning due to the important economic and ecological implications of
these disturbances [6,7]. Insect outbreaks affect timber supplies and have a marked impact on overall
forest productivity. For this reason, many studies have evaluated the vulnerability of mature trees
in boreal forests to this type of disturbance (e.g., References [8–10]). However, there is still a lack of
information regarding the impact of insect outbreaks on seedling regeneration. In the last decades, the
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greater intensity of harvest practices has increased pressure on boreal forests to respond to the high
demand for wood in the international market [11,12]. Between 1990 and 2016, the harvested area in
Canada reached 24 million ha, most of this area (86%) being harvested using clearcutting methods [13].
Consequently, a large surface of the North American boreal forest exists at an early development stage;
the post-disturbance regeneration phase deserves more attention as it may provide early warning
of ecosystem processes degrading [14]. Therefore, assessing the vulnerability of seedlings to insect
outbreaks is critical for evaluating the persistence, productivity, and resilience of forest ecosystems,
especially in the context of climate change with the expected increase in the frequency and severity of
natural disturbances in the boreal biome [1].

Spruce budworm (Choristoneura fumiferana (Clem)) (SBW) is the main defoliator of North American
boreal forests [15]. Between 1990 and 2016 in the Canadian boreal forest alone, 93 million ha were affected by
SBW activity [13,16]; this extent is equivalent to an area that is more than 5× that of the state of Florida (USA).
Damage to the forest occurs during the larval budworm stage when this insect consumes annual foliage,
thereby reducing the foliar area of conifers that is available for photosynthesis [16]. This lepidopteran
has a 10-year cycle and an outbreak frequency of 30–40 years [17]. In the last decades, the severity and
frequency of SBW outbreaks have increased and spatial patterns have changed [18,19]. Outbreaks now
reach latitudes to the North of previously-observed infestations, possibly because of modified stand
structure, species composition, and host species distribution, as well as climate warming [20,21].

SBW outbreaks reflect a complex phenomenon influenced by multiple factors. Tree vulnerability
depends on species, stage development, height, spatial location, and regional climatic conditions [22–24].
The most vulnerable species are balsam fir (Abies balsamea (L.) Mill.), followed by white spruce (Picea
glauca (Moench) Voss.) and black spruce (Picea mariana (Mill.) BSP) [25]. Balsam fir budburst occurs
14 days earlier than that of black spruce and is synchronized with SBW emergence; this synchrony
explains the greater vulnerability of balsam fir to defoliation [26]. Phenological asynchrony between
black spruce and the insect improves the resistance of this host to defoliation and provides some
protection from severe SBW defoliation [27,28]. SBW not only has an impact on mature trees but
also affects the regeneration phase, i.e., seedlings [22]. The nutritional proprieties of foliage vary
between species, but they are influenced mainly by the phase of stage development, directly affecting
vulnerability to defoliation due to the differing chemical composition of leaves [29]. The foliage of
seedlings has higher concentrations of nitrogen, sugar, and secondary compounds, e.g., tannins, than
mature trees. Lower concentrations decrease the nutritional quality of foliage and reduce the suitability
for the development of SBW larvae [30]. Similar to mature trees, taller seedlings generally have a
larger crown that can intercept larvae; thus height could influence larval density on seedlings [31].
The proximity of seedlings to residual patches and competition related to stand density could also
be crucial in the seedling vulnerability to SBW activity, especially within clearcut stands where the
sheltering effect provided by mature trees is almost nonexistent [32]. Thus, a better understanding of
the vulnerability of conifer regeneration to SBW outbreaks requires that these factors be examined as
they may strongly influence seedling defoliation [22,33,34].

To mitigate the projected future impacts of insect disturbance, several studies have examined the
effect of SBW outbreak under different silvicultural treatments [35–37]. These studies focused on mature
stands; few studies, however, have investigated seedling vulnerability. Although the role of forest
overstory composition on seedling defoliation [22,38] and post-outbreak seedling response [39,40]
have been evaluated, SBW effects on boreal forest seedlings remain understudied. Thus, as much of
the Eastern Canadian forest area previously harvested by clearcutting is affected by SBW activity, a
better understanding of the impacts of SBW outbreaks on seedlings in these early-stage stands should
be a major priority in forest management strategies.

Here we investigate the vulnerability of conifer regeneration to SBW outbreak within clearcut
areas of the Eastern Canadian boreal forest. We aimed to quantify cumulative and annual defoliation
levels on seedlings based on (i) conifer species, (ii) seedling height classes, and (iii) distance to the
residual forest. We hypothesized that:



Forests 2019, 10, 850 3 of 14

(i) Balsam fir will be more affected by SBW than black spruce due to the phenological synchrony of
balsam fir with SBW.

(ii) Taller seedlings will have a higher level of defoliation due to the sheltering effect provided to
smaller seedlings.

(iii) Defoliation will be more intense as the distance between seedling and residual forest increases
because the refugee effect of the mature stand is increasingly limited with distance.

2. Materials and Methods

2.1. Study Area

We conducted our study in natural boreal forest stands that had been both clearcut and affected
by the current SBW outbreak. Our study region, located North of Lake Saint-Jean, Quebec, Canada
(Figure 1) covered 15,438 km2 between 48◦41′–49◦38′ N and 71◦38′–72◦25′ W in the balsam fir–white
birch (Betula papyrifera Marsh.) bioclimatic zone [41]. The regional climate is subhumid subpolar,
characterized by a short, 100–140-day vegetative season [42]. The annual mean temperature is 2.5 ◦C,
marked by an important seasonal variation [43]. Average annual precipitation is 931 mm with 35%
falling as snow [44]. Surficial deposits consist primarily of thick glacial till, and the landscape is
generally flat or gently undulating (1% slopes) [45]. The predominant regional soil type is humo-ferric
podzol [46]. The main natural disturbance in this forested region is SBW outbreaks. In 2016, SBW
severely defoliated 470 km2 (3%) of the study area (Figure 1B). Black spruce is the dominant tree
species and covers 5046 km2 (33%) (Figure 1C) of the study area; this area is considered as a productive
forest under intensive management, and clearcutting is the most common silvicultural treatment.
Between 1990 and 2003, 725 km2 (5%) of the study area was harvested (Figure 1D).
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Figure 1. Location of the study area in Canada (A). Disposition of the experimental plots, located
North of Lake Saint-Jean, Quebec, Canada in relation to Spruce budworm (SBW) defoliation severity in
2016 (B); species composition, where black spruce stands are represented in green (C), and clearcut
areas are in orange (D) [47].
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2.2. Site Selection and Experimental Design

Before undertaking our fieldwork, we selected six study sites (Figure 1) based on the criteria
of SBW activity, dominant tree species, and forestry practices. For this selection, we relied on the
forest inventory data of the Quebec Ministry of Forestry, Wildlife, and Parks [47,48]. We undertook
an exhaustive exploration of the study region to ensure the accuracy of our selection criteria and to
maximize similarity among the selected study sites. Our specific site criteria were (i) that the site
had high level of defoliation by the most recent SBW outbreak, (ii) black spruce dominated the tree
assemblage and represented ≥75% of the stand basal area, and (iii) the forest within the site had been
harvested by clearcutting between 1994 and 2008 (see Table 1), termed clearcutting with protection
of advanced regeneration and soils—CPRS in Quebec. We selected sites subjected to clearcutting as
it is the most common harvesting approach used in Eastern Canadian boreal forests. CPRS requires
harvesting only trees having a diameter at breast height (DBH) of ≥9 cm, preserving pre-established
seedlings, and minimizing soil disturbance from heavy machinery [49].

Table 1. Plot and seedling characteristics by species, distance and height classes, where the distance
classes (R.S., N., I., and D), correspond to residual stand, near, intermediate and distant, respectively.

Plot Harvesting
Date

Species
Number

of
Seedlings

Distance Classes Height Classes (cm)

R.S. N I D 0 to
50

51 to
100

101 to
150

151 to
200 ≥200

A 2003
Black spruce 50 17 22 11 0 39 8 3 0 0

Balsam fir 150 21 65 42 22 75 44 18 4 9
Total 200 38 87 53 22 114 52 21 4 9

B 2008
Black spruce 76 29 18 19 10 31 22 10 7 6

Balsam fir 1 1 0 9 0 0 0 0 1 0
Total 77 30 18 19 10 31 22 10 8 6

C 1994
Black spruce 39 1 3 15 20 25 10 3 1 0

Balsam fir 29 8 14 3 4 2 12 5 5 5
Total 68 9 17 18 24 27 22 8 6 5

D 2000
Black spruce 32 6 12 10 4 2 5 8 5 12

Balsam fir 0 0 0 0 0 0 0 0 0 0
Total 32 6 12 10 4 2 5 8 5 12

E 1999
Black spruce 40 14 8 11 7 7 17 5 2 9

Balsam fir 0 0 0 0 0 0 0 0 0 0
Total 40 14 8 11 7 7 17 5 2 9

F 1999
Black spruce 87 6 28 22 31 18 29 14 17 9

Balsam fir 1 1 0 0 0 0 0 0 1 0
Total 88 7 28 22 31 18 29 14 18 9

2.3. Measurements and Data Compilation

At each study site, we plotted out a 100 m2 rectangular sampling plot (2 m × 50 m). To account
for the edge effect, we set each plot to lie within both the residual stand and clearcut areas (Figure 2).
We included the residual stand area to study the effect of insect outbreaks on the patch (including
mature trees). The residual stand area was 20 m2 (10 m × 2 m). We designed the harvested area (80 m2;
40 m × 2 m) to evaluate the effect of distance from the residual patch on seedling defoliation. We
measured all conifer seedlings located within the 100 m2 rectangular sampling plot—n therefore varied
between sites due to the random number of seedlings in each plot. For each seedling, we recorded
species, distance from the residual stand, seedling height, and defoliation level. To simplify data
analysis, we divided distances into several classes: Residual stand, near (residual stand ≤15.0 m),
intermediate (15.1 m–30.0 m), and distant (30.1 m–40.0 m). We also divided height into five classes:
(1) 0 cm–50 cm, (2) 51 cm–100 cm, (3) 101 cm–150 cm, (4) 151 cm–200 cm, and (5) ≥201 cm. We
conducted seedling inventories during the summer of 2017, a year after SBW defoliation.
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Figure 2. Schematic representation of a sampling plot where the blue rectangle corresponds to the
residual stand area (20 m2), and the grey rectangle represents the harvested area (80 m2).

To evaluate the vulnerability of conifer regeneration to insect outbreaks, we estimated the
cumulative and annual defoliation for each sampled seedling. Cumulative defoliation was estimated as
the percentage of defoliated needles over total foliage. The classification followed the Hunter classes [50]
(Figure 3). Annual defoliation was estimated on three recent shoots per seedling following the Fettes
method [51] (Figure 4). As a complementary measure, to guaranty that the level of stand defoliation
was high in the study plots, we noted the cumulative defoliation for randomly selected mature trees
within the residual stands (30 per plot) using similar methods as described for the seedlings.

2.4. Data Analysis

We used non-parametric tests due to a data distribution that did not conform to parametric
test assumptions. Permutational multivariate analysis of variance (PERMANOVA), based on a
Euclidean distance matrix, evaluated the effects of species, height class, and distance on seedling
defoliation (cumulative and annual). PERMANOVA was performed using Primer 6 software (Primer-E,
Plymouth, UK) [52]. PERMANOVA analyses were run with 9999 permutations. Pairwise tests were
applied between species, height, and distance classes when factors were significantly dissimilar
(p < 0.05) [53]. We then examined the significant pairwise results using Monte Carlo (p(MC))
permutation tests [54]. The model included species, position, height class, and their pairwise
interactions as fixed effects.
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3. Results

3.1. Effect of Height on Seedling Defoliation

PERMANOVA analyses determined significant differences between the cumulative defoliation
levels of the height classes (Figure 5A, Table 2). The analysis of the combined species—balsam fir
and black spruce seedlings together—revealed a positive correlation between the level of defoliation
and height class. Seedlings taller than 200 cm experienced the highest cumulative defoliation (25%)
and differed significantly from the other height classes (p = 0.012), except for the 151 cm–200 cm
height class (mean cumulative defoliation of 20%, p = 0.316). The percent defoliation values that we
obtained for the ≤100 cm height classes (9%–11% mean cumulative defoliation) showed no significative
differences (p = 0.159). The mean cumulative defoliation of seedlings for the height class 101 cm–150 cm
differed from all other height classes (16%, p = 0.007), except for the 151 cm–200 cm class (p = 0.293).
The cumulative defoliation for seedlings ≥200 cm in height was greater than other classes (p = 0.012),
again except for the 151 cm–200 cm class (p = 0.316). Species differed in their cumulative defoliation
(p = 0.001). Balsam fir seedlings were twice as affected as black spruce (p = 0.001). However, the
cumulative defoliation of black spruce and balsam fir did not differ significantly between height classes
(Figure 5B, Table 2).

Annual defoliation of seedlings differed between height classes when seedlings of both species
were combined (p = 0.001) (Figure 5C). Each height class differed in terms of mean defoliation
(p = 0.042), except for seedlings of the 151 cm–200 cm class where the mean defoliation was similar to
the 101 cm–150 cm (p = 0.922) and ≥200 cm classes (p = 0.068). Mean values of annual defoliation were
3%, 14%, 25%, 23%, and 33%, arranged in order of height class. However, we observed no differences
in defoliation between species for the different height classes (Figure 5D).
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Figure 5. Cumulative defoliation level (%) among height classes (cm) for both seedling species
combined (A) and between the conifer species (balsam fir and black spruce) (B). Annual defoliation
level (%) among the height classes (cm) for all seedlings (C) and among species (balsam fir and black
spruce) (D). Vertical bars show the standard error. Different letters represent significant differences
between classes (p < 0.05), following A > B > C.

Table 2. Results of permutational multivariate analysis of variance (PERMANOVA) for cumulative
and annual defoliation between height, species, and height × species, including degrees of freedom
(DF), sum of squares (SS), mean squares (MS), and Monte Carlo permutation test p-values (p(MC)).
Values in bold are significant.

Factors DF SS MS Pseudo-F p(MC)

Cumulative Defoliation

Height 4 11061 2765.1 14.553 0.001
Species 1 8720.2 8720.2 45.895 0.001

Height × Species 4 1538.2 384.6 2.024 0.96
Residual 495 94052 190

Annual Defoliation

Height 4 1.50 × 105 37559 26.434 0.001
Species 1 333.4 333.4 0.235 0.849

Height × Species 4 9654 2413.5 1.6987 0.104
Residual 496 7.05 × 105 1420.8
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3.2. Effect of Distance on Seedling Defoliation

For all seedlings, cumulative defoliation varied between 11% and 15% among all distance classes
(Figure 6A, Table 3). Distance did not influence the cumulative defoliation rate of seedlings when
species were combined, although almost a significant result (p = 0.054); however, the effect of distance
on cumulative defoliation differed (p = 0.001) between balsam fir and black spruce seedlings (Figure 6B).
Balsam fir seedlings had higher cumulative defoliation than black spruce for all distance classes.
Balsam fir seedlings within the residual stand had similar defoliation values (21%) to the other balsam
fir distance classes. The “near” and “distant” balsam fir classes experienced similar defoliation (22%
and 27%, respectively), and values were higher than that of the “intermediate” distance (p = 0.047).
For black spruce, cumulative defoliation varied between 7% and 10% among the distance classes.
Annual defoliation of black spruce seedlings was similar for the “near” and “distant” classes; however,
these values were higher than the annual defoliation in the “residual stand” and lower than that of the
“intermediate” class (p = 0.036).
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classes for all species (C), and among species (balsam fir and black spruce) (D). Vertical bars show the
standard error. Different letters represent significant differences between classes (p < 0.05), following
A > B > C > D > E > F.
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Table 3. Results of a permutational multivariate analysis of variance (PERMANOVA) for cumulative
and annual defoliation among distance, species, and distance × species, including degrees of freedom
(DF), sum of squares (SS), mean squares (MS), and Monte Carlo permutation test p-values (p(MC)).
Values in bold are significant.

Factors DF SS MS Pseudo-F p(MC)

Cumulative Defoliation

Distance 3 1586.8 528.95 2.42 0.054
Species 1 15624 15624 71.52 0.001

Distance × Species 3 2140.4 713.46 3.27 0.022
Residual 497 1.09 × 105 218.45

Annual Defoliation

Distance 3 5992.3 1997.4 1.16 0.288
Species 1 997.9 997.86 0.58 0.573

Distance × Species 3 10544 3514.5 2.04 0.049
Residual 498 8.57 × 105 1721.9

Annual defoliation varied little (8%–16%) between the distance classes when all seedlings were
combined (Figure 6C). As well, we observed no effect of distance (p = 0.97) on the annual defoliation of
balsam fir (12%–14%). Black spruce seedlings within the residual stands experienced less defoliation
(5%, p = 0.002) than the other distance classes (15%–18%). Between-species differences for annual
defoliation were not significant (p = 0.573) (Figure 6D).

4. Discussion

In recent years, the Eastern Canadian boreal forest has experienced a major SBW outbreak phase,
resulting in severe damage to a vast expanse of very productive forest areas. This SBW outbreak
has important implications at the ecological (forest dynamics) and economic levels (economic losses).
Natural regeneration is a key component of forest management in the boreal biome, given its major
role in ensuring the persistence and resilience of forest ecosystems [55,56]. Currently, balsam fir and
black spruce stands in the regeneration stage cover a large surface area in Canada due to the strong
harvest ratio over the last 20 years. Thus, knowing the impacts of SBW activity on regeneration come
to the fore. In this study, we evaluated the cumulative and annual defoliation of conifer seedlings
and the factors influencing the vulnerability of conifer regeneration to insect outbreaks, e.g., species,
seedling height, and distance from residual forests. We quantified SBW-related defoliation within plots
that had undergone clearcutting forestry management. This study was an initial step in improving a
methodology for upcoming research regarding the impacts of SBW defoliation on conifer regeneration
after silvicultural treatments. Our research, therefore, represents a major contribution in providing a
first diagnosis of the vulnerability of conifer seedlings during periods of insect outbreak in clearcut
boreal forests.

First, seedling vulnerability differed between balsam fir and black spruce seedlings in terms of
cumulative defoliation; balsam fir seedlings were more affected by SBW than black spruce seedlings.
These observations confirm our first hypothesis and agree with previous studies (e.g., References [57,58])
that had compared levels of defoliation between species and demonstrated balsam fir’s greater
vulnerability to SBW activity [25]. The phenological synchrony between balsam fir budburst and the
emergence of SBW larvae could explain this heightened vulnerability [59]. Black spruce budburst
occurs 10–14 days after balsam fir, and therefore the SBW larvae must feed on older black spruce foliage
that is less suitable for larval development [27]. On the other hand, a later black spruce budburst would
provide an excellent food supply for later-emerging larvae [26]. Fuentealba et al. [29] highlighted that
black spruce foliage had a lower nutritional quality than that of balsam fir. However, this situation could
change in the future as climate exerts a strong influence on black spruce phenology [28,60]. As such, the
vulnerability of black spruce to SBW could increase as higher springtime temperatures could decrease
the gap between black spruce budburst and the emergence of SBW larvae [61]. Consequently, we
recommend that regeneration vulnerability to SBW outbreak be accounted for in forest management
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strategies, e.g., sites and species selection, when adapting to projected climate change scenarios.
Therefore, our study was located in black spruce stands, where balsam fir was the secondary conifer
(almost absent in some plots). Even if our results between both species were significantly different,
we recommend the development of future research with more replications to better understand the
differences between species vulnerability.

Second, the level of defoliation differed depending on conifer seedling height. Thus, the
composition of the forest overstory and seedling height influence understory regeneration vulnerability
to SBW activity, as observed by Cotton-Gagnon (2018). In agreement with our second hypothesis,
defoliation level was positively correlated with seedling height. Similar results were obtained by Nie
and MacLean [22] who observed greater defoliation in balsam fir seedlings having a height >30 cm
than the smaller seedlings [22]. The relationship between seedling height and defoliation could be
explained by the wider crowns that increase larvae density on taller seedlings [62]. SBW larvae fall
from the upper to lower branches of mature trees before reaching the understory; thus, overstory
vegetation and taller seedlings provide a protector effect for smaller seedlings [38].

Stand composition, stand density, and seedling location can also influence defoliation and mortality
of regeneration [22,63]. Nie et al. [22] observed that softwood or mixedwood stands favored higher
defoliation of balsam fir seedlings. Swaine [63] demonstrated that seedlings protected by a canopy are
less susceptible to defoliation than seedlings situated within an open area. Our observations of black
spruce seedlings were similar, as seedlings within clearcut areas were twice as defoliated as seedlings
within the residual stands. Thus, the open canopy conditions created by clearcutting affected the
distribution of species, the type of regeneration [64], and regeneration mortality caused by defoliation.
We could not confirm the influence of distance from the residual forest on seedling defoliation. We
used a medium-long distance transect (40 m); this distance may be insufficient to identify distance
effects on defoliation within open areas. Further research is required to better understand the effect
of distance on seedling defoliation using both a longer distance, more plot replications and a greater
number of transects within each plot.

Clearcutting is the most widely used harvesting method in Canada [13]. Clearcutting leads to
highly fragmented landscapes, declines in habitat diversity, and losses of productivity [65–68]. For this
reason, ecosystem-based management proposes partial cuttings as a means of timber harvesting that
attempt to (i) preserve the long-term structure and ecological processes responsible for maintaining
forest productivity and (ii) ensure ecosystem integrity, biodiversity, and sustainability [55]. Recently,
these silvicultural treatments have been adopted within the boreal forest [69,70]. Based on our findings,
we consider evaluating the vulnerability of seedlings to SBW outbreaks within partial-cutting sites to
be an essential future study requirement. We would hypothesize that, relative to clearcutting, partial
cutting would result in lower defoliation of seedlings as the residual stand could protect seedlings
from SBW activity.

5. Conclusions

Much effort is being placed on the study of insect outbreaks in the boreal forest to better
understand the spatial patterns, future scenarios, insect-climate interactions, and past dynamics of
insect outbreaks [71]. Under climate change scenarios, disturbance regimes in boreal forests are
expected to be highly affected; for example, scenarios forecast an increase in the frequency and severity
of fire, insect outbreaks, and windthrows [1]. Improving our understanding of the variability of
natural disturbance cycles at multiple scales will be a major, yet important, challenge in mitigating the
effects of climate change on boreal forests and adapting forest management in consequence. Insects
outbreaks are a major disturbance agent in forest ecosystems. Tree defoliation affects productivity
through reduced growth [72], increases tree mortality [73], decreases ecosystem resilience [74], modifies
forest structure and dynamics [75], and heightens the vulnerability of the forest to other disturbances,
e.g., windthrow [76]. Most studies focus on mature trees; nonetheless, the vulnerability of seedling
regeneration to insect outbreak and the selection of silvicultural practices that minimize the effects of
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insect outbreak on stand regeneration remain understudied aspects of forest ecology. Our research
demonstrated how species and seedling height were the main factors that explained seedling defoliation
levels. SBW affected balsam fir more than black spruce seedlings, and defoliation was greatest for taller
seedlings. Although black spruce seedlings within residual stands experienced less defoliation than
seedlings in open clearcutting areas, distance from the residual stand did not influence the level of
seedling defoliation. These results improve our understanding of the effects of insect outbreaks on
conifer regeneration. We suggest that studying the effect of SBW on seedlings should be a priority
for the management strategies in Eastern Canadian boreal forests, particularly as boreal forests are
expected to undergo marked change due to future warming.
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