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AVANT-PROPOS

Ce projet de recherche représente un continuum pour mon projet de maitrise, initié par mon
directeur de recherche, le professeur Erchiqui, sur la modélisation de transfert de chaleur avec
changement de phase dans les solides incompressibles avec application au matériau bois. Cette
fois-ci, sous la direction du professeur Erchiqui, le projet est orienté vers la modélisation de transfert
de chaleur dans les multi-matériaux anisotropes et non linéaires, avec ou sans changement de

phase.

A cet effet, 'équation de la conduction de la chaleur classique pour les solides qui subissent
un changement de phase, en termes de I'enthalpie volumique et de la transformée de Kirchhoff, a
été redéfinie par une nouvelle formulation utilisant I'enthalpie hybride anisotrope et la transformée de

Kirchhoff anisotrope.

L’intérét de cette nouvelle approche, contrairement aux méthodes numériques existantes,
est de pouvoir traiter le transfert de chaleur, avec ou sans changement de phase, dans les milieux
formés de plusieurs solides dont les tenseurs de conductivités thermiques sont de natures différentes

(sphériques et/ou cylindriques et/ou cartésiens).

Ensuite, on a adapté la nouvelle formulation hybride pour la résolution de la conduction de
la chaleur en fonction de la température (au lieu de I'enthalpie et de la transformée de Kirchhoff) pour

les solides multi-matériaux et multi-anisotropies.

Les problemes traités dans ce projet sont de type conduction-convection et conduction-
convection-rayonnement. Plusieurs validations ont été réalisées vis-a-vis des résultats issus de la
littérature (expérimentaux, analytiques et numériques). De surcroit, le probléme de la non linéarité
de la conduction de la chaleur, en régime stationnaire, est contourné par le déploiement d’'une

nouvelle approche, que nous avons initiée, utilisant la méthode de Spline.
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INTRODUCTION

La conductivité thermique des matériaux anisotropes joue un réle crucial dans de
nombreux domaines de l'ingénierie et de la technologie. Citons par exemple les domaines du
refroidissement des batteries Li-ion [1], de la décongélation ou du séchage du bois [2], du
traitement par rayonnement des tissus humains [3], du séchage des structures laminées [4], etc.
En particulier, I'analyse de la conduction thermique dans des milieux anisotropes hétérogénes, au
moyen de I'’équation de la conservation de I'énergie, nécessite, d'une part, la connaissance de la
nature de l'orientation du tenseur de la conductivité thermique dans I'espace du matériau, et,
d'autre part, sa dépendance (ou non) a des variables mesurables telles que la température, la
pression, I'humidité, etc. Les caractéristiques du tenseur de conductivité thermique, résultant de
considérations mécaniques statistiques [5], sont de nature symétrique [6]. Concernant les
méthodes utilisées pour résoudre I'équation de la conduction thermique dans les milieux
anisotropes, il existe généralement deux classes : celles basées sur des méthodes
analytiques [ [7], [8], [9] ] et celles basées sur des approximations numériques telles que la
méthode des éléments finis [ [10], [11] ], la méthode des éléments finis de frontiéres [ [12], [13] ],
la méthode des volumes finis [ [14], [15] ] et la méthode des différences finies [ [16], [17] ]. En
général, ces méthodes sont résolues dans des systemes de référence qui respectent les
caractéristiques intrinséques des tenseurs de la conductivité thermique du matériau. Par exemple,
la conduction thermique dans le bois, qui posséde naturellement une anisotropie cylindrique, doit
étre modélisée en utilisant I'équation de la conduction thermique en coordonnées cylindriques et
non cartésiennes ou sphériques. Cependant, en ce qui concerne la modélisation numérique de la
conduction thermique dans un corps solide incompressible multi-matériaux avec des tenseurs de
conductivité thermique multi-orientation (cartésiens et/ou cylindriques et/ou sphériques), la
littérature ne semble pas avoir suffisamment abordé ce type de probléme. En effet, la seule
référence détectée qui traite ce type de probléme est celle fournie trés récemment par Erchiqui et

Annasabi [10]. L'approche proposée dans [10], appelée enthalpie spécifique volumétrique



tridimensionnelle hybride basée sur l'analyse par éléments finis, utilise I'équation anisotrope

d’énergie en terme d'enthalpie spécifique.

L’autre probléme soulevé dans la littérature sur les problémes thermiques, en régime
permanent, est la difficulté de la résolution de I'équation de la conduction thermique par rapport a
la transformation de Kirchhoff 8, qui est une fonction mathématique qui représente l'intégrale de la
conductivité thermique d'un matériau en fonction de la température. Effectivement, du point de vue
de la modélisation numérique, l'efficacité de la transformation de Kirchhoff pour résoudre les
problémes de conduction thermique est généralement limitée aux cas ou la conductivité thermique
est linéaire [18]. Pour une dépendance fortement non linéaire, la résolution de I'équation de la
chaleur est difficile et différentes simplifications de la transformation de Kirchhoff sont souvent
nécessaires, notamment I'utilisation de fonctions linéaires, de constantes ou de sous-domaines de
température [19]. En fait, I'expression de 6(T) sous forme d'une intégrale est restrictive et entraine
l'inconvénient pratique de la transition inverse de la température a la transformation de
Kirchhoff T(8). Selon Vadasz [19], la transformée de Kirchhoff est un cas particulier de la
transformée de Cole-Hopf [20] et sa définition classique avec une intégrale impose des
inconvénients pratiques pour la transformation inverse. Par conséquent, certains auteurs comme
Vadasz [19] ont suggéré I'utilisation directe de la transformation de Cole-Hopf pour les cas de
dépendance exponentielle. Cependant, il existe une classe importante de matériaux dont la
dépendance de la conductivité a la température n'est ni polynomiale ni exponentielle. Ces
matériaux comprennent le fer, I'aluminium, le cuivre et l'or, dont la conductivité thermique varie
avec la température [21]. Par ailleurs, la littérature scientifique traitant de la transformation de
Kirchhoff n'aborde pas la convection h, probablement en raison de la difficulté a représenter h et
les pertes par convection (h(T-TQ)) en termes de 6. Par conséquent, les applications de la
transformation de Kirchhoff a la résolution de problémes de conduction thermique issus
d'applications d'ingénierie restent trés limitées, tant sur le plan analytique que sur le plan
numérique. Un exemple de travaux numériques utilisant 6(T) et son inverse T(B) trouvé dans la

littérature est rapporté par Erchiqui et al. [10] concernant le chauffage anisotrope du bois dans



lequel la dépendance de la conductivité thermique par rapport a la température est linéaire.
Parallélement, un exemple de cas analytique trouvé dans la littérature est rapporté par Al-
Khamaiseh et al. [22] a travers une approximation de la perte par convection h(T-T«) par “h(T«)’
constante. Cet article propose une méthode permettant de contourner les difficultés inhérentes a
la représentation de 6(T) et de son inverse T(8) pour les solides a conductivité fortement non
linéaire, avec ou sans convection naturelle, en utilisant une méthode B-Spline [23]. Dans ce
contexte, une stratégie basée sur la méthode d'ingénierie inverse proposée dans [24] a été
envisagée par Annasabi et Erchiqui [25]. La méthode consiste a identifier le nombre de nceuds et
leurs emplacements respectifs dans la courbe T(8) en fonction du colt de calcul le plus efficace.
Le processus consiste a ajuster la courbe avec des fonctions B-spline pour obtenir 'emplacement
des nceuds et a diviser les données en utilisant la méthode de bissection avec une erreur
prédéterminée. La méme stratégie est également utilisée pour le terme de perte par
convection h (T-Tx). En outre, les nceuds sont optimisés a I'aide de la méthode des moindres carrés
non linéaires. L'approche proposée peut étre combinée avec une méthode numérique telle que
FEM, BEM et FVM pour la résolution non linéaire de I'équation de la chaleur par rapport a la

variable.

De surcroit, la modélisation du chauffage diélectrique anisotrope des composites avec
changement de phase aussi ne semble pas étre élucidée dans la littérature. Effectivement, ce type
de probleme est trés complexe et implique des interactions hautement non linéaires entre les
propriétés mécaniques, thermiques et électriques [ [26], [27], [2] ] . Cela représente un défi de taille
pour la simulation numérique, car il faut tenir compte du transfert de chaleur anisotrope et de
masse, du changement de phase et des interactions thermomécaniques et électromagnétiques.
Généralement, pour ce type de probléme, la modélisation de la conduction de la chaleur avec
changement de phase nécessite 'une ou lautre des deux approches rencontrées dans la
littérature : i) celle qui exprime I'équation de la conduction anisotrope de la chaleur en terme de la
température comme variable dépendante [29-30] et ii) celle qui utilise [I'enthalpie de

volume [ [28], [29] ]. Cette derniére approche a I'avantage d'éliminer simultanément la duplication



de I'équation d'énergie pour les phases solide et liquide et d'éviter la présence de la frontiére
mobile (conditions mathématiques a l'interface eau-glace) [ [28], [29] ]. Concernant la modélisation
de la chaleur dissipée par les ondes électromagnétiques (incluant les micro-ondes), qu’'on

désignera par Q dans le document, elle nécessite la connaissance du flux de puissance associé a

la propagation des ondes électromagnétiques (vecteur de Poynting P )[30] dans le milieu
diélectrique [29]. Cela ne peut étre réalisé que par la connaissance du champ électromagnétique
induit dans I'espace du matériau, donc par la résolution des équations de Maxwell. Parmi les
méthodes numériques déployées pour la résolution des équations de Maxwell on trouve : la
méthode des éléments finis [ [30], [31]], la méthode de volume fini [32], la méthode des différences
finies [33] et la méthode des éléments finis de frontiére [34]. Toutefois, lorsqu’il s’agit d'un

diélectrique anisotrope, par exemple le matériau bois, les travaux sont trop limités.

Dans ce présent travail, quatre classes de contributions sont réalisées:

¢ Contribution a la modélisation numérique de la conduction de la chaleur, en régime
transitoire, des solides multi-matériaux caractérisés par des tenseurs de
conductivité thermique anisotrope et de natures différentes. L’équation de la
conduction de la chaleur est exprimée par la variable température.

e Contribution a la modélisation numérique de la conduction de la chaleur, en régime
transitoire, des solides multi-matériaux caractérisés par des tenseurs de
conductivité thermique anisotrope et de natures différentes, avec ou sans
changement de phase. L’équation de la conduction de la chaleur est exprimée par
la variable enthalpie volumique.

¢ Contribution a la modélisation numérique de la conduction de la chaleur, en régime
stationnaire, par la transformée de Kirchhoff : i) cas de conduction-convection et
ii) cas de conduction-convection-radiation (conditions aux limite).

e Contribution a la modélisation de chauffage diélectrique des biocomposites

(matériaux diélectriques) anisotrope et non linéaire avec changement de phase.



Dans le cas de la résolution numérique de I'équation de la conduction en fonction de la

température, la méthode implicite des éléments finis est considérée. Pour I'amélioration de

I'efficacité et de la précision de la solution numérique, la stratégie prédicteur/correcteur est

utilisé [35]. L'approche proposée est validée pour cing situations :

1.

Distribution de la température analytique dans un cylindre anisotrope avec un
transfert de chaleur convectif (avec variation circonférentielle).

Distribution de la température analytique dans une sphére anisotrope avec un
transfert de chaleur convectif (avec variation circonférentielle).

Distribution de la température numérique pour une plaque carrée constituée de
deux matériaux différents, dont I'un est un matériau isotrope, tandis que le second
est orthotrope.

Chauffage anisotrope du bois (en tenant compte du changement de phase). A titre,
d’application, nous avons considéré le probléme de chauffage anisotrope du bois,
de ’Amérique du Nord, initialement a I'état gelé, a I'aide des micro-ondes. Ce choix
de température négatif est motivé par des considérations climatiques qui
caractérisent plusieurs régions de '’Amérique du Nord dont les températures
hivernales sont plus basses qu'ailleurs dans le monde. Les propriétés thermo-
physiques et diélectriques du bois sont considérées dépendantes de I'humidité, de
la température et des trois directions structurelles du bois. Pour I'analyse, nous
considérons la fréquence 2,45 GHz et une température initiale de -20°C.
Distribution de la température analytique et numérique dans un cylindre creux dont
la surface extérieure est soumise a un rayonnement. Trois conductivités

thermiques sont considérées : i) constante, ii) linéaire et iii) non linéaire.
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Abstract: The anisotropic problem of thermal conduction in a solid is generally treated in a
reference coordinate system, which adequately describes its thermal conductivity tensor
(Cartesian, cylindrical or spherical). For this problem, numerical treatment is difficult, especially if
the thermophysical properties are non-linear or if the anisotropic medium undergoes a phase
change. In this paper, we propose an approach using a Cartesian reference system to treat the
anisotropic thermal conduction of problems for which the solid medium is characterized by a set of
tensors of thermal conductivity of different natures (Cartesian and/or cylindrical and/or spherical),
with or without phase change. For this purpose, the anisotropic thermal conductivity tensor, with
respect to a cylindrical or spherical coordinate system, is transformed by an equivalent tensor into
global Cartesian coordinates. The nonlinear heat conduction problem involving phase changes,
such as wood freezing, is solved using hybrid three-dimensional volumetric specific enthalpy based
on finite-element analysis. The proposed approach is validated by analytical testing for two
anisotropic media and with two experimental tests related to the heating of frozen woods. As an
application, we have numerically quantified, on the one hand, the minimum time required for the
thaw and, on the other hand, the freezing of a log of wood, such as white pine, according to the
length of its radius (7.5, 10, 15, 20 and 25 cm). The thermophysical properties are a function of

temperature, moisture content and structural orientation.

Résumé : Le probléme de la conduction thermique dans un solide anisotrope est généralement
traité dans un systéme de coordonnées de référence qui décrit adéquatement le tenseur de
conductivité thermique (cartésien, cylindrique ou sphérique). Pour ce probléeme, le traitement
numeérique est difficile, surtout si les propriétés thermophysiques sont non-linéaires ou si le milieu
anisotrope subit un changement de phase. Dans cet article, nous proposons une approche utilisant
un référentiel cartésien pour traiter la conduction thermique anisotrope de problémes pour lesquels
le milieu solide est caractérisé par un ensemble de tenseurs de conductivité thermique de natures
différentes (cartésien et/ou cylindrique et/ou sphérique) avec ou sans changement de phase. Pour
cela, le tenseur de conductivité thermique anisotrope, par rapport a un repére cylindrique ou

sphérique, est transformé par un tenseur équivalent en coordonnées cartésiennes globales. Le



probléme de conduction thermique non linéaire impliquant des changements de phase, tels que la
congélation du bois, est résolu en utilisant une enthalpie spécifique volumétrique tridimensionnelle
hybride basée sur une analyse par éléments finis. L'approche proposée est validée avec des tests
analytiques pour deux milieux anisotropes et avec deux tests expérimentaux liés au chauffage de
bois gelés. A titre d’application, nous avons quantifié numériquement, d’une part, le temps minimum
requis pour le dégel et, d’autre part, le gel d'une bliche de bois, telle que le pin blanc, en fonction
de la longueur de son rayon (7,5, 10, 15, 20 et 25 cm). Les propriétés thermophysiques sont

fonction de la température, de la teneur en humidité et de l'orientation structurelle.



1.1 Introduction

The theory of thermal conductivity of anisotropic materials plays an important role in many
areas of science and technology. These technical problems include: Li-ion batteries characterized
by strong anisotropy of thermal conduction in Li-ion cells [1], the drying and thawing of wood by
microwaves (wood is a highly hygroscopic and structurally-thermally anisotropic) [2] , the human
tissues [3], the stratified structures [4], etc. In general, we find a lack of documentation to solve
problems involving variable heat transfer coefficients on solid bodies (cylindrical, spherical, etc.)
and for which the thermal conductivity is of an anisotropic nature. For these anisotropic media, the
thermal conductivity must be expressed by a tensor taking into account the variation of the local
thermal conductivity with the different directions characterizing the material [5] . From a theoretical
point of view, the thermal conductivity tensor represents the general linear thermal conduction
relationship between temperature gradients and heat flux in a heterogeneous anisotropic

material [5]. This tensor, by the use of statistical mechanics, is symmetrical [6].

Regarding the modeling of the heating of anisotropic media, two classes of methods are
generally used for the resolution of the energy conservation equation: one concerns analytical
methods and the other numerical methods. Generally, these methods are solved in reference
systems that respect the intrinsic characteristics of the tensor components of the thermal
conductivity associated with the physical environment. For example, with wood for which the
thermal conductivity naturally varies with three directions (longitudinal, circumferential and radial),

a cylindrical coordinate system is often used.

Among the problems solved by the analytical methods, one can quote the approach used
in [7] to determine, in cylindrical coordinates and in steady state, the distribution of the temperature
in an anisotropic cylinder with convective heat transfer and with variable circumference. With an
approach similar to that used in [7], the same authors present an analytical method, in spherical

coordinates, for thermal conduction in an orthotropic sphere with a circumferentially variable



convection heat transfer [8].However, for the latter problem, it seems that it has never been
validated numerically because of the spherical anisotropy that seems to be absent from real
problems. With respect to the anisotropic plane structures, let us quote the work realized in [9]
which uses an analytical approach, in stationary regime, to solve the problem of heat transfer by
conduction in a rectangular thin film of quartz. In this regard, the authors used two variables to
convert the anisotropic equations into isotropic equations. In the case of anisotropic monolayers
and multilayers, the problem of conduction heat transfer is solved using a linear coordinate
transformation that reduces the anisotropic problem to an equivalent isotropic problem [[36]-[37]].
Another example is the one provided in [12] on multilayer spherical fiber reinforced composite
laminates and for which the temperature distribution is obtained using the linear boundary

conditions and the method of separation of variables.

Concerning numerical methods, there are generally three approaches to study conduction
heat transfer in anisotropic media: finite element method (FEM), boundary finite element
method (BEM) and finite difference method (FDM). However, the work on heat transfer in
anisotropic media is still limited in the scientific literature. Concerning the MEF, let us quote the
work done in [2] on the anisotropic heating by microwaves of wood. In this paper, the effect of
thermal and dielectric anisotropy on thawing wood is considered. The nonlinear heat conduction
problem involving phase changes such as wood freezing is solved using three-dimensional
volumetric specific enthalpy based on finite-element analysis. Concerning the BEM method, let us
mention the work [[12],[13]] on a transformation approach to numerically treat two-dimensional and
even three-dimensional anisotropic problems in field theory. In [9], an approach based on the finite
difference method is presented for the resolution of a 2D thermal conduction problem in an
anisotropic medium. The problem is solved for a steady state condition in a rectangular thin film

domain.

However, when the medium undergoes a phase change (e.g., solid to liquid), the solving

of the numerical solution is more difficult due to the presence of one or more moving boundaries of
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the solid-liquid phases. In general, two approaches to this type of problem are used: solving the
energy equations for the liquid and solid phases separately, taking into account the moving
boundary (solid-liquid interface) [[38],[39]], or solving the energy equation in terms of the enthalpy
function [[2],[40]]. Recently, for cases regarding the thawing of frozen anisotropic wood by
microwave energy, the nonlinear heat conduction problem is solved using 3D volumetric specific

enthalpy based on finite-element analysis [2].

In general, the choice of reference coordinate system, used to study anisotropic problems
of thermals conduction of solid, is guided by the natural orientation of the properties of the
components in the thermal conductivity tensor of solid media (Cartesian, cylindrical or spherical).
For example, the components of the tensor of the thermal conductivity of wood are naturally
cylindrical (radial, tangential and longitudinal). In this paper, we propose an approach using a
Cartesian reference system to treat anisotropic thermal conduction of problems for which the
thermal conductivity tensor is of a cylindrical or spherical nature, with or without a phase change.
To this end, we transform the anisotropic thermal conductivity tensor relative to a cylindrical or
spherical coordinate system into an equivalent tensor in global Cartesian coordinates. The
nonlinear heat conduction problem involving phase changes, such as wood freezing, is solved
using hybrid three-dimensional volumetric specific enthalpy based on finite-element analysis. The
proposed approach is validated with analytical testing for two anisotropic media (cylinder and
spherical with convective transfer with variable circumference) and with two experimental tests
related to the heating of frozen woods. In the case of the anisotropic sphere, to our knowledge, this
is a first numerical validation study in the literature. As an application, we have numerically
quantified, on the one hand, the minimum time required for the thaw and, on the other hand, the
freezing of a log of wood, such as white pine, according to the length of its radius (7.5, 10, 15, 20
and 25 cm). In the case of thawing, the log (initial temperature -22 °C) is immersed in water at a
constant temperature of 54 ° C. In the case of freezing, the initial log temperature is +22 °C. The
thermophysical properties are a function of temperature, moisture content and structural

orientation.
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1.2 Fourier thermal conduction law
The conductivity tensor characterizes the general linear heat conduction relation between
temperature gradients and heat flux in heterogeneous anisotropic material. If we consider the three-
dimensional orthogonal coordinate system (x,y,z) as the reference frame and according to
Duhamel's generalization of the Fourier thermal conduction law [5] for a linear anisotropic material,

we have the following relations:

oT
Ax g')l(* kxx kxy kxz (1)
oy = | B | = =KD | 50|, where [0 = |k ke Ky
Az JoT kzx kzy kzz
9z
ki(jx‘y’z) are the components of the material thermal conductivity tensor, which relates the

heat flux vector g; to the gradient of the temperature field T. The minus sign in (1) assures that the
heat flow occurs from a higher to a lower temperature. However, by using nonequilibrium statistical

mechanics, Onsager [6] has shown that the conductivity tensor is symmetric:

xyz) _ ,&yz)
ki =k )

The second law of thermodynamics causes the diametric elements of this tensor to be

positive so the following relation must be satisfied [6]:

k§VPREYD > kFYD for i (3)

Using the Clausius-Duhem inequality, the following inequalities for the conductive

coefficients of orthotropic materials are obtained:

(xy,2) . 1 (xy,2) xy,z) xy.2), (xy.z) (4)
k&Y > o; E(kii R Sl )zo

R e

where ki represents the symmetric part of tensor :
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ki(jx'yﬁz) + kj(inYlZ) (5)

xyz) _ 1, &xyz) _
kij = k].i = >

In cases of cylindrical and spherical local coordinate systems, the Fourier thermal

conduction law, for a linear anisotropic material, becomes:

oT
0
dp 16!1)" Koo Kpp Kz
a(p,¢,z)=<q¢>=—[k("‘¢‘2)] 0 |’ where [k®?] = [k kg Ky ©)
9z T kzp kz¢ kzz
9z
oT
or ke ko K
qr 19T T ro rg
Grop = (%) = —[k®00] % | where [k®%9] = |kor koo ke 7)
o 1 aT Kor Koo Kpg
rsinea_d)
(p.$2) r00) . . o
k. and k.. which are respectively the components of material thermal conductivity
ij ij

tensor in local frames for cylindrical (p, ¢, z) and spherical (r, 6, ¢) coordinates.

1.3 Hybrid Fourier thermal conduction law
Consider a Cartesian coordinate system in which (éx, €y, éz) designate the set of three-unit
vectors carried by the three axes, respectively, (Ox, Oy, Oz), (see Figure 1). Thus, every point M
of the material space can be located in the global orthonormal coordinate system (éx, ey, éz) by a

vector ¥ such as (eq. 8):
r(x,y,z) = x& +y&, +z&, 8)

X, y and z being the Cartesian coordinates of the point M.
In cylindrical coordinates, the point M can be identified by the radius of the cylinder p, its

dimension z with respect to the reference plane xOy and the angle ¢ (see Figure 1) and

characterized by a cylindrical local orthonormal coordinate system (ép, €4 éZ).
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The relations that connect the Cartesian coordinates (x,y,z) and their derivatives, relative

to the cylindrical coordinates (p, ¢, z), are given by the following formulas:

X=pcosdp y= psing z=z (9.1)
X,=cos¢p X4= —psing x,=0 9.2)
yp=sin¢ yy=pcosd¢ y,=0 (©3)
z,=0 z,=0 y,=1 (9.4)

In spherical coordinates, the same point M can be characterized by the radius r (of the
sphere to which it belongs), the angle 6 (between the direction 0z and the direction W) and the
angle ¢ (between the direction 0x and the direction W), see Figure 1: Vector in cylindrical and
spherical coordinates. At point M, to which is attached a spherical local orthonormal coordinate
system (ér, g ée), the relations that connect the Cartesian coordinates (x,y,z) and their

derivatives, relative to the spherical coordinates (r, 6, @), are given by the following formulas:

x=rsinBcos¢ y= rsin@sing z=rcosB (10.1)
Xr=sinfBcos¢p xXg= rcosBcos¢p x4 =—rsinOsin¢ (10.2)
yr=sinBsing yg= rcosOsing y4=rsin6cosd (10.3)
Zr=cos® zg=—rsin® z3=0 (10.4)

The base (&, &,,8,) is then connected to each of the bases (&,,8; &,) and (&,,8,, &) by

one or the other matrix expressions:
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ch 8y cos(p) sin(¢) O (11.1)
& | = [T(p,d),z)] e, where [T(p'¢'z)] = [— sin(¢p) cos(¢) 0]

8, e, 0 0 1

8, €x

8 | =[TCO9] | & | where [TT0]

2, 5 (11.2)

[sin(8)cos(¢) sin(8)sin (¢) cos ()
= |cos(B)cos(@) cos(B)sin(¢p) -sin(0)
-sin() cos() 0

[T®¢2)] is the matrix of passage from the global Cartesian coordinate system to the local
cylindrical coordinate system. [T(r'e"")] is the matrix of passage from the global Cartesian coordinate
system to the local spherical coordinate system. Since the basics (&,,8,,8,), (&,,8;&,) and
(1,2, &) are orthonormal, then [T®)] " = [T®]" where [T®] and [T®)] 'represent respectively

the transpose and the inverse of the matrix [T®].

A A
z Z.M”
A ..
. p & A
X A . e, A
* A . e
My My
' A 7 AA
' € 0 ) y
0 . J 3 O‘ : ped
oo L
1N : ’,' X . ‘_‘.".“
x' -------------------- ', I
“2\4’ M

Cylindrical coordinates Spherical coordinates

Figure 1: Vector in cylindrical and spherical coordinates

15



From the formulas (9.2) - (9.4) and the use of the chain derivation rule, the cylindrical
coordinate temperature gradient vector (p, ¢, z) can be described by the temperature gradient vector

in Cartesian coordinates (x,y,z) by:

6_T oT (12.1)
ap Jx
LT _ e | 2
p oY dy
aT aT
9z 0z

In a similar way, using formulas (10.2) - (10.4), the temperature gradient vector in spherical

coordinates (r, 6, @) can be written in Cartesian coordinates (x, y, z) by:

oT oT

ar 0x

10T | _ [peen]t | 9T
= bl A W (122)

1 ot \aT

rsin 6 d¢ 9z

Thus, taking into account the relationships (11.1) - (11.2) and (12.1) - (12.2), each of the
expressions (6) and (7) of the heat flux, relative to the cylindrical (p, ¢,z) and spherical (r, 8, ¢) can

be expressed in terms of the temperature gradient in Cartesian coordinates (x,y, z):

dippn = —[K@*2] VT (13.1)
Qe = —[kKTO9] VT (13.2)
with :
- .90 _d 0 (14.1)
V = EX&-F ey6—y+ EZE,
and
[kP#2] = [T®e2)]" [kmd»z)] [T(P42)] (14.2)
[KTO9)] = [T<r,e,<p)]t [k@@'@] [TT00)] (14.3)

[k®®2] and [kTO®)] represent respectively the equivalent tensors of the thermal

conductivity relative to the cylindrical and spherical coordinate systems. Consequently, any
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anisotropic problem expressed in a cylindrical or spherical coordinate system can be studied in a
Cartesian system provided that the tensor of the thermal conductivity, relative to the cylindrical or

spherical coordinate system, is replaced by an equivalent tensor in the Cartesian system.

In the case of an anisotropic material relating to a cylindrical system, the six components

of the matrix [g(p"f"z)] are given explicitly, according to the definition (14.2), by the following formulas:

k{2 = k) cos2¢ + Ky sin? — Ky sin 20 (15.1)
KB = K3 = 2 (g —Kyy) in26 + Ky cos20 12
k7% = k0% = cos0 Ky, — sin ¢ Kpg (15.3)
k5P = kysin? + kyy 0520 + Ky sin 20 (15.4)
l_(é%’d)’z) = l_(gpz’d)’z) = sin0 Ky, + cos ¢ Ky, (15.5)
k3" =k (15.6)

In the case of an anisotropic material relating to a spherical system, the six components of

the matrix [k™%®)] are given explicitly, according to the definition (14.3), by the following formulas:

K0P = cos2¢ (K, Sin20 + Koy 0520 + Ky sin20 ) + Ko sin®@ — (16.1)

sin 2¢ ( Ko Sin0 + Ko, cos O )

1
l_(&rz'e"p) = gg‘;e"") = EsinZ @ (kyy sin?0 + kgg c0s20 — kyyp + 2k sin 20) (16.2)
+ cos2¢ (qu, sin 0 + Kq, cos 0 )
1
K0P = B0 7sin 20 cos @ (K —Kkog) + Ky cOs 20 cos @ (16.3)

+ sing (keqJ sin@ — kr(pcose)
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K0 = sin?@ (Kyy sin?0 + kg 0520 + Ky sin 20 ) + Kpp COS%@ (16.4)

+ sin 2¢ ( Kppsin 0 + ko, cos0 )

1
l_(%rée'(p) = gg‘;e"") =3 sin20sin @ (Ky — kog) + ko c0s 20 sin @ (16.5)
+ cos @ ( Ky SInO — Kkg,c08 0 )
l_(érée'(p) = Kk, c0s20 + Kgo sin?0 — 2k, sin@ cos0 (16.6)

In what follows, we consider, for the modeling of the thermal conduction in a cylindrical or
spherical anisotropic medium, respectively the expressions (14.2) and (14.3) instead of the
formulas used in (6) and (7).

1.4 Enthalpy model for anisotropic media

Heat conduction and phase changes in anisotropic media are naturally described by the

energy conservation law in terms of the volumetric enthalpy H(T) [2]. In the case of a Cartesian

reference system, this energy equation is given by the following expression [2] :

(17)

OH(T) (0 08;(T)
aT <a_xi 2 >+Q(T)

where 0; are components of the anisotropic thermal conductivity integral tensor 8(T).
Q(T) is the internal volumetric heat generation. Tm is the fusion temperature. To solve the problem,

we introduce the boundary condition into eq. (17) as follows:

(18)

< 90,, 09

a0
Ny —+ 2 tn, a;Z>+h(T—Too)—q-n=O

ny 3y

where q [W/m?] is the heat flux, 7 is the outward normal vector (nx, ny, nz) to the surface,
h[W/m?/°C] is the surface heat transfer coefficient and T. is the temperature of the surrounding
medium. The term h (T-T.) represents the convection heat transfer from the material to the

environment. The advantage of using an enthalpy rather than a temperature-based formulation is

that it simultaneously eliminates the doubling of the energy equation and the Stefan conditions [41].
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Taking into account, on the one hand, the definition of the anisotropic thermal conductivity
integral tensor theta presented in [2], and, on the other hand, the notation used to represent the
components of the equivalent tensor of the thermal conductivity (presented in section 1.3 above),

we have the following expressions for 9;;

e Thermal conductivity integral relative to the cylindrical coordinates:

(r0,0) T (r0,0) (r0,0) T (r0,0) (18.1)
0 (T<Tw) = | k" (MdT, 6" (T>Ty)=| k™ (D)dT
Tref Tm
e Thermal conductivity integral relative to the spherical coordinates:
(18.2)

T T
o<ty = [ kP myar, o> = [k myan

Tref

1.5 Implicit time integration scheme
Numerical time approximation schemes are used mainly to obtain the transient response.
These numerical integration schemes derive recursion relations that relate H(t) at a moment of
time t to H(t+At) at another moment of time t+At. The solution is then solved step by step starting
from the initial conditions at time =0 until the desired duration of the transient response is
calculated. The most common numerical schemes for the solution of eq. (17) belong to the weighted

Euler difference family of time approximations, as follows [42] :
H™® = (1 —a) H" + a H"*! (19)
The parameter a varies in the range [0-1]. The a schemes are unconditionally stable
when a <1/2 and O(At) are accurate, with the exception of the O(At2)—convergent Crank—Nicolson

scheme (a = 1/2). Setting a = 1 leads to the backward Euler (fully implicit) scheme, which is only

first-order accurate but very stable and hence ideally suited for integration. In the present study, we

consistently use the semi-implicit Crank—Nicolson scheme [42]. In this case, eq. (17) becomes:

(K;1+1 + G:1+1) I'ln+1 = K; . I'ln + G;-Hrgn + Rgirﬁl,n+1 (20)
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where K, G and R" are modified global matrices and Hn+1 is the vector of global nodal
enthalpies at moment tn+1 [2].
1.6 Validation
The dynamic finite-element method outlined in the previous section was implemented in
the general-purpose finite-element code ThermoForm developed by the principal author, Erchiqui.

All computations described below were done on a PC in single precision.

1.6.1 Analytical validation of thermal conduction in an orthotropic cylinder with
circumferentially varying convection heat transfer

To validate the enthalpy approach with analytical solution [7], we consider the steady state
anisotropic thermal conduction problem of a uniform volumetric heat-generating cylinder Q, of
radius R, subjected to circumferentially varying convective heat transfer h on its outer surface.
In [7], we find the analytical expressions for the temperature distribution T (r,0) for the infinite
cylinder, and T (r, 0, z) for the finite cylinder. Figure 2, extracted from [7], illustrates this problem
under two considerations: infinite and finite cylinder. The values of Q and R are respectively 80000

W/m3 and 0.013 m. Figure 3 illustrates the variation of h as a function of polar angle 6.

Cross-flow

T
k,a—+h(€.z)T=0
or

B et e

Q
—_— or
k, ——+h@)T=0 \/
S or

K n,, r=0
L ——+h

oz

Figure 2: Schematic of the geometry under consideration for infinite and finite cylinder
subjected to circumferentially varying convection
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Figure 3: Variation of the exchange coefficient as a function of angle 0 (case 3)

The problem of thermal conduction in an orthotropic cylinder, with circumferentially varying

convection heat transfer, is governing by bellow energy equation:

K, 6( 6T) k962T+ —o (21)
r or rar r2 002 Q=

subject to the boundary conditions:

oT

—=0atr=0 (22.1)
or

aT
ke——+h(6).T=0 atr =R (22.2)
T(8) = T(8 + 2m) (22.3)
om ot (22.4)
08lg  06lg+2n

Three cases are studied analytically [7]:
e Case 1: Cylindrical material is isotropic with constant convective heat transfer
coefficient: h = 300 W/m2 K, k. = kg = 30 W/mK
e Case 2: Cylindrical material is orthotropic with constant convective heat transfer
coefficient: h = 300 W/m? K, k., = 0.2 W/mK, kg = 300 W/mK
e Case 3: Cylindrical material is orthotropic with circumferentially varying convective

heat transfer: h = f(8) (see Fig.2), k., = 0.2 W/mK, kg = 300 W/mK
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For the finite-element analysis and validation, we consider three types of meshes (see
Figure 4):
e Mesh1: 4-node quadrilateral elements (1009 elements and 980 nodes)
e Mesh2: 4-node quadrilateral elements (4264 elements and 4205 nodes).

e Mesh3: 8-node hexahedral elements (9800 elements and 11099 nodes).

Since the cylindrical thermal conductivity is orthotropic (k,, = kyy = kg, =0),

formulas (15.1)-(15.6) are reduced to (to respect the notation given in [7], ¢ is replaced by 0):

l_(&pl’e’z) = Ky c0s%0 + kgq sin?6 (23.1)
K02 —  (02) _ %(kpp ~ Keo) sin 20 (23.2)
k5% = k0 = k5 = k5% = 0 (23.3)
l_(épz’e’z) = Kp,sin®6 + kgq cos*0 (23.4)
k$P =k, (23.6)

For modeling of thermal conduction in an orthotropic cylinder, the thermal conductivities,

mentioned above, are used to determine the components, 8, of the anisotropic thermal

conductivity integral tensor 8(T) (see eq. 7).

Figure 5 illustrates the view of numerical temperature distribution obtained for case 1 by
using 2D hybrid enthalpy-finite-element modeling. The following figures show the comparison
between the analytical [7] and the numerical solutions obtained by the approach proposed in this
paper:

Figure 6 lllustrates a comparison of the analytically computed temperature distribution for
the infinite and finite cylinder (at mid-height) [7] with hybrid enthalpy-finite-element modeling results

for case 1 (2D) and case 2 (2D and 3D).
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Figure 7 lllustrates, in case 3, the analytically and numerically (with mesh1 and mesh2)
distribution of the temperature on the surface concerned with the variation of the convection:
Figure-a shows variation with 6 for non-refined and refined mesh and Figure-b shows variation in

circular domain. For greater precision, a more refined mesh is necessary.

Globally, the results illustrate the excellent agreement between the analytical and

numerical solutions. The agreement is very good with an error of less than 0.1%.

Mesh 1 (2D) Mesh 2 (2D refined) Mesh 3 (3D)

Figure 4: Circular (2D) and cylindrical (3D) geometry mesh

o,
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" X(m
Figure 5: Numerical distribution of temperature (case 1)
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Figure 7: Numerical and analytical distribution of temperature as a function of 6 (case 3)

1.6.2 Analytical validation of thermal conduction in an orthotropic sphere with
circumferentially varying convection heat transfer

To validate the enthalpy approach with analytical solution [8], we consider the spherical
steady state anisotropic thermal conduction problem of a uniform volumetric heat-generating Q, of
radius R, subjected to circumferentially varying convective heat transfer h on its outer surface.
In [8], we find the analytical expressions for the temperature distribution T (r, ¢, 6). Figure 8,

extracted from [8], illustrates this problem. The values of Q and R are respectively 80000 W/m3
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and 0.1 m. The variation of h as a function of ¢, illustrated in Figure 9-a, is given by: h =

100 (1 + cos?(¢/2)).

The problem of the spherical steady state anisotropic thermal conduction, with

circumferentially varying convection heat transfer, is governing by bellow energy equation:

W(Z2M ke 2T ko LTy
"\or2 ror) r2(1—p?)oe? r?ou " o Q= (24)

subject to the boundary conditions:

oT

—=0atr=0 (24.1)
dr

oT

kr_r +h(p,n). T=0 atr =R (24.2)
T(r, o, H) = T(r,(p + 2m, M) (243)
or| _oT (24.5)
a(p P a(p @+21

where p = cos(0). ky, kg, and k;, are respectively the thermal conductivities in the r, ¢

and 6 directions.
Two cases are studied analytically [8]:
e Case 1: Spherical material is isotropic (ko= ko= k¢ = 0.2 W/mK)
e Case 2: Spherical material is orthotropic (ke= k¢ = 0.2 W/mK and k,=0.2, 0.5, 1, 10

W/mK)
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flux de chaleur

Figure 8: Mathematical description of the heat transfer problem for the spherical domain

Since the spherical thermal conductivity
formulas (16.1) - (16.6) are reduced to:

1_<§r1'9’(p) = cos?@ (kyy sin?0 + kgg €05%0) + Kk, sin®@

1
l_(grz'e'(p) =3 sin 2¢ (kyr sin?0 + kg 0520 — k)

1
1_<§r3'9"") = sin 20cos@ (Kyr —Kgg)
kgrz’e’(p) = sin®@ (K sin®0 + Kgg c0s?0) + kg COS*@
(r6,0) _ 1 .
k77 = Esm 20sin@ (ky —Kgg)

l_(érée'qj) = Ky 0520 + kg sin?0

is orthotropic (ke = kg = Ky

(25.1)

(25.2)

(25.3)

(25.4)

(25.5)

(25.6)

=0),

For modeling of the spherical steady state orthotropic thermal conduction, the components

of material thermal conductivity tensor, mentioned above, are used to determine the components,

6;;, of the anisotropic thermal conductivity integral tensor 8(T) (see eq. 7).

For the finite-element analysis and validation,

elements (2584 elements and 2401 nodes; see Figure 9-b).

we consider 8-node hexahedral
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Figure 9: Variation of the exchange coefficient as a function of ¢ and Spherical geometry

mesh
Figure 10 illustrates the view of numerical temperature distribution (at mid-diameter)
obtained by hybrid enthalpy-finite-element modeling for case 1. The Figure 11 lllustrates a
comparison of the analytically computed temperature distribution [8] with Thermoform results for
case 1 for two test: i) Numerical and analytical distribution of temperature as a function of radial

position r and ii) numerical and analytical distribution of temperature as a function of ¢ for r=R.

The Figure 12 illustrates, for case 2, the numerical and analytical distribution of

temperature versus radial position r for different values of radial conductivity k.
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Figure 12: Numerical and analytical distribution of temperature versus r for different
values of radial conductivity kr (case 2)

The results illustrate the excellent agreement between the analytical and numerical

solutions. The agreement is very good with an error of less than 0.1%.

1.6.3 Experimental heating validation: transient heating of frozen logs

In this section, firstly, we consider the experimental temperature measurements obtained
for transient heating of frozen logs [43], then, those obtained in [11]. For both tests, it involves
heating a tree trunk immersed in water at a temperature of 54 °C. In the first case, it is trembling
aspen log (radius is 0.3175 m and its initial temperature is -22 °C). In the second test, it is eastern
white pine log (the trunk radius is 0.2285 m and its initial temperature is -23 °C). In [43], it is
assumed that logs is subjected to radial heating. In [11], it is assumed that logs is subjected to
orthotropic heating (radial and longitudinal). For both tests, the heating time is 60 hours. The

thermo-physical properties of the wood material are given in [43] and [11] respectively.

For finite element analysis, we consider a quadrilateral mesh (named Mesh1; see

Figure 4). In Figure 13, we presented the history of the temperature obtained numerically (2D
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hybrid enthalpy-finite-element modeling) and experimentally in the center of the trembling aspen
trunk [43]. Figure 14 illustrates views of the numerical temperature distribution at different

times: 900, 1800, 2700, and 3600 minutes.

In Figure 15, we presented the temperature against heating time for three different points
located 22.9 cm (location 1), 10.2 cm (location 2), and 2.5 cm (location 3) from the surface of an
eastern white pine log [43]. The numerical results for the heating of frozen wood showed an

excellent agreement with the experimental data, in both cases of tests.
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Figure 13: Experimental end numerical temperature vs heating time at the centre of log
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Figure 14: Temperature vs heating time at the centre of log
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Figure 15: Experimental and numerical temperature vs heating time for three different points
located from the surface of an eastern white pine log
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1.7 Application: transient heating of frozen lumber
The purpose of this application is to numerically quantify, on the one hand, the minimum
time required for the thawing and, on the other hand, the freezing of a log of wood, such as white
pine, according to its radius (7.5, 10, 15, 20 and 25 cm). In the case of thawing, the log (initial
temperature of -22 °C) is immersed in water at a constant temperature of 54 ° C. The heating time
is 60 hours. In the case of freezing, the initial log temperature is +22 °C. For this study, we consider
the approach presented in this paper (hybrid volumetric three-dimensional hybrid enthalpy based

on finite element analysis).

The frozen log is usually cylindrical orthotropic material and its thermal properties are
functions of temperature, moisture content and the structural orientation. The quantification of the
thawing of the wood requires knowledge of the heat specific (Cp), through the latent heat of
fusion (L), density (p) and thermal conductivity for radial (kr), tangential (k:) and longitudinal (ki)
directions. According to [38], for several species of wood, the ratio of longitudinal versus radial
thermal conductivity is around 1.75 and 2.2, while the tangential thermal conductivity is usually
slightly smaller (0.9 to 0.95 times) than the radial conductivity. However, in this work, we will retain
the values of the thermal conductivity, in the longitudinal and radial directions (ki= 2.5k:), provided
in reference [43]. Generally, the density, specific heat capacity and radial conductivity (kr) are
calculated as functions of temperature, moisture content MC (expressed in % of the dry mass of
wood) and specific gravity (SG). For the calculation of thermophysical variables (p, Cp, kr) and latent

heat enthalpy we will use the following formulas, provided by [43]:
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Tableau 1 : Thermophysical properties of logwood

Density p = pwGS(1 + MO) (26)
Latent heat _ Ly(MC—30) (27)
enthalpy ~ MC+ 100
Specific Heat T <T Cp=2280+16.6+T (28)
T < T, Cp =2000+8.71+MC+498*T
Radial thermal | T < Tg, k= (0.096 + 0.0033 * MC — 0.0008  T) (29)
conductivity * (0.105 + 2.03 * GS)
Te< T, k, = (0.138 + 0.0019 * MC + 0.00022 * T)
* (0.105 + 2.03 * GS)

p,, and L, are respectively the density and the latent heat of water fusion (334 103 J/kg).
For trembling aspen log, the moisture content MC and specific gravity SG are fixed at 97% and 0.32

respectively [11].

For the numerical modeling, the cylindrical log is meshed with hexahedra comprising eight

nodes (Mesh3; see Fig 3).

Figure 16 shows the temperature plotted against heating time for five different lengths of
radius (7.5, 10, 15, 20 and 25 cm) of the eastern white pine log. According to Figure 16 and for
each case studied, we notice that during the frozen phase of the log, characterized by the presence
of water in the ice form (negative temperatures), the temperature evolves more slowly than that
observed in the phase after freezing (characterized by the presence of liquid water in the log). This
remark is explained by two factors:

e Thermal conductivity. As a matter of fact, the thermal conductivity of wood is lower
in the frozen phase than the liquid phase; see (eq. 29). In addition, since the
thermal conductivities along the longitudinal and tangential directions are closely
proportional to the radial conductivity, the same remark remains.

e The latent energy accumulation time in the frozen wood material. As a matter of

fact, at the beginning of latent energy accumulation, the wood material is at a
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melting temperature of 0 °C, which remains constant along this phase. Then, the

temperature of the material increases more easily because of the thermal

conductivity associated with the liquid phase.

In addition, we note that reaching the stationary regime depends largely on the radius of
the log. In the case of the 7.5 cm, 10 cm and 15 cm, the stationary regimes are reached,
respectively, for heating times of around 14h, 25h and 50 h. For the radius of 20 cm and 25 cm, the
temperatures reached are respectively 51.1 °C and 39.6 °C, which is different from the temperature
characterizing the stationary regime, which is 54 °C. Concerning the minimum heating times
necessary for the thawing of the logs, they are also function of the radius of logs. It is minimal for

the radius of 7.5cm (3.53 hours) and maximal for the radius of 25cm (39.2 hours).
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Figure 16: Temperature vs heating time at the centre of various radius of log
Figure 17 illustrates the minimum heating times required to thaw eastern white pine logs,
for an initial temperature of -22 °C, as a function of radius of the log. In addition, in the same figure,

we presented the correlation curve between the thawing time and the radius of the log. The

correlation, with an almost perfect coefficient (R = 1), allows the mathematical description of eastern

34



white pine logs thaw time according to the radius, by a quadratic function in R, according to the

following function:

T(R) ~ 0.062R? (27)
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Figure 17: Relation between heating time (h) and radius of log (cm)

Figure 18 shows the temperature plotted against freezing time for the five different lengths
of radius (7.5, 10, 15, 20 and 25 cm) of the eastern white pine log. According to this figure and for
each case studied, the temperature decreases with time and the radius of the log. In Figure 19, we
presented the correlation curve between the freezing time and the radius of the log. The correlation,
with an almost perfect coefficient (R = 1), allows the mathematical description of eastern white pine

logs freezing time according to the radius, by a quadratic function in R, according to the following

function:

T(R) ~ 0.1175R? (28)
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Figure 18: Temperature vs thawing time at the centre of various radius of log
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Figure 19: Relation between fustion time (h) and radius of log (cm)

In the light of the above results, the following remarks can be made on thawing or freezing

During the frozen phase of the log, the temperature evolves more slowly than that

observed in the phase after freezing.
Thawing time depends on the latent enthalpy and the conductivity of the wood.
Thawing time is proportional to the square of the radius of the log.

Freezing time is proportional to the square of the radius of the log.
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This example of a numerical application on thawing or freezing of wood shows the
advantage of using Cartesian finite element hybrid enthalpy to solve anisotropic thermal conduction
problems. For the thawing of frozen logs, the general case will be treated in a future work using

microwave energy.

1.8 Conclusion

This paper addresses the numerical heat conduction problem involving phase changes in
anisotropic cylindrical and spherical media involving phase changes. For this, we have proposed a
hybrid volumetric specific enthalpy based on finite-element analysis, involving Cartesian
coordinates. To this purpose, we transformed the anisotropic thermal conductivity tensor relative
to a cylindrical or spherical coordinate system into an equivalent tensor in global Cartesian
coordinates. The numerical method is validated with the analytical testing of two anisotropic
media (cylinder and spherical with convective transfer with variable circumference) and with two
experimental tests associated with the heating of frozen woods. In the case of the anisotropic
sphere, to our knowledge, this is a first numerical validation study in the literature. Finally, as an
application, we have numerically quantified the minimum time required for the thawing of a wood
log, such as eastern white pine, according to its radius (7.5, 10, 15, 20 and 25 cm). The
thermophysical properties are a function of temperature, moisture content and structural

orientation.
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Abstract: For non-linear problems, the solution of the heat equation in terms of the Kirchhoff
transformation, 6(T), is very limited. This restriction is due to the practical disadvantage of the
inverse temperature shift from the Kirchhoff transform 6(T). In order to get around the difficulties
associated with the representation of 6(T) and its inverse 6(T) for solids with strongly non-linear
conductivities, a strategy based on a reverse engineering method is considered. It consists in
identifying the number of knots and their respective locations on the curve 6(T) at the most efficient
computational cost. In order to obtain the location of the knots, the curve is fitted by B-spline
functions and the data is partitioned by an application of the bisectional method with a
predetermined error. These knots are further optimized using the non-linear least squares method.
The proposed approach can be combined with a numerical method such as the FEM, BEM, and
FVM to provide the non-linear solution of the heat equation in terms of 6. However, in this work we
have limited ourselves to the FEM. The validation of the proposed approach is achieved through
several cases ranging from constant to strongly non-linear thermal conductivities with or without
convection. As an application, the 3D finite element method is applied to determine the non-linear

temperature distribution in a copper block with an imposed temperature.

Résumé: Pour les problémes non linéaires, la solution de I'équation de la chaleur en
fonction de la transformation de Kirchhoff 6(T) est limitée. Cette limitation est due a la difficulté a
trouver la fonction inverse de la transformée de Kirchhoff T(0). Afin de contourner la difficulté liée
a la représentation de 6(T) et de son inverse T(0), pour les solides a conductivité thermique
fortement non linéaire, une stratégie basée sur une méthode de rétro-ingénierie est envisagée. Elle
consiste a identifier le nombre de noeuds et leurs emplacements respectifs sur la courbe 6(T) tout
en minimisant le colt de calcul. Afin d'obtenir la localisation des nceuds, la courbe est approximée
par des fonctions B-Spline et les données sont partitionnées par une application de la méthode de
bissection avec une erreur prédéterminée. Ces nceuds sont encore optimisés a l'aide de la
méthode des moindres carrés non linéaires. L'approche proposée peut étre combinée avec une
méthode numérique telle que FEM, BEM et FVM pour avoir la solution non linéaire de I'équation

de la chaleur. Dans ce travail, la validation de I'approche proposée est réalisée par la méthode des
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éléments finis FEM, pour plusieurs cas allant de conductivité thermique constante a fortement non
linéaires avec ou sans convection. Comme application, la méthode des éléments finis 3D est
appliquée pour déterminer la distribution de température non linéaire dans un bloc de cuivre avec

une température imposée.
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2.1 Introduction

The Kirchhoff transformation is a mathematical function that represents the integral of the
thermal conductivity of a material in terms of the temperature. This function, noted 6(T), was
introduced by Kirchhoff in 1894 to solve the problems of non-linear thermal conduction with
temperature-dependent properties [44]. From the physical point of view, the choice to use the
Kirchhoff transformation 6(T), generally in combination with the volume enthalpy H(T), is consistent
with the first principle of thermodynamics especially for solids undergoing a phase change [45].
However, from the point of view of numerical modelling, the efficiency of the Kirchhoff
transformation in solving non-linear heat conduction problems is generally limited to cases where
the thermal conductivity is linear [[10],[18]]. For a strongly non-linear dependence, the solution of
the heat equation is difficult and different simplifications of the Kirchhoff transformation are often
needed, including the use of linear functions, constants, or temperature subdomains [19]. In fact
an expression of 6(T) in terms of an integral is restrictive and causes the practical disadvantage of
the inverse ftransition from the temperature to the Kirchhoff transform T(6). According to
Vadasz [19], the Kirchhoff transform is a particular case of the Cole-Hopf transform [20] and its
classical definition with an integral imposes practical drawbacks for the inverse transformation.
Consequently, some authors like Vadasz [19] have suggested the direct use of the Cole-Hopf
transformation for the cases of exponential dependence. However, there is an important class of
materials whose conductivity dependence on temperature is neither polynomial nor exponential.
These materials include iron, aluminum, copper and gold, whose thermal conductivity varies with
temperature [21]. Furthermore, the scientific literature treating the Kirchhoff transformation does
not address h-convection, probably due to the difficulty to represent h and the convection
losses (h(T-T0O)) in terms of 0. As a result, the applications of Kirchhoff's transformation to the
solution of heat conduction problems deriving from engineering applications remain very limited
both analytically and numerically. An example of numerical works using 6(T) and its inverse T(0)
found in literature is reported by Erchiqui and al. [10] concerning anisotropic heating of wood in
which the dependence of thermal conductivity on temperature is linear. Meanwhile, an example of

analytical case found in literature is reported by Al-Khamaiseh and al. [22], an approximation of the
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convection loss h (T-To) by h(6-To), while T is approximated by 6 and h is kept constant. This paper
proposes a method to get around the difficulties inherent to the representation of 6(T) and its inverse
T(0) for solids with highly non-linear conductivities both with or without natural convection using a
B-Spline method [23]. In this regard, a strategy based on a the reverse engineering method
proposed in [24] is considered. The method consists in identifying the number of knots and their
respective locations in the T(0) curve based on the most efficient computational cost. The process
consists in fitting the curve with B-spline functions to obtain the location of the knots and dividing
the data using the bisection method with a predetermined error. The same strategy is also used for
the convection loss term h ((T)-To). Furthermore, the knots are optimized using the non-linear least
squares method. The proposed approach can be combined with a numerical method such as FEM,

BEM, and FVM for the non-linear solution of the heat equation with respect to the variable 6.

The developed approach, in association with FEM, is further validated for the following
cases:
e Materials with both a constant thermal conductivity and an imposed temperature;
e Materials with both a linear thermal conductivity and an imposed temperature;
e Materials with both a strongly nonlinear thermal conductivity and an imposed
temperature;
e Materials with a constant thermal conductivity subjected to natural convection;
e Materials with a linear thermal conductivity subjected to natural convection;
e Materials with strongly nonlinear thermal conductivity subjected to natural

convection.

The proposed approach was put into application through the finite element determination
of the temperature distribution induced in a 3D copper block, which successively shows an imposed
temperature on the upper surface, a lower adiabatic surface and convectional loss on the four

sides.
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2.2 The heat conduction equation
The steady state equation of energy for an anisotropic material in a region Q bounded by
a surface 9Q (=90 U 90?) is defined by Eq. (1) in a Euclidean space R3, where T [°C] is the

temperature, k [W/m/K] is the thermal conductivity of the material and Q is the source term [W/m?].

V. (k(T) VT(x,y,2)) = Q; x,y,2) €Q (1)

Eq. (1) is subjected to the following boundary condition:

T = @(xy,2); (x,y,z) € 0Q! (2)
KVT n=h(Te —T)+qy (Xy,z) €002 (3)
where q [W/m?] is the incident heat flux, n is the outward normal (nx, ny, nz) to the surface,
h [W/m?/°C] is the heat transfer coefficient and T, [°C] is the temperature of the surrounding
medium. The Kirchhoff transform of the thermal conductivity, which also shows its variation with
temperature, is defined by Elliot et al. [46] as shown in Eq. (4), where Trer is a reference temperature.

T
8(T) = J k(T)dT; Vv T(x,,2) 4)

Tref

The gradient of the Kirchhoff transform can be rewritten using the Leibniz rule [47], to yield

Eq. (5).
VO =Kk(T).VT )
An application of the V operator on Eq. (5) yields Eq. (6) which follows:

V.k(T)VT) =V20 (6)

An insertion of Eq. (6) into Eq. (1) gives an expression of the heat equation in terms of 6

as shown in Eq. (7).
VZe(T)—-Q = 0 7)

The boundary conditions associated with Eq. (7) is expressed in terms of 6 based on Eq.
(3) as follows:

00(x,y.2)

n VO.n=kVT'-n=q,+ h(T,—T); (x,y,z) € 002 (8)
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In the contrary of Eq. (1) which expresses the heat equation in terms of temperature T, it
can be seen from Eq. (7) that the advantage of expressing the heat equation in terms of 0 lies in its
linear form. However, in the cases where the thermal conductivity is dependent on temperature,
the inverse integral function associated with the representation with respect to the temperature is
quite challenging. In order to tackle this challenge, it is therefore necessary to apply the appropriate
algorithms. It is in this context that the following sections are oriented. Firstly, the finite element
approach that was used to solve the heat equation in terms of 0 is described. Secondly, we describe
the B-spline approach to determine the function T(0) (inverse of 6(T)) and its association with the
finite element method to solve the heat conduction equation are described.

2.3 Finite Element Analysis

The spatial discretization of the boundary value problem associated with the heat
conduction equation (eq. 7} is done using the Galerkin form of the method of weighted
residuals [47]. In this regard, the domain Q is subdivided by a finite number of finite elements. The

variation of the 0-field in each element is approximated by the form given by Eq, (9):

Ne

0°(x) = ) NB(x;) 0% ©)

n=1

Where NI denotes the elementary interpolation function associated with the node n and 63
the corresponding nodal-0 in the element. In order to develop the formulation of a Galerkin weighted
residual valid throughout the Q domain, the variations of the local functions associated with the
node n and 0, the corresponding nodal-0 given in Eq. (9) must be extended as shown by Eq. (10),

which is written in matrix form as Eq. (11):

N
0(x;) = » N"(x;)6° (10)
0(x;) =NT-0 (11)

Where N is a vector of the interpolation functions defined on Q, 0 is a Kirchhoff transform

vector of nodal unknown points, superscript T denotes a vector transpose and N (see eq.10) is the
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number of nodal points in the domain Q. The substitution of Eq. (11) in the differential equation
Eq. (7) leads to a set of residual equations which are designated by R:

d (9(NT-0)

— ([ —~——)—0(NT:-0)=R (12)
aXi < aX] Q( )

However, it is worth noting that the Galerkin approach ensures the orthogonality of the

residual vectors with respect to the interpolation functions. In other words:
(13)
R=0=(N,R) = f N- RdQ

Q

By substituting the expression of R, given by Eq. (12), into Eq. (13), we then obtain Eq. (14).

f N [aixi (a(n{;_lj-e)) —Q(NT- e)] dQ =0 (14)

The integral equation above can be reformulated in a more practical form by reducing the
order of derivation by one and introducing the boundary conditions of Eq. (8). This is achieved by

applying the divergence theorem to equation (14), which gives Eq. (15):

ON [(ONT
g.[a_Xi<a_Xje>dQ =§[ NQdQ-}-LQN (qn+ h(T, —T)) dr (15)

According to the integral equation Eq. (15), the quality of the algebraic solution is closely
related to the quality of the representation of the temperature T and the product of the heat transfer
coefficient with temperature, hT, in terms of 0. Finally, by placing the nodal unknowns outside the

integrals, we obtained the algebraic form of Eq. (15):

where:
T
KszEGEJME (16.1)
axi ax]
Q
(16.2)

Fo = f NQ(0) dQ

Q
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F, = f N (qn + h(T, = T))dl (16.3)
20

Equations (16.1)-(16.3) shows that during the numerical application of the Galerkin method,
it is essential to represent each integral by an appropriate local approximation followed by an
application of the standard process of assembling the global matrix K and the global vector F from
their integral elementary contributions.

2.4 Expression of 8(T) and T(6)

This work-assumes that each function k(T), 6(T) and T(6) can be represented by a function
defined piecewise. Under these conditions, each of the functions can be defined by multiple sub-
functions over a finite number of sub-domains (sub-intervals) of the main function. For the analysis,
each function is assumed to be representable by a piecewise polynomial function. Consequently,
each sub-function will be described by a polynomial on each sub-domain, but possibly a different
polynomial on each sub-function.

Consider the case where the conductivity k(T) can be described by a continuous function

over the interval [Tmin, Tmax] as follow:

di
k(T) = Z aniTni: for T € [Tj, Tiy1[; Tomin =To < Ty o < Ty = Tinax (17)

ni=0

Under its conditions, the new expression of the Kirchhoff transform of the Eq.(4) is given

by Eq. (18):
di+1
8(T) = Z by T, for T € [T;, Tiyq] (18)
ni=0

The coefficients ani and bni ensure, respectively, the continuity of the functions k(T) and 6(T)
in the interval [Tmin, Tmax].

Similarly, taking into account Eq. (18), the temperature T is rewritten with respect to 0 as
shown in Eq. (19):

di
T(6) = 2 coi@;  for® € [6;,6,,4] (19)

nj=0
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The coefficients crj ensure the continuity of the functions 6(T) over the interval [Tmin, Tmax].
From the above equation, the elementary matrix expression of the temperature T, as a function of

0, in each element Q¢ of the domain Q is:

(T3 = {co} + [e]. (03° + [c].(67)° + - [cqi] {89}, for@ € [6;,0:41] (20)

Taking into account the expression of Eq. (20), the algebraic equation Eq. (16) becomes:

(K+0C)-6=F (21)
where:
c=th- (Cy-0"+Cy- 0%+ +C4;-0Y71) -NT dQ (21.1)
Q
F=f N(qn+hToo)dl"+J NQdF—J hN-Cy-NTdl (21.2)
Q Q Q

The matrix K is given by Eq.(16.1). In solving the algebraic system Eq. (21), it is essential
to express the temperature as a function of 6 and this according to the representation (16). For this
purpose, the B-spline method is thus used as described in the paragraph below.

Strategy for the determination of T(6)

The inverse of Eq. (4) is very tricky. In fact, finding the temperature according to 8 is not
easy, especially when the thermal conductivity is of degree 2 and higher. To get around this
problem, a number of m points (T, 6;) are constructed to describe the curve 8(T); followed by a
temperature interpolation using B-splines functions from these data. The B-splines method of
interpolation is chosen because it allows more local control of the curve, besides keeping the
continuity of the function and its derivative.

A B-spline curve associated with n + 1 control points Po, P1,.... Pn is defined as shown in

Eq. (22) [24]:

n
i=0
Where, B, are polynomial functions of degree k whose influence is localized to a number

of elementary sub-domains of the curve 6(T). Thus, depending on the variation of the conductivity
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as a function of temperature, the appropriate polynomial degree can be selected for each sector of

the curve 6(T).

The choice of the distribution and number of control points plays an important role in the
optimization of the calculation time and also in the final expression of the temperature according to
6. The smaller the number n, the more optimal the distribution of the control points. In this case,
the expression of T as a function of 6 is less elaborate (fewer polynomial segments). To improve
the quality of the representation of T( 8), there are several strategies in the literature to solve this
optimization problem [24]. In this case, the algorithm and the choice of control points is initialized
by two points (Tmin and Tmax). Then, the position of the control points which minimizes the coefficient
of determination of the curve T(0) is located in each iteration. The loop stops when the desired
accuracy is reached.

2.5 Validation

The dynamic finite-element method outlined in the previous section was implemented in

ThermoForm, a general-purpose finite-element code. All computations were performed on a PC in

a single precision.

The approach proposed in this document has been compared and validated with several
cases obtained by the ANSYS software using the classical equation of the thermal conduction in
terms of temperature. The cases concerned by the validation are:

e Materials with both a constant thermal conductivity and an imposed temperature;

e Materials with a linear thermal conductivity and an imposed temperature;

e Materials with both a strongly non-linear thermal conductivity and an imposed
temperature;

e Materials with a constant thermal conductivity subjected to natural convection

e Materials with a linear thermal conductivity subjected to natural convection;

e Materials with strongly non-linear thermal conductivity subjected to natural

convection.

48



2.5.1. Case 1: A material with both a constant thermal conductivity and an imposed
temperature

This first case concerns a hollow disc with an internal radius of 0.25 m and an external

radius of 1 m, subjected to an external temperature of 1 °C and an internal temperature of 40 °C.

The thermal conductivity is constant 10 W/m/K. The finite-element analysis is done by considering

a quadrilateral mesh with 1444 elements and 1520 nodes.
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Figure 20: Comparative temperature distribution obtained by both the present method and

ANSYS
Figure 20-a shows the comparison between the results of the temperature distribution
obtained by the present method based on the Kirchhoff transformation 6 and those derived from
the ANSYS software based on the expression of the classical heat conduction equation in terms of
the temperature T. Moreover, Figure 20-b gives a view of the temperature distribution in the study
domain derived from the proposed method. It illustrates an excellent agreement between the two
numerical solutions.
2.5.2. Case 2: A material with both a linear thermal conductivity and an imposed
temperature
Unlike the first validation case where the thermal conductivity is constant, this second case
considers a linear dependence of the conductivity with temperature. The application is made of an

aluminum alloy. The physical domain considered for the analysis is similar in every aspect
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(including the mesh size) to the one used in the first validation case. Similarly, the temperatures
imposed are 40 °C for the inner circular boundary and 1 °C for the outer boundary. The conductivity

is given by Eq. (20) that follows.

k(T) = 144+ 0.21 T , T in °C and k in W/m/K. (20)

Figure 21-a shows a comparison between the results of the temperature distribution
obtained by both the proposed method and the ANSYS software, using of the classical heat
conduction equation in terms of the variable temperature. The temperature distributions illustrate
an excellent agreement between the two numerical solutions. Figure 21-b shows the view of the

temperature distribution obtained by the present method.
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Figure 21: Temperature distribution obtained by our method and ANSYS
2.5.3. Case 3: A material with both a strongly non-linear thermal conductivity and an
imposed temperature
Contrary to the two previous validation cases, the third considers copper which thermal
conductivity is strongly non-linear in the region of 0 and 70 K as shown in Figure 22. The physical
domain used for the analysis is similar to that of the first validation case: That is a hollow disc with

an internal radius of 0.25 m, an external radius of 1 m as well as the same mesh size. An imposed
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temperature of 1 K was considered on the inner region of the disc, while 40 K, 60 K and 70 K were

the three temperature cases on its outer border.

For the first case, where the imposed temperature is 40 K, a correlation factor of 0.999928
for the B-spline method was used. The convergence to the inverse function T(6) which required
three iterations, gave three third-degree polynomial sub-curves as shown in Figure 23. Figure 24-
a shows a comparison between the results of the temperature distribution obtained by both the
proposed method and the ANSYS software, using the classical heat conduction equation
expressed in terms of the temperature T. It illustrates an excellent agreement between the two

numerical solutions. Figure 24-b shows the view of the temperature distribution in the study domain
based on the proposed method.
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Figure 22: Variations of the thermal conductivity of copper with temperature in the non-

linear region
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Figure 23: Convergence of iterations for the calculation of the inverse function T (0)

In the two remaining cases where the imposed temperatures are 60 K and 70 K, the
operation of finding the inverse of T(6) was limited to a correlation of 0.999. The comparison
between the results obtained from the two methods is shown in Figure 25-a and Figure 25-b,
respectively, for the imposed temperatures of 60K and 70K. The temperature distributions illustrate

an excellent agreement between the two numerical solutions.
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Figure 24: Temperature distribution derived from both the proposed method and ANSYS (T=

40 °C)
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Figure 25: Temperature distribution obtained derived from both the proposed method and
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2.5.4. Case 4: A material with a constant thermal conductivity subjected to the natural
convection
This case takes into consideration the natural convection problem. The physical domain
use in the analysis is similar to that of the first validation case and bears the same mesh size. The
heat transfer coefficient considered is 450 [W/m?/K]. The ambient temperatures in the outer and
inner part of the circular annular domain are respectively 1 and 40 °C. The temperature distributions

illustrate an excellent agreement between the solutions derived from the two numerical approaches

as shown in Figure 26-a. Figure 26-b shows the view of the temperature distribution in the field of

study obtained by the proposed method.
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Figure 26 :Comparison between the temperature distributions derived from the proposed
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2.5.5. Case 5: A material with a linear thermal conductivity subjected to the natural
convection

This case considers the natural convection of a material made of aluminum alloy. The

physical domain used for the analysis is similar to that of the first validation case and uses the same

mesh size. The heat transfer coefficient considered is 450 [W/m?2/K]. The ambient temperatures in

the outer and inner parts of the circular annular domain are 1°C and 40°C respectively. The

temperature distributions illustrate an excellent agreement between the solutions derived from the

two numerical approaches as shown in Figure 27-a. Figure 27-b shows the temperature

distribution in the field of study obtained by the proposed method.
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proposed method and ANSYS

2.5.6. Case 6: A material with a strongly non-linear thermal conductivity subjected to the
natural convection

The final validation case deals with the natural convection of copper in the region where its
thermal conductivity is strongly non-linear between 0 and 70 K. The physical domain considered in
the analysis is similar to that of the first validation case and uses the same mesh size. The heat
transfer coefficient of copper is 450 [W/m2/K]. The ambient temperatures in the outer and inner
parts of the circular annular domain are 1 K and 70 K respectively. It is observed in Figure 28-a
that the temperature distributions obtained by both the proposed method and ANSYS Software are
in an excellent agreement. Figure 28-b further gives a view of the temperature distribution in the

field of study obtained by the proposed method
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Figure 28: Comparison of the temperature distribution obtained by both the proposed
method and ANSYS
In the light of the numerical validations of the method proposed for the solution of the heat
conduction equation based on the Kirchhoff transform, and applied by ThermoForm, the following

remarks can be made on the performance of this method:

Tableau 2 : Numerical performance of the proposed method

Imposed temperature without Imposed temperature with

convection convection
ANSYS ThermoForm ANSYS ThermoForm
(Full Newton ( Full Newton- (Picard
Raphson) Raphson) method)
Aluminum 2 iterations 0 iteration 2 iterations 2 iterations
alloy
Copper 18 iterations 0 iteration 3 iterations 5 iterations

Remarks: The iterations appearing in the case of the imposed temperature with natural
convection is due to the non-linear nature of the problem since the inverse of the convective term
h (T-Tw) must be found. It is also necessary to underline that the full Newton Raphson method

requires a high computing time.
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2.6 Application

Two cases of application by the finite element method are considered: i) The first case
concerns the temperature distribution induced in a 3D copper block with the following conditions:
temperature imposed on the upper surface, convection loss on the four lateral surfaces of the block
(h=450 [W/m2/°C]) and the lower surface is adiabatic and ii) The second case, two-dimensional, is
based on a hypothetical non-linear conductivity whose shape is similar to the hump of a camel,

which we have called camel conductivity as shown in Figure 29.
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Figure 29: Hypothetical non-linear conductivity: Camel Conductivity
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Figure 30: Geometrical and thermal boundary conditions characteristics

The geometrical characteristics as well as the thermal boundary conditions for these two

examples are given in Figure 30-a and Figure 30-b respectively.
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2.6.1. Case 1: Temperature distribution in a 3D copper block
In this case of 3D-FEM modeling application, the cooper block is meshed with hexahedrons
comprising eight nodes (2744 elements and 3375 nodes). The thermal non-linear conductivity of

cooper is illustrated in Figure 22.

Figure 31, Figure 32 and Figure 33 illustrate the central lines temperature distribution in
the cooper block in x, y and z direction respectively. It can be seen that the temperature distribution
patterns are identical between Figure 31 and Figure 32. This is due to the boundary conditions
which are similar on the side surfaces. These Figures show that the temperature is higher in the
central regions (46.42 °C) in comparison to its edges (44.90 °C). However, the shape of the
temperature distribution in the central direction Z is different from that of the x and y directions as

shown in Figure 33.
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Figure 34-a and Figure 34-b represent different views of the temperature distribution on

the outer surface of the copper block.

z
¥
X
Temperature
50.0
496
49.1
487
482
47.8
47.3
469
485
460
456
451
447
442
438
a. Temperature distribution (view 1) b. Temperature distribution (view 2)

Figure 34: Views of temperature distribution

2.6.2. Case 2: Temperature distribution in a hypothetical Camel-type 2D block
This application considers a 1 m x 1m unitary plate subjected to a uniform temperature. For

the finite-element analysis, we consider a quadrilateral mesh with 361 elements and 400
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nodes (See Figure 30-b). The upper side is maintained at a temperature of 0.7 °C and 0.2 °C on
the other sides (See Figure 30-b). The thermal conductivity curve was approximated by fourth
order splines and the results obtained in iterations 1, 3 and 30 are presented in Figure 35-a.
Moreover, Figure 35-b shows the exact inverse function T(0) obtained by fitting with B-spline. An
excellent reproduction of the inverse function by the b-spline can be seen from the latter figure.
Figure 36-a and Figure 36-b illustrate the central temperature distribution in the domain in the x

and y direction respectively. Figure 37 represents the views of the temperature distribution on the

domain.
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With regard to the last two examples (3D Copper block and camel conductivity problem),

the following remarks can be noted on the performance of the proposed method:

Tableau 3 : Numerical performance of the proposed method

Imposed temperature without

Imposed temperature with

convection convection
ANSYS ThermoForm ANSYS ThermoForm
(Full Newton ( Full Newton- (Picard

Raphson) Raphson) method)
3D  Copper - - 4 iterations 3 iterations
block
conductivity
(2D)
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In the light of the new proposed method to solve the energy equation in terms of the

Kirchhoff transform, and owing to the quality of the results obtained, the following remarks can be

formulated:

In order to characterize the Kirchhoff transform and its inverse for non-linear
thermal conduction analysis, the B-Spline method can be coupled to other
numerical approaches in the example of the boundary finite element, the finite
volume and the finite difference methods.

If the boundary conditions are of the imposed temperatures type, the numerical
solution requires no iteration, independently of the form of the function of thermal
conductivity with respect to temperature (linear or not linear).

The B-Spline method can be used to characterize the volume enthalpy of non-
linear materials either with or without phase change.

The B-Spline method can be coupled with the energy equation for the transient
analysis of strongly non-linear materials in terms of both the volume enthalpy and
Kirchhoff transformation. This operation can either be carried on with or without
phase change.

The B-Spline method can be used in combination with the energy equation for the
representation of the inverse of the non-linear temperature boundary conditions
that can be imposed on a material, in terms of the Kirchhoff transformation (and
volume enthalpy).

The proposed B-Spline method can easily be incorporated into other numerical
methods: boundary finite element method, finite volume method, finite difference

method, etc. And this, for problems with or without phase change.

The potential of the proposed approach is high and could be used for more general

problems in the field of heat transfer such as the heating of non-linear materials by infrared radiation

and electromagnetic waves, which will be addressed in future work.
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2.7 Conclusion
This paper addresses the new method of solving the non-linear heat conduction equation

using Kirchhoff transformation, 6(T), based on finite-element analysis.

In order to tackle the challenges associated with representation of 6 (T) and its inverse T(0),
for solids with strongly non-linear conductivities, a strategy based on a reverse engineering method
is considered. It is achieved by applying the B-spline method to the curve. The proposed approach
can be combined with a numerical method to solve the non-linear heat equation in terms of 6. In
the case where the boundary conditions are of the type of temperatures imposed, the proposed
method does not require any numerical iteration and this independently of the thermal conductivity
function with respect to temperature (linear or non-linear). However, this work has focused on the
finite element method. The approach is validated on several cases of thermal conductivity (from
constant to non-linear) either with convection or not. Through its application, the proposed method
has used the 3D finite element method to determine the temperature distribution in a copper block
and proposed a new numerical analysis test whose thermal conductivity, with respect to

temperature, has the shape of a camel hump.
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Abstract: Dielectric heating is a promising process for the uniform sterilization of food
products as well as for the drying of products. However, radio frequency heating of wood-based
materials (they are highly anisotropic materials with temperature, moisture and structural
orientation dependent properties) does not seem to be elucidated in the literature. It is within this
framework that this study is carried out and concerns the modeling of anisotropic dielectric heating
by radio frequency (RF) and its application to the thawing of frozen wood. The non-linear heat
conduction problem involving phase changes is formulated in terms of volume enthalpy. For the
numerical resolution of the thermal conduction equation, the finite element method is considered.
Thermophysical and dielectric properties are expressed as a function of temperature, moisture
content (MC) and structural orientation. The numerical approach is further validated by a
combination of the analytical, numerical and experimental analyses. Finally, the effect of RF on the
thawing of the Douglas-fir (Pseudotsuga menziesii) and the White oak (Quercus alba), which are

two North American wood species, was studied based on an initial temperature of -20 °C and a

frequency of 50 MHz. In this regard, two MC of 65% and 90% are considered. For the two species

of the studied wood, it is observed that the RF induce a uniform temperature profile.

Résumé: Le chauffage diélectrique est un procédé prometteur pour la stérilisation uniforme
des produits alimentaires ainsi que pour le séchage des produits. Cependant, le chauffage par
micro-ondes des matériaux a base de bois (un matériau hautement anisotrope avec des propriétés
dépendantes de la température, de I'hnumidité et de l'orientation structurelle) ne semble pas étre
élucidé dans la littérature. C'est dans ce cadre que cette étude est réalisée et concerne la
modélisation du chauffage diélectrique anisotrope par radiofréquence (RF) et son application au
dégel du bois gelé. Le probléeme de conduction thermique non linéaire impliquant des changements
de phase est formulé en termes d'enthalpie volumique. Pour la résolution numérique de I'équation
de conduction thermique, la méthode des éléments finis est considérée. Les propriétés
thermophysiques et diélectriques sont exprimées en fonction de la température, de la teneur en
humidité (MC) et de l'orientation structurelle. L'approche numérique est validée par une

combinaison d'analyses analytiques, numériques et expérimentales. Enfin, I'effet des RF sur le
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dégel du douglas (Pseudotsuga menziesii) et du chéne blanc (Quercus alba), qui sont deux
essences de bois nord-américaines, a été étudié avec une température initiale de -20 °C et une
fréquence de 50 MHz. A cet égard, deux MC de 65 % et 90 % sont considérés. Pour les deux

essences de bois étudiées, on observe que les RF induisent un profil de température uniforme.
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3.1 Introduction

Nowadays, radio frequencies (RF) are used in various applications, particularly in both
civilian and military communication as well as the healthcare sector for both tumor treatment and
emergency services. The frequency of its electromagnetic waves ranges from 3 to 300 MHz. Their
interactions with the dielectric media can be described by their dielectric properties. The two main
interactions of interest are: i) the absorption resulting from the partial storage of the wave energy
in the dielectric material and ii) the partial dissipation of the energy absorbed by the dielectric
material in the form of heat [48]. The ability of a dielectric material to absorb and store energy is
generally described by the complex dielectric constant which is a second order tensor [48].
However, the degradation of the energy contained in the electric field of the wave, in the form of
heat, requires the presence of polar molecules. In general, there are four cases of polarization of
dielectric materials listed below [49] :

e Interfacial polarization: it occurs only in non-homogeneous media and it comes
from the accumulation of free charges at the interface of two media of different
permittivities.

e Electron polarization: it is related to the displacement of individual electrons in an
atom in response to external fields.

e Atomic polarization: it is related to the displacement of the atomic nucleus with
respect to the group of atomic electrons.

e Molecular polarization: it is related to the displacement of individual atoms in a

molecule.

All these polarization mechanisms can occur in any dielectric material. However, it occurs
with time, without necessarily following a variable electric field. This shift between the polarization
vector and the electric field is the fundamental condition for the dissipation of the electrical energy
as heat in a dielectric material. Indeed, under the effect of an incident electric field, polar molecules
tend to align themselves with the field with a certain delay with respect to the external electric field

(generally harmonic). The response time of this shift depends not only on the intermolecular forces,
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but also on the inertial forces opposing the electric field. The time needed to overcome these forces
is also known as the relaxation time. Consequently, the first response of dielectrics is polarization,
followed by dielectric relaxation. At frequencies below relaxation, the time for the electric field to
change direction is long enough for the dipoles to be able to follow it and they remain in phase with
the field. In this case, losses do not appear in the material. The same is true if the frequencies are
very high; the field changes too quickly and the dipoles cannot follow the reversal of polarity. Under
these conditions, no energy is lost in the medium. However, there is an intermediate frequency
between these two extremes where there is a delay or a temporal phase shift between the dipole
moment and the electric field resulting in an energy dissipation inside the material [50]. This lost
energy is responsible for the temperature evolution in the dielectric and they reach a maximum
value at the frequency f;, linked to the relaxation time by t=1/(2nf;). The electrical energy is then
converted into the thermal energy with a power proportional to the square of the distribution of the

electric field in the dielectric [48].

In the case of RF, interfacial and dipolar polarization are generally most associated to the
mechanisms of thermal activation through charge carrier migration and general molecular motion
within the material [50]. However, the energy transported or converted into heat by RF is considered
too low to either cause a breakdown of the chemical bonds of the materials or cause an electron
extraction from them [51]. Consequently, RF are considered non-ionizing radiations which can be

used in many telecommunication and health engineering applications.

When dealing with wood, which is a composite material characterized by anisotropy in the
longitudinal, radial and transverse directions, the dielectric properties are expressed as a function
of the following two second order tensors [[48], [26]]: i) the dielectric permittivity tensor £ associated
with the electrical component of the wave and ii) the magnetic permeability tensor u associated
with the magnetic component of the wave. The real parts of the tensors £ and i, which are referred
to as €' and f’ respectively, express the phase shift of the electromagnetic wave (deceleration that

can be characterized by a refractive index tensor n ) for wood, and the imaginary parts €’ and u"
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respectively referring to the loss factors through the dissipation of the energy of the electromagnetic
wave. Usually, the dielectric permittivity € and the magnetic permeability fi are normalized with
respect to those of the vacuum &,(= 8.854 102 F /m)) and p,(= 4 © 107 H/m). In this regard, the
dielectric and magnetic permittivities of wood relative to vacuum are often referred to as g, and f,.,
respectively. The values of the permittivity (or permeability) of a material are closer to unity
whenever its dielectric (or magnetic) properties are close to those of vacuum. This means that the
higher the g, (i;.), the more the material tends to reflect RF. Similarly, the higher the ;. (i';.), the
more the material could dissipate the energy contained in the RF. In the case of wood, the dielectric
tensor ,varies considerably with many parameters such as the type (characterized by the specific
gravity (SG), frequency, density, moisture content (MC), temperature and structural orientations of
its fibers (longitudinal, radial, and transverse) [[48], [43]]. However, it is generally accepted that at
a given set of temperature (T), frequency (f) and the MC, the dielectric properties of wood do not

significantly change with the electric field vector [52].

The current literature on the dielectric heating of wood mostly deals with the use of
microwaves [[28], [2],[48]]. The anisotropic heating of wood using RF does not seem to be
elucidated both with respect to the experimental stage and the mathematical modelling. In addition,
there is a lack of studies supporting the efficiency of the RF heating, as well as many uncertainties
still to be clarified. In this regard, the ability of this technique to penetrate the structure of wood or
to be used for a phytosanitary treatment for the eradication of pathogens present in wood and wood
products has not yet been validated. Moreover, a proper expression of the penetration of RF
radiation into wood is a complex process due to the multitude of parameters it entails. Some of the
most in view are the frequency, temperature, moisture content, structural orientation and dielectric
properties. Other concerns are related to the industrial application of this technique. In fact, the
proper speed at which the dissipated heat generated by RF radiation moves through the wooden
material (characterized by thermal diffusivity (a)) and the speed at which wood absorbs thermal
energy (characterized by thermal effusivity (E)) are not clearly expounded in the literature. It is

rather directly related to the non-linear and the anisotropic thermo-physical properties of the
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wooden material including the specific heat Cp, the density p and the thermal conductivity tensor

k [48]. In the case of frozen wood, the knowledge of the latent energy (L) is essential as it implicitly
characterizes the energy supplied by the RF for the melting of frozen water present in the wooden
structure. Moreover, all its properties are a function of the moisture content, temperature and its
structural orientation. Finally, the frequencies arrayed in the RF domain belong to the set authorized
by the International Telecommunication Union (ITU) for the prevention of the interferences with

other equipments and installations.

In the wood industry, the main issue evolves around reducing the heat time treatment of
wood products, thus the justification of the general use of microwaves instead of RF. This choice
is motivated by economic considerations based on the duration of the heat treatment process,
which is shorter for microwaves as they are more energetic than RF. Consequently, there is a wide
range of microwave equipment operating at the frequency of 915 MHz for industrial applications
and 2.45GHz for domestic ovens. In fact, the depths of the microwave penetration are influenced
by the choice of these frequencies. However, it has been reported that the major disadvantage of
microwave heating is the presence of hot and cold heat spots in the wooden structure, indicating a
heterogeneous temperature distribution [2]. Such phenomenon had been dealt with through an
incorporation of the rotary systems into the microwave ovens where they act by reducing the
temperature differences induced in the material. This paper deals with an investigation of the use
of the RF as an alternate approach to tackle the disadvantages of an application of the microwaves
in the wood industry. This choice is motivated by previous works carried out by Erchiqui et al. [2],
showing that the distribution of the power dissipated by RF in wooden materials is uniform across
the thickness of the analyzed samples for all practical purposes. In fact, such findings deserve a
thorough investigation for a qualitative and quantitative characterization of the temperature
distribution induced by RF in the wood samples subjected to it. Within the defined framework, this

paper focuses specifically on the modeling of the dielectric heating of frozen wood samples by RF.
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The modeling of the RF heating of anisotropic dielectric materials with phase change is a
complex process involving non-linear interactions between mechanical, thermal and electrical
properties [[2], [31], [53]]- This represents a major challenge for numerical simulation because heat
and mass transfer, phase change, as well as thermo-mechanical and electromagnetic interactions
must be taken into consideration. Two approaches are often found in the literature for the modeling
of heat conduction in materials with phase change. The first one expresses the anisotropic heat
conduction equation in terms of temperature as a dependent variable [[10],[48],[54], [41]], while the
second one uses volume enthalpy [[2], [48]]. The latter approach has the advantage of
simultaneously eliminating the duplication of the energy equation for the solid and liquid phases
and avoiding the presence of the moving boundary which is the mathematical condition at the
water-ice interface [48]. The modeling of the heat dissipated by electromagnetic waves including

RF and microwaves referred to as Q requires the knowledge of the power flux associated with the

propagation of the electromagnetic waves (Poynting vector1_5) in the dielectric medium [2]. This can
only be achieved by the knowledge of the electromagnetic field induced in the space of the material,
thus by the resolution of Maxwell's equations. The common numerical methods applied in the
literature to solve the Maxwell equations are the finite element method [[55], [2]], the finite volume
method [56], the finite difference method [57] and the boundary finite element method [58].
However, in the case of an anisotropic dielectric material such as wood, the published works are

limited and usually only deal with microwave heating.

This work is concerned with the finite element investigation of the RF heating of two North
American frozen wood species which are by nature anisotropic. These species include the Douglas-
fir (Pseudotsuga menziesii) and the White oak (Quercus alba). A radiofrequency of 50 MHz and an
initial temperature of -20 °C were considered for analytical purposes. The choice of the negative
initial temperature is supported by the specific North American climatic considerations, where
winter temperatures are reputedly amongst the lowest of the world. The thermo-physical and
dielectric properties of both wood species are considered dependent on moisture, temperature and

the three structural orientations of the wood fibers.
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3.2 Enthalpy model
The heat conduction analysis of anisotropic incompressible solids with phase change is
naturally described by the enthalpy term H(T) [2] which, in the case of a three-dimensional

Cartesian coordinate system is given by equation (1) [10]:

OH_ (0 9%) o . ii=123 1
at  \ax; ox, Qre; 1) =12, (1)

Where 6;; are the components of the Kirchhoff transformation tensor 6, and Qg is the

internal heat source. The 6;;components are related to the temperature-dependent thermal

conductivity tensor k by equation (1.1) [10] :
T T
0j(T<Tn) = | Kkj(MdT, 6;(T>Ty) = f kj; (T) dT (1.1)
Tref Tm
Where Tm [°C] and Trer [°C] are the material’'s melting temperature and the reference

temperature, respectively. In the case where the phase change occurs at melting temperature,

which is assumed to be constant, the enthalpy H(T) is expressed by equations (1.2) and (1.3) [10]:

H(T<T,) = fTTr _pS(T)C3(T)dT (1.2)
Tm T (1.3)
H(T > T,,) = f pS(T)CH(T)AT + p(T)L + f pf(T).CE(T)dT
Trer Tm

“a

L is the latent heat of water fusion [kJ/kg]. The exponent’s “s” and “/” appearing on the
density p’[kg/m?], the specific heat Cj [J/kg/°C] and the components of conductivity tensor
kij [W/m/°C] of the material refer to the solid and liquid state, respectively. The term p represents

the density at the solid-liquid interface of the material.
The internal volumetric heat generation of RF energy Qgg is related to the instantaneous

Poynting vector S by equation (2) that follows [2]:

Qrr(T) = —Re(V-S) (2)

The boundary conditions associated to equation (1) is:
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90, 86, 90,
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>+h(T—Tm)—q-n=0
where g [W/m?] is the incident radiative heat flux, n is the outward normal vector to the
material surface, h [W/m2/°C] is the heat transfer coefficient and T.. is the temperature of the
surrounding fluid.
3.3 Implicit time integration scheme
A variety of the numerical schemes are available for the numerical analysis of transient
responses to problems associated with heat conduction. The most common belonging to the

weighted Euler difference family of time approximations [42] that are considered in this paper

following equation (4):

H'* = (1 — ) H* + a H"?, with: a = t;t“ 4)

The parameter o varies in the range [0—1]. The & schemes are unconditionally stable when

o < 1/2 and O(At) are accurate, except for the O(At?) — convergent Crank—Nicolson scheme (a

=1/2). In this work, the semi-implicit Crank-Nicolson scheme [42] is considered. Consequently,

equation (1) is transformed into equation (5):

(Kh41 + Gpyr) Hyyg = K Hy + Gy -H% + R;,n+1 )
K’, G" and R" are modified global matrices and Hn+1 is the vector of global nodal enthalpies
at moment tn+1 [2].
3.4 Poynting’s theorem and RF-wave energy
The Poynting vector S given in equation (6) is the result of the vector product of the field's
electric and magnetic components of the electromagnetic wave [59]:

1
S=EE><H* (6)

Where E and H* are the electric field (V.m ") and the conjugate magnetic field intensity
(A.m"), respectively. In general, such problem deals with the steady-state harmonic time-varying

fields. It is thus convenient to represent each field vector as a complex phasor by an application of
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a Fourier transformation. An assumption of a monochromatic wave leads to the expression of E by

equation (7):

E(r,t) = e TOE(r) (7)
where E is a complex vector and a function of r (m) and ® (radian.s™) is the angular

frequency of the incident radiation. The other field vectors can be written using the same notation

as in equation (7).

A combination of the definition of equation (6) and Maxwell's equations [28] results

in an expression of V - S using equations (8), (8.1) and (8.2):

V-S = —j= (eo(B -8B + o (- fi- A ®)
with:

Re(V-S) = —%(EO(E Im(@) - EY) + po(A - Im(fD) - A)) (8.1)

Im(V-S) = 2w <%£0(E -Re(¥)-E*) + %yo(ﬁ - Re(n) - ﬁ*)) (8.2)

The imaginary (Im(V-S)) and real Re(V-S) parts of the complex V-S represent,
respectively, the net reactive power stored and the net power dissipated by the RF per unit volume

in the anisotropic dielectric material [[48], [54]] :

© (o (E- Im(E) - E*) + g ( - Im(f) - H* ©)
Qrr = E(SO(E -Im(¥) - E*) + po(H - Im(W) - HY))
In wood systems, the magnetic permeability tensor fiis closely approximated by the real
tensor p,l. (I is the identity tensor) [60]. This assumption is made in this paper resulting into an

expression of the power dissipated by RF (per unit volume) as equation (10):

w -
Qrr = EEO(E -Im(€) - E) (10)
It is clear from equation (10) that the calculation of the power dissipated by RF at any

moment requires the knowledge of the electric field at any point of the dielectric material. This
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requires the resolution of Maxwell's equations with respect to an anisotropic dielectric medium
subjected to the RF. If the RF are normal to the three main directions of the wood sample
(longitudinal, radial and tangential), the power dissipated per unit volume can be further
simplified [2]. The last consideration is made in this work. Assuming the electro-neutrality of wood
V(V-E) = 0, the expression of the Helmholtz’'s equation of wave propagation is deduced from the

Maxwell's equation for each principal direction [28]:
VZE—Vy’E=0 (11)
where vy is the constant complex propagation y = a + j#,while 3 and o are respectively the
attenuation and the phase constants. These parameters are related to the dielectric properties of
the material and the radiation frequency. These in turn are a function of temperature (T), moisture

content (MC), frequency (f) and the structural direction (L, R, T) of the wood according to the

following formulae:

ag (T, MC, f) = %J@\ﬁ + tan2 8((T,MC, ) + 1; (d: L, Ror T) (12.1)
B4(T,MC, f) = %\/@\/1 + tan2 8((T,MC,H) — 1; (d: L, Ror T) (12.2)

c=1/4/u,, is the speed of the light. The term & (=tg”(e; /¢;)) is the dielectric loss angle.

The attenuation constant, B, controls the rate at which the incident field intensity decays in the
dielectric material. 1/(2p) is known as the penetration depth. The phase constant, o, represents
the change of phase of the radiation propagation and is related to its wavelength by the expression
A=2r/a.
3.4.1 Uniform plane wave propagation and power dissipation

In this paper, it is assumed that each component of the electric field E = (EX, Ey, Ez) is a
uniform plane RF. In the same manner, each wave component is assumed to be normally incident
to the opposite faces of the sample (see Figure 38). These electric components are given by
equations (13.1), (13.2) and (13.3):

x direction: longitudinal direction L
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Ey = Ex(z)ay

(13.1)
y direction: radial direction R
E, = E;(%) ay (13.2)
z direction: tangential direction T
E, = E;(y) a, (13.3)

where x is a component of the electric field (Ex), which is a function of the parameter z, y is
a component of the electric field (Ey), which is a function of the parameter x, and z is a component

of the electric field (Ez), which is a function of the parameter y, as represented in Figure 38.

E=Ex[zl a; E=Ez[vl a'y'

Figure 38: Schematic representation of the wood sample exposed to plane RF from the three
principal faces.

The unit vectors a,, a, and a, are respectively the normal to the surfaces (AEFB), (ADHE)
and (HCTE) of the wood sample.
3.4.2 Expressions of the power dissipation

According to equations (11) and (13.1) - (13.3), the exact expressions of the absorbed
powers in each principal direction of the wood sample are given respectively by the expressions of
equations (14.1) — (14.3) [28]:

Longitudinal direction:

e 2P 4 (Ry)2e " 1xe?P™ + 2Ryye2F"lx cos(2a (x — L) — 0%3)]  (14.1)

Q)P({F = Zlgﬁx D D x DX D X X X
1+ (R1p)2(R%5)%e *Fx — 2R}, RY; cos(01; + 033 + 20 Ly )e P x
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Radial direction:

_ —y N2 —
& = 20 e 2PV + (RY;) e *F e2P"Y + 2RY e 2Py cos(20% (y — Ly ) — 635) ] (14.2)
RF — 0

1+ (R,)*(R,) e ¥y — 2R, RY, cos(6Y, + 035 + 2a¥L, )e 2Py

Tangential direction:

Qe = 212p7 [e‘z‘*zz + (Rfs) e *F"1=e?P™ + 2R e72F"x cos(2a’ (2 — L) — e§3>] (14.3)
RF — <%0

1+ (R%,)?(R%3)%e~*P"Lz — 2R%,R%, cos(07, + 053 + 207L,)e~2FLz

The superscripts x, y and z are respectively associated with the longitudinal, radial and
tangential directions. 6j is the phase angle for the reflection coefficient at the interface between
layers i and j; whileﬁi]- is the absolute value of the complex reflection coefficient. Finally, Lx, Ly and
Lz are respectively the length of the wood sample in the x, y and z directions.

3.5 Numerical validation of enthalpy model

The dynamic finite element method outlined in the previous section was implemented in

ThermoForm, a general-purpose code developed by Erchiqui, the principal author. All computations

were performed on a PC with a single precision.

The numerical approach, based on the volumetric enthalpy, was validated for the following
situations:
e The microwave dielectric heating of a beef sample. The parameters validated
include the power dissipation as well as the temperature distribution within the
material [28].
e The thawing of a wood trunk, immersed in hot water, for which the simulated and
the experimental results were compared [10].
¢ An anisotropic cooling by convection of a cylindrical solid ion battery subjected to
a spherical rotation [54]. The interested readers can consult the given references

for further information [ [2], [10], [60] ].
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3.6 The radiofrequency heating of an anisotropic wood sample

3.6.1 Preliminary considerations

The dielectric and the thermo-physical properties of wood products, which are cylindrical
and anisotropic in nature, are conditioned by the orientation of the rings on the tree trunk.
Consequently, the x, y and z directions associated with the Cartesian coordinate system do not
represent the longitudinal (L), radial (R) and tangential (T) directions as defined by the anatomical
structure of the wood sample. However, for the orientation 6 shown in Figure 39, there is a
transition relationship from a cylindrical to a Cartesian coordinate system as shown by

equations (15.1) and (15.2) [10]:
ky = —kgpsin® + kpcos6, ky = —kgcos6+krsin®, k, =k, (15.1)

€x = —€rSin0 + ersin6, &, = —egcosO + e7sinh, g, =g (15.2)
where (ki kg, kt) and (g, &g, €1 ) are respectively the thermal conductivities and the
complex dielectric permittivity of the wood samples in the principal directions L, R, and T. An
angular position close to zero is considered for the heat transfer analysis. These conditions imply

that kZ = kT ,ky = kR and kX = kL'

According to the literature [48], most of the wood species have a the longitudinal (k;,) and
radial (kg) thermal conductivity of about 1.75 and 2.2 respectively, while the tangential (k) thermal

conductivity varies between 0.9 and 0.95 of the radial term. Consequently, the values considered

in this work are given by equation (16):

kL =1.8 kR and kT =09 kR (16)
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Figure 39: Cross-section of the wood sample showing an illustration of the (x, y, T, R) directions
as well as the angle 0.

3.6.2 Modelling considerations

This section focuses on an application of the enthalpy-based finite element method for the
description of the thaw time of the Douglas-fir (Pseudotsuga menziesii) and the White oak (Quercus
alba), two North American wood species following their exposure to the RF. The Douglas-fir is a
medium-density softwood, while the White oak is a moderately high-density ring porous hardwood.
The studied wood sample had a parallelepiped geometry with equal sides length Lx =Ly =Lz=5
cm. The RF intensity and frequency are 1 W/cm? and 50 MHz respectively. The six faces of the
wood samples were all exposed to the same intensity (1 W/cm?). The initial temperature of the
sample is -20°C and the maximum heating time is set at 1800 s. The density (rho), specific heat
capacity (Cp) and radial conductivity (kr) were expressed as a function of the moisture content, the
temperature (T) and the specific gravity (SG) which in turn is expressed as a percentage of the dry
mass of wood and calculated by the formulae found in the literature [43]. In this regard, two MC
of 65% and 90% are considered and the specific gravities are 0.48 and 0.68 for respectively the
Douglas-fir and the White oak species. Moreover, the data for the thermo-physical properties of the
Douglas-fir and the White oak expressed as a function of temperature are given in Tables (4)
and (5) respectively for the two moisture MC considered. Consequently, the anisotropic dielectric
properties at the frequency of 50 MHz and the data extracted from [61] and expressed as a function
of temperature and MC are given in Figure 40 and Figure 41 for the Douglas-fir and Figure 42
and Figure 43 for the White Oak. For numerical modelling, the regression polynomials associated
with the data were used as shown in Figure 40-43. The wood geometry was meshed with identical

hexahedra comprising eight nodes (2744 elements and 3375 nodes).
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Tableau 4 : The thermo-physical properties of the Douglas-fir

Douglas-fir (SG = 0.48)

MC = 65%

Density [Kg/m3] p =792

Latent heat [K]/m?3] L = 0.70848 x 108

Specific heat [J/Kg°C]

T < 0°C T > 0°C

Cp = 2280 + 16.6 X T(°C) Cp = 2566.15 + 4.98 X T(°C)

Thermal conductivity [W/m°C]

T < 0°C T > 0°C

k. = 0.6703 — 0.00172706 x T(°C) k, = 0.564526 + 0.00201848 x T(°C)
kg = 0.301635 — 0.00077718 x T(°C) kg = 0.2540367 + 0.0090832 X T(°C)
kp = 033515 — 0.00086352 X T(°C) kr = 0.282263 + 0.00100924 X T(°C)

MC =90%
Density [Kg/m3] p=912.0
Latent heat [K]/m3] L=1.05x108

Specific heat [J/Kg°C]

T < 0°C

T > 0°C

Cp = 2280 + 16.6 X T(°C)

Cp = 2783.9 + 4.98 x T(°C)

Thermal conductivity [W/m°C]

T < 0°C

T > 0°C

ki, = 0.8484 — 0.00172704 x T(°C)

k;, = 0.667069 + 0.00261214 x T(°C)

kg = 0.38178 — 0.00077717 X T(°C)
kr = 0.42420 — 0.0008635 X T(°C)

kg = 0.30018105 + 0.00117546 x T(°C)
kr = 0.3335345 + 0.00130607 X T(°C)

Tableau 5 : The thermo-physical properties of the White oak

White oak (SG = 0.68)

MC = 65%

Density [Kg/m3]

p=1122

Latent heat [K]/m3]

L = 0.70848 x 108

Specific heat [J/Kg°C]

T < 0°C

T > 0°C

Cp = 2280 + 16.6 X T(°C)

Cp = 2566.15 + 4.98 x T(°C)

Thermal conductivity [W/m°C]

T < 0°C

T > 0°C
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ky = 0.9224334 — 0.00237664 x T(°C) k;, = 0.7768642 + 0.0027777 x T(°C)
kg = 0.41509503 — 0.00106949 x T(°C) kg = 0.34958889 + 0.00124997 x T(°C)

kr = 0.4612167 — 0.00118832 x T(°C) kr = 0.3884321 + 0.00138885 x T(°C)
MC = 90%
Density [Kg/m3] p=1292.0
Latent heat [K]/m3] L=1.05x108
Specific heat [J/Kg°C]
T < 0°C T > 0°C
Cp = 2280 + 16.6 X T(°C) Cp = 2783.9 + 4.98 X T(°C)
Thermal conductivity [W/m°C]
T < 0°C T > 0°C
k;, = 1.1675244 — 0.00213898 x T(°C) k;, = 0.9179772 + 0.00359466 x T(°C)
kr = 0.52538598 — 0.00106949 x T(°C) kg = 0.41308974 + 0.0016176 x T(°C)
kr = 0.5837622 — 0.00118832 x T(°C) kr = 0.4589886 + 0.00179733 x T(°C)
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Figure 40: The dielectric properties of the Douglas-fir wood samples at a frequency of 50 MHz
and 65% MC.
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Figure 41: The dielectric properties of Douglas-fir wood samples at a frequency of 50 MHz and

90% MC.
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Figure 42: The dielectric properties of the White oak wood samples at a frequency of 50 MHz
and 65% MC.
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Figure 43: The dielectric properties of the White oak wood samples at a frequency of 50 MHz
and 90% MC.

3.7 Results and discussions
Figure 44 shows the variations of the temperature at the center of both wood samples
species as a function of the heating time for both 65 % and 90 % moisture content. Figure 45
further shows a comparison between the temperature variations of two wood species with time at

fixed MC of 65 % and 90 % respectively.

The observed behavior is similar for all the investigated species and parameters. They
consist in three phases made of an increase from -20°C to 0°C where there is a plateau followed by
another increase. It can be noted that the first phase is related to the presence of water in the form
of ice due to the negative temperature. The observed figures show that the wood
samples’ temperature evolves faster in the first phase as compared to the phase after the freezing
state. The explanation for such observation can be found in the variations of the thermal

conductivity, the latent energy and the specific gravity which are three associated parameters.

In fact, Tables (4) and (5) have shown that the thermal conductivity of wood is closely

related to its physical state; it appears that it is lower in the frozen state as compared to the unfrozen

one which is characterized by the presence of water in the liquid state.
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Moreover, the time required by the RF for changing the absorbed wood water from the solid
(near negative zero) to the liquid state (near positive zero) is important and it increases with the
wood sample’s MC. In fact, at the beginning of the latent energy accumulation, the wood sample
temperature is 0°C and remains constant throughout this phase. However, once this latent energy
is exceeded, the wood temperature increases more easily due to the large thermal conductivity

associated with the liquid phase of water, as compared to that of its solid phase.

Finally, at a constant MC, the time required for heating the wood sample from -20°C to 0°C
depends on its SG and is found to be shorter for low SG such as those of the lightwood. The same
observation applies to the liquid state where the slope of the variations of the temperature with time

is higher for the Douglas-fir in comparison to the White oak.

25 20

20 15 +
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20 . . . s . 20
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Figure 44: Variations of the temperature at the center of the Douglas-fir and the White oak wood
samples with the heating time for both 65 % and 90 % MC.
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Figure 45: Comparative temperature variations at the center of the Douglas-fir and White
oak wood samples with the heating time at fixed MC of 65% and 90% respectively.

Figure 46 and Figure 47 show the variations of the temperature profile of the Douglas-fir
wood samples, across their XY, YZ and ZX half-planes of symmetry. These profiles were induced
by the RF for the heating cycles ending at 300 and 1800 s for 65% and 90% MC, respectively.
Moreover, Figure 48 and Figure 49 show different views of the temperature distribution at 300 s
for 65% and 90% MC, respectively. In the same manner, Figure 50 and Figure 51 show various

views of the temperature distribution at 1800 s for 65% and 90% MC, respectively.

These results show that the temperature field induced by RF in the Douglas-fir wood
samples is almost constant for the two investigated MC. Moreover, these observations show no
temperature gradient as no temperature point was present. Finally, the observed maximum

variation does not exceed 0.12%.

In the same manner as for the Douglas-fir wood samples, Figure 52 and Figure 53 show
the temperature profiles induced by the RF at 300 and 1800 s on the XY, YZ and ZX half-planes of
symmetry of the White oak-wood samples for 65% and 90% MC, respectively. Finally, Figure 54,
Figure 55, Figure 56 and Figure 57 show different views of the temperature profile of the White
oak wood samples, measured at 300 and 1800 s, for 65% and 90 % MC, respectively. Similar

remarks to those of the Douglas-fir can be made for the White oak wood samples. In fact, the
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induced temperature field is uniform. This RF-induced characteristic of temperature uniformity
within wood samples does not seem to be achievable by microwaves. Indeed, according to the
work done in [2] for the thawing of several Canadian wood samples (same size as the one used in
this work), the microwave-induced temperature field is very heterogeneous with variations of up to
20% between minimum and maximum values. Consequently, the following important points can be
made from the general observations on dielectric heating frozen wood:

e The RF heating induces a nearly uniform temperature distribution in wooden
materials.

e The heating time by RF is longer, as compared to the heating by microwave.

e The microwave heating induces a very significant temperature gradient.

e The heating time and the quality of the temperature distribution in the frozen or
unfrozen wood sample requires a trade off for the choice of an intermediate
frequency between RF and microwave.

e A comparative study on the wood heating or thawing time would be desirable

between the infrared and RF radiation.
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Figure 46: Temperature distribution in the principal directions (L, R, T) at time 300 s for raw
Douglas-fir wood samples exposed at RF parameters: 10 =1.0 W/cm2, frequency = 50 MHz: a)
MC = 65% and b) MC = 90%.
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Figure 48: Temperature distribution view at the final heating time (300 s) for raw Douglas-fir
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Figure 49: Temperature distribution view at the final heating time (300 s) for raw Douglas-fir
wood samples exposed at RF parameters: 10 =1.0 W/cm2, frequency = 50 MHz and MC = 90%.
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Figure 50: Temperature distribution view at the final heating time (1800 s) for raw Douglas-fir
wood samples exposed at RF parameters: 10 = 1.0 W/cm2, frequency = 50 MHz and MC = 65%.
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Figure 52: Temperature distribution in the principal directions (L, R, T) at time 300 s for raw
White-oak wood samples exposed at RF parameters: 10 =1.0 W/cm2, frequency = 50 MHz: a) MC
= 65% and b) MC = 90%.
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Figure 53: Temperature distribution in the principal directions (L, R, T) at time 1800 s for raw
White-oak wood samples exposed at RF parameters: 10 =1.0 W/cm2, frequency = 50 MHz: a) MC
= 65% and b) MC = 90%.

90



Y

Temperature

-5.28336
-5.28434
-5.28533
-5.28631
-5.2873

-5.28828
-5.28926
-5.29025
-5.29123
-5.29222
-5.2932

-5.29419
-5.29517
-5.29615
-5.29714
-5.29812
-5.29911
-5.30009

*

Temperature

-5.28336
-5.28434
-5.28533
-5.28631
-5.2873

-5.28828
-5.28926
-5.29025
-5.20123
-5.29222
-5.2932

-5.29419
-5.20517
-5.29615
-5.29714
-5.29812

-5.29911
-5.30009

Figure 54: Temperature distribution view at the final heating time (300 s) for raw White oak wood
samples exposed at RF parameters: 10 =1.0 W/cm2, frequency = 50 MHz and MC = 65%.
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Figure 55: Temperature distribution view at the final heating time (300 s) for raw White oak wood
samples exposed at RF parameters: 10 =1.0 W/cm2, frequency = 50 MHz and MC = 90%.
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Figure 56: Temperature distribution view at the final heating time (1800 s) for raw White oak
wood samples exposed at RF parameters: 10 =1.0 W/cm2, frequency = 50 MHz and MC = 65%.
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Figure 57: Temperature distribution view at the final heating time (1800 s) for raw White oak
wood samples exposed at RF parameters: 10 =1.0 W/cm2, frequency = 50 MHz and MC = 90%.

3.8 Conclusion

This work describes the numerical study of the potential use of plane and normal incident
radiofrequencies for the anisotropic dielectric heating of frozen wood with an initial temperature of
-20°C. The Douglas-fir (Pseudotsuga menziesii), which is a medium-density softwood, and the
White oak (Quercus alba), which is a moderately high-density ring porous hardwood, were the two
North American species investigated. The complex dielectric and the thermo-physical properties
were expressed as a function of temperature, moisture content and structural orientations. The
study was conducted on two MC (65% and 90%). The results clearly show that the temperature
distribution in the wood samples is uniform at the expense of a relatively long time. In addition, the
heating time was found to vary not only with the species type through its specific gravity (SG), but

also with the latent energy (L) and the moisture content (MC).
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Abstract: This paper concerns the joint application of the B-Spline method and the Kirchhoff
transformation to solve the nonlinear problem of thermal conduction with radiation type boundary
conditions. The proposed method requires few iterations, sometimes none, for solids subjected to
prescribed temperature boundary conditions. This method can be deployed by other numerical
approaches (Boundary element method, Finite element method, Finite volume method, etc.) for the
resolution of the heat conduction equation (linear or nonlinear), in terms of the Kirchhoff
transformation 6. For numerical implementation, the steady-state finite element method is
considered. The numerical validation was performed for a hollow aluminum cylinder whose outer
surface is subjected to radiation. Three types of thermal conductivities are considered: i) constant,
ii) linear and iii) nonlinear. As an application, we studied the thermal response of an aluminum

reactor, in the form of an annular disc with cooling tubes, exposed to thermal radiation.

Résumé: Cet article concerne I'application de la méthode B-Spline et de la transformation de
Kirchhoff pour résoudre le probleme non linéaire de la conduction thermique avec des conditions
aux limites de type rayonnement. Le nombre des itérations de la méthode proposée est minimisé,
voire parfois nul, pour des conditions aux limites de type Dirichlet. Cette méthode peut étre utilisée
par d'autres approches numériques (méthode des éléments de frontiére, méthode des éléments
finis, méthode des volumes finis, etc.) pour la résolution de I'équation de conduction thermique
(linéaire ou non linéaire), en termes de transformation de Kirchhoff 6. Pour la mise en ceuvre
numeérique, la méthode des éléments finis en régime permanent est considérée. La validation
numeérique a été réalisée pour un cylindre creux en aluminium dont la surface extérieure est
soumise a un rayonnement. Trois types de conductivités thermiques sont considérés : i) constante,
ii) linéaire et iii) non linéaire. Comme application, nous avons étudié la réponse thermique d'un
réacteur en aluminium, sous forme d'un disque annulaire avec des tubes de refroidissement,

exposé au rayonnement thermique.
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4.1 Introduction

The mode of heat transmission by radiation is complex and depends on the nature of the
body: solid, liquid or gas. This radiation is composed of radiations of different wavelengths, ranging
from 0.3um to 100um, giving continuous spectra in the case of solids and band spectra for gases.
Vacuum and most simple gases (such as Hz, Oz and N:) are perfectly transparent media for
radiation propagation. However, propagation in some compound gases, considered as semi-
transparent media (such as COz, H20, CO, CHys), is accompanied by a decrease in the transported
energy [ [62], [63] ].In the case of solids and liquids, the radiation emitted comes from the surface
if the medium is opaque and from its entire mass if it is semi-transparent. This phenomenon of
emission corresponds to the conversion of material energy (agitation of the electrons constituting
the matter whose intensity depends on the temperature) into radiative energy [63]. Received
radiation, part of which is absorbed in the form of heat, is a combination of radiation emitted and/or
reflected and/or diffused by the bodies surrounding it or by itself (if its surface is curved). The
rigorous mathematical treatment of the heat generated by the radiation is very sensitive for real
cases if simplifying hypotheses are not used. For closed systems with the presence of gas, the
exact solution of radiation coupling and heat conduction (via the Fourier equation) is only possible
for simple systems [63]. However, there are methods that allow to obtain approximate solutions to
problems and, therefore, they are very interesting alternatives. These methods include: Monte
Carlo method [62], Zone method [64], Imaginary plane method [65], Discrete ordinate method [66],
Boltzmann method [ [67] , [68] ] and a discontinuous finite element method [69]. These techniques
have been the subject of numerous theoretical and numerical works and experimental verifications.
Among the recent theories of interest in radiation, we suggest to readers the theory of

transformation multithermotics [70] and the effective-medium theory [71].

However, for cases where a solid is subject to radiation (radiation-type boundary condition),
the heat equation can then be formulated either in terms of temperature T or in terms of one of the
two following auxiliary variables: i) enthalpy [10], in the transient state and ii) the Kirchhoff

transform [44], in the steady state. For incompressible solids, several methods exist in the literature
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for the mathematical treatment of this type of problems. Among these methods are the meshless
methods for non-linear materials using Laplace transform and its numerical

inversion [ [72], [73], [74] ].

The interest in the last method is its simplicity for the transformation of the nonlinear heat
equation into a linear equation by the Kirchhoff transformation (0) [ [44], [75] ] which makes the heat
equation in terms of 6(T) very attractive for solving problems encountered in physics and
engineering. However, for a physical environment where the thermal conductivity and/or boundary
conditions are nonlinear, access to the solution becomes very difficult. This thorny problem is
basically due to the difficulty of reversing the Kirchhoff transformation, defined as the integral of
thermal conductivity with temperature, or of expressing boundary conditions in terms of T(6). For
this reason, several authors discuss the Kirchhoff transform for media where the thermal
conductivity is constant or linear with temperature [ [10], [18] ]. For problems characterized by the
non-linearity of 6(T), approximations are used to get around the difficulty of finding T(0) [ [19], [20] ]
Recently, a new approach [25], called robust based on the B-Spline method [23], has been
proposed by Annasabi and Erchiqui to solve the heat equation for coupled conduction-convection
problems. Several validation tests have shown the performance of the approach. For heat
conduction in non-linear solids, the proposed method does not require any iteration if the boundary
conditions are of the temperature imposed type. As such, let us underline the three-dimensional
example treated by the authors on thermal conduction in copper, in the region where its thermal
conductivity is strongly nonlinear [25]. It is within this framework that the present work falls and it
concerns the combination of the B-Spline method and the Kirchhoff transform for the solution of the

heat conduction equation in an incompressible solid subjected to radiation (boundary condition).

For the modeling, in steady state, we considered the finite element method. The numerical
validation was performed for a hollow aluminum cylinder whose outer surface is subjected to
radiation. Three thermal conductivities are considered: i) constant, ii) linear and iii) nonlinear. As

an application, we studied the thermal response of an aluminum reactor, in the form of an annular
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disc with cooling tubes (temperature 1 °C), exposed to thermal radiation (1500 °C and 2000 °C). It
is worth noting that the proposed method can be deployed by other numerical methods encountered
in physics and engineering for the treatment of the inverse of the Kirchhoff T(8) transformation such
as Boundary element method (BEM), Finite element method (FEM), and Finite volume method

(FVM).

4.2 The heat conduction equation
The steady state equation of energy, in terms of the Kirchhoff transformation, 6(T), for an
anisotropic solid in a region Q bounded by a surface I" (=I'g U I'y), is defined by equation. (1) in a

Euclidean space R3

VoM =0Q0®); (xy2)eQ (1)
with:
T

o(T) = k (T)dT; VT(xY,2) (2)
Tref

Where T [K] is the temperature, Q is the source term [W/m?3], k [W/m/K] is the thermal
conductivity and Trer is a reference temperature.

Eq. (1) is subjected to the following boundary condition:

o = fey 2 (oy,2) € T 0
ae(Z:nY- z) =qctqr =8(xy,2); (x,y,2) € Ty (4)

The f and g functions are specified values of the known boundary temperature and heat

flux. The vector n is the outward normal (nx, ny, nz) to the boundary surface I'; and (x,y,z) are
coordinates defined on the boundary surface T

The quantity q. is the convective boundary heat flux given by:

e =h (T —-Ty) (x,y,z) € Ty (5)
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h [W/m2/K] is the heat transfer coefficient, T, [K] is the temperature of the surrounding
medium. The term h (T-T«) represents the convection heat transfer from the material to the

surroundings.

The quantity qr refers to the boundary radiative heat flux. In the case where the surfaces of
the source and the receiver are gray and the medium between them is perfectly transparent, the

quantity gr is given by:

qr =0F_e(T*-T§) xy.2) € Ly

(6)
F._s, and Ts, are respectively the view factors between receptor and source [76] and the
source temperature (K). The term ¢ is the effective emissivity of the receptor-source system defined

as:

- (Lelo) %

where ¢, and ¢, are, respectively, the emissivity of receptor and emissivity of source. The

parameter g is the Stefan- Boltzmann constant (=5.67 108 W/m2K+4).

The merit of expressing the heat equation in terms of Kirchhoff's transformation is its linear
form. Nevertheless, the inverse function T(8) is difficult to obtain for solids with a strongly
temperature-dependent conductivity and for boundary conditions of radiation type (see eq.6). To
meet this challenge, we will use the approach based on the B-Spline method [23], which has been

successfully used for the heat problem in conduction-convection.

4.3 Numerical Study
The transformation of the limit value problem associated with the differential form of the
thermal equation into an equivalent integral form can be achieved by Galerkin's weighted residual

approach [34] and the use of the divergence theorem, which leads to:
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f‘3_1\'<ﬂe>dg=fNQdQ+fF N (q, + q. ) dT (8)
Q

aXi aX]
Q

N and 0 are respectively the interpolation functions vector and the Kirchhoff transform
vector of unknown nodes. According to equation 6, it is clear that the integral solution is strictly
linked to the representation of radiation g, (which depends on T#) on the one hand and convection
losses (which depends on T) on the other hand.

The algebraic form associated with system (8) is then given by the following equation:

K-0=Fq+F, +F

where :
oN (ONT
Q
Fo = f NQ(6) dO 9.2)
Q
F. = J N (h(T, — T (6)))dr (9.3)
r
F, = fr NF,,_0 € (T4(0) — T#) dI' (9.4)

4.4 Kirchhoff's transformation and its reverse
For the implementation of the B-Spline method, each variable k(T), 6(T) and T(0) is
assumed to be continuous and piecewise defined. Moreover, we assume that each term can be
represented by one or more functions of polynomial type defined by piecewise bilinear functions.
The strategy on the construction of T(8) is given in section 5 below. The algebraic expression of

equation (9) is then given by the following equation:

(K+C)-0=F (10)
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where:

C=JhN-(C1-91+C2-02+---+Cn-9n)-NTdQ (10.1)
Q

F=f NhToodl"+J NQdF—J hN-Co-NTdr (10.2)
r Q r

C; (i=0, n) are coefficient vectors which guarantee the continuity of 6(T) over all the sub-
intervals of [Tmin, Tmax]. The resolution of the algebraic system (7) requires the expression of T in
terms of 0.

4.5 Strategy for the determination of T(0)

The strategy consists, in a first step, in representing the curve 6(T) by a finite set of points
(Ti, 8i)) where 0 < i < n. Then, an optimal interpolation, using B-splines functions and a least square
algorithm, is performed on each interval forming the curve. The optimized interpolation permits, for
a desired accuracy, to determine the minimum number of intervals that adequately represents the

curve T(0).

The construction of the B-spline curve by pieces, over the (n +1) intervals (sub-domains),

is carried out using the vector OM defined by:

W = B(i,k)OTDi (11)

n
i=0
B are polynomial functions of degree k, defined on the interval i, whose influence is

localized on a certain number of elementary sub-domains of the curve 6(T). The vector OT’I
represents the point control vector defined in the interval i. Consequently, the appropriate
polynomial degree can be selected for each interval of the curve 6(T). However, if the number of
intervals n is small, the expression of the temperature (T) as a function of the Kirchhoff transform
(6) cannot be representative of the physical phenomenon (fewer polynomial segments). To improve

the quality of the representation of T(8), there are several optimization approaches in the literature
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to solve this problem. Concerning this present work, we have considered the approach proposed
in [23]. For this purpose, the following steps are used:
1. Choice of the optimization algorithm (least square);
2. Definition of the desired precision for the construction of the B-spline curve;
3. Initialization of the control points in the interval Tmin, Tmax for which the Kirchhoff
transforms are defined;
4. For each iteration, determination of the position of the control points which
minimize the curve determination coefficient T(8);

5. The loop stops when the desired accuracy is reached.

The interest of the B-splines method is that it allows a local control of the curve 6(T) (or

T(0)), while preserving the continuity of the function 8(T) (or T(6)) and its derivative.

4.6 Validation
For numerical validation, we considered mathematical regressions on experimental data of
thermal conductivity of aluminum, extracted from reference [21]. As shown in Figure 58, the three

regression functions used for thermal conductivity are presented.
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Figure 58: Comparative aluminum thermal conductivity regression versus experimental data

For validation, three situations are considered:
¢ A material subjected to radiation and prescribed temperature (case a with k(T)=C'¢;
see Table 4)
e A material subjected to radiation and prescribed temperature (case a with
k(T)=Linear; see Table 4)
e A material subjected to radiation and imposed temperature (case a with

k(T)=Nonlinear; see Table 4)

The study is based on a circular ring (2D) with outer and inner radii of 0.125 m and 0.5 m
respectively. The outer region of the ring is subjected to thermal radiation at a temperature of 500°C,
while the inner region is subjected to a constant temperature of 1 °C. The analytical expressions of
thermal conductivity and emissivity are given in Table 4. For modeling, the physical domain is

meshed using quadrilateral elements (1520 elements).
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Tableau 6 : Thermal conductivity of aluminum and emissivity

Thermal conductivity (W/m/K) as function of T(°C)

k(T) = 230
k(T) = —0.0438 T + 243.56

k(T) = —6.4607 10710 T* 4+ 1.0420 107 ° T3 — 6.2467 10™* T? + 1.065710~* T + 2.3471 102

Figure 59-a illustrates, for the three studied cases of thermal conductivities for aluminum
(constant, linear and non-linear), the excellent quality of the results obtained by using the B-Spline
method for the resolution of the heat conduction equation in terms of 6 and those obtained by
ANSYS software. Figure 59-b illustrates the relative errors between the results obtained by ANSYS
and the present method. Figure 59-c, Figure 59-d and Figure 59-¢ illustrate, respectively, for the
three studied cases of thermal conductivities for aluminum, a fringe of the temperature distributions

induced in the annular disc.
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Figure 59: Comparative numerical results of the temperature distributions obtained by ANSYS
and the proposed method

Tableau 7 : Comparison, in term of iterations, between ANSYS and present method

ANSYS (Full Newton Raphson) ThermoForm

Case 1-2-3 2 iterations 2 iterations

Remark: Thermoform is house software developed by Pr Erchiqui for numerical analysis

of heat conduction in materials.
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4.7 Application

As an application, we study the thermal response of an aluminum reactor in the form of an
annular disc with tabular cooling and whose outer surface is exposed to radiation. For this, we
consider, on the one hand, two types of reactors (reactor A with 17 cooling pipes and reactor B
with 9 cooling pipes) and, on the other hand, two-radiation temperatures (2000 °C and 1500 °C).
The rays of reactor and tabular are 50 mm and 2.5 mm respectively. For the modelling, the physical
system is meshed with hexahedrons; for reactor A we have 2233 elements and 2429 nodes and
for reactor B, we have 1797 elements and 1921 nodes( Figure 60 ). The non-linear thermal

conductivity of aluminum is given in Table 4.

Figure 61-a and Figure 61-b illustrate the view temperature distribution in the reactors A
and B respectively. According to these figures, we notice different temperature distributions can be
observed in each of the reactors. In the first cases, where the temperature of the radiation
is 2000 °C, the temperature generated in Reactor B is much hotter than in Reactor A. The maximum
temperatures in each of the two reactors B and A are 196.9 °C and 131.1°C respectively, with a
variation of 33.4%. In the second case, see Figure 62-a and Figure 62-b, the maximum
temperatures generated in each of the two reactors B and A are 78.8 and 49.2 °C respectively, with

a variation of 37.5%.
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Figure 60: Meshed geometry with hexahedrons mesh elements
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Figure 63 shows the temperature distribution, on the symmetry axes as shown in

Figure 63-a and Figure 63-b, for Reactors A and B subjected to radiative temperatures of 2000°C

and 1500 °C. It can be seen, on the one hand, that the shapes of the temperature curves are

different for each of the reactors and, on the other hand, that the number and position of the coolers

have an impact on the temperature distribution. In comparison with reactor B, the heat dissipation

by Reactor A is greater. Indeed, in the case where the radiative temperature is 1500 °C, the

maximum temperature induced in reactor A is 42.9 °C while it is 78.8 °C for reactor B; with a
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difference of 35.9 °C. For the case where the radiation temperature is 2000 °C, the maximum

induced temperature in reactor A is 131.1 °C while it is 196.9 °C for reactor B; with a difference of

65.8 °C. Consequently, the efficiency of heat dissipation by a given reactor is closely related to the

number of coolers, their temperature and their positioning.
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Finally, in order to compare the performance of each of the two reactors A and B, the

temperature distributions on the axes of symmetry for the radiation temperatures 2000 °C

and 1500 °C are shown in Figure 64-a and Figure 64-b. It can be seen that Reactor A is more

efficient both in terms of cooling and the state of the temperature distribution.
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On the basis of the results obtained, using the proposed approach to solve the problem of

conduction-radiation coupling in steady state and in terms of the Kirchhoff transform, the following

observations can be made:

The method proposed for the determination of the Kirchhoff transform and its
inverse is very robust, regardless of the mathematical representation of 6(T).

The approach proposed for the analysis of thermal conduction by radiation,
through the Kirchhoff transform, can be, without difficulty, combined with other
numerical methods (MEF, BEM, MDF, etc.).

The proposed method requires few iterations for solids subjected to radiation and
imposed temperatures.

For imposed temperatures (boundary conditions), the proposed method requires
no iteration.

The proposed approach is robust and can be combined with numerical and
analytical methods to solve the problems of heat transfer for physical environments
with high non-linearity of materials (radiative and electromagnetic heating, heating

by convection; etc.).

4.8 Conclusion

This article proposes a new approach to solve nonlinear steady-state heat conduction-

radiation using Kirchhoff transformation and B-Spline in solids. For this, a recent method is used.

The method requires few iterations, sometimes none, for solids subjected to imposed temperatures.

This new method can be deployed by other numerical approaches (BEM, FEM, FDM, etc.) for the

resolution of the heat conduction equation (linear or not), in terms of the 6. For numerical

implementation, the finite element method is considered. The numerical validation was performed

for a hollow aluminum cylinder whose outer surface is subjected to radiation. Three thermal

conductivities are considered: i) constant, ii) linear and iii) nonlinear. As an application, we studied

the thermal response of an aluminum reactor, in the form of an annular disc with cooling tubes,

exposed to thermal radiation.
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CONCLUSION

Ce projet de recherche est orienté vers la modélisation de transfert de chaleur dans les multi-
matériaux anisotropes et non linéaires. A cet effet, 'équation de la conduction de la chaleur classique
pour les solides en termes de I'enthalpie volumique et de la transformée de Kirchhoff, a été redéfinie
par une nouvelle formulation utilisant I'enthalpie hybride anisotrope et la transformée de Kirchhoff
anisotrope. L’approche proposée a été validée autant au niveau mathématique (analytique et
numérique) qu’expérimentale. Cette approche, contrairement aux méthodes numériques existantes,
permet le traitement numérique, par la méthode des éléments finis, le transfert de chaleur, avec ou
sans changement de phase, dans les milieux formés de plusieurs solides dont les tenseurs de
conductivités thermiques sont de natures différentes (sphériques et/ou cylindriques et/ou cartésiens).
De surcroit, on a adapté la nouvelle formulation hybride pour la résolution de la conduction de la
chaleur en fonction de la température (au lieu de I'enthalpie et de la transformée de Kirchhoff) pour
les solides multi-matériaux et multi-anisotropies. Aussi, nous avons couplé I'approche hybride avec
I'énergie diélectrique (radiofréquence) pour estimer le temps de chauffage de bois gelé (anisotrope
et non linéaire). Finalement, le probléme de la non linéarité de la conduction de la chaleur, en régime
stationnaire, est contourné par le déploiement d’'une nouvelle approche, que nous avons initiée,
utilisant la méthode de Spline, pour traiter les problemes thermiques assujettis a des conditions aux

limites de type température et/ou convection et/ou radiation.
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