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AVANT-PROPOS 

 

Ce projet de recherche représente un continuum pour mon projet de maîtrise, initié par mon 

directeur de recherche, le professeur Erchiqui, sur la modélisation de transfert de chaleur avec 

changement de phase dans les solides incompressibles avec application au matériau bois. Cette 

fois-ci, sous la direction du professeur Erchiqui, le projet est orienté vers la modélisation de transfert 

de chaleur dans les multi-matériaux anisotropes et non linéaires, avec ou sans changement de 

phase.  

 

 À cet effet, l’équation de la conduction de la chaleur classique pour les solides qui subissent 

un changement de phase, en termes de l’enthalpie volumique et de la transformée de Kirchhoff, a 

été redéfinie par une nouvelle formulation utilisant l’enthalpie hybride anisotrope et la transformée de 

Kirchhoff anisotrope.  

 

L’intérêt de cette nouvelle approche, contrairement aux méthodes numériques existantes, 

est de pouvoir traiter le transfert de chaleur, avec ou sans changement de phase, dans les milieux 

formés de plusieurs solides dont les tenseurs de conductivités thermiques sont de natures différentes 

(sphériques et/ou cylindriques et/ou cartésiens). 

 

 Ensuite, on a adapté la nouvelle formulation hybride pour la résolution de la conduction de 

la chaleur en fonction de la température (au lieu de l’enthalpie et de la transformée de Kirchhoff) pour 

les solides multi-matériaux et multi-anisotropies. 

 

 Les problèmes traités dans ce projet sont de type conduction-convection et conduction-

convection-rayonnement. Plusieurs validations ont été réalisées vis-à-vis des résultats issus de la 

littérature (expérimentaux, analytiques et numériques).  De surcroit, le problème de la non linéarité 

de la conduction de la chaleur, en régime stationnaire, est contourné par le déploiement d’une 

nouvelle approche, que nous avons initiée, utilisant la méthode de Spline. 
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INTRODUCTION 

 

La conductivité thermique des matériaux anisotropes joue un rôle crucial dans de 

nombreux domaines de l'ingénierie et de la technologie. Citons par exemple les domaines du 

refroidissement des batteries Li-ion [1], de la décongélation ou du séchage du bois [2], du 

traitement par rayonnement des tissus humains [3], du séchage des structures laminées [4], etc. 

En particulier, l'analyse de la conduction thermique dans des milieux anisotropes hétérogènes, au 

moyen de l’équation de la conservation de l'énergie, nécessite, d'une part, la connaissance de la 

nature de l'orientation du tenseur de la conductivité thermique dans l'espace du matériau, et, 

d'autre part, sa dépendance (ou non) à des variables mesurables telles que la température, la 

pression, l'humidité, etc. Les caractéristiques du tenseur de conductivité thermique, résultant de 

considérations mécaniques statistiques [5], sont de nature symétrique [6]. Concernant les 

méthodes utilisées pour résoudre l'équation de la conduction thermique dans les milieux 

anisotropes, il existe généralement deux classes : celles basées sur des méthodes 

analytiques [ [7], [8], [9] ] et celles basées sur des approximations numériques telles que la 

méthode des éléments finis [ [10], [11] ], la méthode des éléments finis de frontières [ [12], [13] ], 

la méthode des volumes finis [ [14], [15] ] et la méthode des différences finies [ [16], [17] ]. En 

général, ces méthodes sont résolues dans des systèmes de référence qui respectent les 

caractéristiques intrinsèques des tenseurs de la conductivité thermique du matériau. Par exemple, 

la conduction thermique dans le bois, qui possède naturellement une anisotropie cylindrique, doit 

être modélisée en utilisant l'équation de la conduction thermique en coordonnées cylindriques et 

non cartésiennes ou sphériques. Cependant, en ce qui concerne la modélisation numérique de la 

conduction thermique dans un corps solide incompressible multi-matériaux avec des tenseurs de 

conductivité thermique multi-orientation (cartésiens et/ou cylindriques et/ou sphériques), la 

littérature ne semble pas avoir suffisamment abordé ce type de problème. En effet, la seule 

référence détectée qui traite ce type de problème est celle fournie très récemment par Erchiqui et 

Annasabi [10]. L'approche proposée dans [10], appelée enthalpie spécifique volumétrique 
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tridimensionnelle hybride basée sur l'analyse par éléments finis, utilise l'équation anisotrope 

d’énergie en terme d'enthalpie spécifique.  

 

L’autre problème soulevé dans la littérature sur les problèmes thermiques, en régime 

permanent, est la difficulté de la résolution de l’équation de la conduction thermique par rapport à 

la transformation de Kirchhoff θ, qui est une fonction mathématique qui représente l'intégrale de la 

conductivité thermique d'un matériau en fonction de la température. Effectivement, du point de vue 

de la modélisation numérique, l'efficacité de la transformation de Kirchhoff pour résoudre les 

problèmes de conduction thermique est généralement limitée aux cas où la conductivité thermique 

est linéaire [18]. Pour une dépendance fortement non linéaire, la résolution de l'équation de la 

chaleur est difficile et différentes simplifications de la transformation de Kirchhoff sont souvent 

nécessaires, notamment l'utilisation de fonctions linéaires, de constantes ou de sous-domaines de 

température [19]. En fait, l'expression de θ(T) sous forme d'une intégrale est restrictive et entraîne 

l'inconvénient pratique de la transition inverse de la température à la transformation de 

Kirchhoff T(θ). Selon Vadasz [19], la transformée de Kirchhoff est un cas particulier de la 

transformée de Cole-Hopf [20] et sa définition classique avec une intégrale impose des 

inconvénients pratiques pour la transformation inverse. Par conséquent, certains auteurs comme 

Vadasz [19] ont suggéré l'utilisation directe de la transformation de Cole-Hopf pour les cas de 

dépendance exponentielle. Cependant, il existe une classe importante de matériaux dont la 

dépendance de la conductivité à la température n'est ni polynomiale ni exponentielle. Ces 

matériaux comprennent le fer, l'aluminium, le cuivre et l'or, dont la conductivité thermique varie 

avec la température [21]. Par ailleurs, la littérature scientifique traitant de la transformation de 

Kirchhoff n'aborde pas la convection h, probablement en raison de la difficulté à représenter h et 

les pertes par convection (h(T-T0)) en termes de θ. Par conséquent, les applications de la 

transformation de Kirchhoff à la résolution de problèmes de conduction thermique issus 

d'applications d'ingénierie restent très limitées, tant sur le plan analytique que sur le plan 

numérique. Un exemple de travaux numériques utilisant θ(T) et son inverse T(θ) trouvé dans la 

littérature est rapporté par Erchiqui et al. [10] concernant le chauffage anisotrope du bois dans 



3 

lequel la dépendance de la conductivité thermique par rapport à la température est linéaire. 

Parallèlement, un exemple de cas analytique trouvé dans la littérature est rapporté par Al-

Khamaiseh et al. [22] à travers une approximation de la perte par convection h(T-T∝) par ‘-h(T∝)’ 

constante. Cet article propose une méthode permettant de contourner les difficultés inhérentes à 

la représentation de θ(T) et de son inverse T(θ) pour les solides à conductivité fortement non 

linéaire, avec ou sans convection naturelle, en utilisant une méthode B-Spline [23]. Dans ce 

contexte, une stratégie basée sur la méthode d'ingénierie inverse proposée dans [24] a été 

envisagée par Annasabi et Erchiqui [25]. La méthode consiste à identifier le nombre de nœuds et 

leurs emplacements respectifs dans la courbe T(θ) en fonction du coût de calcul le plus efficace. 

Le processus consiste à ajuster la courbe avec des fonctions B-spline pour obtenir l'emplacement 

des nœuds et à diviser les données en utilisant la méthode de bissection avec une erreur 

prédéterminée. La même stratégie est également utilisée pour le terme de perte par 

convection h (T-T∝). En outre, les nœuds sont optimisés à l'aide de la méthode des moindres carrés 

non linéaires. L'approche proposée peut être combinée avec une méthode numérique telle que 

FEM, BEM et FVM pour la résolution non linéaire de l'équation de la chaleur par rapport à la 

variable. 

 

De surcroît, la modélisation du chauffage diélectrique anisotrope des composites avec 

changement de phase aussi ne semble pas être élucidée dans la littérature. Effectivement, ce type 

de problème est très complexe et implique des interactions hautement non linéaires entre les 

propriétés mécaniques, thermiques et électriques [ [26], [27], [2] ] . Cela représente un défi de taille 

pour la simulation numérique, car il faut tenir compte du transfert de chaleur anisotrope et de 

masse, du changement de phase et des interactions thermomécaniques et électromagnétiques. 

Généralement, pour ce type de problème, la modélisation de la conduction de la chaleur avec 

changement de phase nécessite l’une ou l’autre des deux approches rencontrées dans la 

littérature : i) celle qui exprime l’équation de la conduction anisotrope de la chaleur en terme de la 

température comme variable dépendante [29-30] et ii) celle qui utilise l'enthalpie de 

volume [ [28], [29] ]. Cette dernière approche a l'avantage d'éliminer simultanément la duplication 
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de l'équation d'énergie pour les phases solide et liquide et d'éviter la présence de la frontière 

mobile (conditions mathématiques à l'interface eau-glace) [ [28], [29] ]. Concernant la modélisation 

de la chaleur dissipée par les ondes électromagnétiques (incluant les micro-ondes), qu’on 

désignera par Q dans le document, elle nécessite la connaissance du flux de puissance associé à 

la propagation des ondes électromagnétiques (vecteur de Poynting P��⃗  )[30] dans le milieu 

diélectrique [29]. Cela ne peut être réalisé que par la connaissance du champ électromagnétique 

induit dans l’espace du matériau, donc par la résolution des équations de Maxwell. Parmi les 

méthodes numériques déployées pour la résolution des équations de Maxwell on trouve : la 

méthode des éléments finis [ [30],  [31] ], la méthode de volume fini [32], la méthode des différences 

finies [33] et la méthode des éléments finis de frontière [34]. Toutefois, lorsqu’il s’agit d’un 

diélectrique anisotrope, par exemple le matériau bois, les travaux sont trop limités.  

 

Dans ce présent travail, quatre classes de contributions sont réalisées:  

• Contribution à la modélisation numérique de la conduction de la chaleur, en régime 

transitoire, des solides multi-matériaux caractérisés par des tenseurs de 

conductivité thermique anisotrope et de natures différentes. L’équation de la 

conduction de la chaleur est exprimée par la variable température. 

• Contribution à la modélisation numérique de la conduction de la chaleur, en régime 

transitoire, des solides multi-matériaux caractérisés par des tenseurs de 

conductivité thermique anisotrope et de natures différentes, avec ou sans 

changement de phase. L’équation de la conduction de la chaleur est exprimée par 

la variable enthalpie volumique. 

• Contribution à la modélisation numérique de la conduction de la chaleur, en régime 

stationnaire, par la transformée de Kirchhoff : i) cas de conduction-convection et 

ii) cas de conduction-convection-radiation (conditions aux limite). 

• Contribution à la modélisation de chauffage diélectrique des biocomposites 

(matériaux diélectriques) anisotrope et non linéaire avec changement de phase. 
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Dans le cas de la résolution numérique de l’équation de la conduction en fonction de la 

température, la méthode implicite des éléments finis est considérée. Pour l'amélioration de 

l'efficacité et de la précision de la solution numérique, la stratégie prédicteur/correcteur est 

utilisé [35]. L'approche proposée est validée pour cinq situations :  

1. Distribution de la température analytique dans un cylindre anisotrope avec un 

transfert de chaleur convectif (avec variation circonférentielle). 

2. Distribution de la température analytique dans une sphère anisotrope avec un 

transfert de chaleur convectif (avec variation circonférentielle). 

3. Distribution de la température numérique pour une plaque carrée constituée de 

deux matériaux différents, dont l'un est un matériau isotrope, tandis que le second 

est orthotrope. 

4. Chauffage anisotrope du bois (en tenant compte du changement de phase). À titre, 

d’application, nous avons considéré le problème de chauffage anisotrope du bois, 

de l’Amérique du Nord, initialement à l’état gelé, à l’aide des micro-ondes. Ce choix 

de température négatif est motivé par des considérations climatiques qui 

caractérisent plusieurs régions de l’Amérique du Nord dont les températures 

hivernales sont plus basses qu'ailleurs dans le monde. Les propriétés thermo-

physiques et diélectriques du bois sont considérées dépendantes de l'humidité, de 

la température et des trois directions structurelles du bois. Pour l’analyse, nous 

considérons la fréquence 2,45 GHz et une température initiale de -20oC. 

5. Distribution de la température analytique et numérique dans un cylindre creux dont 

la surface extérieure est soumise à un rayonnement. Trois conductivités 

thermiques sont considérées : i) constante, ii) linéaire et iii) non linéaire. 
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Abstract: The anisotropic problem of thermal conduction in a solid is generally treated in a 

reference coordinate system, which adequately describes its thermal conductivity tensor 

(Cartesian, cylindrical or spherical). For this problem, numerical treatment is difficult, especially if 

the thermophysical properties are non-linear or if the anisotropic medium undergoes a phase 

change. In this paper, we propose an approach using a Cartesian reference system to treat the 

anisotropic thermal conduction of problems for which the solid medium is characterized by a set of 

tensors of thermal conductivity of different natures (Cartesian and/or cylindrical and/or spherical), 

with or without phase change. For this purpose, the anisotropic thermal conductivity tensor, with 

respect to a cylindrical or spherical coordinate system, is transformed by an equivalent tensor into 

global Cartesian coordinates. The nonlinear heat conduction problem involving phase changes, 

such as wood freezing, is solved using hybrid three-dimensional volumetric specific enthalpy based 

on finite-element analysis. The proposed approach is validated by analytical testing for two 

anisotropic media and with two experimental tests related to the heating of frozen woods. As an 

application, we have numerically quantified, on the one hand, the minimum time required for the 

thaw and, on the other hand, the freezing of a log of wood, such as white pine, according to the 

length of its radius (7.5, 10, 15, 20 and 25 cm). The thermophysical properties are a function of 

temperature, moisture content and structural orientation. 
 

Résumé : Le problème de la conduction thermique dans un solide anisotrope est généralement 

traité dans un système de coordonnées de référence qui décrit adéquatement le tenseur de 

conductivité thermique (cartésien, cylindrique ou sphérique). Pour ce problème, le traitement 

numérique est difficile, surtout si les propriétés thermophysiques sont non-linéaires ou si le milieu 

anisotrope subit un changement de phase. Dans cet article, nous proposons une approche utilisant 

un référentiel cartésien pour traiter la conduction thermique anisotrope de problèmes pour lesquels 

le milieu solide est caractérisé par un ensemble de tenseurs de conductivité thermique de natures 

différentes (cartésien et/ou cylindrique et/ou sphérique) avec ou sans changement de phase. Pour 

cela, le tenseur de conductivité thermique anisotrope, par rapport à un repère cylindrique ou 

sphérique, est transformé par un tenseur équivalent en coordonnées cartésiennes globales. Le 
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problème de conduction thermique non linéaire impliquant des changements de phase, tels que la 

congélation du bois, est résolu en utilisant une enthalpie spécifique volumétrique tridimensionnelle 

hybride basée sur une analyse par éléments finis. L’approche proposée est validée avec des tests 

analytiques pour deux milieux anisotropes et avec deux tests expérimentaux liés au chauffage de 

bois gelés. À titre d’application, nous avons quantifié numériquement, d’une part, le temps minimum 

requis pour le dégel et, d’autre part, le gel d'une bûche de bois, telle que le pin blanc, en fonction 

de la longueur de son rayon (7,5, 10, 15, 20 et 25 cm). Les propriétés thermophysiques sont 

fonction de la température, de la teneur en humidité et de l’orientation structurelle. 
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1.1  Introduction 

 

The theory of thermal conductivity of anisotropic materials plays an important role in many 

areas of science and technology. These technical problems include: Li-ion batteries characterized 

by strong anisotropy of thermal conduction in Li-ion cells [1], the drying and thawing of wood by 

microwaves (wood is a highly hygroscopic and structurally-thermally anisotropic) [2] , the human 

tissues [3], the stratified structures [4], etc. In general, we find a lack of documentation to solve 

problems involving variable heat transfer coefficients on solid bodies (cylindrical, spherical, etc.) 

and for which the thermal conductivity is of an anisotropic nature. For these anisotropic media, the 

thermal conductivity must be expressed by a tensor taking into account the variation of the local 

thermal conductivity with the different directions characterizing the material [5] . From a theoretical 

point of view, the thermal conductivity tensor represents the general linear thermal conduction 

relationship between temperature gradients and heat flux in a heterogeneous anisotropic 

material [5]. This tensor, by the use of statistical mechanics, is symmetrical [6]. 

 

Regarding the modeling of the heating of anisotropic media, two classes of methods are 

generally used for the resolution of the energy conservation equation: one concerns analytical 

methods and the other numerical methods. Generally, these methods are solved in reference 

systems that respect the intrinsic characteristics of the tensor components of the thermal 

conductivity associated with the physical environment. For example, with wood for which the 

thermal conductivity naturally varies with three directions (longitudinal, circumferential and radial), 

a cylindrical coordinate system is often used. 

 

 Among the problems solved by the analytical methods, one can quote the approach used 

in [7] to determine, in cylindrical coordinates and in steady state, the distribution of the temperature 

in an anisotropic cylinder with convective heat transfer and with variable circumference. With an 

approach similar to that used in [7], the same authors present an analytical method, in spherical 

coordinates, for thermal conduction in an orthotropic sphere with a circumferentially variable 
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convection heat transfer [8].However, for the latter problem, it seems that it has never been 

validated numerically because of the spherical anisotropy that seems to be absent from real 

problems.  With respect to the anisotropic plane structures, let us quote the work realized in [9] 

which uses an analytical approach, in stationary regime, to solve the problem of heat transfer by 

conduction in a rectangular thin film of quartz. In this regard, the authors used two variables to 

convert the anisotropic equations into isotropic equations. In the case of anisotropic monolayers 

and multilayers, the problem of conduction heat transfer is solved using a linear coordinate 

transformation that reduces the anisotropic problem to an equivalent isotropic problem  [[36]-[37]]. 

Another example is the one provided in [12] on multilayer spherical fiber reinforced composite 

laminates and for which the temperature distribution is obtained using the linear boundary 

conditions and the method of separation of variables. 

 

Concerning numerical methods, there are generally three approaches to study conduction 

heat transfer in anisotropic media: finite element method (FEM), boundary finite element 

method (BEM) and finite difference method (FDM). However, the work on heat transfer in 

anisotropic media is still limited in the scientific literature. Concerning the MEF, let us quote the 

work done in [2] on the anisotropic heating by microwaves of wood. In this paper, the effect of 

thermal and dielectric anisotropy on thawing wood is considered. The nonlinear heat conduction 

problem involving phase changes such as wood freezing is solved using three-dimensional 

volumetric specific enthalpy based on finite-element analysis. Concerning the BEM method, let us 

mention the work [[12],[13]] on a transformation approach to numerically treat two-dimensional and 

even three-dimensional anisotropic problems in field theory. In [9] , an approach based on the finite 

difference method is presented for the resolution of a 2D thermal conduction problem in an 

anisotropic medium. The problem is solved for a steady state condition in a rectangular thin film 

domain. 

 

However, when the medium undergoes a phase change (e.g., solid to liquid), the solving 

of the numerical solution is more difficult due to the presence of one or more moving boundaries of 
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the solid-liquid phases. In general, two approaches to this type of problem are used: solving the 

energy equations for the liquid and solid phases separately, taking into account the moving 

boundary (solid-liquid interface) [[38],[39]], or solving the energy equation in terms of the enthalpy 

function [[2],[40]]. Recently, for cases regarding the thawing of frozen anisotropic wood by 

microwave energy, the nonlinear heat conduction problem is solved using 3D volumetric specific 

enthalpy based on finite-element analysis [2]. 

 

In general, the choice of reference coordinate system, used to study anisotropic problems 

of thermals conduction of solid, is guided by the natural orientation of the properties of the 

components in the thermal conductivity tensor of solid media (Cartesian, cylindrical or spherical). 

For example, the components of the tensor of the thermal conductivity of wood are naturally 

cylindrical (radial, tangential and longitudinal). In this paper, we propose an approach using a 

Cartesian reference system to treat anisotropic thermal conduction of problems for which the 

thermal conductivity tensor is of a cylindrical or spherical nature, with or without a phase change. 

To this end, we transform the anisotropic thermal conductivity tensor relative to a cylindrical or 

spherical coordinate system into an equivalent tensor in global Cartesian coordinates. The 

nonlinear heat conduction problem involving phase changes, such as wood freezing, is solved 

using hybrid three-dimensional volumetric specific enthalpy based on finite-element analysis. The 

proposed approach is validated with analytical testing for two anisotropic media (cylinder and 

spherical with convective transfer with variable circumference) and with two experimental tests 

related to the heating of frozen woods. In the case of the anisotropic sphere, to our knowledge, this 

is a first numerical validation study in the literature. As an application, we have numerically 

quantified, on the one hand, the minimum time required for the thaw and, on the other hand, the 

freezing of a log of wood, such as white pine, according to the length of its radius (7.5, 10, 15, 20 

and 25 cm). In the case of thawing, the log (initial temperature -22 °C) is immersed in water at a 

constant temperature of 54 ° C. In the case of freezing, the initial log temperature is +22 °C. The 

thermophysical properties are a function of temperature, moisture content and structural 

orientation. 
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1.2 Fourier thermal conduction law 

The conductivity tensor characterizes the general linear heat conduction relation between 

temperature gradients and heat flux in heterogeneous anisotropic material. If we consider the three-

dimensional orthogonal coordinate system (x,y,z) as the reference frame and according to 

Duhamel's generalization of the Fourier thermal conduction law [5] for a linear anisotropic material, 

we have the following relations: 

q�⃗ (x,y,z) = �
qx
qy
qz
� = −�k(x,y,z)�  

⎝

⎜⎜
⎜
⎛

∂T
∂x
∂T
∂y
∂T
∂z⎠

⎟⎟
⎟
⎞

,   where    �k(x,y,z)� =  �
kxx kxy kxz
kyx kyy kyz
kzx kzy kzz

� 

 

(1) 

kij
(x,y,z) are the components of the material thermal conductivity tensor, which relates the 

heat flux vector 𝑞𝑞𝑖𝑖 to the gradient of the temperature field T. The minus sign in (1) assures that the 

heat flow occurs from a higher to a lower temperature. However, by using nonequilibrium statistical 

mechanics, Onsager [6] has shown that the conductivity tensor is symmetric: 

kij
(x,y,z) = kji

(x,y,z)      (2) 

The second law of thermodynamics causes the diametric elements of this tensor to be 

positive so the following relation must be satisfied [6]: 

kii
(x,y,z)kjj

(x,y,z) > kij
(x,y,z)      for     i ≠ j (3) 

Using the Clausius-Duhem inequality, the following inequalities for the conductive 

coefficients of orthotropic materials are obtained: 

kii
(x,y,z) ≥ 0;         

1
2

 �kii
(x,y,z) + kjj

(x,y,z) − kji
(x,y,z)kij

(x,y,z)� ≥ 0 

εijkk1j
(x,y,z)k2j

(x,y,z)k3j
(x,y,z) ≥ 0 

(4) 

where kij represents the symmetric part of tensor : 
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kij
(x,y,z) = kji

(x,y,z) =
kij

(x,y,z) + kji
(x,y,z)

2
 

(5) 

In cases of cylindrical and spherical local coordinate systems, the Fourier thermal 

conduction law, for a linear anisotropic material, becomes: 

q�⃗ (ρ,φ,z) = �
qρ
qφ
qz
� = −�k(ρ,φ,z)�  

⎝

⎜
⎜
⎜
⎛

1
ρ

∂T
∂ρ
∂T
∂φ
∂T
∂z⎠

⎟
⎟
⎟
⎞

,   where   �k(ρ,φ,z)� = �
kρρ kρφ kρz

kφρ kφφ kφz

kzρ kzφ kzz
� 

 

(6) 

q�⃗ (r,θ,φ) = �
qr
qθ
qφ

� = −�k(r,θ,φ)�  

⎝

⎜⎜
⎜
⎛

∂T
∂r

1
r
∂T
∂θ

1
r sin θ

∂T
∂φ⎠

⎟⎟
⎟
⎞

,    where    �k(r,θ,φ)� = �
krr krθ krφ
kθr kθθ kθφ

kφr kφθ kφφ

� (7) 

kij
(ρ,φ,z) and kij

(r,θ,φ) which are respectively the components of material thermal conductivity 

tensor in local frames for cylindrical (ρ, φ, z) and spherical (r, θ, φ) coordinates. 

1.3 Hybrid Fourier thermal conduction law 

Consider a Cartesian coordinate system in which �e�x, e�y, e�z� designate the set of three-unit 

vectors carried by the three axes, respectively, (Ox, Oy, Oz), (see Figure 1). Thus, every point M 

of the material space can be located in the global orthonormal coordinate system �e�x, e�y, e�z� by a 

vector r⃗   such as (eq. 8): 

r⃗(x, y, z) = xe�x + ye�y + ze�z (8) 

x, y and z being the Cartesian coordinates of the point M.  

In cylindrical coordinates, the point M can be identified by the radius of the cylinder ρ, its 

dimension z with respect to the reference plane xOy and the angle φ (see Figure 1) and 

characterized by a cylindrical local orthonormal coordinate system �e�ρ, e�φ, e�z�. 
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The relations that connect the Cartesian coordinates (x, y, z) and their derivatives, relative 

to the cylindrical coordinates (ρ, φ, z), are given by the following formulas: 

x = ρ cos φ       y =  ρ sin φ      z = z (9.1) 

x,ρ = cos φ       x,φ =  −ρ sin φ      x,z = 0 (9.2) 

y,ρ = sin φ       y,φ =  ρ cos φ      y,z = 0 (9.3) 

z,ρ = 0      z,φ =  0     y,z = 1 (9.4) 

 

In spherical coordinates, the same point M can be characterized by the radius r (of the 

sphere to which it belongs), the angle θ (between the direction Oz����⃗   and the direction 𝑂𝑂M������⃗ ) and the 

angle φ (between the direction  Ox������⃗   and the direction OM������⃗ ), see Figure 1: Vector in cylindrical and 

spherical coordinates. At point M, to which is attached a spherical local orthonormal coordinate 

system ��̂�𝑒𝑟𝑟 , �̂�𝑒φ, �̂�𝑒θ�, the relations that connect the Cartesian coordinates (x, y, z) and their 

derivatives, relative to the spherical coordinates (r, θ,φ), are given by the following formulas: 

x = r sin θ cos φ       y =  r sin θ sin φ      z = r cos θ (10.1) 

x,r = sin θ cos φ       x,θ =  r cos θ cos φ      x,φ = −r sin θ sin φ (10.2) 

y,r = sinθ sin φ       y,θ =  r cos θ sin φ      y,φ = r sin θ cos φ (10.3) 

z,r = cos θ       z,θ = − r sin θ      z,φ = 0 (10.4) 

The base �e�x, e�y, e�z� is then connected to each of the bases �e�ρ, e�φ, e�z� and �e�r, e�φ, e�θ� by 

one or the other matrix expressions: 
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�
e�ρ
e�φ

e�z
� = �T(ρ,φ,z)�  �

e�x
e�y
e�z
�      where        �T(ρ,φ,z)� = �

cos(φ) sin(φ) 0
− sin(φ) cos(φ) 0

0 0 1
� 

(11.1) 

�
e�r
e�θ
e�φ
� = �T(r,θ,φ)�  �

e�x
e�y
e�z
�    where    �T(r,θ,φ)�

= �
sin(θ)cos(φ) sin(θ)sin (φ) cos (θ)
cos(θ)cos(φ) cos(θ)sin(φ) -sin(θ)

-sin(φ) cos(φ) 0
�    

 

(11.2) 

 

�T(ρ,φ,z)� is the matrix of passage from the global Cartesian coordinate system to the local 

cylindrical coordinate system. �T(r,θ,φ)� is the matrix of passage from the global Cartesian coordinate 

system to the local spherical coordinate system. Since the basics �e�x, e�y, e�z�, �e�ρ, e�φ, e�z� and 

�e�r, e�φ, e�θ� are orthonormal, then �T(∗)�
−1

=  �T(∗)�
t where  �T(∗)�

t
 and  �T(∗)�

−1represent respectively 

the transpose and the inverse of the matrix �T(∗)�.  

 

Cylindrical coordinates 

 

Spherical coordinates 

 
Figure 1: Vector in cylindrical and spherical coordinates  
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From the formulas (9.2) - (9.4) and the use of the chain derivation rule, the cylindrical 

coordinate temperature gradient vector (ρ, φ, z) can be described by the temperature gradient vector 

in Cartesian coordinates (x, y, z) by: 

⎝

⎜
⎜
⎜
⎛

1
ρ

∂T
∂ρ
∂T
∂φ
∂T
∂z⎠

⎟
⎟
⎟
⎞

= �T(ρ,φ,z)�
t
 

⎝

⎜⎜
⎜
⎛

∂T
∂x
∂T
∂y
∂T
∂z⎠

⎟⎟
⎟
⎞

  

(12.1) 

In a similar way, using formulas (10.2) - (10.4), the temperature gradient vector in spherical 

coordinates (r, θ,φ)  can be written in Cartesian coordinates (𝑥𝑥,𝑦𝑦, 𝑧𝑧) by: 

⎝

⎜⎜
⎜
⎛

∂T
∂r

1
r
∂T
∂θ

1
r sin θ

∂T
∂φ⎠

⎟⎟
⎟
⎞

= �T(r,φ,θ)�
t
 

⎝

⎜
⎜
⎜
⎛

∂T
∂x
∂T
∂y
∂T
∂z⎠

⎟
⎟
⎟
⎞

  

 

(12.2) 

Thus, taking into account the relationships (11.1) - (11.2) and (12.1) - (12.2), each of the 

expressions (6) and (7) of the heat flux, relative to the cylindrical (ρ, φ, z)  and spherical (r, θ,φ) can 

be expressed in terms of the temperature gradient in Cartesian coordinates (x, y, z): 

q�⃗ (ρ,φ,z) = −�k(ρ,φ,z)� ∇ ���⃗ T     (13.1) 

q�⃗ (r,θ,φ) = −�k(r,θ,φ)� ∇ ���⃗ T (13.2) 

with : 

∇ ���⃗ = e�x
∂
∂x

+ e�y
∂
∂y

+ e�z
∂
∂z

,   (14.1) 

and 

�k(ρ,φ,z)� = �T(ρ,φ,z)�
t
 �k(ρ,φ,z)� �T(ρ,φ,z)� (14.2) 

�k(r,θ,φ)� = �T(r,θ,φ)�
t
 �k(r,θ,φ)� �T(r,θ,φ)� (14.3) 

�k(ρ,φ,z)� and  �k(r,θ,φ)� represent respectively the equivalent tensors of the thermal 

conductivity relative to the cylindrical and spherical coordinate systems. Consequently, any 
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anisotropic problem expressed in a cylindrical or spherical coordinate system can be studied in a 

Cartesian system provided that the tensor of the thermal conductivity, relative to the cylindrical or 

spherical coordinate system, is replaced by an equivalent tensor in the Cartesian system.  

 

In the case of an anisotropic material relating to a cylindrical system, the six components 

of the matrix �k(ρ,φ,z)� are given explicitly, according to the definition (14.2), by the following formulas: 

k11
(ρ,φ,z) = kρρcos2φ + kφφ sin2φ− kρφ sin 2φ  (15.1) 

k12
(ρ,φ,z) = k21

(ρ,φ,z) =
1
2 �

kρρ − kφφ� sin 2φ + kρφ  cos 2φ  (15.2) 

k13
(ρ,φ,z) = k31

(ρ,φ,z) = cos θ  kρz − sin φ kρφ   (15.3) 

k22
(ρ,φ,z) = kρρsin2φ + kφφ cos2φ + kρφ sin 2φ  (15.4) 

k23
(ρ,φ,z) = k32

(ρ,φ,z) = sin θ  kρz + cos φ kρφ (15.5) 

k33
(ρ,φ,z) = kzz (15.6) 

In the case of an anisotropic material relating to a spherical system, the six components of 

the matrix �k(r,θ,φ)�  are given explicitly, according to the definition (14.3), by the following formulas: 

k11
(r,θ,φ) =  cos2φ (krr sin2θ + kθθ  cos2θ + krθ sin 2θ  ) + kφφ sin2φ −

 sin 2φ� krφ sin θ +  kθφ cos θ �   

(16.1) 

k12
(r,θ,φ) = k32

(r,θ,φ) =
1
2

sin2φ�krr sin2θ + kθθ  cos2θ − kφφ + 2krθ  sin 2θ�

+ cos 2φ �krφ sin θ + kθφ cos θ � 

(16.2) 

k13
(r,θ,φ) = k31

(r,θ,φ) =
1
2

sin 2θ cosφ ( krr − kθθ ) + krθ cos 2θ  cosφ 

+ sinφ  � kθφ sin θ−  krφcos θ �  

(16.3) 
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k22
(r,θ,φ) =  sin2φ (krr sin2θ + kθθ  cos2θ + krθ sin 2θ ) + kφφ cos2φ 

+ sin 2φ� krφsin θ +  kθφ cos θ � 

(16.4) 

k23
(r,θ,φ) = k32

(r,θ,φ) =
1
2

sin 2θ sinφ ( krr − kθθ ) + krθ cos 2θ  sinφ 

+ cosφ  � krφ sin θ −  kθφcos θ � 

(16.5) 

k33
(r,θ,φ) = krr cos2θ + kθθ  sin2θ − 2 krθ  sinφ cos θ (16.6) 

In what follows, we consider, for the modeling of the thermal conduction in a cylindrical or 

spherical anisotropic medium, respectively the expressions (14.2) and (14.3) instead of the 

formulas used in (6) and (7). 

1.4 Enthalpy model for anisotropic media 

Heat conduction and phase changes in anisotropic media are naturally described by the 

energy conservation law in terms of the volumetric enthalpy H(T) [2]. In the case of a Cartesian 

reference system, this energy equation is given by the following expression [2] : 

∂H(T)
∂T

= �
∂
∂xi

∂θij(T)
∂xj

�+ Q(T) 
(17) 

where θij are components of the anisotropic thermal conductivity integral tensor θ(T).  

Q(T) is the internal volumetric heat generation. Tm is the fusion temperature. To solve the problem, 

we introduce the boundary condition into eq. (17) as follows:  

�nx
∂θxx
∂x

+ ny
∂θyy
∂y

+ nz
∂θzz
∂z �+ h(T − T∞) − 𝐪𝐪 ∙ 𝐧𝐧 = 0 

(18) 

where q [W/m2] is the heat flux, 𝑛𝑛�⃗  is the outward normal vector (nx, ny, nz) to the surface, 

h[W/m2/°C] is the surface heat transfer coefficient and T∝ is the temperature of the surrounding 

medium. The term h (T–T∝) represents the convection heat transfer from the material to the 

environment. The advantage of using an enthalpy rather than a temperature-based formulation is 

that it simultaneously eliminates the doubling of the energy equation and the Stefan conditions [41]. 
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Taking into account, on the one hand, the definition of the anisotropic thermal conductivity 

integral tensor theta presented in [2], and, on the other hand, the notation used to represent the 

components of the equivalent tensor of the thermal conductivity (presented in section 1.3 above), 

we have the following expressions for θij : 

• Thermal conductivity integral relative to the cylindrical coordinates: 

θij
(r,θ,φ)(T ≤ Tm) = � kij

(r,θ,φ)
T

Tref
(T) dT ,       θij

(r,θ,φ)(T > Tm) = � kij
(r,θ,φ)

T

Tm
(T) dT 

(18.1) 

 

• Thermal conductivity integral relative to the spherical coordinates: 

θij
(ρ,φ,z)(T ≤ Tm) = � kij

(ρ,φ,z)
T

Tref
(T) dT ,     θij

(ρ,φ,z)(T > Tm) = � kij
(ρ,φ,z)

T

Tm
(T) dT 

(18.2) 

 

1.5 Implicit time integration scheme 

Numerical time approximation schemes are used mainly to obtain the transient response. 

These numerical integration schemes derive recursion relations that relate H(t) at a moment of 

time t to H(t+∆t) at another moment of time t+∆t. The solution is then solved step by step starting 

from the initial conditions at time t=0 until the desired duration of the transient response is 

calculated. The most common numerical schemes for the solution of eq. (17) belong to the weighted 

Euler difference family of time approximations, as follows [42] : 

Hn+α = (1 − α) Hn + α Hn+1  (19) 

The parameter α varies in the range [0–1]. The α schemes are unconditionally stable 

when α ≤1/2 and O(∆t) are accurate, with the exception of the O(∆t2)–convergent Crank–Nicolson 

scheme (α = 1/2). Setting α = 1 leads to the backward Euler (fully implicit) scheme, which is only 

first-order accurate but very stable and hence ideally suited for integration. In the present study, we 

consistently use the semi-implicit Crank–Nicolson scheme [42]. In this case, eq. (17) becomes: 

(𝐊𝐊n+1
∗ + 𝐆𝐆n+1∗ ) 𝐇𝐇n+1 = 𝐊𝐊n 

∗ .𝐇𝐇n + 𝐆𝐆n 
∗ .𝐇𝐇n

𝟏𝟏 + 𝐑𝐑n,n+1
∗  (20) 
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where K*, G* and R* are modified global matrices and Hn+1 is the vector of global nodal 

enthalpies at moment tn+1 [2]. 

1.6 Validation 

The dynamic finite-element method outlined in the previous section was implemented in 

the general-purpose finite-element code ThermoForm developed by the principal author, Erchiqui. 

All computations described below were done on a PC in single precision. 

 

1.6.1 Analytical validation of thermal conduction in an orthotropic cylinder with 

circumferentially varying convection heat transfer 

To validate the enthalpy approach with analytical solution [7], we consider the steady state 

anisotropic thermal conduction problem of a uniform volumetric heat-generating cylinder Q, of 

radius R, subjected to circumferentially varying convective heat transfer h on its outer surface.  

In [7], we find the analytical expressions for the temperature distribution T (r,θ) for the infinite 

cylinder, and T (r, θ, z) for the finite cylinder. Figure 2, extracted from [7], illustrates this problem 

under two considerations: infinite and finite cylinder. The values of Q and R are respectively 80000 

W/m3 and 0.013 m. Figure 3 illustrates the variation of h as a function of polar angle θ. 

 
Figure 2: Schematic of the geometry under consideration for infinite and finite cylinder 

subjected to circumferentially varying convection 
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Figure 3: Variation of the exchange coefficient as a function of angle θ (case 3) 

 
 

The problem of thermal conduction in an orthotropic cylinder, with circumferentially varying 

convection heat transfer, is governing by bellow energy equation: 

kr
r
∂
∂r
�r
∂T
∂r
� +

kθ
r2
∂2T
∂θ2

+ Q = 0 
(21) 

subject to the boundary conditions: 

∂T
∂r

= 0  at r = 0 (22.1) 

kr
∂T
∂r

+ h(θ). T = 0  at r = R (22.2) 

T(θ) = T(θ + 2π) (22.3) 

∂T
∂θ�θ

=
∂T
∂θ�θ+2π

  (22.4) 

 

Three cases are studied analytically [7]: 

• Case 1: Cylindrical material is isotropic with constant convective heat transfer 

coefficient: h = 300 W/m2 K, kr = kθ =  30 W/mK  

• Case 2: Cylindrical material is orthotropic with constant convective heat transfer 

coefficient: h = 300 W/m2 K, kr = 0.2 W/mK, kθ =  300 W/mK  

• Case 3: Cylindrical material is orthotropic with circumferentially varying convective 

heat transfer: h = f(θ) (see Fig.2), kr = 0.2 W/mK, kθ =  300 W/mK  
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For the finite-element analysis and validation, we consider three types of meshes (see 

Figure 4):  

• Mesh1: 4-node quadrilateral elements (1009 elements and 980 nodes)  

• Mesh2: 4-node quadrilateral elements (4264 elements and 4205 nodes). 

• Mesh3: 8-node hexahedral elements (9800 elements and 11099 nodes). 

 

Since the cylindrical thermal conductivity is orthotropic (kρz = kρφ = kzφ = 0), 

formulas (15.1)-(15.6) are reduced to (to respect the notation given in [7], φ  is replaced by θ):  

k11
(ρ,θ,z) = kρρcos2θ + kθθ sin2θ (23.1) 

k12
(ρ,θ,z) = k21

(ρ,θ,z) =
1
2 �

kρρ − kθθ� sin 2θ  (23.2) 

k13
(ρ,θ,z) = k31

(ρ,θ,z) = k23
(ρ,θ,z) = k32

(ρ,θ,z) = 0   (23.3) 

k22
(ρ,θ,z) = kρρsin2θ + kθθ cos2θ (23.4) 

k33
(ρ,θ,z) = kzz (23.6) 

For modeling of thermal conduction in an orthotropic cylinder, the thermal conductivities, 

mentioned above, are used to determine the components, θij, of the anisotropic thermal 

conductivity integral tensor θ(T) (see eq. 7). 

 

Figure 5 illustrates the view of numerical temperature distribution obtained for case 1 by 

using 2D hybrid enthalpy-finite-element modeling. The following figures show the comparison 

between the analytical [7] and the numerical solutions obtained by the approach proposed in this 

paper: 

Figure 6 Illustrates a comparison of the analytically computed temperature distribution for 

the infinite and finite cylinder (at mid-height) [7] with hybrid enthalpy-finite-element modeling results 

for case 1 (2D) and case 2 (2D and 3D). 
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Figure 7 Illustrates, in case 3, the analytically and numerically (with mesh1 and mesh2) 

distribution of the temperature on the surface concerned with the variation of the convection: 

Figure-a shows variation with θ for non-refined and refined mesh and Figure-b shows variation in 

circular domain. For greater precision, a more refined mesh is necessary. 

 

Globally, the results illustrate the excellent agreement between the analytical and 

numerical solutions. The agreement is very good with an error of less than 0.1%.  

 

Mesh 1 (2D) 

 

Mesh 2 (2D refined) 

 

Mesh 3 (3D) 

 
Figure 4: Circular (2D) and cylindrical (3D) geometry mesh 

 
Figure 5: Numerical distribution of temperature (case 1) 
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Figure 6: Numerical and analytical distribution of temperature as a function of radial 

position 

 
Figure 7: Numerical and analytical distribution of temperature as a function of θ (case 3) 

 
 

1.6.2 Analytical validation of thermal conduction in an orthotropic sphere with 

circumferentially varying convection heat transfer  

To validate the enthalpy approach with analytical solution [8], we consider the spherical 

steady state anisotropic thermal conduction problem of a uniform volumetric heat-generating Q, of 

radius R, subjected to circumferentially varying convective heat transfer h on its outer surface.  

In [8], we find the analytical expressions for the temperature distribution T (r, ϕ, θ). Figure 8, 

extracted from [8], illustrates this problem. The values of Q and R are respectively 80000 W/m3 

 
a)Numerical and analytical distribution of 

temperature for cases 1 

 
b) Numerical and analytical distribution of 

temperature for cases 2 
 

 

a) Numerical and analytical distribution of 
temperature as a function of θ for r=R (case 3) 

 

b) Refined mesh for numerical 
temperature distribution in case 3 
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and 0.1 m. The variation of h as a function of ϕ, illustrated in Figure 9-a, is given by: h =

100 �1 + cos2(φ 2⁄ )�.  

 

The problem of the spherical steady state anisotropic thermal conduction, with 

circumferentially varying convection heat transfer, is governing by bellow energy equation: 

kr �
∂2

∂r2
+

2
r
∂T
∂r�

+
kϕ

r2(1− μ2)
∂2T
∂φ2

+
kμ
r2

∂
∂μ

�(1 − μ2)
∂T
∂μ
�+ Q = 0 (24) 

subject to the boundary conditions: 

∂T
∂r

= 0  at r = 0 (24.1) 

kr
∂T
∂r

+ h(ϕ, µ). T = 0  at r = R (24.2) 

T(r, ϕ, µ) = T(r, ϕ + 2π, µ) (24.3) 
∂T
∂φ�φ

=
∂T
∂φ�φ+2π

 (24.5) 

where μ = cos(θ).  kr, kφ, and kμ are respectively the thermal conductivities in the r, ϕ 

and θ directions.  

Two cases are studied analytically [8]: 

• Case 1: Spherical material is isotropic (kρ= kθ= kφ = 0.2 W/mK) 

• Case 2: Spherical material is orthotropic (kθ= kφ = 0.2 W/mK and kρ=0.2, 0.5, 1, 10 

W/mK) 
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Figure 8: Mathematical description of the heat transfer problem for the spherical domain 
 

Since the spherical thermal conductivity is orthotropic (krθ = krφ = krφ = 0), 

formulas (16.1) - (16.6) are reduced to: 

k11
(r,θ,φ) =  cos2φ (krr sin2θ + kθθ  cos2θ) + kφφ sin2φ    (25.1) 

k12
(r,θ,φ) =

1
2

 sin 2φ�krr sin2θ + kθθ  cos2θ− kφφ� 
(25.2) 

k13
(r,θ,φ) =

1
2

sin 2θ cosφ ( krr − kθθ )  
(25.3) 

k22
(r,θ,φ) =  sin2φ (krr sin2θ + kθθ  cos2θ) + kφφ cos2φ  (25.4) 

k23
(r,θ,φ) =

1
2

sin 2θ sinφ ( krr − kθθ ) 
(25.5) 

k33
(r,θ,φ) = krr cos2θ + kθθ  sin2θ (25.6) 

 

For modeling of the spherical steady state orthotropic thermal conduction, the components 

of material thermal conductivity tensor, mentioned above, are used to determine the components, 

𝜃𝜃𝑖𝑖𝑖𝑖 , of the anisotropic thermal conductivity integral tensor 𝛉𝛉(T)  (see eq. 7). 

For the finite-element analysis and validation, we consider 8-node hexahedral 

elements (2584 elements and 2401 nodes; see Figure 9-b). 
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a) Variation of the exchange coefficient as a 
function of ϕ 

 

b) Spherical geometry mesh 

Figure 9: Variation of the exchange coefficient as a function of ϕ and Spherical geometry 
mesh 

 
 

Figure 10 illustrates the view of numerical temperature distribution (at mid-diameter) 

obtained by hybrid enthalpy-finite-element modeling for case 1. The Figure 11 Illustrates a 

comparison of the analytically computed temperature distribution [8] with Thermoform results for 

case 1 for two test: i) Numerical and analytical distribution of temperature as a function of radial 

position r and ii) numerical and analytical distribution of temperature as a function of φ for r=R. 

 

The Figure 12 illustrates, for case 2, the numerical and analytical distribution of 

temperature versus radial position r for different values of radial conductivity kr. 
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Figure 10: View of temperature distribution 

 

a) Numerical and analytical distribution of 
temperature as a function of r 

 

b) Numerical and analytical distribution of 
temperature as a function of φ for r=R 

 
Figure 11: Numerical and analytical distribution of temperature (case 1) 



29 

 
Figure 12: Numerical and analytical distribution of temperature versus r for different 

values of radial conductivity kr (case 2) 
 

 

The results illustrate the excellent agreement between the analytical and numerical 

solutions. The agreement is very good with an error of less than 0.1%.  

 
1.6.3 Experimental heating validation: transient heating of frozen logs 

In this section, firstly, we consider the experimental temperature measurements obtained 

for transient heating of frozen logs [43], then, those obtained in [11]. For both tests, it involves 

heating a tree trunk immersed in water at a temperature of 54 oC. In the first case, it is trembling 

aspen log (radius is 0.3175 m and its initial temperature is -22 °C). In the second test, it is eastern 

white pine log (the trunk radius is 0.2285 m and its initial temperature is -23 °C). In [43], it is 

assumed that logs is subjected to radial heating. In [11], it is assumed that logs is subjected to 

orthotropic heating (radial and longitudinal). For both tests, the heating time is 60 hours. The 

thermo-physical properties of the wood material are given in [43] and [11] respectively. 

 

For finite element analysis, we consider a quadrilateral mesh (named Mesh1; see 

Figure 4). In Figure 13, we presented the history of the temperature obtained numerically (2D 
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hybrid enthalpy-finite-element modeling) and experimentally in the center of the trembling aspen 

trunk [43]. Figure 14 illustrates views of the numerical temperature distribution at different 

times: 900, 1800, 2700, and 3600 minutes.  

 

In Figure 15, we presented the temperature against heating time for three different points 

located 22.9 cm (location 1), 10.2 cm (location 2), and 2.5 cm (location 3) from the surface of an 

eastern white pine log [43]. The numerical results for the heating of frozen wood showed an 

excellent agreement with the experimental data, in both cases of tests. 

 

 

Figure 13: Experimental end numerical temperature vs heating time at the centre of log 
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Figure 14: Temperature vs heating time at the centre of log 

 
 

Figure 15: Experimental and numerical temperature vs heating time for three different points 
located from the surface of an eastern white pine log 
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1.7 Application: transient heating of frozen lumber 

The purpose of this application is to numerically quantify, on the one hand, the minimum 

time required for the thawing and, on the other hand, the freezing of a log of wood, such as white 

pine, according to its radius (7.5, 10, 15, 20 and 25 cm). In the case of thawing, the log (initial 

temperature of -22 °C) is immersed in water at a constant temperature of 54 ° C. The heating time 

is 60 hours. In the case of freezing, the initial log temperature is +22 °C. For this study, we consider 

the approach presented in this paper (hybrid volumetric three-dimensional hybrid enthalpy based 

on finite element analysis). 

 

The frozen log is usually cylindrical orthotropic material and its thermal properties are 

functions of temperature, moisture content and the structural orientation. The quantification of the 

thawing of the wood requires knowledge of the heat specific (Cp), through the latent heat of 

fusion (L), density (ρ) and thermal conductivity for radial (kr), tangential (kt) and longitudinal (kl) 

directions. According to [38], for several species of wood, the ratio of longitudinal versus radial 

thermal conductivity is around 1.75 and 2.2, while the tangential thermal conductivity is usually 

slightly smaller (0.9 to 0.95 times) than the radial conductivity. However, in this work, we will retain 

the values of the thermal conductivity, in the longitudinal and radial directions (kl= 2.5kr), provided 

in reference [43]. Generally, the density, specific heat capacity and radial conductivity (kR) are 

calculated as functions of temperature, moisture content MC (expressed in % of the dry mass of 

wood) and specific gravity (SG). For the calculation of thermophysical variables (ρ, Cp, kr) and latent 

heat enthalpy we will use the following formulas, provided by [43]: 
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Tableau 1 : Thermophysical properties of logwood  

Density ρ = ρwGS(1 + MC) (26) 

Latent heat 
enthalpy  L =

Lw(MC − 30)
MC + 100

 (27) 

Specific Heat  T <  Tf,                Cp = 2280 + 16.6 ∗ T 
 Tf  <  T,                Cp = 2000 + 8.71 ∗ MC + 4.98 ∗ T 

(28) 

Radial thermal 
conductivity 

T <  Tf,    kr = (0.096 + 0.0033 ∗ MC − 0.0008 ∗ T)
∗ (0.105 + 2.03 ∗ GS) 

 Tf <  T,   kr = (0.138 + 0.0019 ∗ MC + 0.00022 ∗ T)
∗ (0.105 + 2.03 ∗ GS) 

(29) 

 

𝜌𝜌𝑤𝑤 and 𝐿𝐿𝑤𝑤 are respectively the density and the latent heat of water fusion (334 103 J/kg). 

For trembling aspen log, the moisture content MC and specific gravity SG are fixed at 97% and 0.32 

respectively [11]. 

 

For the numerical modeling, the cylindrical log is meshed with hexahedra comprising eight 

nodes (Mesh3; see Fig 3). 

 

Figure 16 shows the temperature plotted against heating time for five different lengths of 

radius (7.5, 10, 15, 20 and 25 cm) of the eastern white pine log. According to Figure 16 and for 

each case studied, we notice that during the frozen phase of the log, characterized by the presence 

of water in the ice form (negative temperatures), the temperature evolves more slowly than that 

observed in the phase after freezing (characterized by the presence of liquid water in the log). This 

remark is explained by two factors: 

• Thermal conductivity. As a matter of fact, the thermal conductivity of wood is lower 

in the frozen phase than the liquid phase; see (eq. 29). In addition, since the 

thermal conductivities along the longitudinal and tangential directions are closely 

proportional to the radial conductivity, the same remark remains. 

• The latent energy accumulation time in the frozen wood material. As a matter of 

fact, at the beginning of latent energy accumulation, the wood material is at a 
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melting temperature of 0 oC, which remains constant along this phase. Then, the 

temperature of the material increases more easily because of the thermal 

conductivity associated with the liquid phase.  

 

 In addition, we note that reaching the stationary regime depends largely on the radius of 

the log. In the case of the 7.5 cm, 10 cm and 15 cm, the stationary regimes are reached, 

respectively, for heating times of around 14h, 25h and 50 h. For the radius of 20 cm and 25 cm, the 

temperatures reached are respectively 51.1 oC and 39.6 oC, which is different from the temperature 

characterizing the stationary regime, which is 54 oC. Concerning the minimum heating times 

necessary for the thawing of the logs, they are also function of the radius of logs. It is minimal for 

the radius of 7.5cm (3.53 hours) and maximal for the radius of 25cm (39.2 hours). 

 

Figure 16: Temperature vs heating time at the centre of various radius of log 
 

 

Figure 17 illustrates the minimum heating times required to thaw eastern white pine logs, 

for an initial temperature of -22 oC, as a function of radius of the log. In addition, in the same figure, 

we presented the correlation curve between the thawing time and the radius of the log. The 

correlation, with an almost perfect coefficient (R = 1), allows the mathematical description of eastern 
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white pine logs thaw time according to the radius, by a quadratic function in R, according to the 

following function: 

T(R) ≈ 0.062R2 (27) 

 

 
Figure 17: Relation between heating time (h) and radius of log (cm) 

 
 

Figure 18 shows the temperature plotted against freezing time for the five different lengths 

of radius (7.5, 10, 15, 20 and 25 cm) of the eastern white pine log. According to this figure and for 

each case studied, the temperature decreases with time and the radius of the log. In Figure 19, we 

presented the correlation curve between the freezing time and the radius of the log. The correlation, 

with an almost perfect coefficient (R = 1), allows the mathematical description of eastern white pine 

logs freezing time according to the radius, by a quadratic function in R, according to the following 

function: 

T(R) ≈ 0.1175R2 (28) 
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Figure 18: Temperature vs thawing time at the centre of various radius of log 

 

 

Figure 19: Relation between fustion time (h) and radius of log (cm) 
 

 

In the light of the above results, the following remarks can be made on thawing or freezing 

logs: 

• During the frozen phase of the log, the temperature evolves more slowly than that 

observed in the phase after freezing. 

• Thawing time depends on the latent enthalpy and the conductivity of the wood. 

• Thawing time is proportional to the square of the radius of the log. 

• Freezing time is proportional to the square of the radius of the log. 
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This example of a numerical application on thawing or freezing of wood shows the 

advantage of using Cartesian finite element hybrid enthalpy to solve anisotropic thermal conduction 

problems. For the thawing of frozen logs, the general case will be treated in a future work using 

microwave energy. 

 
1.8 Conclusion 

This paper addresses the numerical heat conduction problem involving phase changes in 

anisotropic cylindrical and spherical media involving phase changes. For this, we have proposed a 

hybrid volumetric specific enthalpy based on finite-element analysis, involving Cartesian 

coordinates. To this purpose, we transformed the anisotropic thermal conductivity tensor relative 

to a cylindrical or spherical coordinate system into an equivalent tensor in global Cartesian 

coordinates. The numerical method is validated with the analytical testing of two anisotropic 

media (cylinder and spherical with convective transfer with variable circumference) and with two 

experimental tests associated with the heating of frozen woods. In the case of the anisotropic 

sphere, to our knowledge, this is a first numerical validation study in the literature. Finally, as an 

application, we have numerically quantified the minimum time required for the thawing of a wood 

log, such as eastern white pine, according to its radius (7.5, 10, 15, 20 and 25 cm). The 

thermophysical properties are a function of temperature, moisture content and structural 

orientation. 
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Abstract: For non-linear problems, the solution of the heat equation in terms of the Kirchhoff 

transformation, θ(T), is very limited. This restriction is due to the practical disadvantage of the 

inverse temperature shift from the Kirchhoff transform θ(T). In order to get around the difficulties 

associated with the representation of θ(T) and its inverse θ(T) for solids with strongly non-linear 

conductivities, a strategy based on a reverse engineering method is considered. It consists in 

identifying the number of knots and their respective locations on the curve θ(T) at the most efficient 

computational cost. In order to obtain the location of the knots, the curve is fitted by B-spline 

functions and the data is partitioned by an application of the bisectional method with a 

predetermined error. These knots are further optimized using the non-linear least squares method. 

The proposed approach can be combined with a numerical method such as the FEM, BEM, and 

FVM to provide the non-linear solution of the heat equation in terms of θ. However, in this work we 

have limited ourselves to the FEM. The validation of the proposed approach is achieved through 

several cases ranging from constant to strongly non-linear thermal conductivities with or without 

convection. As an application, the 3D finite element method is applied to determine the non-linear 

temperature distribution in a copper block with an imposed temperature. 

 

Résumé:  Pour les problèmes non linéaires, la solution de l'équation de la chaleur en 

fonction de la transformation de Kirchhoff θ(T) est limitée. Cette limitation est due à la difficulté à 

trouver la fonction inverse de la transformée de Kirchhoff T(θ). Afin de contourner la difficulté liée 

à la représentation de θ(T) et de son inverse T(θ), pour les solides à conductivité thermique 

fortement non linéaire, une stratégie basée sur une méthode de rétro-ingénierie est envisagée. Elle 

consiste à identifier le nombre de nœuds et leurs emplacements respectifs sur la courbe θ(T) tout 

en minimisant le coût de calcul. Afin d'obtenir la localisation des nœuds, la courbe est approximée 

par des fonctions B-Spline et les données sont partitionnées par une application de la méthode de 

bissection avec une erreur prédéterminée. Ces nœuds sont encore optimisés à l'aide de la 

méthode des moindres carrés non linéaires. L'approche proposée peut être combinée avec une 

méthode numérique telle que FEM, BEM et FVM pour avoir la solution non linéaire de l'équation 

de la chaleur. Dans ce travail, la validation de l'approche proposée est réalisée par la méthode des 
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éléments finis FEM, pour plusieurs cas allant de conductivité thermique constante à fortement non 

linéaires avec ou sans convection. Comme application, la méthode des éléments finis 3D est 

appliquée pour déterminer la distribution de température non linéaire dans un bloc de cuivre avec 

une température imposée. 
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2.1 Introduction 

The Kirchhoff transformation is a mathematical function that represents the integral of the 

thermal conductivity of a material in terms of the temperature. This function, noted θ(T), was 

introduced by Kirchhoff in 1894 to solve the problems of non-linear thermal conduction with 

temperature-dependent properties [44]. From the physical point of view, the choice to use the 

Kirchhoff transformation θ(T), generally in combination with the volume enthalpy H(T), is consistent 

with the first principle of thermodynamics especially for solids undergoing a phase change [45]. 

However, from the point of view of numerical modelling, the efficiency of the Kirchhoff 

transformation in solving non-linear heat conduction problems is generally limited to cases where 

the thermal conductivity is linear [[10],[18]]. For a strongly non-linear dependence, the solution of 

the heat equation is difficult and different simplifications of the Kirchhoff transformation are often 

needed, including the use of linear functions, constants, or temperature subdomains [19]. In fact  

an expression of θ(T) in terms of an integral is restrictive and causes the practical disadvantage of 

the inverse transition from the temperature to the Kirchhoff transform T(θ). According to 

Vadasz [19], the Kirchhoff transform is a particular case of the Cole-Hopf transform [20] and its 

classical definition with an integral imposes practical drawbacks for the inverse transformation. 

Consequently, some authors like Vadasz [19] have suggested the direct use of the Cole-Hopf 

transformation for the cases of exponential dependence. However, there is an important class of 

materials whose conductivity dependence on temperature is neither polynomial nor exponential. 

These materials include iron, aluminum, copper and gold, whose thermal conductivity varies with 

temperature [21]. Furthermore, the scientific literature treating the Kirchhoff transformation does 

not address h-convection, probably due to the difficulty to represent h and the convection 

losses (h(T-T0)) in terms of θ. As a result, the applications of Kirchhoff's transformation to the 

solution of heat conduction problems deriving from engineering applications remain very limited 

both analytically and numerically. An example of numerical works using θ(T) and its inverse T(θ) 

found in literature is reported by Erchiqui and al. [10]  concerning anisotropic heating of wood in 

which the dependence of thermal conductivity on temperature is linear. Meanwhile, an example of 

analytical case found in literature is reported by Al-Khamaiseh and al. [22], an approximation of the 

https://nau.pure.elsevier.com/en/persons/peter-vadasz
https://nau.pure.elsevier.com/en/persons/peter-vadasz
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convection loss h (T-T0) by h(θ-T0), while T is approximated by θ and h is kept constant. This paper 

proposes a method to get around the difficulties inherent to the representation of θ(T) and its inverse 

T(θ) for solids with highly non-linear conductivities both with or without natural convection using a 

B-Spline method [23]. In this regard, a strategy based on a the reverse engineering method 

proposed in [24] is considered. The method consists in identifying the number of knots and their 

respective locations in the T(θ) curve based on the most efficient computational cost. The process 

consists in fitting the curve with B-spline functions to obtain the location of the knots and dividing 

the data using the bisection method with a predetermined error. The same strategy is also used for 

the convection loss term h ((T)-T0). Furthermore, the knots are optimized using the non-linear least 

squares method. The proposed approach can be combined with a numerical method such as FEM, 

BEM, and FVM for the non-linear solution of the heat equation with respect to the variable θ.  

 

The developed approach, in association with FEM, is further validated for the following 

cases:  

• Materials with both a constant thermal conductivity and an imposed temperature; 

• Materials with both a linear thermal conductivity and an imposed temperature; 

• Materials with both a strongly nonlinear thermal conductivity and an imposed 

temperature; 

• Materials with a constant thermal conductivity subjected to natural convection; 

• Materials with a linear thermal conductivity subjected to natural convection; 

• Materials with strongly nonlinear thermal conductivity subjected to natural 

convection. 

 

The proposed approach was put into application through the finite element determination 

of the temperature distribution induced in a 3D copper block, which successively shows an imposed 

temperature on the upper surface, a lower adiabatic surface and convectional loss on the four 

sides. 
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2.2 The heat conduction equation 

The steady state equation of energy for an anisotropic material in a region Ω bounded by 

a surface ∂Ω (=∂Ω1 ∪ ∂Ω2) is defined by Eq. (1) in a Euclidean space R3, where T [oC] is the 

temperature, k [W/m/K] is the thermal conductivity of the material and Q is the source term [W/m3]. 

𝛁𝛁. (k(T) 𝛁𝛁T(x, y, z)) = Q ;          (x, y, z) ∈ Ω  (1) 

Eq. (1) is subjected to the following boundary condition: 

T = φ(x, y, z);                                 (x, y, z) ∈  ∂Ω1 (2) 

k 𝛁𝛁T ∙ 𝐧𝐧 = h(T∞ − T ) + qn;        (x, y, z) ∈ ∂Ω2 (3) 

where q [W/m2] is the incident heat flux, n is the outward normal (nx, ny, nz) to the surface, 

h [W/m2/°C] is the heat transfer coefficient and T∞ [°C] is the temperature of the surrounding 

medium. The Kirchhoff transform of the thermal conductivity, which also shows its variation with 

temperature, is defined by Elliot et al. [46] as shown in Eq. (4), where Tref is a reference temperature. 

θ(T) = � k
T

Tref
(T)dT ;                     ∀ T(x, y, z)      (4) 

The gradient of the Kirchhoff transform can be rewritten using the Leibniz rule [47], to yield 

Eq. (5). 

𝛁𝛁 θ = k(T).𝛁𝛁 T (5) 

An application of the 𝛁𝛁 operator on Eq. (5) yields Eq. (6) which follows: 

𝛁𝛁 . (k(T) 𝛁𝛁 T) = ∇2 θ               (6) 

An insertion of Eq. (6) into Eq.  (1) gives an expression of the heat equation in terms of θ 

as shown in Eq. (7). 

∇2 θ(T)− Q  =    0      (7) 

The boundary conditions associated with Eq. (7) is expressed in terms of θ based on Eq. 

(3) as follows: 

∂θ(x, y. z)
∂n

= 𝛁𝛁θ.𝐧𝐧 = k𝛁𝛁T ∙ 𝐧𝐧 = qn +  h(T∞ − T ) ;             (x, y, z) ∈ ∂Ω2 (8) 
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In the contrary of Eq. (1) which expresses the heat equation in terms of temperature T, it 

can be seen from Eq. (7) that the advantage of expressing the heat equation in terms of θ lies in its 

linear form. However, in the cases where the thermal conductivity is dependent on temperature, 

the inverse integral function associated with the representation with respect to the temperature is 

quite challenging. In order to tackle this challenge, it is therefore necessary to apply the appropriate 

algorithms. It is in this context that the following sections are oriented. Firstly, the finite element 

approach that was used to solve the heat equation in terms of θ is described. Secondly, we describe 

the B-spline approach to determine the function T(θ) (inverse of θ(T)) and its association with the 

finite element method to solve the heat conduction equation are described. 

2.3 Finite Element Analysis 

The spatial discretization of the boundary value problem associated with the heat 

conduction equation (eq. 7) is done using the Galerkin form of the method of weighted 

residuals [47]. In this regard, the domain Ω is subdivided by a finite number of finite elements. The 

variation of the θ-field in each element is approximated by the form given by Eq, (9): 

θe(xi) = � Ne
n(xi) θe

n
Ne

n=1

 (9) 

Where Ne
n denotes the elementary interpolation function associated with the node n and θen 

the corresponding nodal-θ in the element. In order to develop the formulation of a Galerkin weighted 

residual valid throughout the Ω domain, the variations of the local functions associated with the 

node n and θen the corresponding nodal-θ given in Eq. (9) must be extended as shown by Eq. (10), 

which is written in matrix form as Eq. (11): 

θ(xi) = � Nn(xi) θe
N

n=1

 (10) 

θ(xi) = 𝐍𝐍T ∙ θ (11) 

Where N is a vector of the interpolation functions defined on Ω, θ is a Kirchhoff transform 

vector of nodal unknown points, superscript T denotes a vector transpose and N (see eq.10) is the 
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number of nodal points in the domain Ω. The substitution of Eq. (11) in the differential equation 

Eq. (7) leads to a set of residual equations which are designated by R: 

∂
∂xi

�
∂�𝐍𝐍𝐓𝐓 ∙ θ�

∂xj
� − Q�𝐍𝐍𝐓𝐓 ∙ θ� = R (12) 

However, it is worth noting that the Galerkin approach ensures the orthogonality of the 

residual vectors with respect to the interpolation functions. In other words: 

R = 0 = 〈𝐍𝐍,𝐑𝐑〉 = � 𝐍𝐍 ∙  𝐑𝐑 𝐝𝐝Ω
Ω

 
(13) 

By substituting the expression of R, given by Eq. (12), into Eq. (13), we then obtain Eq. (14). 

� 𝐍𝐍�
∂
∂xi

�
∂�𝐍𝐍𝐓𝐓 ∙ θ�

∂xj
� − Q�𝐍𝐍𝐓𝐓 ∙ θ��  dΩ

Ω

= 0 (14) 

The integral equation above can be reformulated in a more practical form by reducing the 

order of derivation by one and introducing the boundary conditions of Eq. (8). This is achieved by 

applying the divergence theorem to equation (14), which gives Eq. (15): 

�
∂𝐍𝐍
∂xi

�
∂𝐍𝐍𝐓𝐓

∂xj
θ�dΩ =

Ω

� 𝐍𝐍Q dΩ
Ω

+� 𝐍𝐍 �qn +  h(T∞ − T )� dΓ
∂Ω

 (15) 

According to the integral equation Eq. (15), the quality of the algebraic solution is closely 

related to the quality of the representation of the temperature T and the product of the heat transfer 

coefficient with temperature, hT, in terms of θ. Finally, by placing the nodal unknowns outside the 

integrals, we obtained the algebraic form of Eq. (15): 

𝐊𝐊 ∙ θ = 𝐅𝐅𝐐𝐐 + 𝐅𝐅𝐡𝐡 (16) 

where: 

𝐊𝐊 = �
𝜕𝜕𝐍𝐍
𝜕𝜕𝑥𝑥𝑖𝑖

�
𝜕𝜕𝐍𝐍𝐓𝐓

𝜕𝜕𝑥𝑥𝑖𝑖
�dΩ

Ω

 (16.1) 

𝐅𝐅𝐐𝐐 = � 𝐍𝐍Q(θ) dΩ
Ω

 
(16.2) 
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𝐅𝐅𝐡𝐡 = � 𝐍𝐍  �qn +  h(T∞ − T )� dΓ
∂Ω

 
(16.3) 

Equations (16.1)-(16.3) shows that during the numerical application of the Galerkin method, 

it is essential to represent each integral by an appropriate local approximation followed by an 

application of the standard process of assembling the global matrix K and the global vector F from 

their integral elementary contributions. 

2.4 Expression of θ(T) and T(θ) 

This work assumes that each function k(T), θ(T) and T(θ) can be represented by a function 

defined piecewise. Under these conditions, each of the functions can be defined by multiple sub-

functions over a finite number of sub-domains (sub-intervals) of the main function. For the analysis, 

each function is assumed to be representable by a piecewise polynomial function. Consequently, 

each sub-function will be described by a polynomial on each sub-domain, but possibly a different 

polynomial on each sub-function. 

Consider the case where the conductivity k(T) can be described by a continuous function 

over the interval [Tmin, Tmax] as follow: 

k(T) = � aniTni
di

ni=0

,       for T ∈ [Ti, Ti+1];  𝑇𝑇𝑚𝑚𝑖𝑖𝑚𝑚  = T0  <  T1 …  <  Tn  = Tmax     (17) 

Under its conditions, the new expression of the Kirchhoff transform of the Eq.(4) is given 

by Eq. (18): 

θ(T) = � bniTi
di+1

ni=0

 ,   for T ∈ [Ti, Ti+1]     (18) 

The coefficients ani and bni ensure, respectively, the continuity of the functions k(T) and θ(T) 

in the interval [Tmin,Tmax].  

Similarly, taking into account Eq. (18), the temperature T is rewritten with respect to θ as 

shown in Eq. (19): 

T(θ) = � cnjθnj
dj

nj=0

;         for θ ∈ [θi,θi+1]     (19) 
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The coefficients cnj ensure the continuity of the functions θ(T) over the interval [Tmin,Tmax]. 

From the above equation, the elementary matrix expression of the temperature T, as a function of 

θ, in each element Ωe of the domain Ω is: 

{T }e = {𝑐𝑐0} + [c1]. {θ}e + [c2]. {θ2}e   + ⋯�cdj�. �θdj�
e,          for θ ∈ [θi, θi+1]     (20) 

Taking into account the expression of Eq. (20), the algebraic equation Eq. (16) becomes: 

(𝐊𝐊 + 𝐂𝐂) ∙ θ = 𝐅𝐅 (21) 

where: 

𝐂𝐂 = � h 𝐍𝐍 ∙  �𝐂𝐂1 ∙ θ
1 + 𝐂𝐂2 ∙ θ

2 + ⋯+𝐂𝐂𝑑𝑑𝑖𝑖 ∙ θ
𝑑𝑑𝑖𝑖−1� ∙ 𝐍𝐍T dΩ

Ω

 (21.1) 

𝐅𝐅 = � 𝐍𝐍  (qn +  hT∞) dΓ
∂Ω

+ � 𝐍𝐍 Q dΓ
Ω

−� h 𝐍𝐍 ∙ 𝐂𝐂0 ∙ 𝐍𝐍T dΓ
∂Ω

 (21.2) 

The matrix K is given by Eq.(16.1). In solving the algebraic system Eq. (21), it is essential 

to express the temperature as a function of θ and this according to the representation (16). For this 

purpose, the B-spline method is thus used as described in the paragraph below. 

Strategy for the determination of T(θ) 

The inverse of Eq. (4) is very tricky. In fact, finding the temperature according to θ is not 

easy, especially when the thermal conductivity is of degree 2 and higher. To get around this 

problem, a number of m points (Ti, θi) are constructed to describe the curve θ(T); followed by a 

temperature interpolation using B-splines functions from these data. The B-splines method of 

interpolation is chosen because it allows more local control of the curve, besides keeping the 

continuity of the function and its derivative. 

A B-spline curve associated with n + 1 control points P0, P1,…. Pn is defined as shown in 

Eq. (22) [24]: 

OM������⃗ = �B(i,k)OP�����⃗ i 
n

i=0

    (22) 

Where, B(i,k) are polynomial functions of degree k whose influence is localized to a number 

of elementary sub-domains of the curve θ(T). Thus, depending on the variation of the conductivity 
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as a function of temperature, the appropriate polynomial degree can be selected for each sector of 

the curve θ(T). 

 

The choice of the distribution and number of control points plays an important role in the 

optimization of the calculation time and also in the final expression of the temperature according to 

θ. The smaller the number n, the more optimal the distribution of the control points. In this case, 

the expression of T as a function of θ is less elaborate (fewer polynomial segments). To improve 

the quality of the representation of T( θ), there are several strategies in the literature to solve this 

optimization problem [24]. In this case, the algorithm and the choice of control points is initialized 

by two points (Tmin and Tmax). Then, the position of the control points which minimizes the coefficient 

of determination of the curve T(θ) is located in each iteration. The loop stops when the desired 

accuracy is reached. 

2.5 Validation 

The dynamic finite-element method outlined in the previous section was implemented in 

ThermoForm, a general-purpose finite-element code. All computations were performed on a PC in 

a single precision. 

 

The approach proposed in this document has been compared and validated with several 

cases obtained by the ANSYS software using the classical equation of the thermal conduction in 

terms of temperature. The cases concerned by the validation are:  

• Materials with both a constant thermal conductivity and an imposed temperature; 

• Materials with a linear thermal conductivity and an imposed temperature; 

• Materials with both a strongly non-linear thermal conductivity and an imposed 

temperature; 

•  Materials with a constant thermal conductivity subjected to natural convection 

• Materials with a linear thermal conductivity subjected to natural convection; 

• Materials with strongly non-linear thermal conductivity subjected to natural 

convection. 
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2.5.1. Case 1: A material with both a constant thermal conductivity and an imposed 

temperature 

This first case concerns a hollow disc with an internal radius of 0.25 m and an external 

radius of 1 m, subjected to an external temperature of 1 oC and an internal temperature of 40 oC. 

The thermal conductivity is constant 10 W/m/K. The finite-element analysis is done by considering 

a quadrilateral mesh with 1444 elements and 1520 nodes. 

 
a. Comparison of temperature 
distribution: our method vs ANSYS 

 
b. View of temperature distribution by 

present method 
Figure 20: Comparative temperature distribution obtained by both the present method and 

ANSYS 
 

Figure 20-a shows the comparison between the results of the temperature distribution 

obtained by the present method based on the Kirchhoff transformation θ and those derived from 

the ANSYS software based on the expression of the classical heat conduction equation in terms of 

the temperature T. Moreover, Figure 20-b gives a view of the temperature distribution in the study 

domain derived from the proposed method. It illustrates an excellent agreement between the two 

numerical solutions. 

2.5.2. Case 2: A material with both a linear thermal conductivity and an imposed 

temperature 

Unlike the first validation case where the thermal conductivity is constant, this second case 

considers a linear dependence of the conductivity with temperature. The application is made of an 

aluminum alloy. The physical domain considered for the analysis is similar in every aspect 
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(including the mesh size) to the one used in the first validation case. Similarly, the temperatures 

imposed are 40 oC for the inner circular boundary and 1 oC for the outer boundary. The conductivity 

is given by Eq. (20) that follows. 

k(T) = 144 + 0.21 T  , T in oC and k in W/m/K. (20) 

 

Figure 21-a shows a comparison between the results of the temperature distribution 

obtained by both the proposed method and the ANSYS software, using of the classical heat 

conduction equation in terms of the variable temperature. The temperature distributions illustrate 

an excellent agreement between the two numerical solutions. Figure 21-b shows the view of the 

temperature distribution obtained by the present method. 

 

a. Comparison of temperature distribution: 
present method vs ANSYS 

 

b. View of temperature distribution by present 
method 

Figure 21: Temperature distribution obtained by our method and ANSYS 

2.5.3. Case 3: A material with both a strongly non-linear thermal conductivity and an 

imposed temperature 

Contrary to the two previous validation cases, the third considers copper which thermal 

conductivity is strongly non-linear in the region of 0 and 70 K as shown in Figure 22. The physical 

domain used for the analysis is similar to that of the first validation case: That is a hollow disc with 

an internal radius of 0.25 m, an external radius of 1 m as well as the same mesh size. An imposed 
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temperature of 1 K was considered on the inner region of the disc, while 40 K, 60 K and 70 K were 

the three temperature cases on its outer border. 

 

For the first case, where the imposed temperature is 40 K, a correlation factor of 0.999928 

for the B-spline method was used. The convergence to the inverse function T(θ) which required 

three iterations, gave three third-degree polynomial sub-curves as shown in Figure 23. Figure 24-

a shows a comparison between the results of the temperature distribution obtained by both the 

proposed method and the ANSYS software, using the classical heat conduction equation 

expressed in terms of the temperature T. It illustrates an excellent agreement between the two 

numerical solutions. Figure 24-b shows the view of the temperature distribution in the study domain 

based on the proposed method. 

 

Figure 22: Variations of the thermal conductivity of copper with temperature in the non-

linear region 



52 

 

Figure 23: Convergence of iterations for the calculation of the inverse function T (θ) 

In the two remaining cases where the imposed temperatures are 60 K and 70 K, the 

operation of finding the inverse of T(θ) was limited to a correlation of 0.999. The comparison 

between the results obtained from the two methods is shown in Figure 25-a and Figure 25-b, 

respectively, for the imposed temperatures of 60K and 70K. The temperature distributions illustrate 

an excellent agreement between the two numerical solutions. 

 
a. Comparison of the temperature distribution: 

the proposed method vs ANSYS 

 
b. View of the temperature distribution by the 

proposed method 
Figure 24: Temperature distribution derived from both the proposed method and ANSYS (T= 

40 oC) 
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a. Comparison of the temperature 
distribution: Imposed temperature 60 K 

 

b. Comparison of the temperature distribution: 
Imposed temperature 70 K 

Figure 25: Temperature distribution obtained derived from both the proposed method and 

ANSYS (T= 60 oC) 

2.5.4. Case 4:  A material with a constant thermal conductivity subjected to the natural 

convection 

This case takes into consideration the natural convection problem. The physical domain 

use in the analysis is similar to that of the first validation case and bears the same mesh size. The 

heat transfer coefficient considered is 450 [W/m2/K]. The ambient temperatures in the outer and 

inner part of the circular annular domain are respectively 1 and 40 oC. The temperature distributions 

illustrate an excellent agreement between the solutions derived from the two numerical approaches 

as shown in Figure 26-a. Figure 26-b shows the view of the temperature distribution in the field of 

study obtained by the proposed method.  
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a. Comparison of temperature from the 
two methods 

 

b. View of temperature distribution derived 
from the proposed by present method 

Figure 26 :Comparison between the temperature distributions derived from the proposed 

method and ANSYS 

2.5.5. Case 5:  A material with a linear thermal conductivity subjected to the natural 

convection 

This case considers the natural convection of a material made of aluminum alloy. The 

physical domain used for the analysis is similar to that of the first validation case and uses the same 

mesh size. The heat transfer coefficient considered is 450 [W/m2/K]. The ambient temperatures in 

the outer and inner parts of the circular annular domain are 1oC and 40oC respectively. The 

temperature distributions illustrate an excellent agreement between the solutions derived from the 

two numerical approaches as shown in Figure 27-a. Figure 27-b shows the temperature 

distribution in the field of study obtained by the proposed method. 
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a. Comparison of temperature distribution 
from the two approaches 

 

b. View of temperature distribution derived 
from the proposed method 

Figure 27: Comparison between the temperature distributions derived from both the 

proposed method and ANSYS 

 

2.5.6. Case 6:  A material with a strongly non-linear thermal conductivity subjected to the 

natural convection 

The final validation case deals with the natural convection of copper in the region where its 

thermal conductivity is strongly non-linear between 0 and 70 K. The physical domain considered in 

the analysis is similar to that of the first validation case and uses the same mesh size. The heat 

transfer coefficient of copper is 450 [W/m2/K]. The ambient temperatures in the outer and inner 

parts of the circular annular domain are 1 K and 70 K respectively. It is observed in Figure 28-a 

that the temperature distributions obtained by both the proposed method and ANSYS Software are 

in an excellent agreement. Figure 28-b further gives a view of the temperature distribution in the 

field of study obtained by the proposed method 
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a.Comparison between the temperature 

distribution from both the proposed method 
and ANSYS 

 

b. A view of the temperature distribution based on 
the proposed method 

Figure 28: Comparison of the temperature distribution obtained by both the proposed 

method and ANSYS 

In the light of the numerical validations of the method proposed for the solution of the heat 

conduction equation based on the Kirchhoff transform, and applied by ThermoForm, the following 

remarks can be made on the performance of this method: 

Tableau 2 : Numerical performance of the proposed method 

 

Remarks: The iterations appearing in the case of the imposed temperature with natural 

convection is due to the non-linear nature of the problem since the inverse of the convective term 

h (T-T∞) must be found. It is also necessary to underline that the full Newton Raphson method 

requires a high computing time. 

Imposed temperature without 
convection 

Imposed temperature with 
convection 

ANSYS  
(Full Newton 

Raphson) 

ThermoForm ANSYS 
( Full Newton-

Raphson) 

ThermoForm 
(Picard 
method) 

Aluminum 
alloy 

2 iterations 0 iteration 2 iterations 2 iterations 

Copper 18 iterations 0 iteration 3 iterations 5 iterations 
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2.6 Application 

Two cases of application by the finite element method are considered: i) The first case 

concerns the temperature distribution induced in a 3D copper block with the following conditions: 

temperature imposed on the upper surface, convection loss on the four lateral surfaces of the block 

(h=450 [W/m2/°C]) and the lower surface is adiabatic and ii) The second case, two-dimensional, is 

based on a hypothetical non-linear conductivity whose shape is similar to the hump of a camel, 

which we have called camel conductivity as shown in Figure 29.  

  
Figure 29: Hypothetical non-linear conductivity: Camel Conductivity 

 

a) 3D copper block 
 

 b) 2D Camel conductivity 

Figure 30: Geometrical and thermal boundary conditions characteristics 

The geometrical characteristics as well as the thermal boundary conditions for these two 

examples are given in Figure 30-a and Figure 30-b respectively. 
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2.6.1. Case 1: Temperature distribution in a 3D copper block 

In this case of 3D-FEM modeling application, the cooper block is meshed with hexahedrons 

comprising eight nodes (2744 elements and 3375 nodes). The thermal non-linear conductivity of 

cooper is illustrated in Figure 22.  

 

Figure 31, Figure 32 and Figure 33 illustrate the central lines temperature distribution in 

the cooper block in x, y and z direction respectively. It can be seen that the temperature distribution 

patterns are identical between Figure 31 and Figure 32. This is due to the boundary conditions 

which are similar on the side surfaces. These Figures show that the temperature is higher in the 

central regions (46.42 oC) in comparison to its edges (44.90 oC). However, the shape of the 

temperature distribution in the central direction Z is different from that of the x and y directions as 

shown in Figure 33. 
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Line central position (X) 

Figure 31: Temperature distribution in central line in X direction 

  

Line central position (Y) 

Figure 32: Temperature distribution in central line in Y direction 
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Line central position (Z) 

Figure 33: Temperature distribution in central line in Z direction 

Figure 34-a and Figure 34-b represent different views of the temperature distribution on 

the outer surface of the copper block. 

 
a. Temperature distribution (view 1) 

 
b. Temperature distribution (view 2) 

Figure 34: Views of temperature distribution 

 

2.6.2. Case 2: Temperature distribution in a hypothetical Camel-type 2D block  

This application considers a 1 m x 1m unitary plate subjected to a uniform temperature. For 

the finite-element analysis, we consider a quadrilateral mesh with 361 elements and 400 
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nodes (See Figure 30-b). The upper side is maintained at a temperature of 0.7 oC and 0.2 oC on 

the other sides (See Figure 30-b). The thermal conductivity curve was approximated by fourth 

order splines and the results obtained in iterations 1, 3 and 30 are presented in Figure 35-a. 

Moreover, Figure 35-b shows the exact inverse function T(θ) obtained by fitting with B-spline. An 

excellent reproduction of the inverse function by the b-spline can be seen from the latter figure. 

Figure 36-a and Figure 36-b illustrate the central temperature distribution in the domain in the x 

and y direction respectively. Figure 37 represents the views of the temperature distribution on the 

domain. 

 
a. Approximated by fourth order splines 

of Camel Conductivity function 

 
b. Exact inverse function T(θ) and that 

obtained by fitting with spline B 
Figure 35: Approximation of Camel Conductivity and its inverse 
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a. Central X-Direction 

 
b. Central X-Direction 

Figure 36: Temperature distribution 

 

Figure 37: A view of the temperature distribution in the (x, y) plan 

 

With regard to the last two examples (3D Copper block and camel conductivity problem), 

the following remarks can be noted on the performance of the proposed method: 

Tableau 3 : Numerical performance of the proposed method 

Imposed temperature without 
convection 

Imposed temperature with 
convection 

ANSYS  
(Full Newton 

Raphson) 

ThermoForm ANSYS 
( Full Newton-

Raphson) 

ThermoForm 
(Picard 
method) 

3D Copper 
block  
conductivity 
(2D) 

- - 4 iterations 3 iterations 
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In the light of the new proposed method to solve the energy equation in terms of the 

Kirchhoff transform, and owing to the quality of the results obtained, the following remarks can be 

formulated: 

• In order to characterize the Kirchhoff transform and its inverse for non-linear 

thermal conduction analysis, the B-Spline method can be coupled to other 

numerical approaches in the example of the boundary finite element, the finite 

volume and the finite difference methods. 

• If the boundary conditions are of the imposed temperatures type, the numerical 

solution requires no iteration, independently of the form of the function of thermal 

conductivity with respect to temperature (linear or not linear). 

• The B-Spline method can be used to characterize the volume enthalpy of non-

linear materials either with or without phase change. 

• The B-Spline method can be coupled with the energy equation for the transient 

analysis of strongly non-linear materials in terms of both the volume enthalpy and 

Kirchhoff transformation. This operation can either be carried on with or without 

phase change. 

• The B-Spline method can be used in combination with the energy equation for the 

representation of the inverse of the non-linear temperature boundary conditions 

that can be imposed on a material, in terms of the Kirchhoff transformation (and 

volume enthalpy).  

• The proposed B-Spline method can easily be incorporated into other numerical 

methods: boundary finite element method, finite volume method, finite difference 

method, etc.  And this, for problems with or without phase change. 

 

The potential of the proposed approach is high and could be used for more general 

problems in the field of heat transfer such as the heating of non-linear materials by infrared radiation 

and electromagnetic waves, which will be addressed in future work. 
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2.7 Conclusion 

This paper addresses the new method of solving the non-linear heat conduction equation 

using Kirchhoff transformation, θ(T), based on finite-element analysis.  

 

In order to tackle the challenges associated with representation of θ (T) and its inverse T(θ), 

for solids with strongly non-linear conductivities, a strategy based on a reverse engineering method 

is considered. It is achieved by applying the B-spline method to the curve. The proposed approach 

can be combined with a numerical method to solve the non-linear heat equation in terms of θ. In 

the case where the boundary conditions are of the type of temperatures imposed, the proposed 

method does not require any numerical iteration and this independently of the thermal conductivity 

function with respect to temperature (linear or non-linear). However, this work has focused on the 

finite element method. The approach is validated on several cases of thermal conductivity (from 

constant to non-linear) either with convection or not. Through its application, the proposed method 

has used the 3D finite element method to determine the temperature distribution in a copper block 

and proposed a new numerical analysis test whose thermal conductivity, with respect to 

temperature, has the shape of a camel hump. 
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Abstract: Dielectric heating is a promising process for the uniform sterilization of food 

products as well as for the drying of products. However, radio frequency heating of wood-based 

materials (they are highly anisotropic materials with temperature, moisture and structural 

orientation dependent properties) does not seem to be elucidated in the literature. It is within this 

framework that this study is carried out and concerns the modeling of anisotropic dielectric heating 

by radio frequency (RF) and its application to the thawing of frozen wood. The non-linear heat 

conduction problem involving phase changes is formulated in terms of volume enthalpy. For the 

numerical resolution of the thermal conduction equation, the finite element method is considered. 

Thermophysical and dielectric properties are expressed as a function of temperature, moisture 

content (MC) and structural orientation. The numerical approach is further validated by a 

combination of the analytical, numerical and experimental analyses. Finally, the effect of RF on the 

thawing of the Douglas-fir (Pseudotsuga menziesii) and the White oak (Quercus alba), which are 

two North American wood species, was studied based on an initial temperature of -20 oC and a 

frequency of 50 MHz. In this regard, two MC of 65% and 90% are considered. For the two species 

of the studied wood, it is observed that the RF induce a uniform temperature profile. 

 

Résumé: Le chauffage diélectrique est un procédé prometteur pour la stérilisation uniforme 

des produits alimentaires ainsi que pour le séchage des produits. Cependant, le chauffage par 

micro-ondes des matériaux à base de bois (un matériau hautement anisotrope avec des propriétés 

dépendantes de la température, de l'humidité et de l'orientation structurelle) ne semble pas être 

élucidé dans la littérature. C'est dans ce cadre que cette étude est réalisée et concerne la 

modélisation du chauffage diélectrique anisotrope par radiofréquence (RF) et son application au 

dégel du bois gelé. Le problème de conduction thermique non linéaire impliquant des changements 

de phase est formulé en termes d'enthalpie volumique. Pour la résolution numérique de l'équation 

de conduction thermique, la méthode des éléments finis est considérée. Les propriétés 

thermophysiques et diélectriques sont exprimées en fonction de la température, de la teneur en 

humidité (MC) et de l'orientation structurelle. L'approche numérique est validée par une 

combinaison d'analyses analytiques, numériques et expérimentales. Enfin, l'effet des RF sur le 
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dégel du douglas (Pseudotsuga menziesii) et du chêne blanc (Quercus alba), qui sont deux 

essences de bois nord-américaines, a été étudié avec une température initiale de -20 oC et une 

fréquence de 50 MHz. À cet égard, deux MC de 65 % et 90 % sont considérés. Pour les deux 

essences de bois étudiées, on observe que les RF induisent un profil de température uniforme. 
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3.1 Introduction 

Nowadays, radio frequencies (RF) are used in various applications, particularly in both 

civilian and military communication as well as the healthcare sector for both tumor treatment and 

emergency services. The frequency of its electromagnetic waves ranges from 3 to 300 MHz. Their 

interactions with the dielectric media can be described by their dielectric properties. The two main 

interactions of interest are: i) the absorption resulting from the partial storage of the wave energy 

in the dielectric material and ii) the partial dissipation of the energy absorbed by the dielectric 

material in the form of heat [48]. The ability of a dielectric material to absorb and store energy is 

generally described by the complex dielectric constant which is a second order tensor [48]. 

However, the degradation of the energy contained in the electric field of the wave, in the form of 

heat, requires the presence of polar molecules. In general, there are four cases of polarization of 

dielectric materials listed below [49] : 

• Interfacial polarization:  it occurs only in non-homogeneous media and it comes 

from the accumulation of free charges at the interface of two media of different 

permittivities. 

• Electron polarization: it is related to the displacement of individual electrons in an 

atom in response to external fields. 

• Atomic polarization: it is related to the displacement of the atomic nucleus with 

respect to the group of atomic electrons. 

• Molecular polarization: it is related to the displacement of individual atoms in a 

molecule. 

 

All these polarization mechanisms can occur in any dielectric material. However, it occurs 

with time, without necessarily following a variable electric field. This shift between the polarization 

vector and the electric field is the fundamental condition for the dissipation of the electrical energy 

as heat in a dielectric material. Indeed, under the effect of an incident electric field, polar molecules 

tend to align themselves with the field with a certain delay with respect to the external electric field 

(generally harmonic). The response time of this shift depends not only on the intermolecular forces, 
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but also on the inertial forces opposing the electric field. The time needed to overcome these forces 

is also known as the relaxation time. Consequently, the first response of dielectrics is polarization, 

followed by dielectric relaxation. At frequencies below relaxation, the time for the electric field to 

change direction is long enough for the dipoles to be able to follow it and they remain in phase with 

the field. In this case, losses do not appear in the material. The same is true if the frequencies are 

very high; the field changes too quickly and the dipoles cannot follow the reversal of polarity. Under 

these conditions, no energy is lost in the medium. However, there is an intermediate frequency 

between these two extremes where there is a delay or a temporal phase shift between the dipole 

moment and the electric field resulting in an energy dissipation inside the material [50]. This lost 

energy is responsible for the temperature evolution in the dielectric and they reach a maximum 

value at the frequency fc, linked to the relaxation time by τ=1/(2πfc). The electrical energy is then 

converted into the thermal energy with a power proportional to the square of the distribution of the 

electric field in the dielectric [48]. 

 

In the case of RF, interfacial and dipolar polarization are generally most associated to the 

mechanisms of thermal activation through charge carrier migration and general molecular motion 

within the material [50]. However, the energy transported or converted into heat by RF is considered 

too low to either cause a breakdown of the chemical bonds of the materials or cause an electron 

extraction from them [51]. Consequently, RF are considered non-ionizing radiations which can be 

used in many telecommunication and health engineering applications. 

 

When dealing with wood, which is a composite material characterized by anisotropy in the 

longitudinal, radial and transverse directions, the dielectric properties are expressed as a function 

of the following two second order tensors [[48], [26]]: i) the dielectric permittivity tensor 𝜺𝜺� associated 

with the electrical component of the wave and ii) the magnetic permeability tensor 𝝁𝝁� associated 

with the magnetic component of the wave.  The real parts of the tensors 𝜺𝜺�  and 𝝁𝝁�, which are referred 

to as 𝜺𝜺�′ and 𝝁𝝁�′ respectively, express the phase shift of the electromagnetic wave (deceleration that 

can be characterized by a refractive index tensor n ) for wood, and the imaginary parts 𝜺𝜺�′′ and 𝝁𝝁�′′ 
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respectively referring to the loss factors through the dissipation of the energy of the electromagnetic 

wave. Usually, the dielectric permittivity 𝜺𝜺� and the magnetic permeability 𝝁𝝁� are normalized with 

respect to those of the vacuum 𝜀𝜀0(= 8.854 1012 𝐹𝐹 𝑚𝑚⁄ )) and 𝜇𝜇0(= 4 𝜋𝜋 10−7 𝐻𝐻 𝑚𝑚⁄ ). In this regard, the 

dielectric and magnetic permittivities of wood relative to vacuum are often referred to as 𝜺𝜺�𝑟𝑟 and 𝝁𝝁�𝑟𝑟, 

respectively. The values of the permittivity (or permeability) of a material are closer to unity 

whenever its dielectric (or magnetic) properties are close to those of vacuum. This means that the 

higher the 𝜺𝜺�𝑟𝑟′  (𝝁𝝁�𝑟𝑟′ ), the more the material tends to reflect RF. Similarly, the higher the 𝜺𝜺�′𝑟𝑟′  (𝝁𝝁�′𝑟𝑟′ ), the 

more the material could dissipate the energy contained in the RF. In the case of wood, the dielectric 

tensor 𝜺𝜺�𝑟𝑟varies considerably with many parameters such as the type (characterized by the specific 

gravity (SG), frequency, density, moisture content (MC), temperature and structural orientations of 

its fibers (longitudinal, radial, and transverse) [[48], [43]]. However, it is generally accepted that at 

a given set of temperature (T), frequency (f) and the MC, the dielectric properties of wood do not 

significantly change with the electric field vector [52].  

 

The current literature on the dielectric heating of wood mostly deals with the use of 

microwaves [[28], [2],[48]]. The anisotropic heating of wood using RF does not seem to be 

elucidated both with respect to the experimental stage and the mathematical modelling. In addition, 

there is a lack of studies supporting the efficiency of the RF heating, as well as many uncertainties 

still to be clarified. In this regard, the ability of this technique to penetrate the structure of wood or 

to be used for a phytosanitary treatment for the eradication of pathogens present in wood and wood 

products has not yet been validated. Moreover, a proper expression of the penetration of RF 

radiation into wood is a complex process due to the multitude of parameters it entails. Some of the 

most in view are the frequency, temperature, moisture content, structural orientation and dielectric 

properties.  Other concerns are related to the industrial application of this technique. In fact, the 

proper speed at which the dissipated heat generated by RF radiation moves through the wooden 

material (characterized by thermal diffusivity (α)) and the speed at which wood absorbs thermal 

energy (characterized by thermal effusivity (E)) are not clearly expounded in the literature. It is 

rather directly related to the non-linear and the anisotropic thermo-physical properties of the 
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wooden material including the specific heat Cp, the density ρ and the thermal conductivity tensor 

𝒌𝒌� [48]. In the case of frozen wood, the knowledge of the latent energy (L) is essential as it implicitly 

characterizes the energy supplied by the RF for the melting of frozen water present in the wooden 

structure. Moreover, all its properties are a function of the moisture content, temperature and its 

structural orientation. Finally, the frequencies arrayed in the RF domain belong to the set authorized 

by the International Telecommunication Union (ITU) for the prevention of the interferences with 

other equipments and installations. 

 

In the wood industry, the main issue evolves around reducing the heat time treatment of 

wood products, thus the justification of the general use of microwaves instead of RF. This choice 

is motivated by economic considerations based on the duration of the heat treatment process, 

which is shorter for microwaves as they are more energetic than RF. Consequently, there is a wide 

range of microwave equipment operating at the frequency of 915 MHz for industrial applications 

and 2.45GHz for domestic ovens. In fact, the depths of the microwave penetration are influenced 

by the choice of these frequencies. However, it has been reported that the major disadvantage of 

microwave heating is the presence of hot and cold heat spots in the wooden structure, indicating a 

heterogeneous temperature distribution [2]. Such phenomenon had been dealt with through an 

incorporation of the rotary systems into the microwave ovens where they act by reducing the 

temperature differences induced in the material. This paper deals with an investigation of the use 

of the RF as an alternate approach to tackle the disadvantages of an application of the microwaves 

in the wood industry. This choice is motivated by previous works carried out by Erchiqui et al. [2], 

showing that the distribution of the power dissipated by RF in wooden materials is uniform across 

the thickness of the analyzed samples for all practical purposes. In fact, such findings deserve a 

thorough investigation for a qualitative and quantitative characterization of the temperature 

distribution induced by RF in the wood samples subjected to it. Within the defined framework, this 

paper focuses specifically on the modeling of the dielectric heating of frozen wood samples by RF. 
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The modeling of the RF heating of anisotropic dielectric materials with phase change is a 

complex process involving non-linear interactions between mechanical, thermal and electrical 

properties [[2], [31], [53]]. This represents a major challenge for numerical simulation because heat 

and mass transfer, phase change, as well as thermo-mechanical and electromagnetic interactions 

must be taken into consideration. Two approaches are often found in the literature for the modeling 

of heat conduction in materials with phase change. The first one expresses the anisotropic heat 

conduction equation in terms of temperature as a dependent variable [[10],[48],[54], [41]], while the 

second one uses volume enthalpy [[2], [48]]. The latter approach has the advantage of 

simultaneously eliminating the duplication of the energy equation for the solid and liquid phases 

and avoiding the presence of the moving boundary which is the mathematical condition at the 

water-ice interface [48]. The modeling of the heat dissipated by electromagnetic waves including 

RF and microwaves referred to as Q requires the knowledge of the power flux associated with the 

propagation of the electromagnetic waves (Poynting vector P��⃗ ) in the dielectric medium [2]. This can 

only be achieved by the knowledge of the electromagnetic field induced in the space of the material, 

thus by the resolution of Maxwell's equations. The common numerical methods applied in the 

literature to solve the Maxwell equations are the finite element method [[55], [2]], the finite volume 

method [56], the finite difference method [57] and the boundary finite element method [58]. 

However, in the case of an anisotropic dielectric material such as wood, the published works are 

limited and usually only deal with microwave heating. 

 

This work is concerned with the finite element investigation of the RF heating of two North 

American frozen wood species which are by nature anisotropic. These species include the Douglas-

fir (Pseudotsuga menziesii) and the White oak (Quercus alba). A radiofrequency of 50 MHz and an 

initial temperature of -20 ℃ were considered for analytical purposes. The choice of the negative 

initial temperature is supported by the specific North American climatic considerations, where 

winter temperatures are reputedly amongst the lowest of the world. The thermo-physical and 

dielectric properties of both wood species are considered dependent on moisture, temperature and 

the three structural orientations of the wood fibers.  



73 

3.2 Enthalpy model  

The heat conduction analysis of anisotropic incompressible solids with phase change is 

naturally described by the enthalpy term H(T) [2] which, in the case of a three-dimensional 

Cartesian coordinate system is given by equation (1) [10]: 

∂H
∂t

= �
∂
∂xi

∂θij
∂xj

�+ QRF ;      i, j = 1,2,3 (1) 

Where θij are the components of the Kirchhoff transformation tensor θ, and QRF is the 

internal heat source. The θij components are related to the temperature-dependent thermal 

conductivity tensor �̿�𝐤  by equation (1.1) [10] : 

θij(T ≤ Tm) = � kijs
T

Tref
(T) dT ,       θij(T > Tm) = � kijl

T

Tm
(T) dT (1.1) 

Where Tm [°C] and Tref [°C] are the material’s melting temperature and the reference 

temperature, respectively. In the case where the phase change occurs at melting temperature, 

which is assumed to be constant, the enthalpy H(T) is expressed by equations (1.2) and (1.3) [10]: 

H(T ≤ Tm) = ∫ ρs(T)Cps(T)dT  T
Tref

  (1.2) 

H(T > Tm) = � ρs(T)Cps(T)dT
Tm

Tref
+ ρ(T)L + � ρf(T). Cpf (T)dT

T

Tm
 

(1.3) 

L is the latent heat of water fusion [kJ/kg]. The exponent’s “s” and “l” appearing on the 

density ρ*[kg/m3], the specific heat Cp∗  [J/kg/oC] and the components of conductivity tensor 

kij∗  [W/m/oC] of the material refer to the solid and liquid state, respectively. The term ρ represents 

the density at the solid-liquid interface of the material.  

The internal volumetric heat generation of RF energy  QRF is related to the instantaneous 

Poynting vector 𝐒𝐒 by equation (2) that follows [2]: 

QRF(T) = −Re(𝛁𝛁 ∙ 𝐒𝐒)  (2) 

The boundary conditions associated to equation (1) is:  
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�nx
∂θx
∂x

+ ny
∂θy
∂y

+ nz
∂θz
∂z �

+ h(T − T∞) − 𝐪𝐪 ∙ 𝐧𝐧 = 0 
(3) 

where q [W/m2] is the incident radiative heat flux, n is the outward normal vector to the 

material surface, h [W/m2/°C] is the heat transfer coefficient and T∝ is the temperature of the 

surrounding fluid.  

3.3 Implicit time integration scheme 

A variety of the numerical schemes are available for the numerical analysis of transient 

responses to problems associated with heat conduction. The most common belonging to the 

weighted Euler difference family of time approximations [42] that are considered in this paper 

following equation (4): 

Hn+α = (1 − α) Hn + α Hn+1 , with : α = t−tn
∆t

   (4) 

The parameter α varies in the range [0–1]. The α schemes are unconditionally stable when 

α ≤ 1/2 and O(∆t) are accurate, except for the O(∆t2) – convergent Crank–Nicolson scheme (α 

=1/2). In this work, the semi-implicit Crank-Nicolson scheme [42] is considered. Consequently, 

equation (1) is transformed into equation (5): 

(𝐊𝐊n+1
∗ + 𝐆𝐆n+1∗ ) 𝐇𝐇n+1 = 𝐊𝐊n 

∗ .𝐇𝐇n + 𝐆𝐆n 
∗ .𝐇𝐇n

𝟏𝟏 + 𝐑𝐑n,n+1
∗  (5) 

K*, G* and R* are modified global matrices and Hn+1 is the vector of global nodal enthalpies 

at moment tn+1 [2]. 

3.4 Poynting’s theorem and RF-wave energy 

The Poynting vector S given in equation (6) is the result of the vector product of the field's 

electric and magnetic components of the electromagnetic wave [59]: 

𝐒𝐒 =
𝟏𝟏
𝟏𝟏
𝐄𝐄 ×𝐇𝐇∗ (6) 

Where E and H* are the electric field (V.m-1) and the conjugate magnetic field intensity 

(A.m-1), respectively. In general, such problem deals with the steady-state harmonic time-varying 

fields. It is thus convenient to represent each field vector as a complex phasor by an application of 
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a Fourier transformation. An assumption of a monochromatic wave leads to the expression of E by 

equation (7): 

𝐄𝐄(𝐫𝐫, t) = e−jωt𝐄𝐄�(𝐫𝐫) (7) 

where 𝐄𝐄� is a complex vector and a function of r (m) and ω (radian.s-1) is the angular 

frequency of the incident radiation. The other field vectors can be written using the same notation 

as in equation (7). 

 

A combination of the definition of equation (6) and Maxwell's equations [28] results 

in an expression of 𝛁𝛁 ∙ 𝐒𝐒 using equations (8), (8.1) and (8.2): 

𝛁𝛁 ∙ 𝐒𝐒 = −j
ω
2

([ε0(𝐄𝐄� ∙ 𝛆𝛆� ∙ 𝐄𝐄�∗)] + [μ0(𝐇𝐇� ∙ 𝛍𝛍� ∙ 𝐇𝐇�∗)]) (8) 

with: 

𝑅𝑅𝑒𝑒(𝛁𝛁 ∙ 𝐒𝐒) = −
𝜔𝜔
2 �

𝜀𝜀0(𝐄𝐄� ∙ 𝐼𝐼𝑚𝑚(𝜺𝜺�) ∙ 𝐄𝐄�∗) + 𝜇𝜇0(𝐇𝐇� ∙ 𝐼𝐼𝑚𝑚(𝝁𝝁�) ∙ 𝐇𝐇�∗)� (8.1) 

𝐼𝐼𝑚𝑚(𝛁𝛁 ∙ 𝐒𝐒) = −2𝜔𝜔�
1
4
𝜀𝜀0(𝐄𝐄� ∙ 𝑅𝑅𝑒𝑒(𝜺𝜺�) ∙ 𝐄𝐄�∗) +

1
4
𝜇𝜇0(𝐇𝐇� ∙ 𝑅𝑅𝑒𝑒(𝝁𝝁�) ∙ 𝐇𝐇�∗)� (8.2) 

The imaginary (𝐼𝐼𝑚𝑚(𝛁𝛁 ∙ 𝐒𝐒)) and real 𝑅𝑅𝑒𝑒(𝛁𝛁 ∙ 𝐒𝐒)  parts of the complex 𝛁𝛁 ∙ 𝐒𝐒 represent, 

respectively, the net reactive power stored and the net power dissipated by the RF per unit volume 

in the anisotropic dielectric material [[48], [54]] : 

QRF =
ω
2 �

ε0(𝐄𝐄� ∙ Im(𝛆𝛆�) ∙ 𝐄𝐄�∗) + μ0(𝐇𝐇� ∙ Im(𝛍𝛍�) ∙ 𝐇𝐇�∗)� (9) 

In wood systems, the magnetic permeability tensor 𝝁𝝁� is closely approximated by the real 

tensor 𝝁𝝁𝟎𝟎𝑰𝑰�; (𝑰𝑰� is the identity tensor) [60]. This assumption is made in this paper resulting into an 

expression of the power dissipated by RF (per unit volume) as equation (10): 

QRF =
ω
2
ε0(𝐄𝐄 ∙ Im(𝛆𝛆�) ∙ 𝐄𝐄) (10) 

It is clear from equation (10) that the calculation of the power dissipated by RF at any 

moment requires the knowledge of the electric field at any point of the dielectric material. This 
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requires the resolution of Maxwell's equations with respect to an anisotropic dielectric medium 

subjected to the RF. If the RF are normal to the three main directions of the wood sample 

(longitudinal, radial and tangential), the power dissipated per unit volume can be further 

simplified [2]. The last consideration is made in this work. Assuming the electro-neutrality of wood 

∇(∇ ∙ 𝐄𝐄) = 0, the expression of the Helmholtz’s equation of wave propagation is deduced from the 

Maxwell’s equation for each principal direction [28]:  

∇2𝐄𝐄� − γ2𝐄𝐄� = 0 (11) 

where γ is the constant complex propagation 𝛾𝛾 = 𝛼𝛼 + 𝑗𝑗𝑗𝑗,while  β and α are respectively the 

attenuation and the phase constants. These parameters are related to the dielectric properties of 

the material and the radiation frequency. These in turn are a function of temperature (T), moisture 

content (MC), frequency (f) and the structural direction (L, R, T) of the wood according to the 

following formulae: 

αd(T, MC, f) = ω
c
�εd

′ (T,MC,f)
2

�1 + tan2 δ�(T, MC, f)� + 1; (d: L, R or T) (12.1) 

βd(T, MC, f) = ω
c
�εd

′ (T,MC,f)
2

�1 + tan2 δ�(T, MC, f)� − 1; (d: L, R or T) (12.2) 

001 εµ/c = is the speed of the light. The term δ (=tg-1(𝜀𝜀𝑑𝑑′′/𝜀𝜀𝑑𝑑′ )) is the dielectric loss angle. 

The attenuation constant, β, controls the rate at which the incident field intensity decays in the 

dielectric material. 1 (2β)⁄  is known as the penetration depth. The phase constant, α, represents 

the change of phase of the radiation propagation and is related to its wavelength by the expression 

λ=2π/α.  

3.4.1 Uniform plane wave propagation and power dissipation 

In this paper, it is assumed that each component of the electric field 𝐄𝐄 = �𝐄𝐄𝐱𝐱,𝐄𝐄𝐲𝐲,,𝐄𝐄𝐳𝐳�  is a 

uniform plane RF. In the same manner, each wave component is assumed to be normally incident 

to the opposite faces of the sample (see Figure 38). These electric components are given by 

equations (13.1), (13.2) and (13.3): 

x direction: longitudinal direction L 
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𝐄𝐄𝐱𝐱 = Ex(z)𝐚𝐚𝐱𝐱 (13.1) 

y direction: radial direction R 

𝐄𝐄𝐲𝐲 = Ey(x) 𝐚𝐚𝐲𝐲 (13.2) 

z direction: tangential direction T 

𝐄𝐄𝐳𝐳 = Ez(y) 𝐚𝐚𝐳𝐳 (13.3) 

where x is a component of the electric field (Ex), which is a function of the parameter z, y is 

a component of the electric field (Ey), which is a function of the parameter x, and z is a component 

of the electric field (Ez), which is a function of the parameter y, as represented in Figure 38. 

 

Figure 38: Schematic representation of the wood sample exposed to plane RF from the three 
principal faces. 

 
The unit vectors 𝒂𝒂𝑧𝑧 ,𝒂𝒂𝑦𝑦 and 𝒂𝒂𝑥𝑥 are respectively the normal to the surfaces (AEFB), (ADHE) 

and (HCTE) of the wood sample.   

3.4.2 Expressions of the power dissipation 

According to equations (11) and (13.1) - (13.3), the exact expressions of the absorbed 

powers in each principal direction of the wood sample are given respectively by the expressions of 

equations (14.1) – (14.3) [28]: 

Longitudinal direction: 

QRF
x = 2I0xβ𝑥𝑥 �

e−2β𝑥𝑥x + (R�23x )2e−4β𝑥𝑥Lxe2β𝑥𝑥x + 2R�23x e−2β𝑥𝑥Lx cos(2α𝑥𝑥(x− Lx) − θ23
x )

1 + (R�12x )2(R�23x )2e−4β𝑥𝑥Lx − 2R�12x R�23x cos(θ12
x + θ23

x + 2α𝑥𝑥Lx)e−2β𝑥𝑥Lx
� (14.1) 
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Radial direction: 

QRF
y = 2I0

yβy �
e−2βyy + �R�23

y �2e−4β𝑦𝑦e2βyy + 2R�23
y e−2βyLy cos�2α𝑦𝑦�y − Ly� − θ23

y �

1 + �R�12
y �2�R�23

y �2e−4βyLy − 2R�12
y R�23

y cos�θ12
y + θ23

y + 2α𝑦𝑦Ly�e−2βyLy
� (14.2) 

Tangential direction: 

QRF
z = 2I0zβ𝑧𝑧 �

e−2β𝑧𝑧z + (R�23z )2e−4β𝑧𝑧Lze2β𝑧𝑧z + 2R�23z e−2β𝑧𝑧Lz cos(2α𝑧𝑧(z − Lz) − θ23
z )

1 + (R�12z )2(R�23z )2e−4β𝑧𝑧Lz − 2R�12z R�23z cos(θ12
z + θ23

z + 2α𝑧𝑧Lz)e−2β𝑧𝑧Lz
� (14.3) 

The superscripts x, y and z are respectively associated with the longitudinal, radial and 

tangential directions. θij is the phase angle for the reflection coefficient at the interface between 

layers i and j; while 𝑅𝑅𝑖𝑖𝑖𝑖 is the absolute value of the complex reflection coefficient. Finally, Lx, Ly and 

Lz are respectively the length of the wood sample in the x, y and z directions.  

3.5 Numerical validation of enthalpy model 

The dynamic finite element method outlined in the previous section was implemented in 

ThermoForm, a general-purpose code developed by Erchiqui, the principal author. All computations 

were performed on a PC with a single precision.  

 

The numerical approach, based on the volumetric enthalpy, was validated for the following 

situations: 

• The microwave dielectric heating of a beef sample. The parameters validated 

include the power dissipation as well as the temperature distribution within the 

material [28]. 

• The thawing of a wood trunk, immersed in hot water, for which the simulated and 

the experimental results were compared [10]. 

• An anisotropic cooling by convection of a cylindrical solid ion battery subjected to 

a spherical rotation [54]. The interested readers can consult the given references 

for further information [ [2], [10], [60] ]. 
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3.6 The radiofrequency heating of an anisotropic wood sample 

3.6.1 Preliminary considerations 

The dielectric and the thermo-physical properties of wood products, which are cylindrical 

and anisotropic in nature, are conditioned by the orientation of the rings on the tree trunk. 

Consequently, the x, y and z directions associated with the Cartesian coordinate system do not 

represent the longitudinal (L), radial (R) and tangential (T) directions as defined by the anatomical 

structure of the wood sample. However, for the orientation θ shown in Figure 39, there is a 

transition relationship from a cylindrical to a Cartesian coordinate system as shown by 

equations (15.1) and (15.2) [10]: 

kx = −kR sinθ + kT cosθ,    ky = −kR cosθ + kT sinθ,    kz = kL (15.1) 

εx = −εR sinθ + εT sinθ,  εy = −εR cosθ + εT sinθ,    εz = εL (15.2) 

where (kL, kR, kT) and (εL, εR, εT ) are respectively the thermal conductivities and the 

complex dielectric permittivity of the wood samples in the principal directions L, R, and T. An 

angular position close to zero is considered for the heat transfer analysis. These conditions imply 

that kz = kT , ky = kR and kx = kL. 

 

According to the literature [48], most of the wood species have a the longitudinal (kL) and 

radial (kR) thermal conductivity of about 1.75 and 2.2 respectively, while the tangential (kT) thermal 

conductivity varies between 0.9 and 0.95 of the radial term.  Consequently, the values considered 

in this work are given by equation (16): 

kL = 1.8 kR   and  kT = 0.9 kR  (16) 
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Figure 39: Cross-section of the wood sample showing an illustration of the (x, y, T, R) directions 
as well as the angle θ. 

 

3.6.2 Modelling considerations 

This section focuses on an application of the enthalpy-based finite element method for the 

description of the thaw time of the Douglas-fir (Pseudotsuga menziesii) and the White oak (Quercus 

alba), two North American wood species following their exposure to the RF. The Douglas-fir is a 

medium-density softwood, while the White oak is a moderately high-density ring porous hardwood. 

The studied wood sample had a parallelepiped geometry with equal sides length Lx = Ly = Lz = 5 

cm. The RF intensity and frequency are 1 W/cm2 and 50 MHz respectively. The six faces of the 

wood samples were all exposed to the same intensity (1 W/cm2). The initial temperature of the 

sample is -20oC and the maximum heating time is set at 1800 s. The density (rho), specific heat 

capacity (Cp) and radial conductivity (kR) were expressed as a function of the moisture content, the 

temperature (T) and the specific gravity (SG) which in turn is expressed as a percentage of the dry 

mass of wood and calculated by the formulae found in the literature [43]. In this regard, two MC 

of 65% and 90% are considered and the specific gravities are 0.48 and 0.68 for respectively the 

Douglas-fir and the White oak species. Moreover, the data for the thermo-physical properties of the 

Douglas-fir and the White oak expressed as a function of temperature are given in Tables (4) 

and (5) respectively for the two moisture MC considered. Consequently, the anisotropic dielectric 

properties at the frequency of 50 MHz and the data extracted from [61] and expressed as a function 

of temperature and MC are given in Figure 40 and Figure 41 for the Douglas-fir and Figure 42 

and Figure 43 for the White Oak.  For numerical modelling, the regression polynomials associated 

with the data were used as shown in Figure 40-43. The wood geometry was meshed with identical 

hexahedra comprising eight nodes (2744 elements and 3375 nodes). 

 



81 

Tableau 4 : The thermo-physical properties of the Douglas-fir 

Douglas-fir (SG = 0.48) 

MC = 65% 
Density [Kg/m3] ρ = 792 

Latent heat [KJ/m3] L = 0.70848  x 108 

Specific heat [J/Kg℃] 

T < 0℃ T > 0℃ 

Cp = 2280 + 16.6 × T(℃) Cp = 2566.15 + 4.98 × T(℃) 

Thermal conductivity [W/m℃] 
T < 0℃ T > 0℃ 

kL =  0.6703 − 0.00172706 × T(℃) kL =  0.564526 + 0.00201848 × T(℃) 

kR = 0.301635 − 0.00077718 × T(℃) kR = 0.2540367 + 0.0090832 × T(℃) 

kT = 0.33515 − 0.00086352 × T(℃) kT = 0.282263 + 0.00100924 × T(℃) 

MC = 90% 
Density [Kg/m3] ρ = 912.0 

Latent heat [KJ/m3] L = 1.05 x 108 

Specific heat [J/Kg℃] 

T < 0℃ T > 0℃ 

Cp = 2280 + 16.6 × T(℃) Cp = 2783.9 + 4.98 × T(℃) 

Thermal conductivity [W/m℃] 
T < 0℃ T > 0℃ 

kL =  0.8484 − 0.00172704 × T(℃) kL =  0.667069 + 0.00261214 × T(℃) 

kR = 0.38178 − 0.00077717 × T(℃) kR = 0.30018105 + 0.00117546 × T(℃) 

kT = 0.42420 − 0.0008635 × T(℃) kT = 0.3335345 + 0.00130607 × T(℃) 

 

Tableau 5 : The thermo-physical properties of the White oak 

White oak (SG = 0.68) 

MC = 65% 

Density [Kg/m3] ρ = 1122 

Latent heat [KJ/m3] L = 0.70848  x 108 

Specific heat [J/Kg℃] 

T < 0℃ T > 0℃ 

Cp = 2280 + 16.6 × T(℃) Cp = 2566.15 + 4.98 × T(℃) 

Thermal conductivity [W/m℃] 

T < 0℃ T > 0℃ 
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kL =  0.9224334 − 0.00237664 × T(℃) kL =  0.7768642 + 0.0027777 × T(℃) 

kR = 0.41509503 − 0.00106949 × T(℃) kR = 0.34958889 + 0.00124997 × T(℃) 

kT = 0.4612167 − 0.00118832 × T(℃) kT = 0.3884321 + 0.00138885 × T(℃) 

MC = 90% 

Density [Kg/m3] ρ = 1292.0 

Latent heat [KJ/m3] L = 1.05 x 108 

Specific heat [J/Kg℃] 

T < 0℃ T > 0℃ 

Cp = 2280 + 16.6 × T(℃) Cp = 2783.9 + 4.98 × T(℃) 

Thermal conductivity [W/m℃] 

T < 0℃ T > 0℃ 

kL =  1.1675244 − 0.00213898 × T(℃) kL =  0.9179772 + 0.00359466 × T(℃) 

kR = 0.52538598 − 0.00106949 × T(℃) kR = 0.41308974 + 0.0016176 × T(℃) 

kT = 0.5837622 − 0.00118832 × T(℃) kT = 0.4589886 + 0.00179733 × T(℃) 

  

  

Figure 40: The dielectric properties of the Douglas-fir wood samples at a frequency of 50 MHz 
and 65% MC. 
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Figure 41: The dielectric properties of Douglas-fir wood samples at a frequency of 50 MHz and 
90% MC. 

 

  
Figure 42: The dielectric properties of the White oak wood samples at a frequency of 50 MHz 

and 65% MC. 
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Figure 43: The dielectric properties of the White oak wood samples at a frequency of 50 MHz 

and 90% MC. 
 

3.7 Results and discussions 

Figure 44 shows the variations of the temperature at the center of both wood samples 

species as a function of the heating time for both 65 % and 90 % moisture content. Figure 45 

further shows a comparison between the temperature variations of two wood species with time at 

fixed MC of 65 % and 90 % respectively. 

 

The observed behavior is similar for all the investigated species and parameters. They 

consist in three phases made of an increase from -20℃ to 0℃ where there is a plateau followed by 

another increase. It can be noted that the first phase is related to the presence of water in the form 

of ice due to the negative temperature. The observed figures show that the wood 

samples’ temperature evolves faster in the first phase as compared to the phase after the freezing 

state. The explanation for such observation can be found in the variations of the thermal 

conductivity, the latent energy and the specific gravity which are three associated parameters.  

 

In fact, Tables (4) and (5) have shown that the thermal conductivity of wood is closely 

related to its physical state; it appears that it is lower in the frozen state as compared to the unfrozen 

one which is characterized by the presence of water in the liquid state.  
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Moreover, the time required by the RF for changing the absorbed wood water from the solid 

(near negative zero) to the liquid state (near positive zero) is important and it increases with the 

wood sample’s MC. In fact, at the beginning of the latent energy accumulation, the wood sample 

temperature is 0℃ and remains constant throughout this phase. However, once this latent energy 

is exceeded, the wood temperature increases more easily due to the large thermal conductivity 

associated with the liquid phase of water, as compared to that of its solid phase. 

 

Finally, at a constant MC, the time required for heating the wood sample from -20℃ to 0℃ 

depends on its SG and is found to be shorter for low SG such as those of the lightwood. The same 

observation applies to the liquid state where the slope of the variations of the temperature with time 

is higher for the Douglas-fir in comparison to the White oak. 

  
Figure 44: Variations of the temperature at the center of the Douglas-fir and the White oak wood 

samples with the heating time for both 65 % and 90 % MC. 
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Figure 45: Comparative temperature variations at the center of the Douglas-fir and White 
oak wood samples with the heating time at fixed MC of 65% and 90% respectively. 

 
 

Figure 46 and Figure 47 show the variations of the temperature profile of the Douglas-fir 

wood samples, across their XY, YZ and ZX half-planes of symmetry. These profiles were induced 

by the RF for the heating cycles ending at 300 and 1800 s for 65% and 90% MC, respectively. 

Moreover, Figure 48 and Figure 49 show different views of the temperature distribution at 300 s 

for 65% and 90% MC, respectively. In the same manner, Figure 50 and Figure 51 show various 

views of the temperature distribution at 1800 s for 65% and 90% MC, respectively. 

 

These results show that the temperature field induced by RF in the Douglas-fir wood 

samples is almost constant for the two investigated MC. Moreover, these observations show no 

temperature gradient as no temperature point was present. Finally, the observed maximum 

variation does not exceed 0.12%.  

 

In the same manner as for the Douglas-fir wood samples, Figure 52 and Figure 53 show 

the temperature profiles induced by the RF at 300 and 1800 s on the XY, YZ and ZX half-planes of 

symmetry of the White oak-wood samples for 65% and 90% MC, respectively. Finally, Figure 54, 

Figure 55, Figure 56 and Figure 57 show different views of the temperature profile of the White 

oak wood samples, measured at 300 and 1800 s, for 65% and 90 % MC, respectively. Similar 

remarks to those of the Douglas-fir can be made for the White oak wood samples. In fact, the 
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induced temperature field is uniform. This RF-induced characteristic of temperature uniformity 

within wood samples does not seem to be achievable by microwaves. Indeed, according to the 

work done in [2] for the thawing of several Canadian wood samples (same size as the one used in 

this work), the microwave-induced temperature field is very heterogeneous with variations of up to 

20% between minimum and maximum values. Consequently, the following important points can be 

made from the general observations on dielectric heating frozen wood: 

• The RF heating induces a nearly uniform temperature distribution in wooden 

materials. 

• The heating time by RF is longer, as compared to the heating by microwave. 

• The microwave heating induces a very significant temperature gradient. 

• The heating time and the quality of the temperature distribution in the frozen or 

unfrozen wood sample requires a trade off for the choice of an intermediate 

frequency between RF and microwave. 

• A comparative study on the wood heating or thawing time would be desirable 

between the infrared and RF radiation.  

 
a) MC = 65% 

 
b) MC = 905% 

Figure 46: Temperature distribution in the principal directions (L, R, T) at time 300 s for raw 
Douglas-fir wood samples exposed at RF parameters: I0 =1.0 W/cm2, frequency = 50 MHz: a) 

MC = 65% and b) MC = 90%. 
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a) MC = 65% 

 
b) MC = 90% 

Figure 47: Temperature distribution in the principal directions (L, R, T) at time 1800 s for raw 
Douglas-fir wood samples exposed at RF parameters: I0 =1.0 W/cm2, frequency = 50 MHz: a) 

MC = 65% and b) MC = 90%. 
 

  
Figure 48: Temperature distribution view at the final heating time (300 s) for raw Douglas-fir 

wood samples exposed at RF parameters: I0 =1.0 W/cm2, frequency= 50 MHz and MC= 65% 
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Figure 49: Temperature distribution view at the final heating time (300 s) for raw Douglas-fir 

wood samples exposed at RF parameters: I0 =1.0 W/cm2, frequency = 50 MHz and MC = 90%. 
 
 

  
Figure 50: Temperature distribution view at the final heating time (1800 s) for raw Douglas-fir 

wood samples exposed at RF parameters: I0 = 1.0 W/cm2, frequency = 50 MHz and MC = 65%. 
 

  
Figure 51: Temperature distribution view at the final heating time (1800 s) for raw Douglas-fir 

wood samples exposed at RF parameters: I0 = 1.0 W/cm2, frequency = 50 MHz and MC = 90 %. 



90 

 

a) MC = 65% 

 

b) MC = 90% 

Figure 52: Temperature distribution in the principal directions (L, R, T) at time 300 s for raw 
White-oak wood samples exposed at RF parameters: I0 =1.0 W/cm2, frequency = 50 MHz: a) MC 

= 65% and b) MC = 90%. 
 

 

a) MC = 65% 

 

b) MC = 90% 

Figure 53: Temperature distribution in the principal directions (L, R, T) at time 1800 s for raw 
White-oak wood samples exposed at RF parameters: I0 =1.0 W/cm2, frequency = 50 MHz: a) MC 

= 65% and b) MC = 90%. 
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Figure 54: Temperature distribution view at the final heating time (300 s) for raw White oak wood 

samples exposed at RF parameters: I0 =1.0 W/cm2, frequency = 50 MHz and MC = 65%. 
 

  
Figure 55: Temperature distribution view at the final heating time (300 s) for raw White oak wood 

samples exposed at RF parameters: I0 =1.0 W/cm2, frequency = 50 MHz and MC = 90%. 
 

  
Figure 56: Temperature distribution view at the final heating time (1800 s) for raw White oak 

wood samples exposed at RF parameters: I0 =1.0 W/cm2, frequency = 50 MHz and MC = 65%. 
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Figure 57: Temperature distribution view at the final heating time (1800 s) for raw White oak 

wood samples exposed at RF parameters: I0 =1.0 W/cm2, frequency = 50 MHz and MC = 90%. 
 
 

3.8 Conclusion 

This work describes the numerical study of the potential use of plane and normal incident 

radiofrequencies for the anisotropic dielectric heating of frozen wood with an initial temperature of 

-20°C. The Douglas-fir (Pseudotsuga menziesii), which is a medium-density softwood, and the 

White oak (Quercus alba), which is a moderately high-density ring porous hardwood, were the two 

North American species investigated. The complex dielectric and the thermo-physical properties 

were expressed as a function of temperature, moisture content and structural orientations. The 

study was conducted on two MC (65% and 90%). The results clearly show that the temperature 

distribution in the wood samples is uniform at the expense of a relatively long time. In addition, the 

heating time was found to vary not only with the species type through its specific gravity (SG), but 

also with the latent energy (L) and the moisture content (MC). 



93 

CHAPITRE 4 
APPLICATION OF THE B-SPLINE METHOD TO SOLVE NONLINEAR PROBLEM OF HEAT 

CONDUCTION WITH RADIATION BOUNDARY CONDITIONS USING KIRCHHOFF 
TRANSFORMATION 

 

Annasabi a Z., Erchiqui b,* F, M. Souli c1 

Heat Transfer, ASME. Facteur d’impact : 2.01 (Q1) 2022 (en impression) 

 

a: Université du Québec en Abitibi-Témiscamingue, école de génie, 455, boulevard de 

l’Université, Rouyn-Noranda (Québec), Canada J9X 5E4 

 

 

b: Université du Québec en Abitibi-Témiscamingue, école de génie, 455, boulevard de 

l’Université, Rouyn-Noranda (Québec), Canada J9X 5E4 

 

c: Université de Lille Sciences et Technologies, France 

 

 

Rôle de l’étudiant dans cette publication : 

 

Contribution à l’élaboration de modèles mathématiques, de calcul numérique, de 

l’interprétation des résultats et de la rédaction de l’article. 

 

  



94 

Abstract: This paper concerns the joint application of the B-Spline method and the Kirchhoff 

transformation to solve the nonlinear problem of thermal conduction with radiation type boundary 

conditions. The proposed method requires few iterations, sometimes none, for solids subjected to 

prescribed temperature boundary conditions. This method can be deployed by other numerical 

approaches (Boundary element method, Finite element method, Finite volume method, etc.) for the 

resolution of the heat conduction equation (linear or nonlinear), in terms of the Kirchhoff 

transformation θ. For numerical implementation, the steady-state finite element method is 

considered. The numerical validation was performed for a hollow aluminum cylinder whose outer 

surface is subjected to radiation. Three types of thermal conductivities are considered: i) constant, 

ii) linear and iii) nonlinear. As an application, we studied the thermal response of an aluminum 

reactor, in the form of an annular disc with cooling tubes, exposed to thermal radiation. 

 

Résumé:  Cet article concerne l'application de la méthode B-Spline et de la transformation de 

Kirchhoff pour résoudre le problème non linéaire de la conduction thermique avec des conditions 

aux limites de type rayonnement. Le nombre des itérations de la méthode proposée est minimisé, 

voire parfois nul, pour des conditions aux limites de type Dirichlet. Cette méthode peut être utilisée 

par d'autres approches numériques (méthode des éléments de frontière, méthode des éléments 

finis, méthode des volumes finis, etc.) pour la résolution de l'équation de conduction thermique 

(linéaire ou non linéaire), en termes de transformation de Kirchhoff θ. Pour la mise en œuvre 

numérique, la méthode des éléments finis en régime permanent est considérée. La validation 

numérique a été réalisée pour un cylindre creux en aluminium dont la surface extérieure est 

soumise à un rayonnement. Trois types de conductivités thermiques sont considérés : i) constante, 

ii) linéaire et iii) non linéaire. Comme application, nous avons étudié la réponse thermique d'un 

réacteur en aluminium, sous forme d'un disque annulaire avec des tubes de refroidissement, 

exposé au rayonnement thermique. 
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4.1 Introduction 

The mode of heat transmission by radiation is complex and depends on the nature of the 

body: solid, liquid or gas. This radiation is composed of radiations of different wavelengths, ranging 

from 0.3μm to 100μm, giving continuous spectra in the case of solids and band spectra for gases. 

Vacuum and most simple gases (such as H2, O2 and N2) are perfectly transparent media for 

radiation propagation. However, propagation in some compound gases, considered as semi-

transparent media (such as CO2, H2O, CO, CH4), is accompanied by a decrease in the transported 

energy [ [62], [63] ].In the case of solids and liquids, the radiation emitted comes from the surface 

if the medium is opaque and from its entire mass if it is semi-transparent. This phenomenon of 

emission corresponds to the conversion of material energy (agitation of the electrons constituting 

the matter whose intensity depends on the temperature) into radiative energy [63]. Received 

radiation, part of which is absorbed in the form of heat, is a combination of radiation emitted and/or 

reflected and/or diffused by the bodies surrounding it or by itself (if its surface is curved). The 

rigorous mathematical treatment of the heat generated by the radiation is very sensitive for real 

cases if simplifying hypotheses are not used. For closed systems with the presence of gas, the 

exact solution of radiation coupling and heat conduction (via the Fourier equation) is only possible 

for simple systems [63]. However, there are methods that allow to obtain approximate solutions to 

problems and, therefore, they are very interesting alternatives. These methods include: Monte 

Carlo method [62], Zone method [64], Imaginary plane method [65], Discrete ordinate method  [66], 

Boltzmann method [ [67] , [68] ] and a discontinuous finite element method [69]. These techniques 

have been the subject of numerous theoretical and numerical works and experimental verifications. 

Among the recent theories of interest in radiation, we suggest to readers the theory of 

transformation multithermotics [70] and the effective-medium theory  [71]. 

 

However, for cases where a solid is subject to radiation (radiation-type boundary condition), 

the heat equation can then be formulated either in terms of temperature T or in terms of one of the 

two following auxiliary variables: i) enthalpy [10],  in the transient state and ii) the Kirchhoff 

transform [44], in the steady state. For incompressible solids, several methods exist in the literature 
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for the mathematical treatment of this type of problems. Among these methods are the meshless 

methods for non-linear materials using Laplace transform and its numerical 

inversion [  [72], [73], [74] ]. 

 

The interest in the last method is its simplicity for the transformation of the nonlinear heat 

equation into a linear equation by the Kirchhoff transformation (θ) [ [44], [75] ] which makes the heat 

equation in terms of θ(T) very attractive for solving problems encountered in physics and 

engineering. However, for a physical environment where the thermal conductivity and/or boundary 

conditions are nonlinear, access to the solution becomes very difficult. This thorny problem is 

basically due to the difficulty of reversing the Kirchhoff transformation, defined as the integral of 

thermal conductivity with temperature, or of expressing boundary conditions in terms of T(θ). For 

this reason, several authors discuss the Kirchhoff transform for media where the thermal 

conductivity is constant or linear with temperature [ [10], [18] ]. For problems characterized by the 

non-linearity of θ(T), approximations are used to get around the difficulty of finding T(θ) [ [19], [20] ]. 

Recently, a new approach [25], called robust based on the B-Spline method [23], has been 

proposed by Annasabi and Erchiqui to solve the heat equation for coupled conduction-convection 

problems. Several validation tests have shown the performance of the approach. For heat 

conduction in non-linear solids, the proposed method does not require any iteration if the boundary 

conditions are of the temperature imposed type. As such, let us underline the three-dimensional 

example treated by the authors on thermal conduction in copper, in the region where its thermal 

conductivity is strongly nonlinear [25]. It is within this framework that the present work falls and it 

concerns the combination of the B-Spline method and the Kirchhoff transform for the solution of the 

heat conduction equation in an incompressible solid subjected to radiation (boundary condition). 

 

For the modeling, in steady state, we considered the finite element method. The numerical 

validation was performed for a hollow aluminum cylinder whose outer surface is subjected to 

radiation. Three thermal conductivities are considered: i) constant, ii) linear and iii) nonlinear. As 

an application, we studied the thermal response of an aluminum reactor, in the form of an annular 
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disc with cooling tubes (temperature 1 oC), exposed to thermal radiation (1500 oC and 2000 oC). It 

is worth noting that the proposed method can be deployed by other numerical methods encountered 

in physics and engineering for the treatment of the inverse of the Kirchhoff T(θ) transformation such 

as Boundary element method (BEM), Finite element method (FEM), and Finite volume method 

(FVM). 

 
4.2 The heat conduction equation 

The steady state equation of energy, in terms of the Kirchhoff transformation, θ(T), for an 

anisotropic solid in a region Ω bounded by a surface Γ (=Γθ ∪ Γq), is defined by equation. (1) in a 

Euclidean space R3 

∇2 θ(T) = Q(θ) ;          (x, y, z) ∈ Ω      (1) 

with: 

θ(T) = � k
T

Tref
(T)dT ;                                                     ∀ T(x, y, z)      (2) 

Where T [K] is the temperature, Q is the source term [W/m3], k [W/m/K] is the thermal 

conductivity and Tref is a reference temperature.  

Eq. (1) is subjected to the following boundary condition: 

θ(T) = f(x, y, z);                                                                 (x, y, z) ∈  Γθ (3) 

∂θ(x, y. z)
∂n

= qc + qr = g(x, y, z) ;                                 (x, y, z) ∈ Γq (4) 

The f and g functions are specified values of the known boundary temperature and heat 

flux. The vector n is the outward normal (nx, ny, nz) to the boundary surface Γq and (x,y,z) are 

coordinates defined on the boundary surface Γ.  

The quantity qc is the convective boundary heat flux given by: 

qc = h (T − T∞)                                                                  (x, y, z) ∈  Γθ (5) 
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h [W/m2/K] is the heat transfer coefficient, T∞ [K] is the temperature of the surrounding 

medium. The term h (T–T∝) represents the convection heat transfer from the material to the 

surroundings. 

 

The quantity qr refers to the boundary radiative heat flux. In the case where the surfaces of 

the source and the receiver are gray and the medium between them is perfectly transparent, the 

quantity qr is given by: 

qr = σ Fr−s ε (T4 − Ts4)                                                         (x, y, z) ∈ Γq (6) 

Fr−s, and Ts, are respectively the view factors between receptor and source [76] and the 

source temperature (K). The term  𝜀𝜀 is the effective emissivity of the receptor-source system defined 

as: 

  ε = �
1
εr

+
1
εs
− 1�

−1
                                                       (7) 

where 𝜀𝜀𝑟𝑟 and 𝜀𝜀𝑠𝑠 are, respectively, the emissivity of receptor and emissivity of source. The 

parameter σ is the Stefan- Boltzmann constant (=5.67 10-8 W/m2K4).  

 

The merit of expressing the heat equation in terms of Kirchhoff's transformation is its linear 

form. Nevertheless, the inverse function T(θ) is difficult to obtain for solids with a strongly 

temperature-dependent conductivity and for boundary conditions of radiation type (see eq.6). To 

meet this challenge, we will use the approach based on the B-Spline method [23], which has been 

successfully used for the heat problem in conduction-convection.  

 
4.3 Numerical Study 

The transformation of the limit value problem associated with the differential form of the 

thermal equation into an equivalent integral form can be achieved by Galerkin's weighted residual 

approach [34] and the use of the divergence theorem, which leads to: 
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�
∂𝐍𝐍
∂xi

�
∂𝐍𝐍𝐓𝐓

∂xj
θ�dΩ =

Ω

� 𝐍𝐍Q dΩ
Ω

+� 𝐍𝐍 (qr + qc ) dΓ
Γ

 (8) 

N and θ are respectively the interpolation functions vector and the Kirchhoff transform 

vector of unknown nodes. According to equation 6, it is clear that the integral solution is strictly 

linked to the representation of radiation qr (which depends on T4) on the one hand and convection 

losses (which depends on T) on the other hand. 

The algebraic form associated with system (8) is then given by the following equation: 

𝐊𝐊 ∙ θ = 𝐅𝐅𝐐𝐐 + 𝐅𝐅𝐜𝐜 + 𝐅𝐅𝐫𝐫 (9) 

where : 

𝐊𝐊 = �
∂𝐍𝐍
∂xi

�
∂𝐍𝐍𝐓𝐓

∂xj
�dΩ

Ω

 (9.1) 

𝐅𝐅𝐐𝐐 = � 𝐍𝐍Q(θ) dΩ
Ω

 (9.2) 

𝐅𝐅𝐜𝐜 = � 𝐍𝐍  � h(T∞ − T (θ))� dΓ
Γ

 (9.3) 

𝐅𝐅𝐡𝐡 = � 𝐍𝐍 Fm−rσ ε (T4(θ)− Ts4)  𝐝𝐝Γ
Γ

 (9.4) 

 
4.4 Kirchhoff's transformation and its reverse 

For the implementation of the B-Spline method, each variable k(T), θ(T) and T(θ) is 

assumed to be continuous and piecewise defined. Moreover, we assume that each term can be 

represented by one or more functions of polynomial type defined by piecewise bilinear functions. 

The strategy on the construction of T(θ) is given in section 5 below. The algebraic expression of 

equation (9) is then given by the following equation: 

(𝐊𝐊 + 𝐂𝐂) ∙ θ = 𝐅𝐅 (10) 
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where: 

𝐂𝐂 = � h 𝐍𝐍 ∙  �𝐂𝐂1 ∙ θ
1 + 𝐂𝐂2 ∙ θ

2 + ⋯+𝐂𝐂n ∙ θ
n� ∙ 𝐍𝐍T dΩ

Ω

 (10.1) 

𝐅𝐅 = � 𝐍𝐍  hT∞ dΓ
Γ

+ � 𝐍𝐍 Q dΓ
Ω

−� h 𝐍𝐍 ∙ 𝐂𝐂0 ∙ 𝐍𝐍T dΓ
Γ

 (10.2) 

𝐂𝐂𝑖𝑖 (i=0, n) are coefficient vectors which guarantee the continuity of θ(T) over all the sub-

intervals of [Tmin,Tmax]. The resolution of the algebraic system (7) requires the expression of T in 

terms of θ.  

4.5 Strategy for the determination of T(θ) 

The strategy consists, in a first step, in representing the curve θ(T) by a finite set of points 

(Ti, θi) where 0 ≤ 𝑖𝑖 ≤ 𝑛𝑛. Then, an optimal interpolation, using B-splines functions and a least square 

algorithm, is performed on each interval forming the curve. The optimized interpolation permits, for 

a desired accuracy, to determine the minimum number of intervals that adequately represents the 

curve T(θ).  

 

The construction of the B-spline curve by pieces, over the (n +1) intervals (sub-domains), 

is carried out using the vector 𝑂𝑂𝑂𝑂������⃗  defined by: 

OM������⃗ = �B(i,k)OP�����⃗ i 
n

i=0

    (11) 

B(i,k) are polynomial functions of degree k, defined on the interval i, whose influence is 

localized on a certain number of elementary sub-domains of the curve θ(T). The vector OP�����⃗ i  

represents the point control vector defined in the interval i. Consequently, the appropriate 

polynomial degree can be selected for each interval of the curve θ(T). However, if the number of 

intervals n is small, the expression of the temperature (T) as a function of the Kirchhoff transform 

(θ) cannot be representative of the physical phenomenon (fewer polynomial segments). To improve 

the quality of the representation of T(θ), there are several optimization approaches in the literature 
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to solve this problem. Concerning this present work, we have considered the approach proposed 

in [23]. For this purpose, the following steps are used: 

1. Choice of the optimization algorithm (least square); 

2. Definition of the desired precision for the construction of the B-spline curve; 

3. Initialization of the control points in the interval Tmin, Tmax for which the Kirchhoff 

transforms are defined; 

4. For each iteration, determination of the position of the control points which 

minimize the curve determination coefficient T(θ); 

5. The loop stops when the desired accuracy is reached. 

 

The interest of the B-splines method is that it allows a local control of the curve θ(T) (or 

T(θ)), while preserving the continuity of the function θ(T) (or T(θ)) and its derivative. 

 
4.6 Validation 

For numerical validation, we considered mathematical regressions on experimental data of 

thermal conductivity of aluminum, extracted from reference [21]. As shown in Figure 58, the three 

regression functions used for thermal conductivity are presented. 
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Figure 58: Comparative aluminum thermal conductivity regression versus experimental data 
 

For validation, three situations are considered: 

• A material subjected to radiation and prescribed temperature (case a with k(T)=Cte; 

see Table 4) 

• A material subjected to radiation and prescribed temperature (case a with 

k(T)=Linear; see Table 4) 

• A material subjected to radiation and imposed temperature (case a with 

k(T)=Nonlinear; see Table 4) 

 

The study is based on a circular ring (2D) with outer and inner radii of 0.125 m and 0.5 m 

respectively. The outer region of the ring is subjected to thermal radiation at a temperature of 500oC, 

while the inner region is subjected to a constant temperature of 1 oC. The analytical expressions of 

thermal conductivity and emissivity are given in Table 4. For modeling, the physical domain is 

meshed using quadrilateral elements (1520 elements). 
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Tableau 6 : Thermal conductivity of aluminum and emissivity 
 

Thermal conductivity (W/m/K) as function of T(℃) 

k(T) = 230 

k(T) = −0.0438 T + 243.56 

k(T) = −6.4607 10−10 T4 + 1.0420 10−6 T3 − 6.2467 10−4 T2 + 1.065710−1 T + 2.3471 102 

 

Figure 59-a illustrates, for the three studied cases of thermal conductivities for aluminum 

(constant, linear and non-linear), the excellent quality of the results obtained by using the B-Spline 

method for the resolution of the heat conduction equation in terms of θ and those obtained by 

ANSYS software. Figure 59-b illustrates the relative errors between the results obtained by ANSYS 

and the present method. Figure 59-c, Figure 59-d and Figure 59-e illustrate, respectively, for the 

three studied cases of thermal conductivities for aluminum, a fringe of the temperature distributions 

induced in the annular disc. 

 
a. Comparison of temperature 

distribution: present method vs 

ANSYS 

 
b. Relative results error between ANSYS and 

present method 
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c.   View of temperature distribution 

(k=Constant) 

 
d.   View of temperature distribution (k=Linear) 

  
e.    View of temperature distribution (k=Nonlinear) 

 
Figure 59: Comparative numerical results of the temperature distributions obtained by ANSYS 

and the proposed method 
 
 

Tableau 7 : Comparison, in term of iterations, between ANSYS and present method 

 

Remark: ThermoForm is house software developed by Pr Erchiqui for numerical analysis 

of heat conduction in materials.  

 

 

ANSYS (Full Newton Raphson) ThermoForm 

Case 1-2-3 2 iterations 2 iterations 
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4.7 Application 

As an application, we study the thermal response of an aluminum reactor in the form of an 

annular disc with tabular cooling and whose outer surface is exposed to radiation. For this, we 

consider, on the one hand, two types of reactors (reactor A with 17 cooling pipes and reactor B 

with 9 cooling pipes) and, on the other hand, two-radiation temperatures (2000 oC and 1500 oC). 

The rays of reactor and tabular are 50 mm and 2.5 mm respectively. For the modelling, the physical 

system is meshed with hexahedrons; for reactor A we have 2233 elements and 2429 nodes and 

for reactor B, we have 1797 elements and 1921 nodes( Figure 60 ). The non-linear thermal 

conductivity of aluminum is given in Table 4. 

 

Figure 61-a and Figure 61-b illustrate the view temperature distribution in the reactors A 

and B respectively. According to these figures, we notice different temperature distributions can be 

observed in each of the reactors. In the first cases, where the temperature of the radiation 

is 2000 oC, the temperature generated in Reactor B is much hotter than in Reactor A. The maximum 

temperatures in each of the two reactors B and A are 196.9 oC and 131.1oC respectively, with a 

variation of 33.4%. In the second case, see Figure 62-a and Figure 62-b, the maximum 

temperatures generated in each of the two reactors B and A are 78.8 and 49.2 oC respectively, with 

a variation of 37.5%.  

 
a.  Aluminum reactor with 17 cooling 

tubes 

 
b.   Aluminum reactor with 9 cooling 

tubes 
Figure 60: Meshed geometry with hexahedrons mesh elements 
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a.  Reactor A 

 
b. Reactor B 

 
Figure 61: Fringe distribution of the temperature distribution for case where the radiation 

temperature is 2000 oC 
 
 

 
a. Reactor A 

 
b.  Reactor B 

 
Figure 62: View of the temperature distribution for case where the radiation temperature is 1500 

oC 
 
 

Figure 63 shows the temperature distribution, on the symmetry axes as shown in 

Figure 63-a and Figure 63-b, for Reactors A and B subjected to radiative temperatures of 2000oC 

and 1500 oC.  It can be seen, on the one hand, that the shapes of the temperature curves are 

different for each of the reactors and, on the other hand, that the number and position of the coolers 

have an impact on the temperature distribution. In comparison with reactor B, the heat dissipation 

by Reactor A is greater. Indeed, in the case where the radiative temperature is 1500 oC, the 

maximum temperature induced in reactor A is 42.9 oC while it is 78.8 oC for reactor B; with a 
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difference of 35.9 oC. For the case where the radiation temperature is 2000 oC, the maximum 

induced temperature in reactor A is 131.1 oC while it is 196.9 oC for reactor B; with a difference of 

65.8 oC. Consequently, the efficiency of heat dissipation by a given reactor is closely related to the 

number of coolers, their temperature and their positioning. 

 

a. Reactor A 

 

b.  Reactor B 
Figure 63: Effect of the coolers of reactors A and B on radiation-induced temperatures 

 
 

 
a.  Radiation temperature 2000 oC 

 
b.  Radiation temperature 1500 oC 

Figure 64: Effect of Radiation Temperatures on the Performance of Reactors A and B 
 

Finally, in order to compare the performance of each of the two reactors A and B, the 

temperature distributions on the axes of symmetry for the radiation temperatures 2000 oC 

and 1500 oC are shown in Figure 64-a and Figure 64-b. It can be seen that Reactor A is more 

efficient both in terms of cooling and the state of the temperature distribution. 
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On the basis of the results obtained, using the proposed approach to solve the problem of 

conduction-radiation coupling in steady state and in terms of the Kirchhoff transform, the following 

observations can be made: 

• The method proposed for the determination of the Kirchhoff transform and its 

inverse is very robust, regardless of the mathematical representation of θ(T). 

• The approach proposed for the analysis of thermal conduction by radiation, 

through the Kirchhoff transform, can be, without difficulty, combined with other 

numerical methods (MEF, BEM, MDF, etc.). 

• The proposed method requires few iterations for solids subjected to radiation and 

imposed temperatures. 

• For imposed temperatures (boundary conditions), the proposed method requires 

no iteration. 

• The proposed approach is robust and can be combined with numerical and 

analytical methods to solve the problems of heat transfer for physical environments 

with high non-linearity of materials (radiative and electromagnetic heating, heating 

by convection; etc.). 

•  

4.8 Conclusion 

This article proposes a new approach to solve nonlinear steady-state heat conduction-

radiation using Kirchhoff transformation and B-Spline in solids. For this, a recent method is used. 

The method requires few iterations, sometimes none, for solids subjected to imposed temperatures. 

This new method can be deployed by other numerical approaches (BEM, FEM, FDM, etc.) for the 

resolution of the heat conduction equation (linear or not), in terms of the θ. For numerical 

implementation, the finite element method is considered. The numerical validation was performed 

for a hollow aluminum cylinder whose outer surface is subjected to radiation. Three thermal 

conductivities are considered: i) constant, ii) linear and iii) nonlinear. As an application, we studied 

the thermal response of an aluminum reactor, in the form of an annular disc with cooling tubes, 

exposed to thermal radiation. 
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CONCLUSION 

Ce projet de recherche est orienté vers la modélisation de transfert de chaleur dans les multi-

matériaux anisotropes et non linéaires.  À cet effet, l’équation de la conduction de la chaleur classique 

pour les solides en termes de l’enthalpie volumique et de la transformée de Kirchhoff, a été redéfinie 

par une nouvelle formulation utilisant l’enthalpie hybride anisotrope et la transformée de Kirchhoff 

anisotrope. L’approche proposée a été validée autant au niveau mathématique (analytique et 

numérique) qu’expérimentale. Cette approche, contrairement aux méthodes numériques existantes, 

permet le traitement numérique, par la méthode des éléments finis, le transfert de chaleur, avec ou 

sans changement de phase, dans les milieux formés de plusieurs solides dont les tenseurs de 

conductivités thermiques sont de natures différentes (sphériques et/ou cylindriques et/ou cartésiens). 

De surcroit, on a adapté la nouvelle formulation hybride pour la résolution de la conduction de la 

chaleur en fonction de la température (au lieu de l’enthalpie et de la transformée de Kirchhoff) pour 

les solides multi-matériaux et multi-anisotropies. Aussi, nous avons couplé l’approche hybride avec 

l’énergie diélectrique (radiofréquence) pour estimer le temps de chauffage de bois gelé (anisotrope 

et non linéaire). Finalement, le problème de la non linéarité de la conduction de la chaleur, en régime 

stationnaire, est contourné par le déploiement d’une nouvelle approche, que nous avons initiée, 

utilisant la méthode de Spline, pour traiter les problèmes thermiques assujettis à des conditions aux 

limites de type température et/ou convection et/ou radiation.  
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