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FOREWORD 

 

This master dissertation is composed of two chapters. Chapter I serves as a 

general introduction to the study, presenting the background, state of knowledge, 

objectives, and hypotheses. Chapter II presents the study in the form of a research 

paper, including the problem, methodology, and results, as well as a discussion 

of the study's findings, and limitations. The dissertation concludes with an 

extended conclusion. 
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RÉSUMÉ 

Le réseau de structures linéaires est constitué de routes, de sentiers, de pipelines et de 

lignes sismiques aménagés dans une grande partie de la forêt boréale commerciale. Ces 

structures linéaires, fournissent un accès pour les opérations industrielles, récréatives, 

sylvicoles et de gestion des incendies, mais ont également des incidences économiques 

et environnementales qui impliquent à la fois les parties actives et non actives du réseau 

(e.g., les coûts d'entretien, érosion de la biodiversité, dégradation de l'habitat de la faune 

qui dépend de la forêt). Par conséquent, pour prévenir tous ces inconvénients, il est 

nécessaire de comprendre la dynamique des caractéristiques de végétation des 

structures linéaires et particulièrement des chemins forestiers. 

Les données de télédétection et la modélisation prédictive sont des outils utiles en 

fournissant des informations quantitatives précises et détaillées visant l’évaluation de 

l'état des structures linéaires (par exemple, la détérioration de la surface ou la 

dynamique des caractéristiques de végétation), et ce à plusieurs niveaux (paysage, 

région). Cependant, le potentiel des données de télédétection pour améliorer notre 

connaissance des caractéristiques de végétation à fine échelle sur les chemins forestiers 

n'a pas été entièrement exploré. 

Cette étude a examiné l'utilisation de données LiDAR aéroporté à haute résolution 

spatiale (1 m), de données climatiques et de terrain dans le but de fournir une meilleure 

compréhension de la dynamique de végétation des chemins forestiers: i) en 

développant un modèle prédictif pour l'estimation de la couverture végétale dérivée du 

modèle de hauteur de canopée (métrique de réponse), ii) en examinant les facteurs 

ayant un effet sur la couverture végétale en utilisant les mesures LiDAR (topographie: 

pente, TWI, ombrage et orientation), de l'imagerie optique Sentinel-2 (NDVI), des 

bases de données climatiques (ensoleillement et vitesse du vent) et de l'inventaire de 

terrain (largeur de l’ouverture du chemin et le temps depuis la construction ou entretien 

majeur). Nous avons évalué et comparé les performances des approches de régression 

par la méthode des moindres carrés et par apprentissage automatique couramment 

utilisées en modélisation écologique – régression linéaire multiple (mlr), méthode des 

splines de régression adaptative multivariée (mars), modèle additif généralisé (gam), 

méthode du plus proche voisin (knn), méthode d’arbres de régression boostés (gbm) et 

la méthode des forêts aléatoires (rf) –. Nous avons validé les résultats de nos approches 

en utilisant une métrique d'erreur – erreur quadratique moyenne (RMSE) – et une 

métrique de qualité d'ajustement – coefficient de détermination (R²) –. Les prédictions 

ont été testées par validation croisée et validées par rapport à un jeu de données 

indépendant. Nos résultats ont révélé que le modèle rf a montré les résultats les plus 

précis (validation croisée: R²=0.69, RMSE=18.69%, validation par un jeu de données 

indépendant: R²=0.62, RMSE=20.29%) et que les facteurs les plus informatifs étaient 
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la largeur de l'ouverture du chemin qui avait l'effet négatif le plus marqué sur la 

couverture végétale, suggérant l'influence sous-jacente des perturbations antérieures, 

et le temps écoulé depuis la construction ou dernier entretien du chemin, qui avaient 

un effet positif sur l'augmentation de la couverture végétale. Les prédictions à long 

terme suggèrent qu'il faudra au moins 20 ans pour que les routes larges et étroites 

présentent respectivement ~50% et ~80% de couverture végétale. 

Cette étude a permis d'améliorer notre compréhension de la dynamique de végétation 

des chemins forestiers à fine échelle, tant sur le plan qualitatif que quantitatif. Les 

informations issues du modèle prédictif sont utiles pour la gestion à court et à long 

terme du réseau existant. De plus, le présent mémoire démontre que les modèles 

spatialement explicites utilisant des données LiDAR sont des outils fiables pour 

évaluer la dynamique de végétation des chemins forestiers et fournit des pistes pour de 

futures recherches et la possibilité d'intégrer cette approche quantitative à d'autres 

études de structures linéaires. Une meilleure connaissance des modèles de dynamique 

des caractéristiques de végétation sur les chemins forestiers, sur de grandes zones 

géographiques, peut aider à soutenir la gestion durable des forêts par la modulation de 

l'impact environnemental associé à l'empreinte linéaire. 

Mots clés : Chemins forestiers, LiDAR (Light Detection and Ranging) aéroporté, 

strctures linéaires, chemins forestiers, réseau routier, aménagement forestier, forêts 

aléatoires, dynamique de végétation, forêt boréale. 
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ABSTRACT 

Linear features network are roads, trails, pipelines, and seismic lines developed 

throughout much of the commercial boreal forest. These linear features, while 

providing access for industrial, recreational, silvicultural and fire management 

operations, also have environmental implications which involve both the active and 

non-active portions of the network. Management of the existing linear features 

network across the boreal forest would lead to the optimization of maintenance and 

construction costs as well as the minimisation of the cumulative environmental effects 

of the anthropogenic linear footprint. Remote sensing data and predictive modelling 

are valuable support tools for multi-level management of this network by providing 

accurate and detailed quantitative information aiming to assess linear features 

conditions (e.g., deterioration and vegetation characteristics dynamic). However, the 

potential of remote sensing datasets to improve knowledge of fine-scale vegetation 

characteristics dynamic within forest roads have not been fully explored.  

This study investigated the use of high-spatial resolution (1 m), airborne LiDAR, 

terrain, climatic, and field survey data aiming to provide information on vegetation 

characteristics dynamic within forest roads by i) developing a predictive model for the 

characterization of LiDAR-CHM vegetation cover dynamic (response metric), ii) 

investigating causal factors driving vegetation cover dynamic using LiDAR 

(topography: slope, TWI, hillshade and orientation), Sentinel-2 optical imagery 

(NDVI), climate databases (sunlight and wind speed) and field inventory (clearing 

width and years post-clearing).  

For these purposes, we evaluated and compared the performance of ordinary least 

squares (OLS) and machine learning (ML) regression approaches commonly used in 

ecological modelling – multiple linear regression (mlr), multivariate adaptive 

regression splines (mars), generalized additive model (gam), k-nearest neighbors (knn), 

gradient boosting machines (gbm), and random forests (rf) –. We validated our models’ 

results using an error metric – Root Mean Square Error (RMSE) – and a goodness-of-

fit metric – coefficient of determination (R²) –. The predictions were tested by stratified 

cross-validation and validated against an independent dataset. Our findings revealed 

that the rf model showed the most accurate results (cross-validation: R²=0.69, 

RMSE=18.69%, validation against an independent dataset: R²=0.62, RMSE=20.29%). 

The most informative factors were clearing width which had the strongest negative 

effect suggesting the underlying influence of disturbance legacies, and years post-

clearing, which had a positive effect on vegetation cover dynamic. Our long-term 

predictions suggest that a timeframe of no less than 20 years is expected for both wide- 

and narrow-width roads to exhibit ~50% and ~80% of vegetation cover, respectively. 
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This study has improved our understanding of fine-scale vegetation dynamic within 

forest roads, both qualitatively and quantitatively. The information from the predictive 

model is useful for both short- and long-term management of the existing network. 

Further, the study demonstrates that spatially-explicit models using LiDAR data are 

reliable tools for assessing vegetation dynamics within forest roads. It provides 

avenues for further research and the potential of integrating this quantitative approach 

with other linear feature studies. Improved knowledge of vegetation dynamic patterns 

on linear features can help support sustainable forest management. 

Key words: Forest roads, airborne Light Detection and Ranging LiDAR, linear features, 

forest roads, road network, forest management, Random Forests, vegetation dynamic, 

boreal forest. 
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CHAPTER I  

 

INTRODUCTION 

1.1 Forest linear features and their effects 

In forested areas throughout the world, industrial activities (e.g., logging, mining, and 

oil and gas exploration) are highly dependent on supply and provisioning services. 

When such industrial activities are mapped, they simultaneously produce polygonal 

features resulting from resource extraction (e.g., cutblocks, open pit mines, well sites), 

as well as linear features (LFs) resulting from a dense network of roads and seismic 

lines used for exploration and transportation of the resource (e.g., roads, pipelines, 

seismic lines, and communication infrastructure) (Bourgeois et al., 2005; Dabros et al., 

2018; Laurance et al., 2009); Musetta-Lambert et al. (2019). In the boreal forest 

ecosystem of Canada, LFs have become widespread landscape elements (Pasher et al., 

2013; Pattison et al., 2016). For instance in Alberta, the linear polygonal footprint of 

seismic lines exceeds 1.5 million km with a density greater than 10 linear km per km² 

(Abib, 2018), and often reach densities of 40 km/km2 (Filicetti et al., 2019). British 

Columbia has an estimated total of 400,000–800 000 km of unpaved forest road 

network, 74% of them are connected with the forest industry. An estimated 4000–5000 

km of forest roads is established annually in Quebec, with a forest road network 

covering 600 000 km (St-Pierre et al., 2021; Vepakomma et al., 2018; Waga et al., 

2020). In addition to economic and industrial activities, considerations such as cost 

effectiveness, environmental impact of the linear footprint, and climate change, have 

created an increased need for quality control and assessment of the conditions on the 

existing LFs network. Particularly, dense LFs networks can result in the degradation 

of ecosystem functioning (Bennett, 2017) and often broad fragmentation of the 
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landscape (Eldegard et al., 2015; Harper et al., 2005; Harper et al., 2015; Pattison et 

al., 2016) which ultimately affect vegetation structural diversity (Guo et al., 2017), and 

biodiversity (Fahrig, 2003; Moudrý et al., 2021; Venier et al., 2014; Whitehurst, 2014).  

In Canada, there is particular concern about adverse effects on forest-dwelling species, 

such as woodland caribou (Rangifer Tarandus), for which interior habitat conditions 

are minimized in managed forests compared to roadless parts of the landscape 

(Lapointe, 2019; Ray, 2014; St-Laurent et al., 2014). Furthermore, LFs have no natural 

linear opening homologues due to compaction and continuous motorized use (Dabros 

et al., 2022). The minimum time required for LFs vegetation to transition to a state 

comparable to their adjacent forests is yet to be established (Abib et al., 2019; Finnegan 

et al., 2018a). The possible causes for the slow transition are complex and are related 

to permanent vehicle traffic resulting in mechanical stress as well as disturbance 

legacies which include the construction of LFs using machinery that flatten terrain 

relief, simplify microtopography (loss of microsites), and depress and compact the soil 

(Filicetti and Nielsen, 2020; Stevenson et al., 2019). Both the literature on the 

densification and the long-lasting effect of disturbance legacies on LFs provided 

important context for the current study on LFs vegetation characteristics dynamic: i) 

Terrain conditions and the effects of compaction: traffic by heavy machines and 

vehicles has significant impacts on LFs soil properties and functions resulting in 

alterations of soil physical properties such as increased bulk density, decreased 

porosity which affect soil moisture content, water infiltration, exchange and aeration. 

Changes in levels of available resources within compacted LFs results in decreased 

water and nutrients absorption by vegetation (Toivio et al., 2017) which creates a 

response towards changes in vegetation growth patterns. ii) Abiotic conditions: LFs 

openings locally affect sunlight and evapotranspiration rates. These underlying 

environmental factors affect growth increments, with different vegetation species traits 

suited for various tolerance ranges (e.g., for soil moisture, temperature, and incident 

sunlight levels). Moreover, variations in environmental factors vary with LFs attributes 
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(e.g., orientation). For example, van Rensen et al. (2015) reported that the shade of 

east-west lines might reduce competition from shade-intolerant shrubs and herbs, 

thereby promoting higher growth levels. iii) Vegetation structure and composition: 

even on narrow LFs, vegetation growth can still be limited (Dabros et al., 2018) which 

would further increase evapotranspiration rates, leading to drier surface conditions 

(Abib et al., 2019; Groot et al., 1997). Moreover, LFs typically cause changes in the 

local microclimate by creating discontinuities in the canopy, resulting in 

heterogeneous conditions allowing species with different requirements to establish. 

Higher sunlight levels and changes in site conditions result in changes in vegetation 

species composition, diversity, and richness. Particularly, shade-intolerant species are 

considered “pioneer’ species” because of their ability to colonize disturbed sites 

following the removal of the canopy leading to the proliferation of disturbance-tolerant 

communities richer in juveniles and low-stature trees (Finnegan et al., 2018a; Rioux, 

2018). iv) Clearing width is an informative factor: LFs with different sizes would 

produce different characteristics of environmental and biological effects. For example, 

in Zhou et al. (2020), narrow LFs had no measurable effects on the biological 

environmental conditions of the adjacent forest, and the differences between wide and 

narrow LFs were attributed to clearing width which integrates multiple factors 

(frequency of vehicle use, traffic volumes, construction materials). 

1.2 Linear features morphological characteristics, classification criteria and 

disturbance legacies 

The functional criterion used in provincial classifications of forest roads distinguishes 

between two broad categories which differ with regards to their bearing capacity and 

compaction levels. High-grade roads (primary and secondary) are wide forest roads 

designed for permanent all season use, where coarse aggregates, gravel, and sand are 

commonly used to enhance the bearing capacity. Low-grade roads have reduced width 
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and provide access to timber harvesting sites and include temporary roads which are 

useful during winter season (Girardin et al., 2022; Government of Alberta, 2016; 

Ministère des Ressources naturelles et des Forêts, 2021b; Waga, 2021). 

The geometry criterion is integrated within the functional criterion and allows the 

differentiation of two kinds of forest roads: wide and narrow. Wide roads (≥7.5–8 m) 

provide general access for heavy forest vehicles and are typically surfaced with coarse 

allochthonous material, such as gravel and sand. The narrow roads are usually unpaved, 

and less robust (Government of Alberta, 2016; Mercier et al., 2019; Ministère des 

Ressources naturelles et des Forêts, 2021a). For example, construction specifications 

for forest roads in Quebec determines clearing width with the widest roads built with 

high-standard specifications to ensure robustness and long-term functioning. The 

surface structure consists of highly compacted coarse material. In contrast, the surface 

structure of narrow roads (<7.5–8 m) typically consists of mineral and/or organic soil 

and/or woody debris (Ministère des Ressources naturelles et des Forêts, 2021b). 

Forest roads and seismic lines are similar with reference to their construction 

specifications and the impact sustained due to recurrent use. For example, low-impact 

seismic lines are widespread across Alberta and have reduced clearing widths (~2–3 m) 

compared to conventional seismic lines (~8–10 m). Their establishment requires 

canopy removal, soil flattening and compaction (Dabros et al., 2018; Lovitt et al., 

2018). One different aspect should be noted and is in relation to their spatial association 

with other polygonal features such as cutblocks: seismic lines are constructed in dense 

grid networks (~50 m intervals) across vast areas, whereas forest roads are often 

associated with harvested patches (cutblocks) (Filicetti, 2021; Lovitt et al., 2018). 

However, we are not aware of comparative studies within these two types of linear 

features and their approximation in our study is based on a geometry criterion 

(similarities in construction specifications, i.e., clearing width). We adopted the 

geometry criterion for the discrimination of forest road types – wide (≥7 m) and narrow 
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(<7 m) – because clearing width is a comprehensive indicator expressing disturbance 

legacies and a driver of various local environmental effects. This discrimination 

criterion is coherent with previous studies integrating LiDAR based information on 

LFs in the boreal forest and would allow for standardization of LFs construction 

specification. 

1.3 Methods to assess vegetation dynamic  

Lee and Boutin (2006) and MacFarlane (2004) are among the first studies to provide 

insights on vegetation growth patterns exhibited on LFs in the boreal forest. Their 

findings showed slow growth on wide lines (5–8 m) over three-and-a-half-decade 

timeframe. Although conventional in-situ measurements of vegetation characteristics 

provide accurate growth increments, the broad-scale application of such tools is 

demanding in terms of time and human resources. Moreover, it is challenging to 

monitor slow processes such as vegetation growth and to characterize vegetation 

dynamic through conventional field surveys, especially within an extensive network 

of linear features.  

With the development of remote sensing techniques, active remote-sensing platforms 

such as LiDAR have conferred large efficiency advantages to forest monitoring (Bour 

et al., 2021; Leitold et al., 2021) as it can generate numerous metrics characterizing 

vegetation including canopy height and cover (Barber et al., 2021; Martin and Valeria, 

2022), as well as understory structure (Venier et al., 2019). Further, LiDAR is a 

promising data source for enhancing accurate and detailed vegetation characteristics 

mapping within linear features as it: i) contains canopy as well as under-canopy terrain 

information, ii) has large spatial extent (province-wide) consequently allowing for 

large-area monitoring of linear features, iii) has the potential to produce continuous 

wall-to-wall databases both in time and space and iv) allows for varying spatial and 
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temporal resolutions depending on the purpose of the study and the level of detail 

required (e.g., low or high spatial resolution, multi-temporal). 

Barber et al. (2021), Bayne et al. (2011), Dickie et al. (2017), Finnegan et al. (2018b), 

and van Rensen et al. (2015), represent the first applications of LiDAR to study 

vegetation characteristics within LFs by considering different LiDAR-measured 

metrics such as height growth using bi-temporal data and density of successional 

vegetation species. The need to satisfy spatially-continuous datasets requirements over 

the extensive and dense LFs network has also led to an increasingly use of LiDAR. 

Particularly, Abib et al. (2019) represents a proximity-based and spatial application of 

airborne LiDAR to characterize the variability in height and cover residuals within LFs 

and their proximal environments along a distance gradient. 

ML approaches (e.g., nearest neighbour, ensembles such as random forests) have been 

extensively used in forestry remote sensing applications (Dalla Corte et al., 2020; 

Gleason and Im, 2012; Guo et al., 2020; Torre-Tojal et al., 2022; Zhao et al., 2011). 

The standard ML task is often to learn a predictive model that uses a remotely sensed 

dataset as input for the purpose of predicting the value of forest characteristics for 

unobserved cases/ at unsampled locations (Gangappa et al., 2017; Meyer and Pebesma, 

2021). ML approaches have numerous advantages including the absence of 

assumptions about the structure of the input data, the ability to infer complex 

relationships, insensitivity to correlations among variables, as well as automatic 

modelling of interactions between input predictors (Torre-Tojal et al., 2022; Venier et 

al., 2019). Particularly, these non-linear approaches have been introduced in the 

literature as the best option to model complex relationships characterizing ecological 

and environmental data (Cosenza et al., 2021; García-Gutiérrez et al., 2015; Kalantar 

et al., 2020; Liu et al., 2022; Liu et al., 2018; Shin et al., 2016; Stojanova et al., 2010). 
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In recent years, various quantitative methods have been proposed and explored 

comparisons between conventional Ordinary Least Squares (OLS) approaches and 

regression approaches in machine learning (ML) (Bera et al., 2021; García-Gutiérrez 

et al., 2015; Gleason and Im, 2012; Liu et al., 2022; Stojanova et al., 2010). The 

advantages of ML in comparison to OLS approaches include flexibility and scalability, 

which makes them deployable for several tasks (Ahmed et al., 2015; Koma et al., 2021; 

Maxwell et al., 2018). While OLS approaches are aimed at inferring relationships 

between causal factors (e.g., multiple linear regression has been recognized as one of 

the most effective because of its ease of interpretation), ML approaches are focused on 

making improved predictions (Kalantar et al., 2020).  

For instance, the Random Forest ensemble approach has showed improved predictions 

over other ML models in numerous comparative studies (Nawar and Mouazen, 2017; 

Stojanova et al., 2010). Furthermore, it can also overcome the overfitting problem seen 

with decision tree approaches (Cosenza et al., 2021; Forkuor et al., 2017; Kalantar et 

al., 2020). The Gradient boosting machine, suggested by Friedman (2001) is another 

recent ensemble approach in predictive modeling. The regression trees are strategically 

built from the residuals of the preceding decisions tree(s) and iteratively perform 

boosting through choosing, at each step, an arbitrary sample of the data ultimately 

leading to a progressive improvement of performance (Forkuor et al., 2017; Martin et 

al., 2014). The Gradient boosting machine approach has not been extensively explored 

and has yet to be tested for predicting vegetation characteristics (Bagherzadeh et al., 

2021; Yang et al., 2020; Zhang and Haghani, 2015). Recent efforts are being focused 

on improving the interpretability of ML approaches, which will advance the capability 

to produce ecologically interpretable relationships. Particularly, the interpretability of 

tree-based ensemble approaches would enable a better understanding of the output of 

the predictive model and is critical in analyzing relationships between the response and 
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the factors conditioning this response (Boehmke and Greenwell, 2019a; Greenwell, 

2017; Molnar, 2020).  

1.4 Objectives and hypothesis 

Detailed spatially-explicit information on the three-dimensional characteristics of 

vegetation on forest roads are essential for a better understanding of growth 

mechanisms. However, studies examining spatial and temporal vegetation patterns on 

forest roads are scarce. We therefore extended on previous studies using airborne 

LiDAR remote sensing data for analyzing forest road vegetation characteristics 

dynamic. Because province-wide LiDAR canopy height models (CHM) data are now 

increasingly becoming available, we used openly accessible LiDAR data provided by 

the government of Quebec (Canada) (point density of 2–4 points/m2) (Ministère des 

Ressources naturelles et des Forêts, 2022). We derived a LiDAR-CHM vegetation 

cover metric (response metric) by quantifying and extracting the mean of vegetation 

returns that were above 1.3 m height threshold. This metric determines the occurrence 

of vegetation within the road and represents the percentage of vegetation returns that 

are above a 1.3 m height cut-off, it describes the vertical projection of shrub and trees 

from all strata onto a horizontal surface representing the ground surface. 

Our main objective was to investigate the performance of relevant regression 

approaches to determine a predictive model that achieves optimal accuracy for the 

characterization of within forest road vegetation cover dynamic. More specifically, we 

aimed to first, compare the performance of conventional OLS regression and ML 

approaches – i.e., multiple linear regression (mlr), generalized additive model (gam), 

multivariate adaptive regression splines (mars), k-nearest neighbors (knn), Random 

Forests (rf) and gradient boosting machine (gbm) – to provide a proximity-based 

predictive modelling framework for vegetation cover dynamic on forest roads. It is a 
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surrogate for the surface of the forest road that experienced vegetation growth. Second, 

we evaluate the factors conditioning vegetation cover dynamic within forest roads. 

To test our hypotheses (Table 1.1), we evaluated vegetation cover dynamic within a 

range of forest roads, in the managed forest of Quebec, Canada. 

 

Table 1.1 Working hypotheses and predictions proposed to investigate vegetation cover 

dynamic on forest roads 

Objective 

/Hypothesis 

 

 

Description 

 

Predictions  

Objective i) 

Hypothesis a) 

Tree-based ensemble 

approaches (gradient 

boosting machines and 

randoms forests) 

improve predictions of 

vegetation dynamic on 

forest roads. 

Tree-based ensemble approaches (gradient 

boosting machines and random forests) 

outperform OLS and nonensemble 

modelling approaches for the 

characterization of forest road vegetation 

cover dynamic: tree-based ensemble 

approaches, combine multiple decisions 

trees (base models) to optimize the 

predictive performance, instead of fitting a 

single “best” model. This would lead to 

significant accuracy improvement over 

OLS and nonensemble approaches. 

 

Objective ii) 

Hypothesis a) 

 

 

History of forest roads 

best explains vegetation 

dynamic. 

 

 

(Positive effect of time elapsed since the 

last clearing) 

Vegetation growth on forest roads is 

incremental with years post-clearing 

(construction or maintenance)  

 

Objective ii) 

Hypothesis b) 

 

The width attribute of 

forest roads best 

explains vegetation 

dynamic. 

 

(Negative effect of forest road size, i.e., 

clearing width) 

 

Vegetation growth on forest roads is 

conditioned by clearing width: lower grade 

LFs would exhibit greater levels of 

vegetation cover.  
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Table 1.1 Continued 

  Low-grade LFs are designed 

with lower initial 

construction costs which 

typically consists of the 

removal of the canopy 

without the addition of 

coarse granular material on 

the surface. 

 

Moreover, because the 

release of resources should 

be directly proportional to 

forest road clearing width, 

low-grade LFs should show 

reduced changes of 

microenvironmental 

conditions (e.g., incident 

sunlight) and are 

characterized by lower 

traffic rates. 
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Table 1.1 Continued 

Objective / 

Hypothesis 

 

Description 

 

 

Predictions  

Objective ii) 

Hypothesis c) 

Local topography and 

vegetation attributes 

on forest roads best 

explain vegetation 

dynamic. 

(Positive effect of steeper slopes) 

Vegetation cover levels are more 

advanced on steeper slope well-drained 

forest road. The slope controls the 

drainage behavior of the road. It is also a 

natural means to avoid the accumulation 

of water under the effect of gravity. 

 

  (Negative effect of higher wetness index) 

 

Vegetation cover levels are more 

advanced on drier forest roads. 

 

  (Positive effect of higher NDVI index) 

 

Objective ii) 

Hypothesis d) 

 

Proximity to the 

centreline of the road 

best explains 

vegetation dynamic. 

(Positive effect of the distance from the 

center of the road) 

Vegetation cover patterns with regards to 

distance from the center are different 

between natural (e.g., gaps) and road 

openings because of traffic. 

In the center of natural canopy openings 

such as gaps, the distance from the center 

of the opening influence resource 

availability and micro-climatic 

conditions and increase vegetation cover 

in the center. A different pattern is 

expected on forest roads because of 

vehicle traffic (i.e., unlike natural 

openings, vegetation cover levels are 

likely to increase with distance from the 

road centerline). 
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ABSTRACT 

Forest roads are extensive throughout Quebec’s boreal forest and are established for a 

wide array of activities: industrial (e.g., supply and distribution), recreational, 

silvicultural operations, environmental monitoring, and wildfire management. A 

consequence of this broad access network is its close implication in expanding forest 

matrix discontinuity resulting in the fragmentation of the landscape and degradation 

of forest dwelling species habitat. Accurate and fine-scale spatial information on 

vegetation characteristics play an important role in informing on vegetation dynamics 

on forest roads and has the potential to provide a better understanding of its spatial 

patterns. However, the dynamics of vegetation on linear features in general, and on 

forest roads have not been extensively explored. Conventionally, the measurement of 

vegetation characteristics is performed manually by means of field surveys. Light 

Detection and Ranging (LiDAR) technology can provide fine-scale continuous 

measurements of various vegetation characteristics because of its accuracy, acquisition 

flexibility and ability to generate wall-to-wall measurements. Predictive modelling, 

particularly regression approaches in ML, can increase the efficiency of LiDAR for 

broad-scale measurements, and can be used, under certain conditions, for the 

prediction of vegetation characteristics in unsampled locations. This study investigates 

the performance of Ordinary Least Squares (OLS) and Machine Learning (ML) 

approaches – namely, multiple linear regression (mlr), generalised additive model 

(gam), multivariate adaptive regression splines (mars), k-nearest neighbors (knn) 

gradient boosting machines (gbm), and random forests (rf) – for the characterization 

of vegetation cover dynamic within forest roads using an experimental set-up of 240 

sample plots distributed over the managed forest of Quebec in eastern Canada. The rf 

tree-based ensemble approach yielded optimal performance results over that obtained 

using the other evaluated models (cross-validation: R²=0.69, RMSE=18.69%, 
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validation against an independent dataset: R²=0.62, RMSE=20.29%) and was further 

used to derive factor importance. Consistent with our hypotheses, vegetation cover 

showed an upward trend with increasing years post-clearing and a downward trend 

with increasing clearing width. Our long-term predictions also suggest that a 

timeframe of no less than 20 years is expected for both wide- and narrow-width roads 

to exhibit ~50% and ~80% of vegetation cover, respectively. 

The approach presented herein provides an effective assessment of fine-scale forest 

road vegetation cover dynamic. It demonstrates the value of using forest road 

specifications such as clearing width and years post-clearing to inform on vegetation 

cover dynamic and obtain improved estimates using the rf ensemble approach. The 

predictive framework is a versatile tool for forest road network planning and layout 

and management applications as it could improve spatially-explicit characterization of 

vegetation dynamics, wildlife habitat, and could be further tested and improved for the 

estimation of vegetation dynamics at the landscape and/or regional level.  

Key words: Forest roads, airborne Light Detection and Ranging LiDAR, linear features, 

forest roads, road network, forest management, Random Forests, vegetation dynamic, 

boreal forest. 
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2.1 Introduction 

Anthropogenic linear features (LFs) are forest access infrastructure, namely forest 

roads and seismic lines, and are essential for boreal forest natural resource provisioning 

and transportation. These features may have distinct morphological characteristics and 

functions, but their similar geometry and spatial patterns result in analogous 

environmental effects which allow their approximation. Particularly, LFs are similar 

in terms of their disturbance legacies as they require the use of machines that result in 

compaction of the surface layer through construction operations and consistent traffic 

intensity (Abib et al., 2019; Filicetti, 2021; Hornseth et al., 2018; Lovitt et al., 2018; 

Ministère des Ressources naturelles et des Forêts, 2021b; Pigeon et al., 2016). A 

consequence of these legacies is the prolonged post-clearing vegetation growth. LFs 

also play a major role in expanding forest cover discontinuity as they represent an 

extensive crisscross in terms of their spatial distribution. In terms of their geometry, 

LFs have higher perimeter-to-area ratios and higher edge-to-area ratio (Vepakomma 

et al., 2018; Zhou et al., 2020). Even if some of these LFs are temporary or deemed to 

have a “low-impact” (Dabros et al., 2017; Kansas et al., 2015), they contribute to 

fragmentation with the majority (70%) of the world’s forests being within 1 km of a 

forest edge (Forman, 2000; Haddad et al., 2015), with diminished habitat suitability 

adjacent to LFs caused by edge effects. Moreover, LFs have direct effects on wildlife 

species (Fisher and Burton, 2018; Forman, 2000; Mahon et al., 2019; Moreau et al., 

2012; Sun et al., 2021), soil (Barber et al., 2021; Pigeon et al., 2016; Toivio et al., 

2017; Zenner et al., 2007), seed dispersal and spread of wind-dispersed invasive 

species (Roberts et al., 2018), abiotic conditions (Franklin et al., 2021; Stern et al., 

2018), forest structure and composition, both on LFs and their adjacent environment 

(Davidson et al., 2021; Eldegard et al., 2015). Since the most prevalent linear 

anthropogenic feature in many regions of eastern boreal forest are forest roads, 

management of this vast network to minimize the associated linear footprint on 
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biodiversity and wildlife habitat, requires understanding of within forest road 

vegetation characteristics dynamic (Bourgeois et al., 2005; Clawges et al., 2008). 

However, vegetation patterns within forest roads need to be further explored: previous 

studies have shown that the growth process within linear features is complex and slow 

(Lee and Boutin, 2006; van Rensen et al., 2015). Furthermore, fine-scale knowledge 

on growth mechanisms within forest roads and application of this knowledge to 

management of the linear footprint is based on limited spatial levels and time scales. 

Previous studies assessing post-clearing, forest canopy spatio-temporal dynamic 

showed that the growth process is conditioned by disturbance factors, site conditions 

and location (Bartels et al., 2016; Senf et al., 2019). Moreover, in natural canopy 

openings, factors like light, nutrients, and water, have been showed to contribute and 

interact to affect growth of individual trees and saplings (Oliver and Larson, 1996). 

Abib et al. (2019) and Franklin et al. (2021) confirmed this relationship for LFs and 

showed that variations in vegetation growth is explained by LFs attributes (i.e., LFs 

width and orientation), local environmental factors (i.e., sunlight availability and the 

potential for accumulation of surface water) as well as terrain conditions. However, 

vegetation dynamic within forest roads requires more research for a better 

understanding of the conditioning factors. 

The analysis of vegetation characteristics dynamic can be challenging if in-situ 

measurements are used to acquire the information needed because forest roads are 

extensive throughout the landscape and have variable clearing widths which are 

permanently fluctuating over time due to vegetation growth in the immediate 

surroundings. Moreover, in-situ measurements are restricted to a limited number of 

data points (high precision measurements from a few small plots) instead of continuous 

data and require additional human resources to perform the field surveys. For this task, 

up-to-date, spatially-explicit, and continuous information about vegetation three-

dimensional characteristics (e.g., height and cover of the trees and shrubs, presence or 
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absence of strata, canopy closure, gap fraction) is essential (Atkins et al., 2018; Perez-

Luque et al., 2020). Remote sensing techniques can reliably expand measurement 

possibilities of vegetation characteristics, across multiple levels (e.g., plot, landscape, 

region) and multiple time intervals. Particularly, LiDAR data can be used to accurately 

quantify a variety of metrics describing vegetation (Wulder et al., 2012) as well as 

subcanopy topography (Brubaker et al., 2013). Coupled with the fact that these 

information can be derived across a range of spatial scales from fine (e.g.,~1 m2) to 

coarse (e.g.,~100 km2) (Vierling et al., 2008). The use of LiDAR data should provide 

a way to advance high-resolution quantification of vegetation and terrain 

characteristics within forest roads. For instance, high-resolution LiDAR data, in 

conjunction with various sources of ancillary data, have been recently incorporated 

into the modelling of fine-scale forest road deterioration (Girardin et al., 2022; Heidari 

et al., 2018).  

LiDAR structural metrics related to height, density and complexity are relevant for 

research in forest structural characteristics (Weltz et al., 1994). In our study, we 

considered a density related LiDAR-CHM metric – sensu (Næsset, 2002) – to derive 

the percentage of vegetation returns ≥ 1.3 height threshold. This metric provides a 

measurement of the road surface covered in vegetation. The potential factors 

conditioning the vegetation cover response were selected to be available across the 

study area, consistent with the spatial resolution of available LiDAR data, and had 

published literature assessing their influence on vegetation dynamic. In particular, the 

size of canopy openings (Bartels et al., 2016; Hart and Chen, 2006), years post-

clearing, disturbance history (Bartels et al., 2016; Senf et al., 2019), topography and 

climate (Hansen et al., 2014) were the main factors that have been shown to influence 

forest structural characteristics dynamic. Forests’ structural characteristics are also 

determined by site conditions (Boucher et al., 2006; Mansuy et al., 2012; Thompson 

et al., 2009; Weiskittel et al., 2011), species composition (Ilisson and Chen, 2009) and 
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successional status (Swanson et al., 2011). Previous literature showed that these 

aforementioned candidate factors are relevant for the characterization of vegetation 

cover on LFs (Filicetti and Nielsen, 2020; Franklin et al., 2021; Lee and Boutin, 2006; 

St-Pierre et al., 2021; van Rensen et al., 2015; Zang and Ding, 2009). 

The extraction of ecologically relevant information on forest road vegetation 

characteristics requires the processing of Canopy Height Models (CHMs) data into 

suitable metrics such as height metrics (e.g., the mean and maximum percentiles of 

height) and density metrics (e.g., percentage of vegetation returns ≥  a given height 

threshold) (Koma et al., 2021; Martinuzzi et al., 2009). These metrics are then used to 

develop products related to environmental modelling and forest management (i.e., a 

predictive model or a set of predictive models). For this purpose, ML approaches are 

usually the selected tool in forestry applications in the form of both classification and 

regression tasks due to the absence of distributional assumptions and ability to fit 

nonlinear and complex relationships characterizing environmental and ecological data. 

Examples of predictive approaches include nearest neighbor methods (knn) – 

e.g.,(Chirici et al., 2016; Cosenza et al., 2021; Finley and McRoberts, 2008; Franco-

Lopez et al., 2001; McRoberts, 2012) –, multivariate adaptive regression splines (mars) 

– e.g.,(Leathwick et al., 2006; Moisen and Frescino, 2002; Yang et al., 2020) –. 

Particularly, ensembles approaches – e.g., Gradient boosting machines (gbm) and 

Random Forests (rf) – are tools of choice in forestry (Abdi, 2020; Matasci et al., 2018b; 

Schönauer, 2022; Zhang et al., 2020), and in forestry modelling applications with 

airborne LiDAR (Abib et al., 2019; Ahmed et al., 2015; Venier et al., 2019). The 

widely-used rf tree-based ensemble approach (Breiman, 2001) is based on an 

aggregation of decision trees and uses several methods to introduce added randomness: 

i) through resampling, i.e., each tree is grown on a subset of the training points and ii) 

through factor restriction (i.e., each decision tree uses a randomly selected subset of 

both the available factors and observations). At each step of decision tree building, a 
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subset of the factors is randomly chosen, and the best factor and split point is chosen 

from that reduced set of factors. The average of decision trees is used to predict new 

observations. Other characteristics of rf is the reduced number of parameters to 

calibrate, and the choice of these parameters generally have very little influence on the 

accuracy of the results (Boehmke and Greenwell, 2019a). Although the rf approach is 

sufficiently versatile and widely used for such modeling, often the predictive capability 

of other ML techniques is not explored. The gbm is another tree-based ensemble 

approach, suggested by Friedman (2001) and is a recent advance in predictive 

modeling. The decision trees are sequentially built from the residuals of the preceding 

tree(s) and iteratively perform boosting through choosing, at each step, an arbitrary 

sample of the data ultimately causing a progressive improvement of the model 

performance (Forkuor et al., 2017; Martin et al., 2014). However, gbm has yet to be 

tested for predicting vegetation characteristics. To optimize accuracy and avoid 

overfitting using ML approaches, model parameter specifications is an important step. 

It usually involves a number of interacting parameters that have to be calibrated (i.e. 

regularized) in order to achieve optimal results (Schratz et al., 2019). 

Our primary aim is i) to investigate the predictive performance of six modelling 

approaches (mlr, gam, mars, knn, rf, and gbm) for the characterization of within forest 

road vegetation cover dynamic and ii) to inform on the underlying factors 

conditionning vegetation cover dynamic. We assumed that machine learning (ML) 

approaches would have better accuracies than Ordinary Least Squares (OLS) 

approaches. More specifically, tree-based approaches would show improved 

vegetation cover predictions. The evaluated approaches were constructed using 

ancillary geoclimatic as well as field inventory data. The required parameters for 

model fitting were set by using 10-fold stratified cross-validation with 20 repetitions. 

For the final fitted model, parameters with the lowest error metric (root mean square 
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error) were used and accuracy measures and analyses were conducted using both cross-

validation and independent validation dataset. 

The combined use of LiDAR measurements and predictive modelling allow for a fine-

scale and representative measurement of forest roads vegetation cover dynamic. This 

would also enhance our ability to precisely predict this dynamic along a spatial 

continuum and over extended timeframes. 

2.2 Study sites   

For this study, we retrieved forest roads clearing width data from the field across three 

study areas – field data collected in August 2019 (Girardin et al., 2022) –, 

representative of Canadian forestry activity, spanning between 47 and 49°N, -72 and -

78°W in the mixed and coniferous boreal forest of Quebec (Canada) (Figure 2.1). The 

climate across our study areas is typically boreal, with very cold winters and short cool 

summers. The temperatures change according to latitude and altitude, with the 

southernmost and northernmost sites being the warmest and the coldest, and the sites 

at higher altitudes being the coldest in winter and the least warm in summer. 

Precipitations also vary along the latitudinal gradient with drier conditions toward the 

North. The mean annual temperatures range between -5.9 and 4.2°C and total 

precipitations range between 650 to 1424 mm. May–September mean temperatures 

range between 9.1 and 17.7 °C. The study areas are characterized by a gently rolling 

topography, with the highest mountains concentrated in the southern part, and thick 

and undifferentiated glacial deposits (Girardin et al., 2022; Ministère de 

l'Environnement et de la Lutte contre les changements climatiques, 1999; Robitaille 

and Saucier, 1998; Rossi et al., 2015). 
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Table 2.1 Properties of forest roads and their bioclimatic data, grouped by study area 

(1−3) (Blouin and Berger, 2001; Girardin et al., 2022; Gosselin and Berger, 2002; 

Ministère de l'Environnement et de la Lutte contre les changements climatiques, 1999). 

 

Characteristic 

 

 

Study area 1 

 

Study area 2 

 

Study area 3 

Location  Northeastern Abitibi-

Témiscamingue region 

Mauricie region Northeast of the 

Saguenay-Lac-Saint-

Jean region 

Latitude/Longitude (48.42°N,  

-77.23°W) 

(47.51°N,  

-72.78°W) 

(48.89°N,  

-72.23°W) 

Mean elevation of 

sampled roads (m) 

393 430 407 

Total number of 

sampled plots 

84 73 84 

Cumulative length of 

sampled roads (km) 

4.2 3.65 4.2 

Mean clearing width 

measured in the field 

(m) 

8.59 7.74 8.55 

 

Mean years post-

clearing (years) 

9.23 6.83 6.17 

Mean slope (%) 5.10 5.58 4.27 

On-road mean 

vegetation coverage* 

measured in the field 

(m)  

0.47 0.41 0.46 

On-road mean tree 

height measured in the 

field (m) 

4.22 6.08 5.22 

On-road mean shrub 

height measured in the 

field (m) 

1.24 2.87 2.19 

Average annual 

temperature (°C) 

1.5 3.8 1 

Annual precipitation 

(mm) 

875 928 999 

Bioclimatic domain/ 

Vegetation type 

balsam fir [Abies 

balsamea (L.) Mill.] –

white birch (Betula 

papyrifera Marsh.) 

balsam fir – yellow 

birch (Betula 

alleghaniensis Britton) 

black spruce Picea 

mariana (Mill.) – 

moss domain 

andbalsam fir – white 

birch 

*Vegetation coverage measured as the ratio of the mean width of the road covered in vegetation to 

the original width of the road, both measured in the field. 
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2.3 Data 

2.3.1 Reference data 

We used 240 rectangular field plots (50 m length) which were at least 250 m apart 

from one another. These field plots were randomly sampled among a selection of forest 

road stratified by i) clearing width class (three classes: narrow, medium, and wide), 

years post-clearing (YPC) class (two classes: short-term and long-term timeframes), 

and slope class (two classes: low and high longitudinal slope, range: 0%–16%), 

following (Girardin et al., 2022). Clearing width varied between 4 and 14.4 m and 

included winter only roads and all-weather gravel roads. Paved highways were not 

considered. YPC, ranged between 0 and 46 years and was estimated based on the time 

elapsed since the last clearing (maintenance or construction). Maintenance activities 

usually consist of culvert repairs, surfacing, layer gravelling and vegetation clearing. 

For visualization purposes, clearing widths were binned into: narrow forest roads (total 

narrow forest roads = 96), and were ≤7 m wide, whereas wide forest roads were >7 m 

wide (total wide forest roads = 144) (Ministère des Ressources naturelles et des Forêts, 

2021b). 
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Figure 2.1 Overview of forest roads network (dark grey polylines) and distribution of 

sampled field plots (black dots) within the three respective study areas (1−3) in the 

province of Quebec in eastern Canada. 

 

2.3.2 Forest road data: spatial buffering and causal factor data computation 

To recreate the footprint polygons of forest roads from field-inventoried centerlines, 

we first delineated and digitized the centerlines using GPS coordinates (Trimble GNSS 

Handheld Geo7X) (three sampling locations for the edges and midpoint of the 50 m 

centerline) (Supplementary material Figure 1). To ensure proper alignment of the 

digitized centerlines, we used the LiDAR datasets provided by the Government of 

Quebec airborne LiDAR surveys, consisting in 1 m × 1 m grids (Ministère des 

1 

2 

 

 

 

 

3 
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Ressources naturelles et des Forêts, 2020), collected between 2016 and 2020 with a 

mean pulse density of 2−4 pulse/m2  (Martin et al., 2021). More specifically, we 

derived the Topographic Position Index (TPI) from the Digital Terrain Model (DTM) 

(spatial resolution of 1 m) to locate topographic breaks and inspect roadside 

geomorphological attributes (i.e., the drainage structures or ditches). We then 

performed a buffer analysis to partition the geographic space around the digitized 

centerlines into multi-buffers with similar areas (1 m increment). This spatial buffering 

step resulted in 1 m wide “hollow” multi-buffers that extend over 5 m and which we 

used to compute our input dataset (vegetation cover response and causal factors) for 

the characterization of vegetation dynamic (Figure 2.2). All data processing, modelling 

as well as validation were performed in the R programming environment Version 4.1 

(R Core Team, 2020). All regression models were produced using the caret package 

6.0 (Kuhn, 2015). 

We established a framework that used data from multiple sources, including, airborne 

LiDAR, and geo-climatic ancillary data. We extracted these data from the 240 field 

plots using the multi-buffer delineation approach described in Figure 2.2. The 

proposed approach had a fixed length (50 m) and a variable width extending over 5 m 

which allowed us to derive our data with a distance increment from the road centerline. 

All training data were extracted within the boundaries of the delineated multi-buffers 

areas, annotated 1 to 5, indicating the buffer width. For buffer areas more than one 

meter wide, data were extracted within hollow bands to exclude data points from the 

other buffers. 

Specifically, we used the LiDAR-CHM data to measure the vegetation cover response 

and LiDAR-based data (1 m resolution) to compute: i) Slope, in degrees. ii) Orientation 

(Northerness) transformed to a continuous factor ranging between -1 and 1 (The 

Northerness values closer to -1 are southwards and those closer to +1 are northwards) 

(van Rensen et al., 2015). Orientation is typically transformed into a continuous factor 



25 

 

 

 

because it is circular (large values may be very close to small values). iii) Topographic 

Wetness Index (TWI) is used as a proxy for soil moisture. It provides information on 

the potential for water accumulation over the land as a function of slope and 

accumulation at a given pixel. More specifically, TWI integrates the water supply from 

upslope catchment area and downslope water drainage for each cell in a digital terrain 

model (Kopecký et al., 2021). iv) Hillshade is a proxy for the shadow based on the 

surface elevation (Hong et al., 2017; Piedallu and Gégout, 2007). NDVI (Normalized 

Difference Vegetation Index) extracted from Sentinel-2, resampled to 1 m resolution, 

provides a measure of the difference between the reflectance of wavelengths emitted 

by the sunlight in the near infrared (PIR) and in the visible red band (Carlson and 

Ripley, 1997; Tarpley et al., 1984). Climate data were obtained from WorldClim 

version 2.1 for the time period 1970–2000 (Poggio et al., 2018; WorldClim, 2017). 

This dataset is based on historical climate records at a resolution of 30 seconds. The 

available monthly climate data of precipitation, incident sunlight (in units of kJ m-2 

day-1), wind speed (m s−1), total precipitation (mm) and minimum, mean, and 

maximum temperature (°C), were used to compute growing season climate dataset, 

resampled to 1 m resolution. Only two growing season averaged climatic factors, 

namely incident sunlight and wind speed were retained for further analyzes because a 

high correlation between the initial variables was found in Pradhan and Setyawan 

(2021). Particularly, sunlight is a proxy for vegetation growth as it moderates the 

available photosynthetically active radiation. Sunlight and wind speed, are proxies for 

the potential for in-situ evapotranspiration due to locally warmer/drier or 

cooler/shaded conditions as suggested by Stern et al. (2018) and van Rensen et al. 

(2015). Before analysing we checked for outliers using the interquartile range and 

removed all values above the 95th and below the 5th percentile, as well as collinearity 

(relationships between more than two covariates), and correlation (linear relationships 

between two covariates) following (Zuur et al., 2010). All uninformative metrics that 
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showed a variance inflation factor greater than 3 or were highly correlated with one 

another (|r Pearson | > 0.7) were excluded from the analysis.  

 

 

Figure 2.2 Visualization of LiDAR (A) 3D point cloud (B) Canopy Height Model 

(CHM) over a forest road. Extraction of forest road plot-level vegetation cover (%) 

using the CHM. Mean vegetation cover was derived continuously, and with a distance 

increment, within the five multi-buffer areas (Length = 50 m, and width increment = 1 

m). 
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2.4 Methods 

2.4.1 Statistical approaches 

To provide an optimal predictive model for the estimation of vegetation cover on forest 

roads we compare the performance of the following OLS regression approaches: i) mlr, 

ii) gam, and four ML regression approaches including iii) mars, iv) knn, vi) rf, and vi) 

gbm.  

mlr was assessed for its straightforwardness and simplicity and was extended to gam, 

a flexible approach used to identify and characterize non-linear regression effects 

(Friedman et al., 2001). gam was included because it presents an advantage over 

predefined basis functions to achieve nonlinearities and is relatively easy to interpret 

(Elith et al., 2008). The parsimony of mlr and gam approaches were assessed with the 

Akaike information criterion (AIC) (Burnham and Anderson, 2002). All possible 

combinations of factors and interaction effects were analysed with the MuMIn library 

in R (Barton, 2009). This step was essential because the inclusion of uninformative 

factors in parametric and semi-parametric models (i.e., mlr and gam) can reduce their 

overall predictive performance. mars is also regarded as an extension of linear models 

and is an adaptive non-linear estimation method that can present interaction between 

influencing attributes without any assumptions about input data distribution (Vu et al., 

2020). It structures a relation from established basis functions and coefficients, which 

are generally determined from the regression information (Lay et al., 2019).  

The construction phase of a mars model involves adding and removing of basic 

functions. mars is considered as a modification of the classification and regression tree 

(CART) method to improve the latter’s performance in a regression setting owing to 

mars ability to capture additive effects (Friedman et al., 2001). Therefore, mars could 
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simplify the challenges of solving non-linear relationships, compared to other non-

parametric approaches (Lay et al., 2019).  

We used the basic knn method (Crookston and Finley, 2008), a simple and intuitive 

approach in which each observation is predicted based on its similarity to other 

observations (Boehmke and Greenwell, 2019b). More specifically, the prediction of 

new observations values uses the sampled observations from a training data set that 

are the closest (nearest neighbor(s)) to each new observation. The similarity between 

new and training samples is based on a Euclidean distance metrics (or other related 

metrics) (Bruce et al., 2020). knn is considered a simple approach as there is no model 

to be fit and the prediction results depend on feature scaling, measurement of similarity, 

and the value of k. Other advantages include decent predictive power, especially when 

the response is dependent on the local structure of the features (Bruce et al., 2020), 

flexible assumptions regarding normality and homoscedasticity required by parametric 

methods, and preservation of much of the covariance structure among the metrics that 

define the response and factors’ vectors (Crookston and Finley, 2008). 

rf is tree-based ensemble which builds a large collection of independent decision trees 

to further improve predictive performance by averaging individual predictions. More 

specifically, rf use a combination of bagging, which randomly selects factors with 

replacement as training for growing the trees which makes it robust against overfitting 

(Liaw and Wiener, 2002a). The training is carried out on datasets created from a 

random resampling on the training set itself which adds an extra layer of randomness 

(Breiman, 2001; Liaw and Wiener, 2002a). gbm is another recent tree-based ensemble 

which builds a base model (i.e., trees with only a few splits) (Friedman, 2002) and the 

additional trees iteratively correct mistakes made by the previous trees which 

progressively improves prediction accuracy. Particularly, gbm sequentially generate 

base models from a weighted version of the training data to find the optimal 

combination of trees and optimize predictive performance (Boehmke and Greenwell, 
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2019b; Natekin and Knoll, 2013). Both rf and gbm present numerous advantages of 

tree-based ensemble methods, accommodating different types of factors and efficiently 

dealing with missing data and outliers. They have no need for prior data transformation, 

can fit complex non-linear hierarchical relationships, and automatically handle 

interaction effects between the factors (Elith et al., 2008).  

2.4.2 Models parameter tuning 

ML model performance can benefit significantly from tuning as it may reduce 

overfitting (Martínez‐Santos and Renard, 2020; Schratz et al., 2019). The caret library  

(Kuhn, 2015) was used to execute a grid search for each model where we assessed 

every combination of parameters of interest. More specifically, for mars, relevant 

model parameters were related to the number of retained terms (nprune) and the degree 

of interactions (degree) (Boehmke and Greenwell, 2019a; Liu, 2020). The 

implementation and performance of knn approaches required choices for three 

parameters: the value for k, the number of nearest neighbors (in a regression setting, 

for k=n, the average is used across all training samples as the predicted value), a 

scheme for weighting neighbors when calculating predictions (kernel function), and a 

similarity metric (distance). The prediction performance of rf is influenced mainly by 

three model parameters: correlation between individual trees, the performance of each 

tree and the total number of trees (Zhang and Haghani, 2015). Hence, we executed a 

grid search to evaluate: ntree which is the number of trees in a forest, mtry which 

defines the number of random factors at each split (Boehmke and Greenwell, 2019a). 

For gbm, we performed sensitivity analyses on tree complexity (interaction depth), 

learning rate (shrinkage), and minimum number of observations in nodes (minobs) 

(Boehmke and Greenwell, 2019a; Liu, 2020). During the tuning phase, a stratified 10-

fold cross-validation resampling method allowed to partition the training set for each 

fold. Model performances of every parameter combination were computed at the 
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tuning level and averaged across all folds. The parameter combination with the lowest 

RMSE was used to train our model during the performance assessment phase. Details 

about the parameter values and combinations that optimized the RMSE for our data 

can be found in Supplementary material Table 1.  

2.4.3 Models performance, comparison, and diagnostics using cross-validation  

          and independent dataset 

Inherit spatial information among dependent observations is one of the main 

challenges of spatial statistical modeling using ML techniques (Meyer and Pebesma, 

2021; Meyer et al., 2018; Pohjankukka et al., 2017; Roberts et al., 2017; Schratz et al., 

2019). In this regard, to account for spatial dependencies in our spatially-explicit data 

and reduce prediction bias, the choice of cross-validation (resampling technique) 

emerged as an important step in the implementation of our approaches (Geiß et al., 

2017; Pohjankukka et al., 2017; Schratz et al., 2019). Therefore, we performed a 

stratified 10-fold cross-validation, with the forest road identifiers being the stratifying 

factor. This allowed the condition of equal distribution of our stratified samples 

between i) training, testing, and validation samples, ii) the cross-validation folds, to be 

met (e.g., Garbasevschi et al. (2021) showed that dividing by strata produces similar 

distributions between training and testing sets for the majority of validation folds). The 

stratified partitioning was conducted prior to modelling and the samples were 

randomized with respect to the established strata. Kosicki (2020) suggested that when 

the set of factors affect the response in different ways (positive/negative and/or 

linear/non-linear), and model’s output is transferred to unsampled locations, more 

rigorous validation is necessary. Thus, we conducted a 60%–40% training-validation 

combination for evaluating our models’ performance. In addition, to avoid skewed 

results, each model was run 20 times (20 repetitions). Both stratified cross-validation 

and independent validation (using the hold-out 40% of our data) performance were 
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evaluated with the RMSE and the mean absolute error (MAE) metric to assess the 

accuracy. The R² metric was used to evaluate the goodness-of-fit. Model performance 

metrics were taken as the mean from the number of repeats.  

After the models were trained and compared, we assessed factor importance computed 

from the fitted model that yielded optimal results (i.e., rf). rf typically include a 

permutation-based importance measure which assesses the decrease in accuracy 

averaged over all the trees for each factor. The factors with the largest average decrease 

in accuracy across all trees are considered most important (Boehmke and Greenwell, 

2019b). The factor importance computation was implemented using the varImpPlot 

function in the randomForest library (Liaw and Wiener, 2002b). Partial Dependence 

Plots (PDPs) are especially useful for visualizing the relationships discovered by ML 

approaches by isolating the effect of a single factor on the response (Molnar, 2020). 

We evaluated the partial dependence from our fitted rf model using two functions 

partial and plotPartial (Greenwell, 2017) as there are advantages for model specific 

interpretations such as a close relation to the model performance and an accurate 

incorporation of the correlation structure between factors (Molnar, 2020). 

2.5 Results 

2.5.1 Modelling approaches performance  

For the study, vegetation cover (LiDAR-measured vegetation cover (%)), forest road 

attributes (Clearing width (m) and Years post-clearing (years)) by means of in-situ 

measurements, climatic factors (Sunlight (kJ m-2 day-1) and Wind speed (m s−1)), 

terrain factors (Slope (%), Northerness (index), TWI (index) and Shade (index)) were 

computed. Overview and distribution of these input data are summarized in Table 2.2. 



32 

 

 

 

Table 2.2 Distribution of models input data for the characterization of vegetation cover 

dynamic on forest roads 

Input(s) 

 

 

Min 

 

 

Max 

 

 

Range 

 

 

Median 

 

 

Mean 

 

 

std. 

dev* 

 

 

LiDAR 

measured 

vegetation 

cover (%) 

0 

 

100 

 

100 

 

0 

 

22.07 

 

33.36 

 

Years post-

clearing 

(years) 0 39 39 7 7.79 8.35 

Clearing 

width (m) 4 14.47 10.47 7.4 8.24 2.48 

Sunlight 

(kJ m-2 

day-1) 17228.74 17729.8 501.06 17598.99 17545.63 136.74 

Wind 

Speed 

(m s−1) 2.2 2.88 0.68 2.34 2.45 0.2 

Slope (%) 0 27.73 27.73 6.71 7.94 5.41 

Northerness 

(index) -0.55 0.46 1 -0.01 -0.03 0.2 

TWI 

(index) 1.72 16.46 14.74 6.52 6.88 2.81 

Shade 

(index) 139.68 202.97 63.29 178.82 177.7 9.85 

NDVI 

(index) 0.12 0.89 0.77 0.66 0.62 0.19 

*Standard 

deviation 

       

The predictive performance of ML approaches (rf, gbm, knn, and mars) and OLS (gam 

and mlr) approaches using stratified cross-validation and independent datasets are 

shown in Figure 2.3 (A) and 2.3 (B) respectively. ML approaches consistently had 

higher testing and validation RMSE and higher R2 values than OLS approaches. The 

greatest accuracy was obtained with the rf approach (RMSE ranging from 18.69 to 

20.29 and R2 ranging from 0.69 to 0.62), followed by gbm (RMSE ranging from 19.23 
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to 21.16 and R2 ranging from 0.68 to 0.59), and finally knn (RMSE ranging from 21.59 

to 21.73 and R2 ranging from 0.59 to 0.56). 

 

Figure 2.3 R², RMSE, and MAE for ML and OLS approaches for the characterization 

of vegetation cover dynamic obtained from (A) 10-fold stratified cross-validation 



34 

 

 

 

(results from 20 repetitions were considered), (B) An independent validation dataset. 

rf = random forests, gbm = gradient boosting machines, knn = k-nearest-neighbors, 

mars = multivariate adaptive regression splines, gam = generalized additive model, mlr 

= multiple linear regression. 

 

Assessed by RMSE and R² (Figure 2.4 (A) and Figure 2.4 (B)), the highest relative 

improvement in predictive performance was found using tree-based ensemble 

approaches (i.e., rf and gbm). Particularly, rf and gbm were similar in terms of 

predictive capability, they showed the highest predictive accuracy. knn and mars 

approaches showed slight reductions in the predictive capability compared with the rf 

and gbm, and significant reductions were obtained with the mlr approach compared 

with rf. 



35 

 

 

 

 

Figure 2.4 Predictive performance of ML and OLS for the characterization of 

vegetation cover dynamic using (A) 10-fold cross-validation approaches, (B) An 

independent validation dataset. rf = random forests, gbm = gradient boosting machines, 
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knn = k-nearest-neighbors, mars = multivariate adaptive regression splines, gam = 

generalized additive model, mlr = multiple linear regression. 

 

The causal factors which contributed most to the accuracy of vegetation cover 

characterization using rf are shown in Figure 2.5. Because rf generally provided 

optimal performance results, factors ranking was derived using this approach. Clearing 

width was the most important factor explaining vegetation cover dynamic within forest 

roads. The importance of all the other factors was lower: Years post-clearing (YPC), 

NDVI, as well as geoclimatic (Wind speed, Sunlight, Slope) and shade factors had 

intermediate importance. The PDPs of the rf regression revealed a general downward 

trend of vegetation cover with increasing Clearing width, Sunlight, Hillshade and TWI 

as well as a general upward trend with increasing Years post-clearing, Wind speed, 

Slope, Northerness and NDVI. PDPs for Clearing width show that vegetation cover 

drops substantially as the clearing width increases until the width was approximately 6 

m (Supplementary material Figure 4). 
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Figure 2.5 rf-based factor importance by permutation accuracy. A higher average 

importance of the variable (x-axis) indicates a greater contribution of this individual 

variable in explaining within forest road vegetation cover dynamic. A ranking of all 

factors is included.  

2.5.2 Characterization of vegetation cover dynamic within forest roads 

rf-based vegetation cover dynamic grouped by buffers extending from the road 

centerline (1–5 m), timeframe (short-, mid- and long-term), and clearing width (narrow 

and wide) are shown in Figure 2.6 (A) using the cross-validation predictions, and 

Figure 2.6 (B) using the independent dataset predictions. Overall, vegetation cover 

predictions were greater within the buffers furthest from the centerline. For the short-, 

mid- and long-term timeframes, the patterns were consistent: vegetation cover 

increased with YPC, with vegetation cover predictions on narrow forest roads slightly 

exceeding those on wide forest roads. Particularly, predictions grouped by timeframe 

showed that long-term vegetation cover (> 20 YPC timeframe), exceeded those 
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experienced in the mid- (]10–20] YPC timeframe) and short-term ([0–10] YPC 

timeframe), indicating a positive effect of YPC. Vegetation cover varied also across 

forest road types: narrow forest roads exhibited higher predictions over time across all 

five buffers with a higher range and higher mean predictions. The lowest prediction 

(~1.6%) was shown for wide roads for the short-term timeframe and the highest 

(~82.3%) for narrow forest roads for long-term timeframes. Wide forest roads showed 

an average vegetation cover of ~3–53% and ~14–52% in the mid- and long-term 

respectively. Narrow forest roads showed an average of ~17–51% and ~40–82%, in the 

mid- and long-term, respectively (Supplementary material Figure 3 (A) and (B)). 
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Figure 2.6 (A) Boxplots representing cross-validated rf model predictions (R2=0.69, 

RMSE=18.69%) of vegetation cover recorded within the multi-buffers extending from 

the road centerline, across forest road types (wide and narrow roads) for the post-

clearing timeframes: > 20 YPC (long-term, black boxes), ]10–20] YPC (mid-term, dark 

grey boxes), and [0–10] YPC (short-term, light grey boxes). (B) Boxplot of vegetation 

cover predictions values from the rf model (R2=0.62, RMSE=20.29%) considering the 

independent validation dataset. The (x-axis) indicates the width of every individual 

buffer. Boxplots present the median (dark black line), ±1 standard deviation (rectangle) 

and maximum-minimum value (vertical lines or whiskers). 

 

As shown in Figure 2.3 (A) and (B), stratified cross-validation testing dataset had a 

higher accuracy of prediction than the independent validation dataset. Both testing 

(cross-validation) and independent validation datasets were considered as stratified 

random samples, but the testing dataset had a closer relationship with the training 

dataset (reference population) as records from all strata were included in both the 

training and the test subsets (Figure 2.6 (A) and (B)). In general, we found the ML 

approaches evaluated here to be useful tools for improving predictions of vegetation 

cover dynamic on forest roads. 

2.6 Discussion  

2.6.1 Modelling approaches performance 

The performance results of OLS and ML approaches demonstrated that rf was the most 

reliable model, exhibiting the best prediction accuracy rates among gbm, knn, mars, 

and gam approaches. The least accurate model was mlr. These results suggest that 

using ML approaches was appropriate for the characterization of vegetation cover 
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dynamic within forest roads. Further, compared to rf and gbm, knn, mars and gam 

showed minimal accuracy reductions. Conversely, mlr performed poorly. The 

significant performance difference between mlr and rf can be explained by the 

limitation in handling non-linear relationships between the vegetation cover response 

and causal factors as well as models assumptions about the non-linear distribution of 

input data: rf better accommodates nonlinear relationships between factors that mlr 

could not adequately solve (Hassan et al., 2017; Morellos et al., 2016; Prasad et al., 

2006). 

Consistent with our hypothesis, tree-based ensemble approaches outperformed their 

nonensemble counterparts. rf and gbm are extremely randomised trees and are both 

based on ensemble learning theory. The ensemble – aggregation of decision trees 

(Hassan et al., 2017) – considerably improves the accuracy and certainty of the 

predictions by suppressing the weaknesses and disadvantages of each individual 

decision tree, and by taking advantage of the responses of the combined decision trees 

(Ahmad et al., 2018; Ahmed et al., 2015; Breiman, 2001; Stojanova et al., 2010). 

ML approaches require the setting of parameters specification prior to modeling to 

reduce overfitting and enhance performance. For this reason, the use of rf can be more 

straightforward because of its ability to yield accurate results when default parameters 

are used (Maxwell et al., 2018). These findings, and previous results, suggest that no 

single ML algorithm might serve best for every task and that many models should be 

calibrated to identify the most accurate model for a given prediction task (Cosenza et 

al., 2021; Hultquist et al., 2014; Kosicki, 2020; Martínez‐Santos and Renard, 2020; 

Morellos et al., 2016; Nawar and Mouazen, 2017). 
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2.6.2 Factors conditioning vegetation cover dynamic within forest roads 

Factors associated with vegetation dynamics 

Our results identified that the topmost influential factors that explained significant 

vegetation cover variations were Clearing width and Years post-clearing (YPC). 

Particularly, vegetation cover was greatest in samples with narrow widths and long 

post-clearing time frames. NDVI, terrain (i.e., Slope, Hillshade, TWI and Northereness) 

and climatic factors (i.e., Wind speed and Sunlight) ranked lower. The samples where 

vegetation cover was most advanced had higher NDVI values, steeper slopes, higher 

orientation values, higher levels of wind speed, lower incident sunlight, shade, and 

TWI levels. Abib et al. (2019) and Franklin et al. (2021) showed that variations in 

proximity-based vegetation cover is explained by LFs attributes (i.e., LF width and 

orientation) and local environmental factors (i.e., incident sunlight and the potential 

for accumulation of surface water). More evidence comes from van Rensen et al. (2015) 

where clearing width was a strong predictor of growth occurrence within LFs (> 3 m 

height cut-off was applied as a criterion for growth occurrence). It was suggested that 

clearing width implicitly reflects the severity of soil disturbance moisture supplies. 

Additionally, the ecosite type was the most important factor associated with growth 

(LFs lines in bogs and fens were less likely to experience growth than those in drier 

conditions). Similarly, Finnegan et al. (2019) suggested that soil wetness, nutrients, 

and adjacent stand affected growth levels. LFs in wet areas were least likely to promote 

vegetation growth and wet seismic LFs that were adjacent to more open forest stands 

were more likely to promote occurrence of disturbance-tolerant taxa.  

Clearing width and its relationship to disturbance legacies 

Narrow-width forest roads experienced higher levels of vegetation cover likely 

because of reduced disturbance (i.e., use of machinery in the construction phase and 
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continuous vehicular traffic), supporting findings from the LFs literature (Lee and 

Boutin, 2006; van Rensen et al., 2015). Particularly, LFs construction and design 

specifications can differ with respect to their characteristics (e.g., bearing capacity) 

and moisture conditions (O'mahony et al., 2000). These differences are reflected in 

their trafficability, frequency and intensity of use (Kaakkurivaara et al., 2015). For 

instance, coarse material with higher levels of granular content (coarse gravel and/or 

crushed rock) is frequently used as a top layer on wide LFs to ensure higher bulk 

density and bearing capacity (Kaakkurivaara et al., 2015; Ministère des Ressources 

naturelles et des Forêts, 2021a). Due to their high trafficability, wide LFs are also prone 

to experience increased intensity of use by heavy machinery (heavy vehicles inflict 

more damage to the surface layer than lighter vehicles), trucks and off-road vehicles 

which lead to severe disturbance of the top surface over longer time frames (Heidari 

et al., 2018; Kaakkurivaara et al., 2015; Ministère des Ressources naturelles et des 

Forêts, 2021b; Rummer and Wear, 2002; Waga, 2021). A consequence of compaction 

is the alteration of the hydro-physical properties in the surface layer. Therefore, it is 

likely that increased trafficability results in higher levels of compaction which reduce 

porosity and infiltration, increase pore water pressure in the road material, and lead to 

long-term restricted water exchanges, flow and moisture storage capacity. Gartzia-

Bengoetxea et al. (2021) demonstrated that soil compaction caused by shearing and 

ripping persisted for 15 years. In addition, water holding capacity was lower in 

mechanically prepared plots 15 years after site preparation. Cambi et al. (2015) showed 

that except for coarse textured excessively drained soils, soil compaction reduces 

oxygen and water availability to roots and microorganisms. Zang and Ding (2009) 

suggested that compaction potentially interferes with the establishment of woody 

species on the surface of the LFs by reducing water infiltration, soil moisture 

availability, aeration, and rooting space, and by increasing the physical resistance for 

plant root growth which result in increased recruitment difficulty (Dabros et al., 2018; 

Pinard et al., 2000; Startsev and McNabb, 2009). Unlike wide LFs, the surface layer 
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of narrow LFs consists of material excavated from ditches, and a thin layer of 

construction material aggregates. The poor physical condition of the surface layer, low 

bearing capacity interfere with narrow LFs intensity of use (Kaakkurivaara et al., 2015; 

Ministère des Ressources naturelles et des Forêts, 2021b; Waga, 2021). Hence, it is 

very likely that the integration of LFs clearing width captured underlying differences 

in hydrological conditions such as water and nutrients availability, driven by 

compaction and construction substrate type. Additionally, due to uneven vehicular 

activities, different traffic intensity patterns on wide and narrow LFs likely explain 

variation in vegetation cover levels among forest road types. 

Clearing width and its relationship to local environmental conditions 

The advanced vegetation cover levels on narrow-width forest roads can be attributed 

to a combination of limited disturbance and favorable growing conditions. Our data 

support that a range of vegetation cover can be observed depending on variations in 

incident sunlight, shade and wind conditions. Evidence on wind and incident sunlight 

patterns on LFs come from Stern et al. (2018) where LFs openings exhibited double 

incident sunlight intensity and double maximum wind speed compared to the adjacent 

forests. The abiotic conditions were different among LFs with different clearing widths: 

wide LFs exhibited increased sunlight penetration that extended into the forest. Centres 

of wide seismic lines were characterized by >1.5 times sunlight intensity than those of 

narrow seismic lines. These results corroborate the findings in Franklin et al. (2021) 

showing that the microclimatic conditions in the middle of LFs were generally 

intermediate between interior forest and anthropogenic infrastructures such as well 

pads, with narrow seismic lines more similar to interior forest and wide seismic lines 

more similar to well pads. The width and orientation of LFs also influenced growth 

trends in Franklin et al. (2021) by changing the abiotic environment: regeneration 

density on seismic lines increased by 5.8 times for each 10-fold increase in sunlight 

intensity. Our findings showed that wide forest roads experienced lower vegetation 
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cover levels compared to narrow forest roads. Sunlight was a limiting factor and higher 

wind speed promoted higher levels of vegetation development. These results are not 

contrary to the findings in Franklin et al. (2021) as their sampled wide LFs were older 

than the narrow LFs and had therefore more time for tree establishment and growth. 

Moreover, given the ranking of our factors conditioning vegetation cover, it is very 

likely that the clearing width moderates the changes in abiotic conditions leading to 

significant variations in vegetation cover levels among forest road types. Conceptually, 

clearing width influence various processes: on wide LFs, greater sunlight availability 

could result in higher temperature and lower moisture levels (warmer and drier 

conditions near the ground on wide lines) (Dabros et al., 2017; Franklin et al., 2021). 

On narrow LFs, however, significant shading from the adjacent canopy, provides more 

favourable conditions for vegetation cover. This is in favor of the assumption that the 

clearing width is a modulator of online abiotic conditions including sunlight, wind, and 

moisture (Filicetti and Nielsen, 2018; van Rensen et al., 2015). Hence, research on the 

abiotic environment within LFs is needed to provide insight into potential explanations 

for abiotic-biotic associated patterns. Also, the floristic aspect of online communities 

should be considered for an integrative investigation of vegetation characteristics 

within LFs (Lázaro-Lobo and Ervin, 2019; Lee and Boutin, 2006). 

Forest roads with low NDVI levels exhibited limited vegetation cover, likely because 

low NDVI values indicate less or no vegetation. Contrary to van Rensen et al. (2015), 

YPC was among the most influential factors, and it is possible that our continuous 

factor better accounted for the variation of vegetation cover. Steeply-sloped forest 

roads (i.e., slopes greater than 15%) experienced advanced vegetation cover. A likely 

explanation for this is that steeper slopes provide favorable subsurface water 

exchanges and flow which promote drier terrain conditions. This is supported by TWI 

data indicating increased water accumulation reduce vegetation cover on forest roads. 
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2.6.3 Characterization of vegetation cover dynamic within forest roads 

Our model predictions showed that, for extended timeframes (> 2 decades post-

clearing), vegetation cover sustained an overall upward trend, however, slight 

variations occurred between wide and narrow forest roads, meeting our expectations 

of a more advanced cover on narrow-width forest roads. Early studies assessing 

vegetation cover were carried out in Latin America (Guariguata and Dupuy, 1997; 

Olander et al., 1998), South-East Asia (Pinard et al., 2000; Zang and Ding, 2009) and 

Central Africa (Malcolm and Ray, 2000). They provided evidence of increased 

disturbance on wide LFs, as well as variations in density, diversity, and vegetation 

structure across the LFs surface and their proximal environments (edge and adjacent 

forest). These results and findings in Lee and Boutin (2006) allowed us to compare our 

results with respect to the factors associated with vegetation growth and further 

confirm that disturbance legacies on wide LFs can persist for decades in the boreal 

forest. Post-clearing vegetation growth patterns within LFs across the range of forest 

ecosystems is still in development and different definitions of vegetation growth have 

been proposed in the forest and LFs literature (e.g., spectral indices (White et al., 2018), 

structure: closure through both height (regeneration) and lateral growth (Finnegan et 

al., 2018b; Matasci et al., 2018a; Vepakomma et al., 2011). These notable limitations 

in previous studies and data availability over long timeframes constrained our 

quantitative analysis. Our ability to compare vegetation cover predictions was further 

constrained by the small number of studies available: many individual studies have not 

been conducted over the longer timeframes necessary to detect vegetation growth, or 

growth has not been properly defined to efficiently compare patterns across forest 

ecosystems, or across different forest regions in Canada (Bartels et al., 2016).  

A quantitative study in the Central African forest (Kleinschroth et al., 2016) 

demonstrated the potential for vegetation growth on abandoned LFs (logging roads) 
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through natural processes: for an average of 20 m clearing width, twenty-five years 

following abandonment, canopy closure recovered to 83% (very close to the value in 

the adjacent forest in their study area). Three decades post-clearing allowed the 

convergence of canopy closure litter layer depth and herb cover converged notably to 

levels that were comparable to the adjacent forest. However, the thirty-year timeframe 

was not sufficient to recover the same biomass on roads as in the adjacent logged forest. 

In our study, wide forest roads showed an average vegetation cover of ~3–53% and 

~14–52% for the mid- (]10–20] YPC) and long-term (> 20 YPC) timeframes, 

respectively. Narrow forest roads showed an average of 17–51% and 40–82%, in the 

mid- and long-term, respectively. The differences could be attributed to forest 

ecosystems specifications (e.g., vegetation and soil conditions), the metric used to 

quantify vegetation characteristics on the roads, road construction specification (e.g., 

clearing widths). Lee and Boutin (2006) findings for the boreal forest ecosystem 

showed low woody vegetation growth increments thirty-five years post-clearing: most 

LFs in the study (i.e., ∼65% of total LFs) remained in a cleared state with a cover of 

low forbs, and only 8.2% of LFs across all forest types had exhibited more than 50% 

of woody vegetation growth. LFs vegetation predictions in Finnegan et al. (2019), 

showed 1–2 m height growth increment 10 years post-clearing, with low lateral cover 

and it was mostly disturbance-tolerant taxa. Further evidence comes from Revel et al. 

(1984) where the growth increment of saplings was low with most saplings less than 

2 m tall, 10 years post-clearing. These quantitative measures for LFs highlight the 

importance of a unified protocol for the study of vegetation growth within LFs which 

better standardize the spatiotemporal component to allow for comparisons. This would 

require the establishment of a coordinated long-term network of monitoring sites 

within the existing LFs network. Moreover, the use of LiDAR data to estimate post-

clearing growth patterns would be more straightforward if LFs were stratified by 

number of years/decades post-clearing. This would help integrate more structure into 
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the sampling scheme and compensate for the large extent of the road network which 

can make the monitoring task difficult.  

The examination of growth patterns following fire or harvest in plot-level studies 

across forest ecosystems showed variable annual increments (Bartels et al., 2016). The 

timeframe is five years for cleared areas to attain a benchmark canopy cover of 10% 

post-fire, compared to 10 years to attain 10% of canopy cover post-harvest. Further, 

Senf et al. (2019) provided a direct quantification of post-clearing vegetation growth 

increments, the average is 84% of the disturbed areas reaching recovery benchmarks, 

(i.e., a minimum tree cover of 40% and minimum stand height of 5 m), 30 years post-

clearing. While comparisons with post-harvest and post-fire growth increments allow 

us to contextualize and evaluate our findings, some key differences should be noted. 

For example, linear (e.g., forest roads) and polygonal (e.g., cutblocks) openings differ 

with respect to spatial footprint, canopy clearing technique, and disturbance legacies.  

2.6.4 Research limitations 

The prediction accuracy of the rf approach can benefit from the inclusion of additional 

factors such as transport flux, compaction levels, and specifications on the construction 

materials. From the comparison results, ensemble approaches such as rf and gbm 

showed low error rates. However, additional model calibration and testing are needed 

to further validate these findings and evaluate the generalization capabilities of these 

approaches. Additionally, other techniques for factor importance and ML 

interpretation should also be tested.  

Similar to Abib et al. (2019)’s proximity-based analysis, both cross-validated and 

independently validated rf results satisfied the accuracy and goodness-of-fit criteria. 

Since repeated measurements provide additional information, it is important that 

dependencies in the input data are accounted for. For this purpose, stratified random 
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sampling is used when there are strata that need to be considered in the analysis: it 

reproduces characteristics in the samples that are representative of the strata. Estimates 

generated within strata are more accurate than those from random sampling because 

dividing the input data into homogeneous strata often reduces sampling error and 

increases precision. Nonetheless, we suggest that spatial autocorrelation should be a 

factor of further analysis in this spatial application. Future studies could further assess 

model performance in the context of clustered data (Hajjem et al., 2014). 

In general, the main disadvantages with ML approaches compared to OLS approaches 

are: i) simple linear functions are highly approximated, ii) for certain data sets, it is 

difficult to constrain the model by selecting the optimum parameters through cross-

validation, iii) the output can be unstable: for example, small changes in data can 

produce highly divergent trees for example (Prasad et al., 2006). In this study, ML 

approaches, compared to OLS approaches yielded satisfactory accuracy results for the 

prediction of vegetation dynamic but there are limitations concerning the 

generalisation of the results of this study. The models were calibrated and tested with 

samples collected from a range of forest road sizes (i.e., clearing width) and over a 

bounded years post-clearing interval. Moreover, the samples were taken from three 

study areas which share common soil and climatic properties. This means that the 

predictive models could not be generalised for the prediction of the same 

characteristics in any unsampled location or within forest roads with different 

specifications. Because large-area generalisation (e.g., regional, national) depends on 

the variability of the training and test samples, more observations are needed. This 

would require a greater range of geoclimatic conditions within forest roads as well as 

a higher diversity of forest road specifications.  

Our findings are consistent with recent LiDAR-based studies in the boreal region 

which have shown that post-clearing vegetation dynamic is complex and growth 

increments are low. Our long-term predictions suggest that a timeframe of no less than 
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20 years must be expected for both wide and narrow LFs to exhibit ~50% and ~80% 

of vegetation cover, respectively. Future studies could compare growth patterns and 

evaluate whether the differences between polygonal features (resulting from fire and 

harvest) and LFs lead towards distinct successional trajectories (Dabros et al., 2018; 

Finnegan et al., 2018a).  Another consideration can emerge from this comparison and 

is related to the linear aspect of anthropogenic infrastructures which makes the 

application of chrono-sequence approaches difficult (Norden et al., 2009). In our 

analysis, our plots represent points along a spatial continuum, however, the temporal 

component was constrained to specific data points in time. Therefore, it is important 

to predict post-clearing growth patterns along a temporal continuum. 

2.7 Conclusion 

In this study, we characterized within forest road vegetation cover dynamic for boreal 

forest ecosystems using LiDAR-based CHM data and predictive modelling. Our 

predictive accuracy findings demonstrated that the ML approaches performed better 

than OLS approaches with the rf model providing a better fit over that obtained with 

other OLS and ML models (RMSE ranging from 18.69 to 20.29 and R2 ranging from 

0.69 to 0.62, using stratified cross-validation and independent datasets, respectively). 

The rf model was closely followed by gbm, which suggests that tree-based ensemble 

approaches can improve prediction accuracy. The inability of OLS approaches to 

handle non-linear relationships between the vegetation cover response and the causal 

factors is the main limitation for accurate characterization of forest road vegetation 

cover dynamic. Clearing width was found to be the most important factor and was 

followed by years post-clearing, NDVI, shade and climatic variables in predicting 

vegetation cover at a fine scale. Vegetation cover varied by forest road type, with 

narrow-width roads having higher mean vegetation cover predictions (~17–51% and 

~40–82% across all five buffers extending from the road centerline, for the mid- and 
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long-term timeframes, respectively) compared to wide roads (~3–53% and ~14–52% 

across all five buffers extending from the road centerline, for the mid- and long-term 

timeframes, respectively). The rf prediction capability, though satisfactory, requires 

further testing for large-area generalisation. Additionally, transport flux and volumes, 

compaction levels, and the construction materials are among the potential factors that 

could be included to evaluate possible decrease in model error. With the increasing 

availability of remote sensing datasets, there is potential for broad scale mapping of 

vegetation dynamics within forest roads (landscape or regional level). Further 

investigations are also required in improving the temporal resolution of vegetation 

measurements with LiDAR. 
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GENERAL CONCLUSION 

Spatially-explicit detailed vegetation information on forest roads is essential for a 

better understanding of growth mechanisms, assessment of forest road quality and 

management of forest porosity caused by linear anthropogenic openings. Our study 

extends on earlier research focused on anthropogenic linear features quality 

assessment and aimed to investigate fine-scale vegetation cover dynamic using remote 

sensing data derived from high spatial resolution LiDAR-CHM (1 m). For this 

purpose, we used our field inventory as a reference to guide our experimental set-up 

around the centerline of forest roads. Using the same set-up, we quantified the area of 

the road that is covered in vegetation (height cut-off > 1.3 m) within multi-buffered 

areas (5 m) around the centerline. This approach also allowed us to compute our 

vegetation metric (i.e., vegetation cover response) and causal factors (i.e., topographic 

(Slope, shade, TWI), vegetation (NDVI), climatic (incident sunlight levels and wind 

speed) using airborne LiDAR and Sentinel-2 data.  

The performance accuracy of conventional OLS and ML statistical approaches – 

multiple linear regression (mlr) generalized additive model (gam), (mars), random 

forest regression (rf), k-nearest neighbors (knn), gradient boosting machines (gbm) – 

were evaluated and compared. The predictions were validated using a stratified cross-

validation scheme and against an independent set of samples. Our findings 

demonstrate that the rf approach had optimal predictive accuracy (RMSE ranging from 

18.69 to 20.29 and R2 ranging from 0.69 to 0.62, using stratified cross-validation and 

the independent dataset, respectively) due to its i) ability to model complex non-linear 

relationships between the factors and the vegetation response, ii) ability to reduce 

possible errors and over-fitting and form an average optimal model with improved 

predictions. The rf regression model results indicated that clearing width and years 

post-clearing were the most informative causal factors. Thereby, vegetation cover 



53 

 

 

 

predictions would require these abiotic data inputs to accurately estimate vegetation 

levels on forest roads. Future studies could expand on the input dataset and include 

transport flux and volumes, compaction levels, and the construction materials for 

potential improvement in the prediction capability of the predictive model. Moreover, 

further research is required to explore the floristic component and differences in 

growth patterns between vegetation types and to examine growth mechanisms on 

linear openings (i.e., height and cover increments and their contribution to the increase 

of the vegetation fraction within anthropogenic linear features). In addition, the 

potential of temporal analysis approaches in improving prediction accuracy are worth 

investigating for a better understanding of spatio-temporal vegetation dynamics within 

linear features. 

Our finding improved our understanding of the relevant factors underlying vegetation 

dynamic on forest road. The proposed proximity-based approach for spatially-

annotated predictions surrounding forest roads and could thus allow for flexibility in 

future studies focused on linear features and their environments (immediate or 

proximal). Moreover, the combined use of remotely-sensed data, (i.e., LiDAR DEMs 

and CHMs) and ML prediction framework are efficient for the extraction of extensive 

and continuous information on vegetation characteristics dynamic which can assist in 

the management of the linear footprint of forest roads in the boreal forest. Particularly, 

quantitative methods for road quality assessment can provide decision support tools 

for multi-scale forest road network management. 
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SUPPLEMENTARY MATERIAL  

 

Figure 1 Field inventory plot design used to reconstruct the centerlines  

(Dimensions: 50m*clearing width). 

 

 

 

 

https://www.sciencedirect.com/science/article/pii/S0034425721004661#s0095
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Table 1 Hyperparameters (ranges and types) and their definitions 

 Hyperparameter Description Type Start End Default 

mars  degree Number of 

retained 

terms 

Integer 1 3 1 

nprune Degree of 

interactions 

Integer 2 100 8 

knn  k Number of 

neighbors 

Integer 5 20 7 

distance Metrics to 

measure the 

distance 

between 

observations 

 

Integer 1 5 2 

kernel types of 

kernel 

functions 

Nominal Rank, 

cos, inv, 

Gaussian, 

optimal. 

- - 

rf mtry Number of 

variables to 

randomly 

sample as 

candidates at 

each split 

Integer 1 3 √𝑝 

ntree Number of 

trees 
Integer 250 3000 500 

gbm shrinkage Learning rate 

of greedy 

search 

Numeric 0.001 0.1 0.001 

interaction.depth Maximal tree 

depth 
Integer 1 9 1 

n.minobsinnode Minimal 

terminal node 

size 

Integer 1 10 20 
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Figure  2  Diagnostic plots for the rf model generated with auditor: an R Package for 

model-agnostic visual validation and diagnostic (Gosiewska and Biecek, 2018), 

generally indicate a well fitted model. The plots show: (A) vegetation cover 

observations (%) (Target variable, x-axis) versus individual predictions (%) (Predicted 

values, y-axis). We see a uniform scattering around the diagonal and close dispersion 

of the predicted against the target variable at the center of the plot. The dispersion 



57 

 

 

 

around the diagonal line indicates over-prediction for small values of observed 

response and under-prediction for large values. (B) A common use of the residuals 

density plot is to analyze the variance of the error of the regression approach (here rf). 

The histogram indicate that our error is normally distributed close to zero. 
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Figure 3 (A) Summary of vegetation cover predictions (means and means +/- standard 

deviation error bars) grouped by different forest road categories and timeframes, from 
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cross-validated rf model (R2=0.69, RMSE=18.69%) recorded within the multi-buffers 

around the road centerlines, across forest road types (wide roads and narrow forest 

roads) for the post-clearing timeframes: > 20 YPC (long-term, black boxes), ]10–20] 

YPC (mid-term, dark grey boxes), and [0–10] YPC (short-term, light grey boxes). (B) 

Vegetation cover mean predictions using independently-validated rf model (R2=0.62, 

RMSE=20.29%) across forest road types and post-clearing timeframes. 
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Figure 4 rf-based Partial dependence plots (black curves) showing impacts of single 

factor on vegetation cover when all remaining factors are constant. Smooth curves are 

shown in blue. Abbreviations: (1) clearing width (Line.Width), (2) time (years) since 

last clearing (T.since.clearing), (3) NDVI, (4) Wind speed (Wind.Speed), (5) Hillshade, 

(6) Sunlight (Sol.radiation), (7) Slope, (8) TWI, and (9) Northerness 

(Northerness_mean). 
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