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Abstract: In eastern Canada, spruces (Picea spp.) and pines (Pinus spp.) are among the main
commercial species being logged for their lumber or wood fiber. Annually, about 175 million
seedlings are planted in areas totaling ~100,000 ha. Appropriate microsite selection is essential during
reforestation operations, given that it can improve the chances of survival and initial growth of
the seedlings. In fir (Abies spp.) and spruce forests of eastern Canada, the optimal characteristics
of establishment microsites have yet to be identified; these would be determined by different
physical and climatic variables operating at several scales. Our study determined the influence of
climatic (regional-scale), edaphic (stand-scale), local (microsite-scale) and planting conditions on
the establishment substrate and initial growth of black spruce (Picea mariana Britton, Sterns and
Poggenb.) and jack pine (Pinus banksiana Lamb.). Substrate characterization and growth monitoring
(three growing seasons) for the two species were conducted on 29 planted cutblocks that were
distributed over an east-west climatic gradient (precipitation and temperature) in the balsam fir
and black spruce—feather moss forests of Quebec (Canada). Linear mixed models and multivariate
analyses (PCAs) determined the effects of climatic, edaphic and micro-environmental variables
and their interactions on the establishment substrate and seedling initial growth. The predictive
models explained, respectively, 61% and 75% of the growth variability of black spruce and jack
pine. Successful establishment of black spruce and jack pine depended upon regional conditions of
precipitations and temperature, as well as on their interactions with stand-scale edaphic variables
(surface deposit, drainage and slope) and local variables (micro-environmental) at the microsite-scale
(establishment substrate types and substrate temperature). Mineral, organo-mineral and organic
establishment substrates exerted mixed effects on seedling growth according to regional precipitation
and temperature conditions, as well as their interactions with edaphic and local variables at the stand
and microsite-scales, respectively.

Keywords: climate; spruce stands; fir stands; seedling growth; soil; establishment substrate;
multi-scale

1. Introduction

The boreal forest of Eastern Canada remains a strong supplier of wood for both domestic and
export markets. Indeed, the forest products industry is engaged in extensive harvesting and forest
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management activities across the region [1]. Softwoods, most notably spruces (Picea spp.) and
pines (Pinus spp.), are among the main commercial species being logged for their lumber or wood
fiber [2]. In Eastern Canada, reforestation operations complement natural regeneration to restore
or maintain forest productivity, to ensure continuous wood production that meets local and global
demands [3]. Annually, about 175 million trees are planted in eastern Canada, across an area totaling
about 100 000 ha [4]. In Quebec (Canada), black spruce (Picea mariana Britton, Sterns and Poggenb.)
and jack pine (Pinus banksiana Lamb.) represent 77% of the ~130 million seedlings planted in this
province each year [5]. Although they can be found on similar sites in the boreal forest, jack pine
is a shade-intolerant species with high potential rates of resource capture relative to black spruce,
which is a shade tolerant species adapted to low-resource environments [6].

In the boreal forest, reforestation is generally preceded by mechanical soil preparation
(MSP) to create favourable conditions for seedling establishment on suitable microsites [7-11].
Following site preparation, seedlings are to be planted in microsites that maximize their survival
and initial growth. Suitable conditions are determined by climatic and physical variables at several
scales [12]. These variables include regional climate (temperature, total precipitation and relative
humidity), soil characteristics at the stand-scale (drainage, surface deposits and slope) and seedling
microenvironment at the microsite-scale (establishment or rooting substrate, substrate temperature,
planting position and humus thickness) [13]. Yet, microsites that promote seedling growth are likely to
differ, depending upon geomorphological characteristics at the stand-scale, regional climatic conditions
and the characteristics of the species being planted [14-20].

It is important to identify the interactions between regional climate variables, stand characteristics
and local planting conditions so that practitioners can adapt reforestation practices to reflect their
respective regional situations. Incorporating these interactions into site planning would further
ensure successful plantation establishment in the context of ongoing global change that will have
significant effects on temperature and precipitation patterns and, consequently, on the conditions for
tree establishment [21-25]. The subsequent application of this knowledge would have immediate effects
on silvicultural practices and the productivity of managed forest stands. Therefore, the overall objective
of our study was to identify the role that environmental variables play at regional, stand and microsite
scales in the growth of black spruce and jack pine plantations. More specifically, we determined
the influence of climatic (regional scale), edaphic (stand scale), local (microsite scale) and planting
conditions, both on the establishment substrate and on the initial growth of black spruce and jack
pine. These plantations were established in the balsam fir (Abies balsamea (L.) Mill.) and spruce-moss
bioclimatic domains of boreal Quebec (Canada). We tested the hypothesis that the effects of the
establishment substrate leading to the highest growth rate depended on the interactions between the
regional climate and the edaphic and planting conditions across boreal Quebec.

2. Materials and Methods

2.1. Study Area and Data Collection

We used data that were collected from 29 operational cutblocks (average area: 8.5 ha) that had
been submitted to mechanical site preparation and planted. The selected planted cutblocks covered
a wide moisture and temperature gradient from eastern to western Quebec; the plots were located in
the balsam fir and black spruce—feather moss bioclimatic domains (Figure 1). The balsam fir domain
is dominated by mixed stands of yellow birch (Betula alleghaniensis Britton), paper or white birch
(Betula papyrifera Marshall) and softwoods such as balsam fir, white spruce (Picea glauca (Moench) Voss)
and white cedar (Thuja occidentalis L.) [26]. The black spruce—feather moss domain is dominated by
closed-canopy black spruce stands [26].
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Figure 1. Location of permanent inventory plots distributed in cutblocks planted with black spruce
(BS, filled triangles) and jack pine (JP, filled circles) in the balsam fir (grey areas) and spruce-moss
(white area) bioclimatic domains of boreal Quebec, Canada [26]. Plots are located in four regions that
were delineated based on their precipitation and temperature regimes (different coloured symbols).
The regions are Dry-Cold, Dry—Warm, Wet—Cold and Wet-Warm.

Twenty-one cutblocks were reforested with black spruce between 2010 and 2016; eight cutblocks
were reforested with jack pine between 2011 and 2016 (Figure 1). In all cases, containerized seedlings
were derived from local seed sources and produced in governmental or contracted private nurseries
over two years in 45-cavity containers (each with a volume of 110 cm?®). One to four weeks after
cutblock reforestation, we established a 130 m transect and installed permanent sampling plots (8 m
radius; 200 m?, or about 40 seedlings per plot) every 50 m along the transect, to a maximum of five
plots per cutblock. The transect was oriented east-west and located in the middle of the block. A total
of 105 plots were established in sites that had been planted with black spruce and 40 plots in sites
that were planted with jack pine. All seedlings were identified with a numbered metal tag to allow
long-term monitoring at the seedling level. In each plot, we measured stem diameter at ground-level
and seedling height at the end of three consecutive growing seasons following planting. A total of
4492 seedlings (2996 black spruce and 1496 jack pine) were identified and monitored.

During the first three growing seasons on each site, data were collected at the microsite-scale
for each seedling (<1 m?): (1) Planting substrate, which was classified into one of five types (fibric
organic matter, humic organic matter, intact forest litter, exposed mineral soil and an organo-mineral
mixture [27]); (2) relative planting position (mound, shoulder of the scarifying furrow and scarifying
furrow depression); and (3) humus thickness (cm). We measured soil temperature on an hourly basis
using iButton probes (Alpha Mach iButton®, Bombardier, Ste-Julie, Quebec). Loggers were buried at
a 10 cm depth next to a seedling that was located at each plot centre. The logged data were subsequently
used to calculate monthly averages.

At the stand-level, we extracted surface deposit data, slope classes and drainage classes from the
most recent ecoforestry map that was produced by the Government of Quebec [28]. The site slope was
categorized as zero to low (<8%), gentle (<15%), moderate (<30%), strong (<40%) or steep (>41%).
Soil drainage was rated as rapid, good, moderate, imperfect or poor. The inventoried cutblocks are
found on one of five types of surface deposits: thick till, thin till, rock deposits, glaciolacustrine deposits
or fluvio-glacial deposits.

At the regional level, extrapolated monthly data were extracted for temperature, total precipitation
and relative humidity from NASA’s Global Climate Data Platform (2 m resolution) (https://power.
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larc.nasa.gov/data-access-viewer/, accessed on 10 April 2019). The climatic data were collected from
May to September (growing season) during the first three growing seasons for each cutblocks; i.e., the
climate data we used as the explaining variables corresponded to the 3-year growth periods specific to
each plantation included in our dataset.

2.2. Statistical Analyses

We conducted all statistical analyses in R software (version 3.5.1, Vienna, Austria) [29]. We used
seedling height and ground collar diameter data to calculate a volume index (V), based upon the
volume of a cone [30], which was computed as follows:

V =7t x (D/2)? % (H/3) (1)

where V is volume in cm?, D is stem diameter at ground level (cm) and H is height (cm). We then
calculated relative volume growth (RGRV), following [12], according to the following formula:

RGRV = [In (V3) = In (Vo)]/(t3~t0) @)

where V3 and V represent tree volumes at time t3 (i.e., after three growing seasons) and tj (at planting).

Ten environmental variables, together with their interactions, were incorporated into a linear
mixed model as fixed effects explaining volume growth. The geographical distribution (longitude
and latitude) of the plots were considered random effects in the model, which was fitted using the
Ime4 library [31]. ANOVA analysis was also used to evaluate the effect of the explanatory variables on
volume growth. Explanatory variables were categorized into three groups: (1) The microsite scale,
which included humus thickness, planting position, substrate type and monthly average substrate
temperature; (2) the stand scale, which included surface deposit, slope class and drainage class;
and (3) the regional scale, which was represented by the seasonal climate data (i.e., average monthly
temperature, monthly total precipitation and average relative humidity). We considered effects to be
significant at o = 0.05.

Lastly, we used the medians of the mean monthly temperature (13.5 °C) and total monthly
precipitation (95.9 mm) as boundaries to delineate four regional groups: the dry and cold region;
wet and cold region; dry and warm region; and wet and warm region. The use of the median values of
temperature and precipitation was more relevant than the mean values to delimit the four regions.
Unlike the mean value, the median value is relatively insensitive to outliers and detects the break point
that can subdivide the data into several groups [32-34]. This subdivision method of data has already
been successfully applied in ecology in previous studies [35,36]. Table 1 summarizes the number of
black spruce and jack pine seedlings in each delineated region.

Table 1. Number of jack pine and black spruce seedlings in the four regions, with their corresponding
height and ground collar diameter at the end of their third growing season.

Number of Ground Collar

Species Region Seedlings Diameter (mm) Height (cm)
Wet-Warm 1120 18.0 (+6.3) 89.7 (+26.8)

Black sbruce Wet-Cold 1289 12.9 (£5.2) 61.8 (£27.0)
P Dry-Warm 239 9.6 (+4.6) 51.4 (+18.2)
Dry-Cold 348 9.6 (£6.6) 47.1 (£21.9)

Jack pine Dry-Warm 1034 15.2 (£6.7) 69.3 (£25.1)
P Dry-Cold 462 10.2 (+2.5) 44.1 (+9.6)

Note: Data are presented as the mean (+standard deviation).
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We assigned the cutblocks and their plots to these distinct groups according to their temperature
and precipitation regimes (Figure 1). Principal component analyses (PCAs) were then used for each
group to assess the correlations among seedling growth, establishment substrates and environmental
variables at the regional, stand and microsite levels. PCAs were produced using CANOCO software
(version 5, Ithaca, NY, USA) [37,38].

3. Results

Our dataset comprised 4492 seedlings distributed across the two species and over the four regions
(Table 1). After three growing seasons, black spruce seedling ground collar diameter and height ranged
from 9.6 to 18 mm and from 47 to 90 cm, respectively, with the larger sizes observed in the wetter
regions. Jack pine seedlings, which were only found in the dry regions, respectively ranged from
10.2 to 15.2 mm in ground collar diameter and from 44 to 69 cm in height.

3.1. Black Spruce

Our predictive model explained 61% of variation in the data (Table 2). Several individual
environmental variables affected seedling growth at the stand and regional levels, including slope
and monthly mean temperature. Significant interactions also were observed among environmental
variables at microsite, stand and regional scales. These included two-way interactions between
substrate type and total monthly precipitation, substrate type and surface deposit, soil temperature
and surface deposit as well as drainage and surface deposit; significant three-way interactions were
observed for substrate type, surface deposit and drainage, and for substrate type, drainage and slope
(Table 2). No effects on seedling growth were reported for relative humidity, humus thickness and
planting position (Table 2).

Table 2. ANOVA summary of the effect of the explanatory variables and their interactions at three
spatial scales on the relative growth volume of black spruce and jack pine seedlings in the boreal forest

of Quebec.
Black Spruce Jack Pine
Explanatory Variables (Model R? = 0.61) (Model R? = 0.75)
F-Value p-Value * F-Value p-Value *
Humus thickness 0.944 0.331 0.790 0.374
Microsite scale Planting position 1.055 0.384 0.357 0.840
Substrate temperature (°C) 0.649 0.420 2.775 0.096
Substrate type 1.429 0.199 1.661 0.127
Surface deposit 0.598 0.621 5.627 0.001
Stand scale Drainage class 1.608 0.206 0.291 0.884
Slope class 3.928 0.007 2.773 0.040
Precipitation (mm) 0.103 0.748 1.953 0.162
Regional scale Temperature (°C) 8.067 0.009 1.425 0.233

Relative humidity (%) 0.067 0.796 1.030 0.310
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Table 2. Cont.

Black Spruce Jack Pine
Explanatory Variables (Model R? = 0.61) (Model R? = 0.75)
F-Value p-Value * F-Value p-Value *
Substrate type X Substrate 1.399 0211 2713 0.008
temperature
Substrate type x Precipitation 3.742 0.001 4.385 0.002
Substrate type x Relative humidity 1.604 0.142 1.954 0.070
Substrate type x Planting position 0.889 0.633 1.544 0.055
Substrate type x Surface deposit 2.031 0.018 3.205 0.001
Substrate type x Drainage class 1.050 0.399 2.069 0.006
Humus thickness x Surface deposit 1.170 0.320 0414 0.661
Interactions Planti — Sub
anting position X Substrate 1307 0.258 0.968 0.436
temperature
Planting position x Surface deposit 0.859 0.603 1.309 0.219
Planting position X Drainage class 1.443 0.139 0.807 0.671
Surface deposit X Substrate 2781 0.043 0.300 0.825
temperature
Surface deposit x Drainage class 2.329 0.034 1.039 0.385
Surface deposit X Slope class 0.580 0.679 1.355 0.255
Drainage class X Slope class 1.977 0.101 2.334 0.072
Substrate type X Substrate 0.750 0.690 2.222 0.030
temperature X Surface deposit
Substrate type x Planting position X 1.169 0241 1041 0.206
Drainage class
Substrate typg X Surface deposit x 2134 0.008 0.934 0505
Drainage class
Substrate type x Drainage class X 2500 0.002 0.827 0578
Slope class
Planting position X Substrate type x 1.402 0.09 0.810 0.676
Substrate temperature
Planting position X Dralr'lage class x 0.920 0565 0.926 0.508
Surface deposit
Surface deposit X Drainage class X 0563 0573 0.042 0.839

Slope class

* Values in boldface type are significant at p = 0.05.

In the Dry—Cold region (Figure 2a), seedling growth was favoured by mineral-type substrates
and moderate slopes. However, seedling growth was negatively influenced by litter, organo-mineral,
fibric and humic substrates, together with zero slopes. In the Wet-Cold region (Figure 2b), seedling
growth was favoured by an increase in substrate temperature. Increased seedling growth also has
been associated with the presence of litter and organo-mineral substrates, and sites with poor to
imperfect drainage on rocky surface deposits. Seedling growth was negatively influenced by fibrous
substrates, especially at sites with thick surface deposits (thick tills). In the Dry-Warm region (Figure 2c),
seedling growth was favoured by fibrous substrates, but negatively affected by mineral substrates.
Thick surface deposits, imperfect drainage and gentle slopes appeared to favour seedling growth. In the
Wet-Warm region (Figure 2d), seedling growth was higher for seedlings that were planted in humic
(poorly drained sites) and fibric (well-drained sites) substrates. Sites on thick surface deposits (thick
tills), with moderate and extreme slope classes, favoured seedling growth. In addition, organo-mineral
substrates, glaciolacustrine surface deposits and shallow slopes negatively affected seedling growth in
this region.
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Figure 2. Principal component analysis (PCA) summary of black spruce growth responses to local
variables at the microsite level and soil variables at the stand level, within four regions that are
delineated by annual precipitation and average temperature: (a) Dry—Cold; (b) Wet-Cold; (c) Dry—Warm;
and (d) Wet-Warm.

3.2. Jack Pine

The predictive model explained 75% of variation in the jack pine data (Table 2). There was
a significant effect of slope (stand level) on seedling growth. Further, significant two- and three-way
interactions were observed among environmental variables at the microsite, stand and regional
scales. Interactions involved substrate type and ground temperature, substrate type and total monthly
precipitation, substrate type and surface deposition and substrate type and drainage. As was the case
with black spruce, we encountered no significant effects of relative humidity, humus thickness and
planting position on jack pine seedling growth (Table 2).

The representative jack pine plots were located in the western portion of the study area, i.e.,
the driest areas of the gradient. In the Dry—Cold region (Figure 3a), seedling growth was favoured
by humic substrates and sites with thin till and glaciolacustrine surface deposits, which has been
characterized by imperfect to moderate drainage. Lower jack pine seedling growth was associated
with well-drained sites. Slope classes did not influence jack pine seedling growth in these two regions.
In the Dry—Warm region (Figure 3b), jack pine seedling growth was favoured by increased substrate
temperature, together with fibrous, litter, humic (sites with till deposits) and organo-mineral substrates.
In addition, seedling growth was negatively affected by mineral-type substrates, particularly on sites
with thin surface deposits (thin tills) and rapid drainage.
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Figure 3. Principal component analysis (PCA) summary of jack pine growth responses to local variables
at the microsite level and soil variables at the stand level, within four regions that are delineated by
annual precipitation and average temperature: (a) Dry—Cold; and (b) Dry—Warm.

4. Discussion

We found that growth responses of black spruce and jack pine seedlings were closely associated
with regional climate variables (temperature and precipitation), which allows a better understanding
of both stand scale soil conditions effects (surface deposit types, drainage and slope) and local
conditions effects at the microsite scale (types of establishment substrate and soil temperature) (Table 2).
These responses are consistent with several previous studies [39-41].

4.1. Black Spruce

In the boreal forest, black spruce can establish on many types of surface deposits, with a preference
for deep forest soils and deposits (e.g., thick tills) [42] due to high nutrient availability [43,44].
Nevertheless, growth of black spruce is sensitive to water availability in surface deposits and
the overlaying soil. Indeed, the species is adversely affected by extreme water levels in the soil,
including those causing water stress [45,46] or chronic flooding conditions [47-49]. Thus, moderately
to well-drained sites are to be preferred for reforestation activities to increase the success of black
spruce establishment [42]. At the microsite scale, reforestation on north-facing slopes should also be
preferred, given that these locations are characterized by relatively favourable moisture conditions for
seedling establishment [10,50].

In the dry regions (Figure 2a,c) of our study area, regardless of whether they are warm or
cold, access to water is a limiting factor for conifer growth, especially during the establishment and
juvenile stages [51]. Water availability in establishment substrates substantially influences seedling
growth during these periods [52,53]. Organic and mineral substrates offer the best conditions for
seedling growth, under conditions of both excess moisture (e.g., paludified sites) and moisture
deficiency (e.g., clay substrates characterized by their high moisture retention capacity, even during
dry periods) [10,11,52,53]. In Wet—Cold regions (Figure 2b), substrate temperature is considered
an important factor limiting seedling growth [54,55], particularly when decomposition processes are
slowed by low temperatures [56].

The growth of black spruce seedlings is positively related to increasing temperature [57-59],
but only up to a certain limit above which physiological processes are negatively affected [60,61].
In Wet-Cold region, organo-mineral substrates are the best substrates for establishing
seedlings [14,62,63]. When an optimal balance is attained between mineral and organic fractions,
organo-mineral substrates are good thermal insulators (soil temperature conservation) [64]
and are characterized by high moisture retention and natural drainage in the case of excess



Forests 2020, 11, 139 9 of 14

water [65]. In addition, organo-mineral substrates provide seedlings with direct access to nutrients,
thereby stimulating expansion of initial roots and the appearance of adventitious roots [49,66-68].

In the Wet-Warm region (Figure 2d), seedling growth was favoured by fibrous and humic organic
substrates yet constrained on mineral and organo-mineral substrates. Excess water naturally drains
from organic substrates, owing to their porous texture, thereby reducing the risk of anaerobiosis
when compared to fine-textured mineral substrates (e.g., predominantly clay). The latter pose high
risks for root asphyxiation due to surface water stagnation and reduced gas exchange, particularly in
depressions [17,69-71]. In addition, elevated temperature and moisture conditions can contribute to
increased microbial activity in organic substrates. Increased microbial activity, in turn, increases the
availability of nutrients, especially N, which has a positive effect on seedling growth [72,73].

4.2. Jack Pine

Jack pine is less sensitive to temperature variation than black spruce [60,74,75]. While moderate
temperature increases favour the growth of jack pine seedlings, higher temperatures lead to slower
growth [60,74-76]. Several studies have confirmed the influence of precipitation regime and soil
conditions on jack pine establishment in the boreal forest [77-79]. Jack pine generally performs
better than black spruce in dry conditions [25,80-82]. Well-drained surface deposits, including till,
fluvio-glacial expanses and lacustrine and sandy deposits, promote jack pine growth [83-86]. Further,
jack pine performance is better on dry, well-drained mineral and organic substrates, particularly
sand, silty sand and humus, compared to poorly drained wet substrates [83,85,87]. In the dry
regions of our study area (Figure 3a,b), we found that jack pine seedling growth was favoured by
organic (fibric, humic and litter) and organo-mineral substrates. Organic microsites are characterized
by high porosity, which permits very rapid drainage of water, thereby providing a relatively dry
and favourable environment for seedling growth [84,88-90]. In well-drained dry environments,
organo-mineral substrates allow natural moisture drainage and thus promote the establishment of jack
pine seedlings [91].

5. Conclusions and Implications for Forest Management

Future climate change will directly affect tree growing conditions in the boreal forest zone [92].
In eastern Canada, tree species will be particularly vulnerable to temperature increases [25].
Our analyses allowed us to identify regional, stand and microsite variables that affect the growth of
recently planted black spruce and jack pine seedlings. Our results thus make it possible to consider
how plantation silviculture will have to be adapted to promote the success of seedling establishment in
the face of climate change.

We demonstrated that black spruce and jack pine establishment in boreal Quebec depends upon
regional climatic conditions. In turn, regional climate interacts with soil conditions at the stand
level and local conditions at the microsite level. In the dry regions of our study area, black spruce
seedling growth was favoured on microsites that were dominated by a fibric and mineral substrate
and on moderate slopes. In the Wet—Cold regions under study, growth of black spruce seedlings
was favoured by the increase in substrate temperature, the presence of microsites that are dominated
by a litter and organo-mineral substrate and on rocky surface deposits with poor drainage. In the
Wet-Warm regions of our study, the growth of black spruce seedlings was favoured by microsites that
are dominated by a humic substrate on poorly drained sites and fibric on well-drained sites. Sites with
thick till deposits, with moderate and extreme slope classes, appeared to favour the growth of black
spruce seedlings. Growth of jack pine seedlings in the dry regions of our study area (the only sites
that were sampled for this species) was favoured by microsites that were dominated by organic and
organo-mineral substrates.

Some regions had fewer plots than others did, as the distribution of the plots was dependent
on operational management planning and reforestation activities during the corresponding years,
combined with constraints related to plot establishment in remote areas. Our study is ongoing,
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with new plots being added in new plantations across the entire study area to better balance the design.
Further measurements and analyses that will include a larger set of plots will thus allow confirming
the robustness of our first conclusions.
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