1	
2	Production, characterization and potential of
3	activated biochar as adsorbent for phenolic
4	compounds from leachates in a lumber industry
5	site
6 7 8 9	
10	Flavia Lega Braghiroli ^{1,2} , Hassine Bouafif ² , Nesrine Hamza ¹ ,
11	Carmen Mihaela Neculita ³ , Ahmed Koubaa ¹
12	
13	
14	¹ Research Forest Institute (Institut de recherche sur les forêts - IRF), University of Québec in
15	Abitibi-Témiscamingue (UQAT), 445 Boul. de l'Université, Rouyn-Noranda, QC J9X 5E4,
16	Canada
17	² Centre Technologique des Résidus Industriels (CTRI, Technology Center for Industrial Waste),
18	Cégep de l'Abitibi-Témiscamingue (College of Abitibi-Témiscamingue), 425 Boul. du Collège,
19	Rouyn-Noranda, QC J9X 5E5, Canada
20	³ Research Institute on Mines and Environment (RIME), University of Québec in Abitibi-
21	Témiscamingue (UQAT), 445 Boul. de l'Université, Rouyn-Noranda, QC J9X 5E4, Canada
22	
	* Corresponding author: (F.L. Braghiroli); Tel: +1 (819)-762-0931 ext. 1748; Fax: +1 (819)-762-0906; Email: Flavia.Braghiroli@uqat.ca

Abstract

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

There is growing interest in low-cost, efficient materials for the removal of organic contaminants in municipal and industrial effluents. In this study, the efficiency of biochar and activated biochar, as promising adsorbents for phenol removal, was investigated at high (up to 1500 mg L⁻¹) and low concentrations (0.54 mg L⁻¹) in synthetic and real effluents (from wood-residue deposits in Québec), respectively. The performance of both materials was then evaluated in batch adsorption experiments, which were conducted using a low solid: liquid ratio (0.1 g:100 mL) at different phenol concentrations ($C_0 = 5-1500 \text{ mg L}^{-1}$), and at 20°C. Activated biochars presented higher phenol adsorption capacity compared to biochars due to their improved textural properties, higher micropore volume, and proportion of oxygenated carbonyl groups connected to their surface. The sorption equilibrium was reached within less than 4 h for all of materials, while the Langmuir model best described their sorption process. The maximum sorption capacity of activated biochars for phenol was found to be twofold relative to biochars (303 vs. 159 mg g⁻¹). Results also showed that activated biochars were more effective than biochars in removing low phenol concentrations in real effluents. In addition, 95% of phenol removal was attained within 96 h (although 85% was removed after 4 h), thus reaching below the maximum authorized concentration allowed by Québec's discharge criteria (0.05 mg L⁻¹). These results show that activated biochars made from wood residues are promising potential adsorbent materials for the efficient treatment of phenol in synthetic and real effluents.

42

- 44 **Keywords:** Biochar, activated biochar, adsorption, phenol removal, water treatment, synthetic and
- 45 real effluents, lumber industry sites

1. Introduction

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

As a main component of many manufactured products, including herbicides, drugs, paints, cosmetics, and lubricants, phenol has been found in various industrial effluents such as those from oil refineries, coking operations, as well as petrochemical, pharmaceutical and resin manufacturing industries (Patterson 1985). Phenol is harmful to organisms even at low concentrations (e.g., 1.0 mg L⁻¹) (Mishra and Clark 2013), while human consumption of phenol-contaminated water can cause serious gastrointestinal damage and even death (Baker et al. 1978). The US Environmental Protection Agency and EU regulations consider phenol a priority pollutant; as such, its maximum admissible concentration in drinking water is fixed at 0.0005 mg L⁻¹. The Canadian maximum acceptable concentration for phenol in drinking water is 0.002 mg L⁻¹ (Health Canada 2014). Furthermore, according to Québec municipalities, the concentration of phenolic compounds in sewage systems should not exceed 0.5 mg L⁻¹ after treatment at a municipal wastewater treatment station (MDDELCC 2015a). The phenolic compounds originating in wood-residue deposits can also pose a problem to the environment. Québec's wood-processing sector, for example, generates significant quantities of residues (i.e., bark, sawdust) annually and discharge/store them in large outdoor deposits. In northern Québec alone, there are 12 large wood waste sites (MDDELCC 1997). The main concerns about these sites relate to leachates that contain phenolic compounds, which may affect the quality of surface and groundwaters. Therefore, Québec's guidelines require concentrations not exceeding 0.05 mg L⁻¹ for phenolic compounds in leachate from wood-residue deposits (MDDELCC 2015b). Several processes are available for the treatment of phenol and its derivatives through separation, destruction, or oxidation, including steam distillation (Kim 2015), solvent extraction (Fu et al. 2014), chemical oxidation (Gümüş and Akbal 2016), membranes (Ren et al. 2017), biological processes (Ganzenko et al. 2014), photo-oxidation (UV irradiation, TiO₂) (Sun et al. 2011), enzymatic processes (Ibáñez et al. 2012), and adsorption (Ahmaruzzaman 2008; Nath et al. 2013). Adsorption is frequently used since it has the capacity to remove high concentrations of organic and inorganic compounds in water. One of the best adsorbents used for this application is activated carbons prepared from low-cost biomass precursors, together with chemical or physical agents, at high temperatures thermal treatment. Activation is an alternative method for improving the textural properties and chemical composition of biomass precursors with the removal of less organized bound carbonaceous materials (i.e., CO, CO₂, etc.) at high temperatures (Marsh and Rodríguez-Reinoso 2006).

As the global demand for commercial activated carbons as adsorbents in environmental and health protection grows, so too does interest among research and industrial communities in converting biochar (a carbon-rich material produced through pyrolysis or gasification of biomass in the absence of oxygen) into activated biochar due to its low porosity and surface area (Freedonia Group 2014). The advantages of activated biochar include low-cost, availability, economic feasibility in large-scale production, and effectiveness in several applications such as energy storage (Dehkhoda et al. 2016), electrodes for batteries and supercapacitors (Gupta et al. 2015), catalyst support (Zhu et al. 2015), and in the treatment of drinking water and wastewater by sorption (Tan et al. 2015).

Indeed, some studies have found activated biochars efficient for the removal of organic pollutants such as phenol. By comparing the same adsorbent material to contaminant ratio (0.1 g:100 mL), the sorption capacity of steam-activated biochar made from corncobs was reported to be 164 mg g⁻¹ (El-Hendawy et al. 2001), whereas the sorption capacity of activated biochars made from rattan sawdust (Hameed and Rahman 2008) and fir wood (Wu and Tseng 2006), prepared in

presence of both physical and chemical agents (KOH and CO₂ gas), were found to be 149 and 275 mg g⁻¹, respectively. Furthermore, it has been reported that the adsorption equilibrium of phenol through the use of activated biochar made from palm seed coats (Rengaraj et al. 2002) and rattan sawdust (Hameed and Rahman 2008) was reached within 3 h and 4 h, respectively. However, most of the studies on phenol removal were based on batch sorption of highly contaminated synthetic effluents (Hameed and Rahman 2008; Wu and Tseng 2006; Zhang et al. 2016). Given the fact that the dominant mechanism of phenol removal is sorption, the surface characteristics of solids (specific surface area, porosity, pH_{PZC} (the point of zero charge), the elemental composition C, H, N, S, O, and the content of surface functional groups of carbon and oxygen) are crucial. Therefore, materials with optimal surface characteristics would exhibit better performance.

The production of biochar is usually a two-step process: 1) torrefaction, low to fast pyrolysis, or gasification, and 2) activation, where biochar is introduced in another reactor at laboratory scale with a very low amount of material (< 10 g) in the presence of physical and chemical agents to obtain developed porosity (Shen et al. 2015; Li et al. 2016; Park et al. 2017). In the second step, parameters are easier to control due to the small amount of stationary precursor applied. To date, data on activated biochars prepared from biomass and biochar thermochemical technologies at pilot scale are not yet available.

Thus, the objective of the present study was to compare the efficiency of biochars and activated biochars (made from spruce and birch through pilot-scale technologies of pyrolysis and activation in the presence of CO₂ physical agent) as potential adsorbents for the removal of phenol at high (up to 1500 mg L⁻¹) and low (0.54 mg L⁻¹) concentrations, in synthetic and real effluents, respectively.

2. Materials and methods

2.1 Materials

Black spruce (BS) and white birch (WB) residues were sampled from sawmills located in Abitibi-Témiscamingue region, Province of Québec, Canada. The residues were milled using a 6 mm Hammer-mill's grate (Industrial grinder, Schutte Buffalo, Hammer Mills, Buffalo, NY, USA) and dried to obtain a humidity content bellow 40% (Dryer, Abri-Tech Inc., Namur, QC, Canada) before being introduced into the pyrolysis process.

2.2 Synthesis of biochar and activated biochar

The present study was conducted in three steps: 1) production of biochar, 2) activation of biochar, and 3) application of both materials for the evaluation of their comparative performance in phenol adsorption. In the first step, biochars were prepared using the CarbonFX fast pyrolysis technology developed by Airex Energy Inc. (Bécancour, QC, Canada). The biomass was converted into biochar at temperatures either 315°C (600°F) or 454°C (850°F) with little presence of oxygen. The resulting biochars made from BS and WB residues were then milled between 1 and 2 μm (Grinder, Ro-tap RS-29, WS Tyler, Mentor, OH, USA) and placed in a 1 kg charge pilot oven (developed at the CTRI laboratory) for activation. This oven is composed of a feed hopper, a screw-conveyor tube placed in a muffle furnace, and a recovery hopper. The biochar was transported from the feed to the recovery hopper through the screw-conveyor, which is driven by a motor. When the temperature reached 900°C under a nitrogen atmosphere, the flowing gas of CO₂ was introduced at 3 L min⁻¹. The biochars were labeled WB315, WB454, and BS454, and after activation, a letter "A" was added to each material's name (e.g., WB315A).

2.3 Physical and chemical characterization of biochar and activated biochar

Wood residues were characterized before and after modification for their physicochemical parameters: specific surface area and pore volume, pH, pH_{PZC} (i.e., pH value related to zero electrical charge density of the sorbent surface), elemental composition (C, H, N, S, O), surface

morphology and surface chemistry. Pore texture parameters were obtained by N₂ and Kr adsorption at -196°C, and CO₂ at 0°C, using a Micromeritics ASAP 2460 automatic apparatus (Norcross, GA, USA). Wood residues, biochars and activated biochars were degassed at 80, 105 and 250°C, respectively, for 48 h under vacuum prior to any adsorption experiment. The Kr adsorption analysis was carried out to measure low surface area of wood residues. Ultramicroporosity was analyzed by CO₂ adsorption, whereas micro- and mesoporosity was analyzed by N₂ adsorption. The N₂ and CO₂ adsorption isotherms were treated for obtaining: 1) surface area: S_{BET} (m² g⁻¹) calculated by the Brunauer-Emmett-Teller (BET) model applied to the nitrogen adsorption data in the appropriate range of relative pressures (P/P₀ between 0.01 and 0.05) (Brunauer et al. 1938); 2) micropore volume: V_μ (cm³ g⁻¹) was determined by the Dubinin–Radushkevich (DR) equation (Dubinin 1989); 3) total pore volume: V_t (cm³ g⁻¹) was calculated from the amount of nitrogen adsorbed at the relative pressure of 0.97 (Gregg and Sing 1991); 4) mesopore volume: V_m (cm³ g⁻¹) calculated by the difference $V_t - V_{\mu}$. The pore size distribution (PSD) was determined by application of density functional theory (DFT) using N₂ adsorption isotherms (Tarazona 1995). Elemental composition of all materials was determined in a CHNS elemental analyzer, Perkin Elmer 2400 CHNS/O Analyzer (Waltham, MA, USA), by combustion of the samples in a stream of pure O_2 . Oxygen content was obtained by the difference (O% = 100 - CHNS%). The pH was measured using a SevenMulti, Mettler Toledo (Greifensee, Switzerland) equipped with Inlab Routine Pro electrode. The pH_{PZC} was determined for all materials using the solid addition method (Lazarević et al. 2007; Mohan and Gandhimathi 2009; Belviso et al. 2014). The difference between the initial pH (pH_i) and final pH (pH_f) (Δ pH = pH_i - pH_f) was plotted against pH_i. The point of intersection of the resulting curve for each material with pH_i gave the pH_{PZC} . The surface morphology of WB454A before and after phenol adsorption was investigated with a JEOL JSM-5500 (JEOL USA, Inc., Peabody, MA, USA) scanning electron microscope (SEM) after

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

metallization (i.e., the material was mounted on gold studs). X-ray photoelectron spectroscopy (XPS) spectra were recorded with a Kratos AXIS ULTRA system (Wharfside, MA, UK) equipped with a channel electron multiplier detector. The X-ray source had a monochromatic Al K-alpha operated at 300 W under vacuum at 5 x 10⁻¹⁰ Torr. Binding energies for the high-resolution spectra were calibrated by setting C1s at 284.6 eV. The XPS core level spectra were analyzed with Casa software.

2.4 Adsorption kinetics experiments

Kinetic studies were performed to evaluate the time required to reach the equilibrium in the system containing the adsorbent and the synthetic effluent. The experiments were conducted in 100 mL beakers containing 0.05 g of adsorbent material together with 50 mL of synthetic effluent having a phenol concentration of 200 mg L⁻¹. The supernatants were sampled at 2 h, 4 h, 6 h, 8 h, 10 h, 12 h, 18 h, 24 h, and 48 h. The beakers were placed on a multi-position stirring plate, at 500 rpm, and at room temperature (20°C). The solid (g):solution (mL) ratio was maintained at 0.1:100 to compare the performance of all six materials with other activated biochars in the literature (El-Hendawy et al. 2001; Hameed and Rahman 2008; Wu and Tseng 2006). The pH of the supernatant was measured at the beginning and after 48 h of contact time with the adsorbent. The supernatants were filtered, and the residual phenol was measured with an Ultrospec 2100 pro UV/Visible Spectrometer (Biochrom US, Holliston, MA, USA), at 270 nm. This procedure was carried out for all six materials: 3 biochars (WB315, WB454, and BS454) and 3 activated biochars (WB315A, WB454A, and BS454A).

The absorbance was recorded and the residual phenol concentration in the final solution was calculated through a calibration equation: $y = 0.0156 \cdot x - 0.0014$ ($R^2 = 0.9995$) where y is the absorbance, and x is the final phenol concentration. Sorption capacity q_t (mg g^{-1}) was calculated with the application of Eq. 1:

$$q_{t} = \left[C_{0} - C_{t}\right] \cdot \frac{V}{m} \tag{1}$$

191

192

193

194

200

201

202

187 where C_0 , C_t , V, and m represent, respectively, the concentrations of phenol in solution (mg L⁻¹) at 188 the initial and at t moment, the total volume of solution (L), and the amount of the material used 189 (g).

The equations of pseudo-first rate equation of Lagergren, and pseudo-second order model (Lagergren 1898) were employed to describe phenol adsorption kinetics. The Lagergren model is the most widely used rate equation in liquid-phase sorption processes, and it can be represented by Eq. 2. After integration of Eq. 2 for the initial conditions t = 0 and $q_t = 0$, the linearized form of the pseudo-first order rate Eq. 3 is presented as:

$$\frac{dq_t}{dt} = k_1 \left(q_e - q_t \right) \tag{2}$$

$$\log(q_e - q_t) = \log(q_e) - k_1 \cdot \frac{t}{2.303} \tag{3}$$

where q_e and q_t refer to the amount of phenol adsorbed (mg g⁻¹) at equilibrium and at any time, t (h), respectively, and k_1 is the equilibrium rate constant of pseudo-second order adsorption (h⁻¹). Eq. 3 gives a straight line: $\log (q_e - q_t)$ versus t, if it applies.

The pseudo-second order kinetic model is represented by Eq. 4. After integration of Eq. 4 for the initial conditions t = 0 and $q_t = 0$, the linearized form of the pseudo-second order rate equation is presented as Eq. 5, which can be rearranged to obtain a linear form (Eq. 6):

$$\frac{dq_t}{dt} = k_2 \left(q_e - q_t \right)^2 \tag{4}$$

$$\frac{1}{(q_e - q_t)} = \frac{1}{q_e} + k_2 \cdot t \tag{5}$$

$$\frac{t}{q_t} = \frac{1}{k_2 \cdot q_e^2} + \frac{1}{q_e} t \tag{6}$$

where k_2 is the kinetic constant of pseudo-first order adsorption (g (mg h)⁻¹). If Eq. 6 applies, it should have a straight line: t/q_t versus t.

Elovich's equation describes the chemical adsorption mechanism and is suitable for systems with heterogeneous adsorbing surfaces (Aharoni and Tompkins 1970). Eq. 7, once rearranged, reads:

$$q_t = \frac{1}{h} \cdot \ln(ab) + \frac{1}{h} \cdot \ln(t) \tag{7}$$

- where a is the initial adsorption rate (mg (g h)⁻¹), and the parameter 1/b is related to the number of sites available for adsorption. Thus, the constants can be obtained from the slope and the intercept of a straight line plot of q_t against $\ln(t)$.
- 2.5 Adsorption equilibrium experiments

208

209

210

226

227

216 The tests of isotherm adsorption were conducted at different initial concentrations of phenol (5, 10, 20, 50, 100, 200, 500, 1000, and 1500 mg L⁻¹) under the same conditions as the kinetics 217 experiments with synthetic effluent. The pH of the supernatant was measured at the beginning and 218 219 at the end of equilibrium experiments (after 48 h). The same procedure was used for all six materials (3 biochars and 3 activated biochars). Sorption capacity q_e (mg g⁻¹) was calculated with Eq. 8 where 220 C₀, C_e, V, and m represent, respectively, the concentrations of phenol (mg L⁻¹) at the initial and 221 222 equilibrium solutions, the total volume of solution (L), and the amount of the material used (g). The adsorption (%) was calculated with Eq. 9: 223

$$q_e = \left[C_0 - C_e\right] \cdot \frac{V}{m} \tag{8}$$

225
$$Adsorption (\%) = \left[C_0 - C_e\right] \cdot \frac{100}{C_0}$$
 (9)

The Langmuir adsorption model is the most commonly used model to investigate the sorption phenomena of an organic pollutant. It assumes that the adsorption is localized, there is no

interaction between adsorbate molecules and adsorbent, and that the maximum limiting uptake corresponds to a monolayer phenol formed on the adsorbent surface (Langmuir 1918). The Freundlich adsorption model is used to describe the adsorption characteristics of the heterogeneous surface of the adsorbent (Freundlich 1906). The linearized form of Langmuir and Freundlich model equations are represented by the following Eq. 10 and 11, respectively:

$$\frac{C_e}{q_e} = \frac{1}{b \cdot q_{max}} + \frac{C_e}{q_{max}} \tag{10}$$

228

229

230

231

232

$$\log q_e = \log k_f + n \cdot \log C_e \tag{11}$$

where C_e and q_e have the same meaning for both equations, q_{max} is the maximum uptake per unit mass of adsorbent (mg g⁻¹) and b is the Langmuir constant related to the adsorption energy (L mg⁻¹) while k_f and n are Freundlich coefficients. The constant b allows the determination of the R_L equilibrium parameter through Eq. 12:

$$R_{L} = \frac{1}{1 + b \cdot C_{0}} \tag{12}$$

- R_L indicates the shape of the isotherm, and the interpretation of the results is based on the following meaning: at $R_L = 0$, the adsorption is irreversible; $0 < R_L < 1$, the adsorption is favorable; at $R_L = 1$, the adsorption is linear; and at $R_L > 1$, the adsorption is unfavorable.
- The Temkin isotherm is a linear model applied for investigating the kinetics of phenol adsorption (Eq. 13). Temkin and Pyzhev (1940) considered the effect of the heat of adsorption during adsorbent–adsorbate interactions. Therefore, the heat of sorption of all the molecules in the layer would decrease linearly with such interactions.

247
$$q_e = k_1 \cdot \ln(k_2) + k_1 \cdot \ln(C_e)$$
 (13)

248 where k_1 is related to the heat of adsorption (L g⁻¹), and k_2 is the dimensionless Temkin isotherm constant.

2.6 Adsorption of phenol in a real effluent

The effluent containing phenol was collected from a wood-residue deposit located in Taschereau, Abitibi-Témiscamingue, QC, Canada. The same solid:liquid ratio (0.1 g:100 mL), and testing conditions (applied for the kinetics and isotherms studies of phenol in synthetic effluents) were also applied for a real effluent. The supernantants were sampled at 2 h, 4 h, 8 h, 24 h, and 48 h. To analyze low concentrations of phenol (< 0.015 ppm) in water media, another colorimetric method (Ettinger et al. 1951) was applied. In this last method, the sample was first distilled and then mixed with an alkaline buffer (pH close to 10), potassium ferricyanide and 4-aminoantipyrine solutions to form a colored complex. The coloration was concentrated with chloroform, and then the absorbance of phenol was measured and compared with a calibration curve.

2.7 Reutilization and thermal regeneration cycles of activated biochar

Reutilization and regeneration tests were performed with an activated biochar (WB454A) for five-cycle adsorption tests. Adsorption tests were conducted using phenol synthetic solution at 5 mg L⁻¹ (phenol synthetic solution similar to real effluent) under the same conditions as the isotherm experiments. After each cycle, the solid material was recovered and dried in air overnight to be reused or regenerated in the next cycle. Thermal regeneration experiments were performed at 600°C for 1 h in a Netzsch STA 449 F5 Jupiter equipment (Exton, PA, USA), using a He flow rate of 50 mL min⁻¹ and heating rate of 10°C min⁻¹. The efficiency of phenol adsorption in both tests was determined using Eq. 9.

3. Results and discussion

3.1 Characterization of biochars and activated biochars

In this study, wood residues from birch and spruce were first converted into biochars and then activated biochars. Both biomass materials presented similar physicochemical characteristics

(Table 1). Carbon and oxygen contents of WB were 46.7 and 45.6%, while those of BS were 48.4 and 44.0%, respectively. Hydrogen, nitrogen, and sulfur were similar/identical in both materials: 6.5, 0.1-0.2, and 1%, respectively. The porosity (obtained from Kr adsorption analysis) was quite low – up to 0.5 m² g⁻¹ – for each material. The thermal treatment led to higher carbon content in biochar. The latter increased to 60.8% for WB at 315°C and to 75% for both materials, WB and BS, treated at 454°C. The oxygen and hydrogen contents decreased due to the thermal degradation of oxygenated and hydrogenated groups present in wood residues.

Biochars did not present developed porosity due to low temperatures (i.e., $< 450^{\circ}\text{C}$) and the short residence time (approximately 2 s) in the fast-pyrolysis reactor. Moreover, attempts using N_2 gas for adsorption analysis of biochars were unsuccessful as the latter is generally highly microporous, presenting ultramicropores (below 0.7 nm). Such limitations of ultramicroporosity analysis using N_2 are due to diffusion restrictions at low pressures, which prevent nitrogen from entering the narrowest micropores. The use of CO_2 , rather than N_2 (-196°C), for adsorption analysis is suggested once the analysis is achieved at moderate pressures and low temperatures (0°C) (Garrido et al. 1987; García-Martínez et al. 2000). The surface areas of biochars through CO_2 adsorption were 177 and 208 m² g⁻¹ (for WB and BS made at 454°C), and 78 m² g⁻¹ (for WB biochar at 315°C).

Activated biochars that presented the highest porosity and surface area were chosen from a preliminary optimization study on different conditions of pyrolysis of WB and BS residues, and posterior activation. From WB, two materials with the same textural properties (up to 880 m² g⁻¹) (Table 1) were selected to evaluate their performance on phenol adsorption: one prepared at the lowest pyrolysis temperature (315°C), and the other prepared at the highest pyrolysis temperature (454°C) displayed on CarbonFX technology, and posterior activation at 900°C. From BS residues,

the activated biochar selected that had the highest porosity (735 m² g⁻¹) was prepared at a pyrolysis temperature of 454°C. The nitrogen adsorption-desorption isotherms at -196°C for all activated biochars are presented in Fig. 1 (Online Resource 1). Nitrogen adsorption isotherms were combinations of types I and IV, characteristic of micro-mesoporous solids according to the IUPAC classification (Sing 1985). The existence of a well-developed mesoporosity was confirmed by the presence of a hysteresis cycle. In relation to pore volume, the proportion of mesopores for each material was found to be 31, 38, and 28% for WB315, WB454, and BS454, respectively, with the rest consisting of micropores.

The pH of biochars were 5.2 (WB315), 5.6 (WB454), and 6.3 (BS454), whereas activated biochars presented pHs between 9.5 and 9.8. Therefore, biochars decreased the pH of the solution (5–7), whereas activated biochars increased the pH of the solution (6.5–8.5) over time. The same trend for pH_{PZC} was noted for both groups of materials: low pH_{PZC} (6.3–7.0), for biochars and high pH_{PZC} (9.5–10) for activated biochars. The pK_a of phenol was reported to be 9.89 (László and Szücs 2001). Above the pH_{PZC} of the carbon, which practically coincides with the pK_a of phenol, mainly phenolate anions are formed in aqueous solution. At pHs lower than pK_a (i.e., the scenario of the present study), phenol molecules were found to be in non-dissociated form. Most previous research on phenol sorption by activated carbons did not report a change in the pH of the solution (Wu and Tseng 2006; Rincón-Silva et al. 2015; Zhang et al. 2016) (also the case in this study), whereas some studies reported an optimal pH lower than 8 (Hameed and Rahman 2008), between 7 and 8 (Kilic et al. 2011), or lower than 10 (Nabais et al. 2009).

The XPS spectra were deconvoluted into the five peaks of graphitic sp², C-OH, C=O or C-O-C, O=C-O, and shake-up satellites. The most intense band is assigned to graphitic sp² carbon. The other bands connected to the presence of several C-O bonds. Activated biochars (prepared at

900°C) presented higher graphitic sp² carbon content (up to 76.6%) compared to biochars (up to 72.0%), whereas biochars (prepared at lower temperature: 454°C) presented higher content of C–O bonds, especially alcohol (C–OH) (up to 18.4%), compared to activated biochars (up to 12.8%). The oxygenated functional groups contents were drastically reduced with pyrolysis, and posterior activation. Several carbon species localized at the materials' surface were deconvoluted into multiple Gaussian components (XPS spectra C1s excitation) as reported in Table 2 (Online Resource 2).

3.3 Kinetics of phenol adsorption

Evolution of adsorption kinetics of phenol on biochars and activated biochars shows that higher adsorption capacity of phenol was reached for all activated biochars (184 mg g⁻¹) compared to biochars (71 mg g⁻¹). The majority of materials reached the adsorption equilibrium within less than 4 h (Fig. 2), whereas some, such as WB315 and BS454A, required up to 18 h (with over 50% of equilibrium sorption capacity obtained in less than 4 h). In order to analyze the adsorption kinetics of phenol, pseudo-first, pseudo-second order, and Elovich's equation were investigated. The derived kinetic parameters of these models (Table 3) show that experimental data obtained from activated biochars were better fitted than biochars, as evidenced by the R^2 coefficients: 0.85–0.97 and 0.24–0.74, respectively. Activated biochars reasonably fit all models, but it is difficult to confirm which sorption kinetics can be more satisfactorily applied. To better understand the mechanism involved in sorption kinetics of both materials, the intraparticle diffusion model was proposed by Weber and Morris (1963), assuming that the intraparticle diffusion is considered as a rate-limiting step described by Eq. 14:

$$q_t = k_{id} \cdot t^{0.5} + \theta \tag{14}$$

where k_{id} is the intra-particle diffusion rate constant (mg (g h)^{-0.5}), and θ is a constant related to the thickness of the boundary layer (mg g⁻¹). If the sorption is controlled by intra-particle diffusion, the plot of q_t versus $t^{0.5}$ gives a straight line. The plots of the kinetics of phenol (qt) versus $t^{0.5}$ are not linear over the whole time of adsorption (Fig. 3). Therefore, if the sorption is controlled by multilinear plots (Fig. 3), then there is more than one step controlling the phenol sorption process. First, phenol is transported from the bulk to the external surface of the adsorbent. Second, it is diffused in the film of the boundary layer to the surface of adsorbate. Then, phenol is transported into macroand mesopores of the adsorbent. Finally, phenol is adsorbed onto active sites or micropores (Singh et al. 2008).

For biochars (except for BS454) and activated biochars, two straight lines control the mechanism of phenol adsorption. If the slope of the first straight line is not zero, then the film of boundary layer diffusion controls the initial adsorption rate. The first straight line indicates macroand mesopore diffusion; then, the second one shows micropore diffusion (Crini and Badot 2010). Activated biochars presented the same slope from the first straight line, indicating a similar rate of phenol adsorption in larger micropores and mesopores (Dąbrowski et al. 2005). On the contrary, biochars showed different slopes that varied due to different mass transfer in the stages of adsorption, except for BS454, which presented just one straight line, indicating that only micropore diffusion of phenol molecules occurred.

3.3 Adsorption isotherms

Equilibrium experiments in batch sorption were performed with the aim of evaluating pollutants interaction with adsorbent materials. Comparative adsorption isotherms of phenol (Fig. 4) show that activated biochars displayed twofold higher phenol sorption relative to biochars. Moreover, the phenol removal for all materials was found to decrease with increases in initial

concentrations. Activated biochars removed 90 to 100% of phenol at initial concentrations from 5 to 200 mg L⁻¹ (Fig. 5). At higher concentrations (500–1500 mg L⁻¹), the efficiency of phenol removal decreased to 50% or less (not shown in Fig. 5). At the same time, biochars presented much lower phenol adsorption (less than 50%) for almost all initial concentrations. Nevertheless, the amount of phenol adsorbed per unit of biochar or activated biochar mass increased with the increase in initial phenol concentration. Thus, at an initial concentration of 200 mg L⁻¹, the phenol removal capacity was 70.6 and 184.3 mg g⁻¹ for biochars and activated biochars, respectively, whereas at maximum initial concentration (1500 mg L⁻¹), the phenol removal capacity increased to 141.6 and 303.2 mg g⁻¹, respectively. An increment of the uptake was closely related to greater mass driving force effect that allows more adsorbates to pass through from the bulk phase boundary to the surface of all carbonaceous materials.

Most of the correlation coefficients (R^2) for Freundlich, Langmuir, and Temkin sorption models (Table 4) were higher than 0.90 for all biochars, whereas activated biochars were better fitted to Langmuir with a R^2 equal to 0.99. All equilibrium parameters (R_L) are comprised between 0 and 1; hence, the adsorption is considered favorable. The values of q_{max} were found to vary between 159 mg g⁻¹ for biochars (WB454), and 303 mg g⁻¹ for WB454A. The surface morphology differences between WB454A before and after phenol adsorption are illustrated in Fig. 6 a) and b). SEM image of pristine WB454A shows narrow and larger pores structures developed during fast pyrolysis, and posterior activation at 900°C. Based on these results (Fig. 6 b)), it is clearly noticeable that the surface porous structure of WB454A was completely covered with phenol molecules after adsorption.

Three mechanisms have been proposed for the sorption of phenol in solution by carbon materials: 1) π – π force interactions, 2) the hydrogen bonding formation, and 3) electron-donor-

acceptor complex formation (Rodrigues et al. 2011). The first mechanism, i.e., $\pi - \pi$ force interaction, occurs between π electrons present in the aromatic rings of phenol molecule and the delocalized π electrons present in basal planes of the carbon material. Some authors assume that oxygenated surface groups (phenol, carbonyl, lactone, and carboxyl) or acid groups bound to carbon may reduce the π electron density, lowering the π - π interactions, and consequently disfavoring the adsorption of phenol or aromatic compounds (Dabrowski et al. 2005; Singh et al. 2008; Zhang et al. 2016). According to Adamu et al. (2016), the abundance of oxygen–containing functional groups in the basal plane and edge planes of TiO₂-graphene oxide material (compared to thermally reduced graphene oxide) can inhibit delocalization of π -electrons or diminish π - π conjugation of the sp² domain. A mechanism was proposed showing $\pi - \pi$ and H-bonding interactions between the thermally treated material (presenting lower amounts of oxygenated groups, the same scenario as for activated biochar) and phenol aromatic rings. On the contrary, for non-thermally treated material (having abundant amount of oxygenated groups, the same scenario as for biochars), there is only H-bonding interactions with phenol molecules, which is the probably reason of its low phenol adsorption performance. The second mechanism assumes that water molecules may form complexes on the surface of carbon materials with oxygenated functional groups, and reduce phenol sorption. The third mechanism is based on the formation of electrondonor-acceptor complexes between the surface carbonyl groups (electron donors) and the aromatic rings of phenol (electron acceptors). In this last case, some authors state that carbonyl groups may act as electron donors with the aromatic rings of phenol (receptors), enhancing phenol adsorption (Terzyk 2003; Zhang et al. 2016).

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

In first and second mechanisms, oxygenated groups were found to be unfavorable to the adsorption by carbon materials whereas in the third mechanism, carbonyl groups enhanced phenol

adsorption. Positive correlations were observed in relation to the content of carbonyl groups present in activated biochars (Table 2; Online Resource 2). The WB454A presented the greatest phenol adsorption (303 mg g⁻¹), the highest surface area, total pore and micropore volumes (881 m² g⁻¹; 0.53 cm³ g⁻¹; 0.33 cm³ g⁻¹), and increased proportion of oxygenated groups (19.5%, 4.5% of carbonyl groups). The WB315A (i.e., the activated biochar that exhibited the lowest phenol adsorption (250 mg g⁻¹)) had similar surface area and pore volume to WB454A (873 m² g⁻¹; 0.48 cm³ g⁻¹; 0.33 cm³ g⁻¹) but lower carbonyl groups (3.7%). Therefore, the efficacy of WB454A for phenol uptake, compared to biochars and other activated biochars, is based not only on its developed porosity (high surface and pore volume), but also the presence of micropore volume, as well as the oxygenated functional groups (especially carbonyl groups).

3.4 Comparison of phenol sorption capacity

A comparison of phenol adsorption capacities by various types of adsorbents reported in the literature with the findings of the present study shows consistent trends (Table 5). Different phenol adsorption performances were observed when comparing activated carbons due to the different raw materials (e.g., coconut shells, lignocellulosic precursors, coffee grounds, soybean straw, etc.), activation methods (e.g., in presence of chemicals (KOH, H₃PO₄, ZnCl₂, NaOH, K₂CO₃)), physical agents (CO₂ or steam) or in presence of both agents (e.g., KOH or CO₂), different adsorbent:phenol effluent ratios, pHs, or initial concentrations of contaminant.

It was observed that most of the activated materials followed the Langmuir sorption model, and have great phenol sorption without changing the pH of the effluent. Activation through chemical or a combination of chemicals and physical agents showed highly developed surface area (up to 3000 m² g⁻¹), and, consequently, higher phenol sorption capacity. Birch- and spruce-activated biochars presented moderated surface area (up to 880 m² g⁻¹), but great phenol sorption was

obtained at 184 and 283 mg g⁻¹ (C₀ of 200, and 500 mg L⁻¹, respectively), compared to rattan-sawdust-activated biochar (at C₀ of 200 mg L⁻¹, 149 mg g⁻¹) or coconut-shell-activated carbon (at C₀ of 500 mg L⁻¹, 206 mg g⁻¹) using the same adsorbent:contaminant ratio (0.1 g:100 mL). Therefore, the efficacy of the activated biochars made from wood residues (WB and BS) through pilot-scale technologies was higher than other prepared activated carbons. These findings suggest that the use of wood residues from northern regions in wastewater treatment has a promising future.

3.4 Phenol removal in real residue park

The initial concentration of phenol in the lixiviate collected in a wood-residue deposit was 0.54 mg L⁻¹, i.e., exceeded the Québec regulatory criteria of 0.05 mg L⁻¹ (MDDELCC 2015b). Activated biochars were highly effective at removing low phenol concentration, i.e., more than 85% (WB315A, WB454A, and BS454A) after 4 h of testing (Fig. 7). In addition, biochars allowed only a gradual removal of phenol of 39, 65, and 79% (BS454, WB454, and WB315, respectively) by the end of the 48 h testing period. After 96 h of testing, phenol removal topped 95% with activated biochars vs. 79% with biochars. The sorption of activated biochars seems to be not affected by the nature of the precursor (BS or WB) after 96h testing. However, only activated biochar WB454A resulted in regulatory conformity with the Québec law after 2 days of testing (0.037 mg L⁻¹ of residual phenol).

3.5 Reutilization and thermal regeneration cycles of activated biochar

Activated biochar reutilization and regeneration are complementary techniques for industrial applications because the sorbent could be reused after successive adsorption—desorption cycles. After the five reutilization cycles, the efficiency of phenol adsorption was reduced from 99.9% (C_t = 0.003 mg L^{-1}) to 96.7% (C_t = 0.117 mg L^{-1}). To obey the Québec's regulatory criteria of 0.05 mg L^{-1} (MDDELCC 2015b) in lixiviate from a wood-residue deposit, WB454A could be reused only

after four adsorption-desorption cycles (99.1%; $C_t = 0.047 \text{ mg L}^{-1}$). In relation to WB454A regeneration, the efficiency of phenol adsorption was maintained at 99.8-99.9% ($C_t = 0.003$ -0.009 mg L⁻¹), which looks a quite stable trend of variation in five adsorption-desorption cycles. Therefore, the results suggest that WB454A has high regenerability, stable phenol adsorption-desorption efficiency, and suitability for successive adsorption-regeneration cycles.

4. Conclusion

The present study comparatively evaluated the efficiency of biochars and activated biochars (made from birch and spruce residues) in phenol sorption from synthetic and real effluents. Activation of biochars enhanced the physicochemical and textural properties of the final materials, doubling their sorption efficiency compared to biochars. For both materials, the sorption equilibrium was reached in less than 4 h. Activated biochars also proved efficient in phenol removal in a real effluent, collected from a wood-residue deposit, to below the maximum authorized concentration allowed by Québec's discharge criteria. After five successive adsorption-regeneration cycles, the activated biochar exhibited high phenol removal capacity, good stability and high regenerability. In addition, the utilization of activated biochar made from wood residues is also under study in mine water treatment, electrochemical energy storage and conversion, and gas sorption.

Acknowledgments

This research was funded by the Québec's Ministry of Economy, Science and Innovation (Ministère de l'Économie, de la Science et de l'Innovation du Québec), the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canada Research Chair Program, the College of Abitibi-Témiscamingue, and the Technology Centre for Industrial Waste (Centre Technologique des Résidus Industriels) through its partner on this project, Airex Energy. The first author, Dr.

Flavia Lega Braghiroli, also sincerely acknowledges NSERC financial support via a Banting Postdoctoral Fellowship (2017–2019). The authors also thank Miss Anne-Marie Marleau Claveau, Miss Maéva Giasson, Mr. Gilles Villeneuve, Mr. Mamadou Dia, and Mr. Nicolas Bergeron for their assistance with experiments, analysis and testing in the laboratory.

504	References
505 506 507	Adamu H, Dubey P, Anderson JA (2016) Probing the role of thermally reduced graphene oxide in enhancing performance of TiO ₂ in photocatalytic phenol removal from aqueous environments. Chem Eng J 284:380–388. doi: 10.1016/j.cej.2015.08.147
508 509	Aharoni C, Tompkins FC (1970) Kinetics of adsorption and desorption and the Elovich equation. Adv Catal 21:1–49. doi: 10.1016/S0360-0564(08)60563-5
510 511	Ahmaruzzaman M (2008) Adsorption of phenolic compounds on low-cost adsorbents: a review. Adv Colloid Interface Sci 143:48–67. doi: 10.1016/j.cis.2008.07.002
512 513 514	Ania CO, Parra JB, Pis JJ (2002) Effect of texture and surface chemistry on adsorptive capacities of activated carbons for phenolic compounds removal. Fuel Process Technol 77–78:337–343. doi: 10.1016/S0378-3820(02)00072-3
515 516	Baker EL, Landrigan PJ, Bertozzi PE, et al (1978) Phenol poisoning due to contaminated drinking water. Arch Environ Health 33:89–94
517 518 519	Belviso C, Cavalcante F, Di Gennaro S, et al (2014) Removal of Mn from aqueous solution using fly ash and its hydrothermal synthetic zeolite. J Environ Manage 137:16–22. doi: 10.1016/j.jenvman.2014.01.040
520 521	Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. doi: 10.1021/ja01269a023
522 523 524	Crini G, Badot P-M (2010) Sorption processes and pollution: conventional and non-conventional sorbents for pollutant removal from wastewaters. Presses universitaires de Franche-Comté, Besançon, France
525 526 527	Dąbrowski A, Podkościelny P, Hubicki Z, Barczak M (2005) Adsorption of phenolic compounds by activated carbon - a critical review. Chemosphere 58:1049–1070. doi: 10.1016/j.chemosphere.2004.09.067
528 529 530	Daifullah AAM, Girgis BS (1998) Removal of some substituted phenols by activated carbon obtained from agricultural waste. Water Res 32:1169–1177. doi: 10.1016/S0043-1354(97)00310-2
531 532 533	Dehkhoda AM, Ellis N, Gyenge E (2016) Effect of activated biochar porous structure on the capacitive deionization of NaCl and ZnCl ₂ solutions. Microporous Mesoporous Mater 224:217–228. doi: 10.1016/j.micromeso.2015.11.041
534 535 536	Dubinin MM (1989) Fundamentals of the theory of adsorption in micropores of carbon adsorbents: Characteristics of their adsorption properties and microporous structures. Carbon 27:457–467. doi: 10.1016/0008-6223(89)90078-X

537538530	El-Hendawy A-NA, Samra SE, Girgis BS (2001) Adsorption characteristics of activated carbons obtained from corncobs. Colloids Surf Physicochem Eng Asp 180:209–221. doi:
539	10.1016/S0927-7757(00)00682-8
540 541	Ettinger M, Ruchhoft C, Lishka R (1951) Sensitive 4-aminoantipyrine method for phenolic compounds. Anal Chem 23:1783–1788. doi: 10.1021/ac60060a019
542 543 544	Fierro V, Torné-Fernández V, Montané D, Celzard A (2008) Adsorption of phenol onto activated carbons having different textural and surface properties. Microporous Mesoporous Mater 111:276–284. doi: 10.1016/j.micromeso.2007.08.002
545 546	Freedonia Group (2014) World Activated Carbon. https://www.freedoniagroup.com/industry-study/world-activated-carbon-3172.htm. Accessed 1 Jul 2017
547	Freundlich HMF (1906) Over the adsorption in solution. J Phys Chem 57:385-471
548 549 550	Fu D, Farag S, Chaouki J, Jessop PG (2014) Extraction of phenols from lignin microwave-pyrolysis oil using a switchable hydrophilicity solvent. Bioresour Technol 154:101–108. doi: 10.1016/j.biortech.2013.11.091
551 552 553	Ganzenko O, Huguenot D, van Hullebusch ED, et al (2014) Electrochemical advanced oxidation and biological processes for wastewater treatment: a review of the combined approaches. Environ Sci Pollut Res 21:8493–8524. doi: 10.1007/s11356-014-2770-6
554 555 556	García-Martínez J, Cazorla-Amorós D, Linares-Solano A (2000) Further evidences of the usefulness of CO ₂ adsorption to characterize microporous solids. Characterisation Porous Solids V 128:485–494. doi: 10.1016/S0167-2991(00)80054-3
557 558	Garrido J, Linares-Solano A, Martin-Martinez JM, et al (1987) Use of nitrogen vs. carbon dioxido in the characterization of activated carbons. Langmuir 3:76–81. doi: 10.1021/la00073a013
559 560 561	Gonzalez-Serrano E, Cordero T, Rodriguez-Mirasol J, et al (2004) Removal of water pollutants with activated carbons prepared from H ₃ PO ₄ activation of lignin from kraft black liquors. Water Res 38:3043–3050. doi: 10.1016/j.watres.2004.04.048
562	Gregg SJ, Sing KSW (1991) Adsorption, surface area, and porosity. Academic Press, London
563 564	Gümüş D, Akbal F (2016) Comparison of Fenton and electro-Fenton processes for oxidation of phenol. Process Saf Environ Prot 103:252–258. doi: 10.1016/j.psep.2016.07.008
565 566	Gupta RK, Dubey M, Kharel P, et al (2015) Biochar activated by oxygen plasma for supercapacitors. J Power Sources 274:1300–1305. doi: 10.1016/j.jpowsour.2014.10.169
567 568 569	Hameed BH, Rahman AA (2008) Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. J Hazard Mater 160:576–581. doi: 10.1016/j.jhazmat.2008.03.028
570 571	Health Canada (2017) Guidelines for Canadian Drinking Water Quality. Summary Table. Ottawa Canada

572 573	Hu Z, Srinivasan M (1999) Preparation of high-surface-area activated carbons from coconut shell. Microporous Mesoporous Mater 27:11–18. doi: 10.1016/S1387-1811(98)00183-8
574 575 576	Ibáñez SG, Alderete LGS, Medina MI, Agostini E (2012) Phytoremediation of phenol using <i>Vicia sativa</i> L. plants and its antioxidative response. Environ Sci Pollut Res 19:1555–1562. doi: 10.1007/s11356-011-0664-4
577 578 579	Jung M-W, Ahn K-H, Lee Y, et al (2001) Adsorption characteristics of phenol and chlorophenols on granular activated carbons (GAC). Microchem J 70:123–131. doi: 10.1016/S0026-265X(01)00109-6
580 581 582	Kilic M, Apaydin-Varol E, Pütün AE (2011) Adsorptive removal of phenol from aqueous solutions on activated carbon prepared from tobacco residues: equilibrium, kinetics and thermodynamics. J Hazard Mater 189:397–403. doi: 10.1016/j.jhazmat.2011.02.051
583 584	Kim J-S (2015) Production, separation and applications of phenolic-rich bio-oil – a review. Bioresour Technol 178:90–98. doi: 10.1016/j.biortech.2014.08.121
585 586	Lagergren S (1898) About the theory of so-called adsorption of soluble substances. K Sven Vetenskapsakademiens Handl 24:1–39
587 588	Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403. doi: 10.1021/ja02242a004
589 590 591 592	László K, Szűcs A (2001) Surface characterization of polyethyleneterephthalate (PET) based activated carbon and the effect of pH on its adsorption capacity from aqueous phenol and 2,3,4-trichlorophenol solutions. Carbon 39:1945–1953. doi: 10.1016/S0008-6223(01)00005-7
593 594 595	Lazarević S, Janković-Častvan I, Jovanović D, et al (2007) Adsorption of Pb ²⁺ , Cd ²⁺ and Sr ²⁺ ions onto natural and acid-activated sepiolites. Appl Clay Sci 37:47–57. doi: 10.1016/j.clay.2006.11.008
596 597	Li Y, Ruan G, Jalilov AS, et al (2016) Biochar as a renewable source for high-performance CO ₂ sorbent. Carbon 107:344–351. doi: 10.1016/j.carbon.2016.06.010
598 599 600	Lorenc-Grabowska E, Rutkowski P (2014) High basicity adsorbents from solid residue of cellulose and synthetic polymer co-pyrolysis for phenol removal: kinetics and mechanism. Appl Surf Sci 316:435–442. doi: 10.1016/j.apsusc.2014.08.024
601	Marsh H, Rodríguez-Reinoso F (2006) Activated carbon, 1st ed. Elsevier, Amsterdam, NL
602 603 604	MDDELCC (1997) Portrait régional de l'eau: Nord-du-Québec (région administrative 10). http://www.mddelcc.gouv.qc.ca/eau/regions/region10/10-nord-du-qc(suite).htm. Accessed 27 Jul 2017
605 606	MDDELCC (2015a) Modèle de règlement relatif aux rejets dans les réseaux d'égout des municipalités du Québec. MDDELCC, QC, Canada

608	MDDELCC (2015b) Lignes directrices sur I industrie du sciage et des materiaux derives du bois. MDDELCC, QC, Canada
609 610	Miao Q, Tang Y, Xu J, et al (2013) Activated carbon prepared from soybean straw for phenol adsorption. J Taiwan Inst Chem Eng 44:458–465. doi: 10.1016/j.jtice.2012.12.006
611 612	Mishra A, Clark JH (eds) (2013) Green Materials for Sustainable Water Remediation and Treatment. Royal Society of Chemistry, Cambridge, UK
613 614 615	Mohan S, Gandhimathi R (2009) Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent. J Hazard Mater 169:351–359. doi: 10.1016/j.jhazmat.2009.03.104
616 617 618	Mohd Din AT, Hameed BH, Ahmad AL (2009) Batch adsorption of phenol onto physiochemical-activated coconut shell. J Hazard Mater 161:1522–1529. doi: 10.1016/j.jhazmat.2008.05.009
619 620 621	Nabais JMV, Gomes JA, Suhas, et al (2009) Phenol removal onto novel activated carbons made from lignocellulosic precursors: influence of surface properties. J Hazard Mater 167:904–910. doi: 10.1016/j.jhazmat.2009.01.075
622 623 624	Namane A, Mekarzia A, Benrachedi K, et al (2005) Determination of the adsorption capacity of activated carbon made from coffee grounds by chemical activation with ZnCl ₂ and H ₃ PO ₄ . J Hazard Mater 119:189–194. doi: 10.1016/j.jhazmat.2004.12.006
625 626 627	Nath K, Panchani S, Bhakhar MS, Chatrola S (2013) Preparation of activated carbon from dried pods of Prosopis cineraria with zinc chloride activation for the removal of phenol. Environ Sci Pollut Res 20:4030–4045. doi: 10.1007/s11356-012-1325-y
628 629 630	Park CM, Han J, Chu KH, et al (2017) Influence of solution pH, ionic strength, and humic acid on cadmium adsorption onto activated biochar: experiment and modeling. J Ind Eng Chem 48:186–193. doi: 10.1016/j.jiec.2016.12.038
631 632	Patterson JW (1985) Industrial wastewater treatment technology, 2nd ed. Butterworth Publishers, Stoneham, MA
633 634 635	Ren L-F, Chen R, Zhang X, et al (2017) Phenol biodegradation and microbial community dynamics in extractive membrane bioreactor (EMBR) for phenol-laden saline wastewater. Bioresour Technol 244:1121–1128. doi: 10.1016/j.biortech.2017.08.121
636 637 638	Rengaraj S, Moon S-H, Sivabalan R, et al (2002) Agricultural solid waste for the removal of organics: adsorption of phenol from water and wastewater by palm seed coat activated carbon. Waste Manag 22:543–548. doi: 10.1016/S0956-053X(01)00016-2
639 640 641	Rincón-Silva NG, Moreno-Piraján JC, Giraldo LG (2015) Thermodynamic study of adsorption of phenol, 4-chlorophenol, and 4-nitrophenol on activated carbon obtained from Eucalyptus seed. J Chem 2015:1–12. doi: 10.1155/2015/569403

642 643 644	Rodrigues LA, da Silva MLCP, Alvarez-Mendes MO, et al (2011) Phenol removal from aqueous solution by activated carbon produced from avocado kernel seeds. Chem Eng J 174:49–57. doi: 10.1016/j.cej.2011.08.027
645 646	Shen B, Li G, Wang F, et al (2015) Elemental mercury removal by the modified bio-char from medicinal residues. Chem Eng J 272:28–37. doi: 10.1016/j.cej.2015.03.006
647 648 649	Sing KSW (1985) Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem 57:603–619. doi: 10.1351/pac198557040603
650 651 652	Singh KP, Malik A, Sinha S, Ojha P (2008) Liquid-phase adsorption of phenols using activated carbons derived from agricultural waste material. J Hazard Mater 150:626–641. doi: 10.1016/j.jhazmat.2007.05.017
653 654 655	Sun H, Feng X, Wang S, et al (2011) Combination of adsorption, photochemical and photocatalytic degradation of phenol solution over supported zinc oxide: effects of support and sulphate oxidant. Chem Eng J 170:270–277. doi: 10.1016/j.cej.2011.03.059
656 657	Tan X, Liu Y, Zeng G, et al (2015) Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 125:70–85. doi: 10.1016/j.chemosphere.2014.12.058
658 659	Tarazona P (1995) Solid-fluid transition and interfaces with density functional approaches. Proc 14th Eur Conf Surf Sci 331:989–994. doi: 10.1016/0039-6028(95)00170-0
660 661	Temkin MJ, Pyzhev V (1940) Recent modifications to Langmuir isotherms. Acta Physicochim USSR 217–222
662 663 664	Terzyk AP (2003) Further insights into the role of carbon surface functionalities in the mechanism of phenol adsorption. J Colloid Interface Sci 268:301–329. doi: 10.1016/S0021-9797(03)00690-8
665 666	Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 31–60
667 668 669	Wu F-C, Tseng R-L (2006) Preparation of highly porous carbon from fir wood by KOH etching and CO ₂ gasification for adsorption of dyes and phenols from water. J Colloid Interface Sci 294:21–30. doi: 10.1016/j.jcis.2005.06.084
670 671	Zhang D, Huo P, Liu W (2016) Behavior of phenol adsorption on thermal modified activated carbon. Chin J Chem Eng 24:446–452. doi: 10.1016/j.cjche.2015.11.022
672 673	Zhu L, Yin S, Yin Q, et al (2015) Biochar: a new promising catalyst support using methanation as a probe reaction. Energy Sci Eng 3:126–134. doi: 10.1002/ese3.58
674	
675 676	

677	Captions of the tables:
678	Table 1: Textural and physicochemical characteristics of biochar and activated biochar
679	Table 2: Contributions to the C1s bands in XPS patterns.
680	Table 3: Kinetic parameters obtained from the adsorption of phenol onto biochars and activated
681	biochars
682	Table 4: Parameters of phenol adsorption isotherms onto biochars and activated biochars
683	Table 5: Comparative sorption capacity of activated biochars, activated carbons and
684	commercial activated carbons for phenol in water
685	
686	
687	
688	
689	
690	
691	
692	
693	
694	
695	
696	
697	

698 Captions of the figures: Fig. 1: a) Nitrogen adsorption-desorption isotherms (full and open symbols, respectively) at -699 700 196°C; and b) their pore size distribution determined by the DFT method (slit-like 701 geometry) for all activated biochars. Fig. 2: Adsorbed amounts of phenol at initial concentration of 200 mg L⁻¹ (q_t) as function of time 702 703 for all biochars: (♦) WB315, (*) WB454, (¬) BS454 and activated biochars: (□) WB315A, 704 (△) WB454A, (○) BS454A. 705 Fig. 3: Kinetics of phenol adsorption on biochars: (♦) WB315, (x) WB454, (_) BS454 and activated 706 biochars: (□) WB315A, (△) WB454A, (○) BS454A on intraparticle model. 707 Fig. 4: Adsorption isotherms of phenol on biochars: (♦) WB315, (*) WB454, (¬) BS454 and 708 activated biochars: (\square) WB315A, (\triangle) WB454A, (\circ) BS454A. 709 Fig. 5: a) Phenol adsorption measured in percentage as function of different initial concentrations of phenol ($C_0 = 5, 10, 20, 50, 100, \text{ and } 200 \text{ mg L}^{-1}$) on biochars: (\blacklozenge) WB315, (x) WB454, 710 711 (\square) BS454 and activated biochars: (\square) WB315A, (\triangle) WB454A, (\circ) BS454A. 712 Fig. 6: SEM images of WB454A before (a) and after (b) phenol adsorption Fig. 7: The sorption capacity of phenol present in real effluent (mg L⁻¹) as function of the contact 713 714 time with biochars: (♦) WB315, (*) WB454, (¬) BS454 and activated biochars: (□)

WB315A, (△) WB454A, (○) BS454A.

715

Table 1: Textural and physicochemical characteristics of biochar and activated biochar

	WB	BS	WB315	WB454	BS454	WB315A	WB454A	BS454A
Textural properties								
S _{BET} (m ² g ⁻¹) ^a	0.56°	0.5°	78*	177*	208*	873**	881**	735**
$V_t(cm^3\;g^{\text{-}1})^{b}$						0.48	0.53	0.39
$V_{\mu,N2}(cm^3~g^\text{-1})^{c}$						0.33	0.33	0.28
$V_{\mu,\mathrm{CO}2}(cm^3~g^\text{-1})^{d}$			0.05	0.11	0.14	0.29	0.28	0.20
V_m (cm ³ g ⁻¹) e						0.15	0.20	0.11
Physicochemical characteristics								
рН	-	-	5.2	5.6	6.3	9.8	9.5	9.8
$\mathrm{pH}_{\mathrm{PZC}}$	-	-	6.3	6.6	7.0	9.8	9.5	10.0
C (%)	46.7	48.4	60.8	75.4	75.4	90.6	89.9	88.9
H (%)	45.6	44.0	5.0	3.5	3.8	1.0	0.9	0.6
N (%)	0.2	0.1	1.0	0.9	0.9	0.4	0.4	1.2
S (%)	1.0	1.0	0.8	0.5	0.5	0.0	0.0	0.1
O (%)	6.5	6.5	32.4	19.7	19.4	8.0	8.8	9.2

^a Surface area obtained from ${}^{\circ}Kr$, ${}^{*}CO_{2}$, and ${}^{**}N_{2}$ adsorption analysis; ^b Total pore volume calculated from the amount of N_{2} adsorbed at the relative pressure of 0.97; ^c Micropore volume determined by the Dubinin–Radushkevich (DR) equation from N_{2} adsorption analysis; ^d Micropore volume determined by the DR equation from CO_{2} adsorption analysis; ^c Mesopore volume calculated by the difference $V_{t} - V_{\mu, N_{2}}$

Table 2: Contributions to the C1s bands in XPS patterns.

Binding energy (BE) (eV) and area of the peak (%)	WB315	WB454	BS454	WB315A	WB454A	BS454A
C1s						
BE < 285eV	69.4	68.0	72.0	76.6	72.1	75.8
(graphitic sp ² carbon)	02.1	00.0	, =.0	, 3.0	, 2.1	, 2.0
285.7 < BE < 287.1	17.2	17.1	10 /	0.7	12.0	11.7
(C-OH)	17.2	17.1	18.4	8.7	12.8	11.7
286.1 < BE < 288	7.2	4.6	2.5	2.7	4.5	2.4
(C=O or O-C-O)	7.2	4.6	3.5	3.7	4.5	3.4
288 < BE < 289.4	<i>5</i> 0	4.6	2.2	2.5	2.2	2.4
(O=C-O)	5.0	4.6	2.2	2.5	2.2	2.4
BE > 290						
("Shake-up"	1.2	5.7	3.9	8.5	8.4	6.7
satellites)						

Table 3: Kinetic parameters obtained from the adsorption of phenol onto biochars and activated biochars

	Pseudo-	first ord	er	Pseud	do-second orde	er	Elovich's equation			
	$q_e \text{ (mg g}^{-1}\text{)}$	k_{I} (h ⁻¹)	R^2	$q_e (\mathrm{mg \ g^{\text{-}1}})$	$k_2 (\text{mg (g h)}^{-1})$	R^2	$a (\text{mg (g h)}^{-1})$	1/b (mg g ⁻¹)	R^2	
WB15	122	0.002	0.73	122	0.0001	0.74	6.4	6.0	0.54	
WB454	114	0.008	0.24	111	0.00007	0.25	42.1	18.3	0.63	
BS454	90	0.002	0.45	90	0.00003	0.45	$5.6\ 10^7$	2.8	0.49	
WB315A	92	0.004	0.85	92	0.00005	0.88	$2.9 \ 10^{10}$	6.7	0.89	
WB454A	150	0.005	0.95	152	0.00004	0.96	9.0 105	12.0	0.90	
BS454A	233	0.016	0.87	238	0.00009	0.90	144	38.6	0.97	

Table 4: Parameters of phenol adsorption isotherms onto biochars and activated biochars

	Freundlich				Temkin					
	k_f	n	R^2	$q_{max} (\text{mg g}^{-1})$	$b (\mathrm{L \; mg^{\text{-}1}})$	R_L	R^2	k_I (L g ⁻¹)	k_2	R^2
WB315	1.13	0.65	0.91	125	0.003	0.60-0.98	0.93	17.6	0.16	0.89
WB454	2.51	0.60	0.95	159	0.006	0.46-0.97	0.97	23.0	0.21	0.90
BS454	1.83	0.58	0.87	141	0.004	0.55-0.98	0.93	19.4	0.23	0.86
WB315A	23.3	0.41	0.77	250	0.075	0.06-0.73	0.99	30.0	4.85	0.96
WB454A	24.4	0.40	0.62	303	0.044	0.10-0.82	0.99	37.1	3.67	0.95
BS454A	21.5	0.42	0.64	294	0.035	0.12-0.85	0.99	33.3	3.41	0.86

Table 5: Comparative sorption capacity of activated biochars, activated carbons and commercial activated carbons for phenol in water

Effluent type	gAC:mL	pН	AC-raw material	Activation/ S _{BET} (m ² g ⁻¹)	q _{max} (mg g ⁻¹)	Isotherm	C ₀ (mg L ⁻¹)	References
Activated	biochars							
SE	-	-	Corncobs	Steam (607)	164	-	-	(El-Hendawy et al. 2001)
SE/RE	-	6.2	Palm seed coats	CO ₂ (577)	Batch: 18 Column: SE: 72 RE: 55	Freundlich	Batch: 10–60 Column: SE: - RE: 122	(Rengaraj et al. 2002)
SE	0.1:100	-	Fir wood	KOH + CO ₂ (2820)	275	Langmuir	-	(Wu and Tseng 2006)
SE	0.1:100	< 8	Rattan sawdust	KOH + CO ₂ (–)	149	Langmuir	25–200	(Hameed and Rahman 2008)
SE	0.1:100	-	White birch	CO ₂ (880)	303	Langmuir	5-1500	Present study
SE	0.1:100	-	Black spruce	CO ₂ (735)	294	Langmuir	5-1500	Present study
Activated	carbons mad	e from	biomass residues	,				
SE	0.67:100	-	Apricot stone shells	H ₃ PO ₄ (1370)	120	Langmuir	60	(Daifullah and Girgis 1998)
SE	0.05:100	-	Coconut shells	KOH (2450)	396	-	-	(Hu and Srinivasan 1999)
SE	0.01:100	6	Kraft Lignin (Eucalyptus)	H ₃ PO ₄ (up to 1460)	227	Langmuir	-	(Gonzalez- Serrano et al. 2004)
SE	-	-	Coffee grounds	ZnCl ₂ + H ₃ PO ₄ (640)	3.2	Langmuir	20	(Namane et al. 2005)
SE	0.1:100	-	Kraft lignin	NaOH (2340) KOH (2920) H ₃ PO ₄ (940)	238 213 107	Langmuir	100	(Fierro et al. 2008)
SE	0.1:100	4	Coconut shells	H ₂ SO ₄ + Steam (380)	50	Langmuir	9.4–94	(Singh et al. 2008)
SE	0.1:100	7	Coconut shells	KOH (1026)	206	Langmuir	100-500	(Mohd Din et al. 2009)
SE	0.1:100	< 10	Lignocellulosic precursors: kenaf (K) / rapeseed (R)	CO ₂ K: 1035 R: 1352	K: 83 R: 84	Freundlich	940	(Nabais et al. 2009)
SE	0.5-8:1000	7/8	Tobacco residues	K ₂ CO ₃ (1635) KOH (1474)	18 0.5	Langmuir	1–12	(Kilic et al. 2011)
SE	-	-	Soybean straw	ZnCl ₂ (up to 2270)	278	Langmuir	10-500	(Miao et al. 2013)
SE	0.01–2:100	-	Cellulose	Steam (1317)	417	Langmuir	150	(Lorenc- Grabowska and Rutkowski 2014)
SE	-	-	Eucalyptus seed	Chemical: NaOH (780) H ₂ SO ₄ (150)	200 29	Langmuir	-	(Rincón-Silva et al. 2015)
SE	1:100	-	Coconut shells	Steam (up to 644)	145	Langmuir	200– 1400	(Zhang et al. 2016)

Commercial activated carbons								
SE	-	3	Norit: RGM1 RB2 ROW0.8supra CGran	1152 1380 798 1955	0.9 0.9 1.5 0.2	Freundlich	-	(Jung et al. 2001)
SE	-	-	Commercial AC from coal	Chemical: 1414 Steam: 896 1149	98 226 303	-	200	(Ania et al. 2002)
SE	0.1:100	-	Norit: PAC200 Darco 12 x 40 ROX 0.8	1350 620 102	105 74 137	Langmuir	100	(Fierro et al. 2008)

* SE: Synthetic effluent; RE: Real effluent