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Abstract 20 

Biochar is a carbon-rich organic material that has advantageous physicochemical properties 21 

for applications in multidisciplinary areas of science and engineering, including soil amendment, 22 

carbon sequestration, bioenergy production, and site rehabilitation. However, the typically low 23 

porosity and surface area of biochars (from 0.1 to 500 m2 g-1) limits the suitability for other 24 

applications, such as catalysis, electrochemistry, energy storage, and contaminant sorption in 25 

drinking water and wastewater. Given the high global demand for activated carbon products, 26 

scientists and industrialists are exploring the potential of biochar-derived biomass as precursors for 27 

activated carbons. This review presents and discusses the available studies on activated biochars 28 

produced from various precursor feedstocks and under different operating conditions in a two-step 29 

procedure: pyro-gasification (torrefaction, slow to flash pyrolysis, and gasification) followed by 30 

activation (physical, chemical or physicochemical). Findings from several case studies demonstrate 31 

that lignocellulosic residues provide attractive precursors, and that chemical activation of the 32 

derived biochars at high temperature and long residence time produces highly porous end materials. 33 

Indeed, the porosity of activated biochars varies greatly (from 200 to 2500 m2 g-1), depending on 34 

the pyro-gasification operating conditions and the feedstock (different feedstocks have distinct 35 

morphological and chemical structures). The results also indicate that the development of highly 36 

porous activated biochars for diverse purposes (e.g., electrodes for electrochemical energy storage 37 

devices, catalyst supports and adsorbents for water treatment) would benefit both the bioeconomy 38 

and the environment. Notably, it would leverage the potential of added-value biomass as an 39 

economical, non-fossil, readily available, and renewable energy source.  40 

Keywords: Biomass residue waste, pyro-gasification, biochar, activation, porous carbon materials 41 
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 68 

Statement of novelty: 69 

Variations in biomass feedstock and pyro-gasification operating conditions can strongly influence 70 

the porosity of activated biochars to be applied in a variety of fields, including environmental 71 

protection and energy storage. The production of activated biochars would provide multiple 72 

benefits, both economic and environmental. Economically, biorefineries could diversify their 73 

product offer (biochar, bio-oil, and syngas) to include activated biochars. Environmentally, biomass 74 

provides a cost-effective, renewable, and eco-friendly fuel source. 75 
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Terms and definitions: 76 

Char: A solid material generated by incomplete combustion processes that occur in natural and 77 

man-made fires [1]. 78 

Charcoal: A solid material produced by thermochemical conversion of biomass and used for energy 79 

generation [2]. 80 

Coal: Organic sedimentary rock consisting of a complex mixture of organic and mineral substances 81 

derived from ancient plant deposits [1]. 82 

Peat: A naturally occurring material formed by the biodegradation of organic substances derived 83 

from ancient plant deposits under limited oxygen conditions [1]. 84 

Coke: A solid material produced by heating coal in the absence of air [3]. 85 

Biochar: A solid material obtained from the thermochemical conversion of biomass in a zero or 86 

low oxygen environment [2]. 87 

Hydrochar or HTC material: A solid product obtained from hydrothermal carbonization (HTC). 88 

Activated carbon: A material derived from either a natural (hardwood, coconut shells, fruit stones, 89 

coal) or synthetic macromolecular compounds that has undergone activation. Activation is the 90 

selective gasification of carbon atoms using steam, CO2, or chemicals at increasing temperature 91 

[1].  92 

Activated biochar: A biochar that has undergone activation. 93 

 94 

 95 
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 100 

1. Introduction 101 

Recent studies and reviews have advanced the knowledge on biochar structure and 102 

characteristics along with its potential uses in agriculture and industrial applications. Biochars 103 

prepared with different thermochemical processes and under different operating conditions can be 104 

characterized by the physicochemical properties (e.g., carbon content, surface area and porosity, 105 

cation exchange capacity, water holding capacity) that are desirable for various end uses. In 106 

addition, biochar contains noncarbonized materials and several functional groups such as O-107 

containing carboxyl, hydroxyl, and phenolic molecules, all of which can bind to and interact with 108 

contaminants and organic matter. Fig. 1 summarizes the main products (gas, liquid, and solid) 109 

obtained from thermochemically modified biomass residues using different reactor designs, 110 

temperatures, residence times, and heating rates in an inert system, along with the main end uses. 111 

Among others, the end products are used to generate bioenergy (manufactured biochar pellets) [4, 112 

5], restore degraded sites (e.g., abandoned mine sites) [6, 7], and amend agricultural soil [8, 9].  113 

Given the high global demand for activated carbon products, which is projected to post $4.9 114 

billion in revenues by 2021 [10], scientists and industrialists are exploring the potential of biochar-115 

derived biomass as precursors for activated carbons. Therefore, to improve the porous structure and 116 

expand the adsorptive capacity of biochars, activation is applied as a second step. The activation 117 

conditions are more intense: higher temperature (e.g., 1173 K), the presence of chemicals and/or 118 

gases (e.g., KOH, H3PO4, CO2, steam), and longer residence times (e.g., 1−2 h) in an inert 119 

atmosphere. At such conditions, the low surface area and high volatile matter content of the 120 

biochars, which result from the reactor conditions during biochar preparation: low pyro-gasification 121 

temperature (e.g., 593 K), short residence time (e.g., 1–2 s), and rapid heating rate (e.g., faster than 122 
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300 K min-1), will be improved. Therefore, to expand the range of applications, the biochars are 123 

activated to produce highly porous and effective materials for use in electrolytic capacitors [11, 124 

12], batteries [13], and electrochemical energy storage devices [14, 15]; as catalyst supports [16, 125 

17]; and as precursors for adsorbent production [18, 19]. 126 

This review is structured into two parts. First, the biochar production processes and material 127 

properties are outlined, including thermochemical conversion methods and the various types of 128 

biomass feedstocks. The mechanisms involved in biochar transformation are then described, along 129 

with the gas analysis methods currently used to determine the porosity of biochars. The factors that 130 

affect biochar characteristics, particularly surface and textural properties, are also explained. 131 

Second, the activation processes that improve surface porosity and optimize functionality are 132 

presented. The most commonly used methods are described, and the research on activated biochars 133 

and the factors that affect their porous structure is reviewed. The Supplementary Material (Table 134 

1S) presents a compilation of publications on activated biochars derived from different feedstocks 135 

(crop residues, wood biomass, animal litter, sewage sludge, solid waste) and using various pyro-136 

gasification and activation operating conditions. The main reactor designs for producing activated 137 

biochars available in the open literature are then summarized, the challenges are appraised, and 138 

future research avenues are proposed. 139 

2. Biochar production and properties 140 

2.1. Biomass thermoconversion 141 

Depending on the feedstock source, seven main thermal conversion processes are used to 142 

produce biochar as a main product or by-product: gasification; flash, fast, intermediate, and slow 143 

pyrolysis; torrefaction; and hydrothermal carbonization. According to the reactor design and its 144 

operational parameters, the final materials contain various proportions of the relative quantity and 145 
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quality of liquid (bio-oil), solid (hydrochar, torrefied biomass, or biochar), and gas (syngas, 146 

composed mainly of CO and H2). Table 1 summarizes the most important characteristics of the 147 

pyro-gasification processes, the main products, and the solid yield (adopted from Ahmad et al. [20], 148 

Bolan et al. [21], Bridgwater [22], Brown [23], and Laird et al. [24]). Gasification, which converts 149 

most of the biomass into gas at temperatures higher than 1073 K and residence times of 10–20 s, 150 

obtains a low percentage of biochar (around 10 wt.%). Flash pyrolysis yields slightly more biochar 151 

(10–20 wt.%) at temperatures of 673−1273 K and very high heating rate (~ 1000 K min-1), with 152 

syngas as the main product. Fast pyrolysis, at temperatures of 573−1273 K and with very short 153 

residence time (< 2 s), yields about 12 wt.% biochar. Intermediate pyrolysis, at approximately 773 154 

K with residence times of 10–20 s, produces about 25 wt.% biochar, whereas slow pyrolysis, at 155 

temperatures of 373−1273 K and residence times of 5−30 min, yields about 35 wt.% biochar. 156 

Torrefaction requires temperatures of 473−593 K, and it obtains almost 80 wt.% of torrefied 157 

biomass. Finally, hydrothermal carbonization is a wet thermochemical process that uses a hot 158 

(453−533 K) and pressurized (1−4.7 MPa) water environment to convert biomass (or wet biomass, 159 

e.g., wastewater sludge) into fuels such as hydrochar and liquid fuels [25].  160 

Biomass can be converted at low cost either by applying thermochemical processes to 161 

agricultural residues on site or by integrating thermochemical processes into existing industrial 162 

operations related to biomass residue waste. Thus, biomass waste from both agricultural and 163 

industrial operations can be turned into valuable by-products, thereby lowering waste transport and 164 

storage costs. For example, Zabaniotou et al. [26] demonstrated the economic, environmental, and 165 

social benefits of a small-scale biomass pyrolysis system at an olive farm in the Mediterranean 166 

region. The results showed that 70 t of solid waste from 10 ha of olive groves and the milling 167 

process were converted into 13, 11, and 12 t of liquid, biochar, and gas fuel, respectively. The fuel 168 
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by-product met the olive milling energy needs, and biochar was applied to improve the 169 

physicochemical and microbiological fertility of the soil. Farmers and small communities could 170 

install similar pyrolysis units to produce heating fuel and biochar for soil amendment. 171 

2.2. Mechanisms of biochar production 172 

Biochar is a product formed from two solid-phase reactions. The primary reactions are highly 173 

endothermic [27], and the resultant char has an aromatic polycyclic structure [28]. As the biomass 174 

converts into a carbonaceous residue (i.e., the primary biochar), organic vapors (tars) decompose 175 

to form coke [29]. The primary vapor-phase reaction products, which are unstable, then undergo 176 

secondary exothermic reactions: cracking and repolymerization. The primary and secondary 177 

reactions occur differently, depending on the type of thermochemical conversion (e.g., slow or fast 178 

pyrolysis). With its long residence time, slow pyrolysis maximizes the char yield. Consequently, 179 

both the primary and secondary reactions are involved in biochar formation [30]. In contrast, fast 180 

pyrolysis maximizes the condensable vapor yield (bio-oil) due to the higher heating rate and short 181 

holding time of volatiles that interrupts the occurrence of secondary reactions [31, 32]. 182 

Most biomass residues are lignocellulosic, meaning that they contain the fibrous part of plant 183 

materials that consists mainly of cellulose, hemicellulose, lignin, extractives, and ash (including 184 

inorganics) [33]. During lignocellulosic biomass pyro-gasification, the first three of these 185 

components are thermally modified by means of different mechanisms and paths. Cellulose 186 

decomposes at temperatures of 513−623 K [34, 35], hemicellulose at temperatures of 473−533 K, 187 

and lignin within the highest (and widest) temperature range of 553−773 K [36–38]. The most 188 

complex of these is lignin decomposition, and the precise mechanism remains challenging to 189 

understand and depict. What is known is that free radicals are generated when β-O-4 lignin bonds 190 

are cleaved [39, 40]. These free radicals capture protons from other species with weak C–H or O–191 
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H bonds to form bio-oil compounds such as vanillin and 2-methoxy-4-methylphenol [39, 41]. They 192 

also react with other species, leading to chain extension, and they collide with each other to form 193 

solid stable compounds, such as biochar [42]. 194 

Cellulose initially depolymerizes into oligosaccharides, followed by cleavage of the glycosidic 195 

bond to produce D-glucopyranose. Then, through certain intramolecular rearrangements, 196 

levoglucosan (1,6-anydro-β-D-glucopyranose) is formed [43]. Levoglucosan is a major constituent 197 

of the condensable fraction (bio-oil) [44]. Furthermore, it acts as an intermediate material during 198 

cellulose decomposition, which can take one of two paths: 1) levoglucosenone can form through 199 

dehydration, followed by decarboxylation, aromatization, and intramolecular condensation, to form 200 

solid biochar; or 2) levoglucosan can undergo a series of rearrangement and dehydration processes 201 

to form hydroxymethylfurfural, which may then decompose to produce bio-oil and syngas, and/or 202 

it can polymerize into biochar by means of aromatization and intramolecular condensation reactions 203 

[45–49]. 204 

The hemicellulose decomposition mechanism is relatively similar to that for cellulose. First, 205 

hemicellulose depolymerizes to form oligosaccharides, followed by cleavage of the glycosidic 206 

bonds in the xylan chain. The rearranged depolymerized molecules then form 1,4-Anhydro-D-207 

xylopyranose, an intermediate product in hemicellulose decomposition by pyro-gasification, which 208 

follows two main alternative paths: 1) several reactions such as dehydration, decarboxylation, 209 

aromatization, and intramolecular condensation, resulting in the formation of solid biochar; or 2) 210 

decomposition, which produces low molecular weight bio-oil and syngas compounds [50–52]. 211 

Mineral nutrients (e.g., K+, Na+, Ca2+, Mg2+, Cl-, NO3-, OH-, CO3
2-, PO4

3-) that are present in 212 

biomass feedstock can also catalyze thermolysis reactions and alter the chemical composition of 213 

the resultant solid material [37]. Because the primary reaction products form via competitive 214 
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reactions, these minerals can have different effects. For example, they influence the formation of 215 

low molecular weight species (e.g., formic acid, glycolaldehyde, and acetol), furan ring derivatives 216 

(e.g., 2-furaldehyde and 5-hydroxy methyl furfural), and levoglucosan. In an experiment using 217 

varying concentrations of inorganic salts impregnated on pure cellulose, faster competing reactions 218 

lowered the levoglucosan yield depending on the cation or anion type, due to the formation of low 219 

molecular weight species from the cellulose [53], and this may have interfered with the formation 220 

mechanism, yield, and composition of the resultant biochars. 221 

Other kinds of biomass feedstock are thermally modified by different pathways due to their 222 

complex chemical structure, compared to lignocellulosic materials. For example, algae species 223 

contain proteins, carbohydrates, lipids, nitrogen and ashes. Then, a multi-step mechanism of the 224 

thermal decomposition of such components have been proposed in the available literature [54]. 225 

According to Debiagi et al. [54], the thermal degradation of macroalgae starts with the 226 

decomposition of 1) carbohydrates and lipids, then 2) protein components (∼ 573 K), and 3) 227 

metal carbonates and salts (> 973 K). In the first steps, sugars and triglycerides are degraded, 228 

whereas low molecular weight proteins are depolymerized into nitrogen tar components: pyrrole, 229 

pyridine, and diketopiperazine together with gas species. The release of ammonium, nitrates and 230 

carbonates groups can be also estimated according to the ash content.  231 

The herbaceous biomass contains typically important amounts of mineral inorganic compounds 232 

(4–16 %), which have significant influence on the decomposition of lignocellulosic compounds 233 

mechanisms, as mentioned earlier [34]. Another group of biomass with a complex chemical 234 

composition is the sewage sludge coming from wastewater treatment systems. It normally contains 235 

around 30 % of carbon and very high percentage of mineral inorganics (up to 60 %) [55]. Very few 236 

studies focused on the mechanisms of the formation of pyro-gasification products due to the 237 

https://www.sciencedirect.com/topics/chemistry/protein
https://www.sciencedirect.com/topics/chemistry/metal
https://www.sciencedirect.com/topics/chemistry/carbonate
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complex reactions among organic matter, dead bacteria and non-biodegradable fractions [56]. The 238 

volatile matter and ash content present in sewage sludge had a significant influence on pyro-239 

gasification products characteristics and distribution according to Fonts et al. [55]. Fullana et al. 240 

[57] also mentioned that a variety of nitrogenated compounds (nitriles, pyridines, amides, amines 241 

and polyaromatic nitrogenated) may also play a role on the final products quality. Finally, animal 242 

bones, another precursor used for the production of activated biochar, normally contains only 11 % 243 

of carbon and up to 78 % of calcium phosphate [58]. No mechanisms were found on the solid 244 

formation but the solid material obtained after pyrolysis contained about 70–76 % calcium 245 

hydroxyapatite (Ca10(PO4)6(OH)2), 9–11 % carbon, 7–9 % CaCO3, 0.1–0.2 % CaSO4 and 0.3 % 246 

Fe2O3 according to Iriarte-Velasco et al. [59].  247 

2.3. Porosity of  biochars 248 

Several methods are used to analyze and assess the material structure of biochars and activated 249 

biochars. However, in this work, the focus is put on gas adsorption techniques to characterize the 250 

porosity of biochars and also activated biochars. When less organized bound carbonaceous material 251 

is removed during thermal treatment, the spaces that remain between the crystallites in biochar and 252 

activated biochar represent the material’s porosity. The surface area of the solid material, which 253 

generally increases with increased pyro-gasification temperature, is used to indicate the adsorption 254 

capacity [1, 60–62]. The adsorption of Kr, N2, or CO2 is used to determine the surface area (SBET) 255 

and textural structure of the porous material. Kr is used to analyze biomass materials, which have 256 

very low surface area, due to the lower vapor pressure (267 Pa) required compared to N2 (101325 257 

Pa) at 77 K [63]. The lower the saturation vapor pressure at the adsorption measurement 258 

temperature, the more accurate the measurement of low surface areas. In comparison, for highly 259 

microporous biochar materials, CO2 adsorption can provide a more accurate measure of 260 
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ultramicropore volume, as it is used at higher temperatures (e.g., 273 K) compared to N2 (e.g., 77 261 

K). This is because N2 can condense within the micropores and consequently block gas sorption. 262 

For highly porous activated biochars, micro- and mesopore contents can be analyzed in terms of N2 263 

adsorption-desorption isotherms.  264 

Several studies have assessed the influence of pyro-gasification temperature on the textural 265 

properties of biochars. Chen and Chen [64] examined biochars derived from orange peels at 266 

different pyrolytic temperatures (423–973 K) for 6 h. At the highest temperature (973 K), the 267 

biochar presented the largest surface area, at 201 m2 g-1 (0.035 cm3 g-1) compared to 23 m2 g-1 (0.023 268 

cm3 g-1) at 423 K. Graber et al. [65], Gray et al. [66], and Rehrah et al. [67] observed similar trends 269 

using eucalyptus wood, hazelnut shells and Douglas fir chips, and pecan shells and switchgrass, 270 

respectively, as feedstock. Generally, it has been suggested that biochars made from lignocellulosic 271 

precursors have higher surface area due to the destruction of aliphatic alkyl and ester groups and 272 

the breakdown of the lignin chain at higher pyro-gasification temperatures [64].  273 

However, pyrolysis of pine wood produced very low surface area (29 m2 g-1) under specific 274 

working conditions (973 K for 2 h) [68]. The difference in porosity between eucalyptus wood [65] 275 

and pine wood [68] is attributable to the distinct molecular structures of the two taxonomic groups 276 

to which they belong: hardwood (needle-leaved evergreen trees, angiosperms, or flowering plants) 277 

and softwood (broadleaf deciduous trees, or gymnosperms), respectively. In the primary pyrolysis 278 

stage, hardwood pyrolysis yields smaller amounts of char, which is more reactive for 279 

devolatilization in the secondary reaction stage compared to softwood [69]. In addition, the 280 

differences in thermochemical conversion between hardwood and softwood can be attributed to 281 

three aspects: chemical components, molecular structure, and component proportion. The main 282 

macromolecules in hardwood hemicellulose and lignin are acetylglucuronoxylan and syringyl, 283 

https://www.sciencedirect.com/topics/agricultural-and-biological-sciences/fir
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respectively, whereas in softwood, the main macromolecules are galactoglucomannan, 284 

glucomannan, and arabinoglucuronoxylan (in hemicellulose) and guaiacyl (in lignin) [70, 71]. The 285 

proportions of cellulose, hemicellulose, and lignin also vary between hardwood and softwood: 286 

hardwood contains lower hemicellulose and lignin (20‒25 wt.% for both components) compared to 287 

softwoods (25−30 wt.% for hemicellulose; 27−30 wt.% for lignin) [72]. The presence of extractives 288 

composed of low molecular weight organic compounds (e.g., lipids, phenolic compounds, 289 

terpenoids, fatty acids, resin acids, waxes) can also affect the thermal behavior of hardwood and 290 

softwood in the low-temperature range [73]. 291 

Biochars produced from animal litter feedstock at higher pyrolysis temperatures also show 292 

lower surface area compared to biochars produced from lignocellulosic residues. The  materials in 293 

animal litter are considered nongraphitizing carbons, due to either high oxygen or low hydrogen 294 

contents. They are structured as individual, randomly orientated graphitic units with extensive cross 295 

linking. In contrast, graphitizing carbons (such as lignocellulosic residues) are composed of parallel 296 

graphitic units with a small number of cross linked units [74]. Other types of biochars produced 297 

from rice husks and rice straw at 1073 K presented lower surface area: 296 and 257 m2 g-1, 298 

respectively, compared to biochar made from oak wood and apple wood chips (398 and 545 m2 g-299 

1, respectively) [61]. The properties of rice-derived biochar differed from those for wood-derived 300 

biochar due to the high ash content (presence of inorganic components, particularly silicium). To 301 

leverage these properties, the researchers proposed that combining inorganic compounds with 302 

organic moieties could produce silicon-encapsulated carbon (the “silicon-and-carbon-coupled 303 

framework model”), which could protect the biochar against physical and chemical oxidation and 304 

provide potential stable carbon sequestration in soils [75].  305 
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Biochars are tailored for specific applications by taking advantage of the material’s intrinsic 306 

properties, including the cation exchange capacity (CEC), carbon sequestration potential, total and 307 

fixed carbon contents, volatile matter content, chemical and physical recalcitrance (i.e., resistance 308 

to biodegradation), surface area, pore volume, and average pore diameter. Several biomass 309 

feedstocks, including cow and pig manure, waste wood, food waste, crop residues, aquatic plants, 310 

and wastewater sludge, were submitted to slow pyrolysis at 773 K in N2 atmosphere for 4 h at 18 311 

K min-1 heating rate [76]. The total carbon content varied from 24.2 wt.% for bone dregs as 312 

precursor to 75.8 wt.% for sawdust. The ash yield varied from 7.2 wt.% for wheat straw to 77.6 313 

wt.% for bone dregs and the CEC varied from 23.6 cmol kg-1 for pig manure to 562 cmol kg-1 for 314 

chlorella. Surface area and pore volume also varied considerably across precursors. When biochars 315 

were prepared in the same pyrolysis conditions, surface area and total pore volume varied from 316 

approximately 3 m2 g-1 (0.01 cm3 g-1) for alga chlorella to 203 m2 g-1 (0.13 cm3 g-1) for sawdust. 317 

This heterogeneity of the composition, physicochemical properties, and structural characteristics of 318 

biochars derived from different feedstocks underscores the difficulty of targeting specific soil or 319 

environmental end uses. Nevertheless, biochar functionalization (e.g., activation) can be applied to 320 

expand the range of adsorptive applications that require very high porosity (SBET > 1000 m2 g-1). 321 

3. Biochar functionalization 322 

Recent advances in biochar functionalization, including surface tuning and porosity tailoring, 323 

have provided new materials for the carbon chemistry field and innovative applications for several 324 

other fields such as catalysis, energy storage, and pollutant removal. Structurally, biochars may 325 

present either highly oxygenated groups (e.g., C−O, C=O, −OH) at the surface or else an oxygen-poor 326 

surface, with few oxygenated or heteroatom groups. The biochar texture and surface chemistry are 327 

responsible for a variety of physicochemical and catalytic properties [77, 78]. In carbonaceous 328 
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materials, the surface functionalities can be modified by directly incorporating heteroatoms during 329 

biochar pre- or post-synthesis, via a number of methods: 1) surface oxidation, or exposure to 330 

hydrogen peroxide, ozone, permanganate, or nitric acid to create oxygenated functional groups at 331 

the surface [79]; 2) surface amination, or exposure to amino groups such as NH3 [80–82]; and 3) 332 

surface sulfonation, or exposure to sulfonic groups (SO3H) [83, 84]. Another approach takes 333 

advantage of the chemical composition of certain feedstock precursors that have high nitrogen 334 

content (e.g., algae) or inorganic matter content (e.g., sewage sludge). In both cases, thermal 335 

treatment produces functional groups in the carbonaceous structure and/or at the carbonaceous 336 

surface [85, 55, 86]. This approach produces biochars with porosity and structural development as 337 

well as catalytic active sites that enable catalytic reactivity, making them well suited for 338 

contaminant adsorption [87].  339 

Surface doping with metals is another way to functionalize biochar materials for specific 340 

applications: metals (Fe, Zn, Ni, and Cu) are added to the biomass structure before or after thermal 341 

treatment. In the case of Ni, adding the metal before can produce catalytic effects during the 342 

pyrolysis reaction that will improve the biochar structure and enhance H2 gas production [88]. 343 

Several studies have obtained promising results by adding high valent metals to biomass precursors, 344 

thereby reducing the metals to zero valent metal nanoparticles [89–91] or metal oxide nanoparticles 345 

[92–94]. Metal nanostructures have presented enhanced electronic, magnetic, optical, and chemical 346 

properties over existing bulk materials [95–98]. 347 

Heavy metals can also be impregnated on the biochar surface to produce materials that adsorb 348 

metalloids in contaminated waters. The metalloids are removed via complex formation or chelating 349 

at the surface of the carbonaceous material [99, 100]. It was suggested that the ability to adsorb 350 

heavy metals is due to electrostatic interactions between the biochar’s negative surface charge and 351 
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metal cations as well as ion exchanges between the surface protons and metal cations [101, 102]. 352 

This allows removing certain metalloids (e.g., arsenic) that are typically present in minerals and 353 

mine wastewater, and which mining industries in several countries are required to monitor. Hence, 354 

impregnating biochar with transition metal ions or oxides (e.g., Cu, Fe, Zn) improved the sorbent 355 

performance for more effective contaminant removal [103, 104].  356 

To summarize, many effective functionalization methods have been developed to enhance the 357 

performance of biochars, and particularly for catalysis and mining wastewater treatment. To tailor 358 

the biochar pore structure for other adsorptive applications (e.g., electrochemistry, gas adsorption, 359 

drinking water treatment), activation is the most commonly used procedure. The following sections 360 

describe how biochars are activated as well as the optimal conditions (activation type, pyro-361 

gasification and activation operations) for improving porosity and expanding the range of potential 362 

applications. 363 

4. Activation 364 

Activated carbons are widely used to treat effluents and industrial wastes, purify water, and 365 

remove odors from gases [1, 105, 106]. This is due to the well developed porous structure, which 366 

is obtained by high-temperature thermal treatment in the presence of activating agents. Specifically, 367 

activation causes channels to form throughout the graphitic regions, spaces, and fissures within and 368 

between the crystallites in the carbon, obtaining a large internal surface area [1, 107]. The final 369 

porosity can be quantified and classified as microporosity (lower than 2 nm), mesoporosity (2 to 50 370 

nm), and albeit rarely seen in activated carbons, macroporosity (higher than 50 nm). 371 

Ultramicroporosity (less than 0.7 nm) and super-microporosity (i.e., approaching the limit of 2.0 372 

nm) [1] have also been identified.  373 
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The current activated carbon market is the result of intensive research and development in order 374 

to enlarge the scope of applications [108–112]. However, not that many resources are economically 375 

and/or practically feasible for use as precursors. The most commonly used precursors fall into two 376 

main groups: 1) synthetic, including polymers such as polyimide, polyvinyl chloride, and resins; 377 

and 2) natural, including wood, fruit stones, and nutshells as well as peat and various ranks of coal. 378 

In recent decades, biomass residues have gained interest for use as precursors for activated carbons 379 

due to their low cost and ready availability, making them economically feasible for large-scale 380 

production. The surface area of commercial activated carbons can reach up to 3000 m2 g-1, 381 

depending on the activation method. Noteworthy, in order to adsorb molecules of different sizes, 382 

they must present an appropriate pore size distribution (PSD) (including a large proportion of 383 

micropores) [1].  384 

Activated biochars have similar physicochemical characteristics to those for activated carbons 385 

made from synthetic or natural materials, and they can provide sustainable, relatively low-cost 386 

solutions for mining site remediation and reclamation, water treatment, and industrial applications 387 

[113, 114]. These are compelling economic and environmental incentives for further advances in 388 

the development of thermochemical conversion methods. Table 1S summarizes the findings on the 389 

feedstocks (crop residues, wood biomass, animal litter, sewage sludge, and solid waste) that have 390 

been used as precursors for activated biochar production by torrefaction, slow to fast pyrolysis, and 391 

gasification under varying conditions. The obtained materials were then activated using different 392 

agents and process conditions. The following sections outline the three main activation methods 393 

(physical, chemical, and physicochemical) and discuss the porosity of the resultant activated 394 

biochars.  395 

4.1. Physical or thermal activation 396 
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In physical or thermal activation, carbon dioxide (CO2) or steam (H2O) are introduced into the 397 

atmosphere surrounding the biochar at high temperature and in a limited or zero oxygen 398 

environment [115]. The physical agents remove the carbon atoms from the biochar structure. The 399 

carbon reacts with the CO2 or H2O (entirely in a gas phase) to produce CO (via Boudouard reaction) 400 

or CO + H2, respectively (see Eqs. 1–3) [116].  401 

C + CO2 → 2CO, ΔH = 159 kJ mol-1                (1) 402 

C + H2O → CO + H2, ΔH = 117 kJ mol-1         (2) 403 

CO + H2O ↔ CO2 + H2, ΔH = 41 kJ mol-1       (3) 404 

Biochar activation with CO2 removes carbons from the biochar (also called burn-off): as an 405 

oxidizing agent, CO2 penetrates into the internal structure and removes the carbon atoms (Eq. 1), 406 

which opens and widens previously inaccessible pores and generates a porous structure [117, 118]. 407 

Moreover, during devolatilization, or the removal of volatile substances from the solid, the 408 

exposure of previously closed pores acts to form new micropores. In addition, existing micropores 409 

are widened by a gasification reaction and the collapse of adjacent pore walls to form mesopores 410 

[119]. The development of the micropores and mesopores within the structure makes these 411 

activated biochars attractive choices for water treatment remediation via adsorption. The potential 412 

reasons are the following: 1) mesopores facilitate the mass transfer of solutes into micropores; and 413 

2) large-sized pollutant molecules can fit readily into the porous structure [120]. 414 

Using CO2 gas activation, (Table 1S), different porous activated biochars were obtained across 415 

feedstocks, with surface area ranging from 167 m2 g-1 for palm kernel shells [121] to 1705 m2 g-1 416 

for corn cob agrowaste, which also presented a combined micro- and mesoporous structure [122]. 417 

Biochars made from lignocellulosic precursors (e.g., eucalyptus and wattle wood) and activated 418 

with CO2 obtained the highest adsorption capacity, and consequently the highest surface area [123]. 419 

Similar findings were reported by Grima-Olmedo et al. [124], Guo and Lua [120], Işıtan et al. [125], 420 
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Jung and Kim [126], and Sricharoenchaikul et al. [127]. The adsorption-desorption curves showed 421 

a hysteresis loop, indicating increased mesopore volume, contrary to low temperature (873 K) 422 

activation, which obtained predominantly microporosity. Highly porous materials were obtained at 423 

1173 K for 1 h in the presence of high CO2 concentration (100 mL min-1). The optimal parameters 424 

enhanced the C‒CO2 reaction, which resulted in higher activated biochar burn-off percentage (83 425 

wt.%) and better pore development (SBET up to 1490 m2 g-1) [1, 123].  426 

Using intermediate pyrolysis at 773 and 1073 K and with residence times of 10−30 s, raw oak 427 

materials were converted into biochar with surface areas of 107 and 249 m2 g-1, respectively [126]. 428 

After activation, increased surface area (up to 1126 m2 g-1) and micropore development indicated 429 

substantial volatile loss during activation at 1173 K and 1 h reaction time. However, at longer 430 

residence times (e.g., 2 and 3 h), SBET were significantly lower (1.7 and 2.2 m2 g-1, respectively). 431 

Using CO2 activation at 1073–1173 K, the volatile matter was removed, resulting in micropore 432 

formation due to carbon removal via Boudouard reaction (Eq. 1) [116]. At the same time, with 433 

longer residence time, the carbon skeleton of micropores was enlarged to form mesopores as well 434 

as macropores. Extending the activation time at such high temperatures eventually destroyed the 435 

pore structure of activated biochars [123]. The same findings were observed for activated biochar 436 

made from different feedstocks: pistachio nut shells [128], oak wood [126], palm kernel shells 437 

[129], pine nut shells [130], and peel waste from Artocarpus integer [131].  438 

Superheated steam has also been demonstrated a highly effective physical agent, and the most 439 

economical option for commercializing activated carbon. Furthermore, it is considered the most 440 

environmentally friendly of all the activating agents: it is a relatively simple and clean process, and 441 

unlike chemical activation, there is no need for post-treatment to remove by-products. In general, 442 

steam is a more reactive physical agent than CO2 [132–134]. However, the results on the final 443 
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porosity obtained with different physical activating agents at the same pyro-gasification conditions 444 

and feedstock biomass are contradictory. Some authors reported that, compared to CO2 activation, 445 

steam activation produced carbons with a narrower micropore structure due to higher diffusion rates 446 

into the pores of the carbon material and the high accessibility of water (as steam) into the 447 

micropores, given their smaller size [135–137]. Oppositely, other researchers found that steam-448 

activated carbons presented not only lower micropore volume but also larger external surface area, 449 

with pores wider than 2 nm, corresponding to meso- and macropores [126, 133, 134, 138, 139].  450 

As presented in Table 1S, biochar activation with superheated steam produced surface areas 451 

ranging from 7.1 m2 g-1, using burcucumber plants as precursor [140], to 1467 m2 g-1, using date 452 

pits [141]. Depending on the feedstock, and even under optimum activation conditions, low surface 453 

area and porosity have been reported. Burcucumber plants were pyrolyzed and activated with steam 454 

at 573 and 973 K, obtaining low surface area of 1.22 and 7.10 m2 g-1, respectively [140]. Compared 455 

to activated woody biochars (with low ash content), this invasive plant presented very high ash 456 

content (28.7 wt.% at 573 K, and 70.7 wt.% at 973 K). Positive correlations have been observed 457 

between SBET and ash content, indicating that the surface area as determined by N2 gas adsorption 458 

might represent the surface area of minerals present in biochars [140, 142–147]. 459 

Similar findings of high porosity development with CO2 activation have been reported for 460 

steam-activated biochars at higher activation temperatures [148, 149], higher steam flow rates [130, 461 

150], and residence times up to 1 h [151] and 2 h [130, 131, 141, 148, 149, 151, 152]. Chang et al. 462 

[122] conducted a comparative study of activated biochars made from corn agrowaste in the 463 

presence of CO2 or steam. The C–H2O and C–CO2 reactions resulted in higher proportions of 464 

carbon atom removal. Although CO2-activated biochars presented higher burn-off and surface area 465 

(71 wt.% and 1705 m2 g-1) compared to steam-activated biochars (59 wt.% and 1315 m2 g-1), the 466 
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latter presented greater microporosity and smaller pore size diameter for the same surface area. This 467 

was due to the use of low partial pressure with a mixture of steam and N2 (40 vol.%), for a more 468 

selective attack on the carbon structure. In the case of CO2 activation, the combination of higher 469 

CO2 concentration and flow rate was less selective [115, 122]. However, no applications were 470 

proposed to assess performance in relation to porous structure. 471 

The same findings were reported by Pallarés et al. [153]. The maximum surface area and 472 

micropore volume were reached for CO2-activated barley straw biochar, 789 m2 g-1 and 0.33 cm3 473 

g-1, while 552 m2 g-1 and 0.23 cm3 g-1 for steam-activated barley straw biochar. It means that the 474 

CO2 material had 43 % higher surface area and micropore volume compared to the steam material. 475 

This was explained by the higher reactivity of steam at higher temperatures provoking a pore wide 476 

enlarging and increase in mesoporosity. Interesting that this biomass waste contained important 477 

amounts of inorganics and consequently CO2-activated biochar had between 30 and 50 % higher 478 

content of inorganics than steam-activated biochar. However, with the increase of activation 479 

temperature from 973 to 1073 K, the surface area and total pore volume had an important increase, 480 

whereas at 1173 K, low melting temperature silicates appeared which probably filled and blocked 481 

the existing pores, losing the activated biochar porous structure. 482 

4.2. Chemical activation 483 

In chemical activation, well known agents such as ZnCl2, H3PO4, H2SO4, K2S, HNO3, K2CO3, 484 

NaOH, and KOH are used to activate the biochar, resulting in high surface area and appropriate 485 

porous structures [154]. In general, acidic chemicals (e.g., H3PO4) act as dehydrating agents, 486 

whereas bases (e.g., KOH) act as oxidants [155]. In all cases, the first step is to impregnate the 487 

biochar with the solid chemical or a solution at various concentrations and amounts. Chemical and 488 

physical agents are thought to promote pore development by removing partial carbon atoms from 489 

the biochar matrix, which inhibits tar formation and promotes the escape of volatile compounds 490 
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[60]. Applying alkali chemicals (e.g., KOH, the most widely used for biochar activation, as seen in 491 

Table 1S) followed by heating obtains porosity development via different mechanisms and 492 

reactions, according to the equations provided below (Eqs. 4–8). First, the carbon reduces both K 493 

and H to their elemental state (Eqs. 4–5). At temperatures above 843 K, this reaction becomes 494 

spontaneous. At temperatures above 973 K, K2CO3 decomposes into a metallic form of K (boiling-495 

point elevation: 1032 K) and carbon oxides (Eqs. 6–8). The released CO and CO2 also act as 496 

physical agents during activation, thereby contributing to the porosity development. The K2CO3 497 

produced in the first step reacts with carbon and releases more gases, such as K2O, which can 498 

subsequently react with carbon to form larger pores. Therefore, the high porosity and surface area 499 

of KOH-activated carbons are due to the presence of gases (physical activation) together with 500 

metallic compounds (i.e., K) that are intercalated in the carbon lattice [156–159].  501 

6KOH + 2C → 2K + 3H2 ↑ + 2K2CO3                   (4) 502 

4KOH + CHx → K2CO3 + K2O + (2+x/2)H2 ↑       (5) 503 

                                  K2CO3 → K2O + CO2 ↑                                         (6) 504 

K2CO3 + 2C → 2K ↑ + 3CO ↑                               (7) 505 

K2O + C → 2K ↑ + CO ↑                                       (8) 506 

Applying acid chemicals, such as H3PO4, many reactions might take place depending on the 507 

different temperature range. From 373 to 673 K, the dehydration of H3PO4 is carried out (Eqs. 9–508 

11). From 673 to 973 K, the compound Hn+2PnO3n+1 dehydrates and transforms into P4O10 (Eq. 12), 509 

which reacts with carbon and reduces to P4O6 and CO2 (Eq. 13), creating new pores as well as 510 

widening the existing pores. From 973 to 1073 K, both compounds (P4O10 and/or P4O6) might react 511 

with the biochar structure generating PH3 and more gases (CO2/CO). 512 

                           2H3PO4 → H4P2O7 + H2O                                       (9)  513 

  3H3PO4 → H5P3O10 + 2H2O                                    (10) 514 
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  nH3PO4 → Hn+2PnO3n+1 + (n - 1)H2O                       (11)      515 

                           Hn+2PnO3n+1 → P4O10 + H2O                                    (12) 516 

                           P4O10 + C → P4O6 + CO2                                        (13) 517 

                           P4O10/P4O6 + CHx → PH3 + CO2/CO                      (14) 518 

As a result, chemically activated biochars have higher porosity compared to physically activated 519 

biochars. The highest surface area (i.e., 3167 m2 g-1) was reported for activated biochar made from 520 

mesquite trees using a KOH:biochar mass ratio of 5:1 at 1073 K [160], followed by spruce 521 

whitewood at 1148 K for 2 h (SBET = 2673 m2 g-1) [12]. Woody residues, are therefore, good 522 

lignocellulosic precursors for activated carbon production. The main advantages are high carbon 523 

and low inorganic material contents, relatively high volatile content, and widespread availability. 524 

At the same time, as deforestation accelerates, the scientific community is looking at agricultural 525 

wastes for activated biochar production. For example, surface areas for KOH-activated biochars 526 

were greater than 2500 m2 g-1 for distiller-dried grains treated at high temperatures (1223 and 1323 527 

K for 3 h) [161] and for rice straw (973 K for 1 h) [162]. 528 

The activation temperature and impregnation ratio (defined as the mass ratio of the chemical 529 

agent to the biochar), play influential roles in porosity and surface area development, and hence the 530 

capacity to adsorb pollutants. Biochar prepared from safflower seed press cake at 773 K and 531 

chemically activated with ZnCl2 increased in surface area from 249 to 802 m2 g-1 with increased 532 

temperature from 873 to 1173 K [163]. Similar findings were reported when the ZnCl2:biochar 533 

impregnation mass ratio was increased from 1:1 to 4:1, producing increased surface areas of 620 534 

and 802 m2 g-1, respectively. The shape of the N2 adsorption-desorption isotherm for chemically 535 

activated biochars indicated a predominantly microporous structure with some mesoporosity (up to 536 

30 %; type I and IV isotherms according to IUPAC classification [163]). FTIR analysis showed a 537 
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strong presence of aliphatic groups (e.g., –CH, –CH2 or –CH3), indicating decreased proportions of 538 

alcohols, phenols, and ethers, possibly due to the extraction of –H and –OH groups from aromatic 539 

rings during impregnation and thermal treatment [163]. 540 

High ash content (up to 66 wt.%) improved the porosity of chemically activated biochar made 541 

from sewage sludge due to the presence of inorganics. Three kinds of sludge were recovered from 542 

a wastewater treatment plant, pyrolyzed at 973 K under nitrogen flow, and activated using KOH at 543 

1:1 KOH:biochar mass ratio. Sewage sludge biomass structure is highly complex compared to other 544 

biomass types (e.g., lignocellulosic wastes). The carbon content ranged from 26 to 31 wt.%, and up 545 

to 40 wt.% was constituted of inorganic species. It was also observed that, unlike physical 546 

activation, the mineral matter was involved in the KOH activation, for a positive effect on porosity 547 

development. Biologic sewage sludge obtained surface areas in the range of 1900 m2 g-1. At high 548 

temperatures, KOH acted not only as an activating agent for sludge-based precursors, it also 549 

produced an alkaline fusion with the inorganic matter present in the sewage sludge, thereby 550 

catalyzing the activation reaction. The nitrogen from microorganisms was maintained even after 551 

treatment at 973 K, producing nitrogenated carbonaceous materials. This type of functionalized 552 

sludge-derived activated biochar could be suitable for a wide range of applications, including liquid 553 

adsorption as well as electrochemistry and catalysis [55]. 554 

Generally, the higher the impregnation ratio, the higher the porosity of the activated biochar, as 555 

confirmed by Angın et al. [164], Mao et al. [165], and Zhang et al. [166]. Biochars made from pork 556 

bones were activated separately with H2SO4 and H3PO4 at 1073 K. Using H2SO4 as the chemical 557 

agent, the lowest acid:biochar impregnation mass ratio increased the surface area by about 80 % 558 

(up to 140 m2 g-1) compared to untreated biochar (76 m2 g-1). In contrast, using H3PO4 as the 559 

activating agent, surface area decreased sharply with higher impregnation ratio. At the lowest 560 
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impregnation ratio (0.2 mmol g-1), SBET was around 136 m2 g-1, and at 20 mmol g-1 it dropped 561 

sharply to 3.2 m2 g-1. Chemical activation with H3PO4 had an aggressive effect on the final 562 

materials. XRD analysis revealed that, after acid and heat treatment, various phosphate compounds 563 

were produced, including CaHPO4.2H2O, Ca(H2PO4)2.2H2O, and Ca3(PO4)2. The removal of 564 

CaCO3 was also confirmed by FTIR analysis. SEM images revealed significant cracking of the 565 

precursor particles, as confirmed by the drastic reduction in pore volume and surface area. This 566 

dramatic change in the structure and composition of activated biochar could be attributed to an 567 

amorphous and thermolabile structure that collapsed during thermal treatment [167].  568 

4.3. Physicochemical activation 569 

Physicochemical activation is also used to produce activated biochar. In such case, the biochar 570 

is chemically impregnated and then heat treated in the presence of a physical agent (CO2 or steam) 571 

in an inert atmosphere. Wu and Tseng [168] obtained outstanding surface areas (1371–2821 m2 g-572 

1), with total pore volumes from 0.81 to 1.73 cm3 g-1, by impregnating fir wood biochar with KOH 573 

and then activating at 1053 K in the presence of CO2 gas. The adsorbed nitrogen volume depended 574 

strongly on the CO2 gasification duration. The activation process produced porosity at the surface 575 

of the holes, resulting in the formation of finer walls with clear corner lines, as observed in SEM 576 

images.  577 

Rostamian et al. [169] conducted a comparative study of activated biochars derived from rice 578 

husks using three activation methods: chemical (using KOH), physical (using steam), and the two 579 

combined at 1073 K. The raw material presented very low surface area (1.4 m2 g-1), which increased 580 

significantly after pyrolysis and subsequent activation to 2201 (chemical), 317 (physical), and 1169 581 

m2 g-1 (the two combined). The KOH-activated biochar showed a well developed porous structure 582 

with smaller pore diameters (e.g., 1.7 nm) compared to 2.2 nm for steam-activated biochar. Notably, 583 
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physicochemical activation (the most expensive method) produced less satisfactory pore structure 584 

development compared to chemical activation. The authors suggested that the introduction of both 585 

agents (KOH and steam) may have caused the pore walls to thin and collapse, or else to form very 586 

thin pores or ultramicropores that were inadequate for N2 adsorption [169]. Moreover, the rice 587 

husks had high ash content (47 wt.%), which may have interfered with the reaction mechanisms 588 

between steam and the organic matter in the biochar.  589 

Compared to physically activated materials, biochars that have been chemically or 590 

physicochemically activated present higher porosity, and are suitable for many more applications 591 

(Table 1S). This is because porosity is a key factor for adsorptive capacity. Materials with high 592 

surface area (> 1000 m2 g-1) and high specific pore size distribution such as ultramicropores, 593 

micropores, or micropores with a certain degree of mesoporosity have been used for gas adsorption 594 

(CO2, H2S), as catalyst supports, and as components of supercapacitors, electric double-layer 595 

capacitors (EDLC), and lithium batteries. Table 1S also presents the various applications of 596 

activated biochars with high (> 1000 m2 g-1) and moderate (300−800 m2 g-1) surface areas for 597 

immobilizing aromatic and heavy metals in soil and for absorbing contaminants in water, including 598 

organic (iodine, methylene blue, herbicide atrazine, dyestuff, phenol, acid yellow 36, 599 

sulfamethazine, ibuprofen, endocrine disrupting compounds, and pharmaceuticals) and inorganic 600 

contaminants (Cu2+, Cd2+, Zn2+, Ni2+, Hg2+, Cu2+, As3+). The main mechanism involved in 601 

contaminant removal is physical sorption (pore diffusion). Depending on the contaminant and the 602 

surface chemistry and physicochemical characteristics of the activated biochar, other mechanisms 603 

may also be involved. These include ion exchange, metal electrostatic attraction, and precipitation 604 

in activated biochar–inorganic contaminant interactions; and electrostatic interactions in activated 605 
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biochar–organic contaminant interactions. These findings underscore the advantages of developing 606 

highly porous biochars with tailored physicochemical properties for a wide variety of end uses. 607 

4.4. Effects of pyro-gasification conditions on the porosity of activated biochar 608 

4.4.1. Pyro-gasification temperature 609 

Few studies on activated biochar production have focused on the effects of pyro-gasification 610 

temperature on the final porosity (Table 1S). Fig. 2 presents the surface areas of biochars made 611 

from various feedstocks as a function of pyro-gasification temperature using: a) CO2 or steam 612 

activation, and b) chemical activation with NaOH or KOH. Three types of materials, lignocellulosic 613 

(residues from white birch and black spruce, almond shells, pistachio nut shells, nutshells and oil 614 

palm shells) [125, 170–172], broiler litter (rich in nitrogen, sulfur, and inorganics) [173], and plants 615 

(rich in inorganics) [140], were activated in the presence of CO2 or steam at different pyro-616 

gasification temperatures (Fig. 2 a)). In a comparison of lignocellulosic materials activated in the 617 

presence of CO2 at the same temperature (1173 K), activated biochars made from nut shells 618 

presented higher porosity compared to pistachio nuts and oil palm shells (ash contents below 2 619 

wt.%). Only insignificant differences were observed in surface area across pyro-gasification 620 

temperatures, except at very low (523−573 K) pyrolysis temperatures, where lower porosity was 621 

found for pistachio nut shells compared to the 673−1173 K range [171]. Biochars with almond 622 

shells as lignocellulosic precursor were subjected to successive thermal treatments at low (3−4 K 623 

min-1 at 548−673 K) and high (3000 K min-1 at 1123 K) heating rates. Activation at 1053 K in the 624 

presence of CO2 produced highly porous materials, but no significant differences in surface area 625 

were observed across pyro-gasification temperatures [170]. Other authors found that activation 626 

temperature was the most influential variable for increasing the surface area. Recently, Işıtan et al. 627 

[125] used regression analysis to examine the impact of pyrolysis and activation temperature on the 628 

https://www.google.ca/search?dcr=0&q=autours&spell=1&sa=X&ved=0ahUKEwifuPbJt6_XAhXj7IMKHQm7AwUQBQgjKAA
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surface area of activated pistachio nut shell biochar and found that increasing the temperature from 629 

1073 to 1173 K in the presence of CO2 produced more than 300 m2 g-1 increased surface area for 630 

all pre-carbonization temperatures (723, 823, 923 K). The regression analysis indicated that 631 

pyrolysis temperature had no significant impact on the final surface area or pore volume. Similarly, 632 

the influence of torrefaction/fast pyrolysis of white birch and black spruce on the porosity 633 

development of CO2-activated biochars was statistically exanimated by Braghiroli et al. [174]. The 634 

pyro-gasification temperature was varied from 588 to 727 K and the activation temperature varied 635 

from 973 to 1173 K. It was concluded that the first step pyro-gasification had less impact on the 636 

porosity of activated biochars while the activation temperature was the major variable to optimize 637 

their surface area. By increasing the activation temperature from 973 to 1173 K, the average surface 638 

area of CO2-activated biochars increased to nearly 120 m2 g-1. 639 

In activated biochars prepared from other types of materials (plants and broiler litter) having 640 

different morphological and chemical compositions from those for lignocellulosic precursors, 641 

lower porosity was obtained due to the higher ash content (up to 71 wt.% for steam-activated plant 642 

biochars) [140] compared to woody biochars (< 5 wt.%). Using broiler litter feedstock, the same 643 

surface area of 335 m2 g-1 was measured for two biochars produced at pyrolysis temperatures of 644 

623 and 973 K followed by activation at 1073 K in the presence of steam. Pyrolysis temperature 645 

showed no effect on the porosity of either material, but the activated biochar pyrolyzed at 973 K 646 

presented higher capacity for herbicide atrazine sorption due to its higher aromacity [173].  647 

In sum, biochars that were activated in the presence of physical agents presented no significant 648 

variations in porosity as a function of pyro-gasification temperature for these three groups of 649 

materials. The variation in surface area across materials was due to the feedstock quality: 650 

differences in lignocellulosic component contents, morphology, and chemical structure. These 651 
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findings indicate that the use of low-temperature pyro-gasification (e.g., 673 K) to produce 652 

physically activated biochars could have economic benefits, notably lower energy required to 653 

improve product quality. 654 

The changes in surface area for chemically activated biochars (at almost the same activation 655 

temperature: 1073 or 1098 K) as a function of the pyro-gasification temperature differ from the 656 

changes for physically activated biochars (Fig. 2 a) and 2 b)). Highly porous materials were 657 

obtained by chemical activation (SBET up to 2800 m2 g-1), and high ash content had a positive effect 658 

on increased porosity [175]. For instance, rice husks contain inorganics (~ 15 wt.%, including silica, 659 

potassium, and calcium) that interact with NaOH via a complex mechanism, which in turn fosters 660 

gasification reactions and hence pore development. Increasing the torrefaction temperature from 661 

493 to 553 K contributed to increase the porosity of rice husk torrefied materials. Using 553 K 662 

torrefaction temperature and subsequent activation, the materials presented a surface area increase 663 

of 2679 m2 g-1 compared to 2297 m2 g-1 when prepared at 493 K.  664 

However, it is noteworthy that surface area decreased drastically with increased pyro-665 

gasification temperature for loblolly pine chips [176] and rice straw [162] as precursors. Increased 666 

pyro-gasification temperature from 573 to 973 K had a negative effect on the porosity of NaOH-667 

activated wood chip biochars (surface area reduced from 1250 to 57 m2 g-1) [176]. High pyrolysis 668 

temperature (1273 K) also lowered the surface area of KOH-activated rice straw biochar compared 669 

to 973 K (2200 vs. 1050 m2 g-1) [162]. At low pyro-gasification temperatures (573 K), activated 670 

biochars had lower aromacity and smaller-sized aromatic clusters (non-protonated carbon content) 671 

but higher amounts of alkyl carbons and volatile matter, which almost completely disappeared after 672 

activation, resulting in the formation of highly porous materials. In contrast, at high pyro-673 

gasification temperature, activated biochar had higher aromacity and larger-sized aromatic clusters. 674 
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This provided a more rigid, stable, and inactive carbon structure (with condensed aromatic 675 

structures) with fewer oxygen-containing groups at the edges of the carbon layers [176, 177]. This 676 

structure was resistant to thermal degradation, even when using severe chemicals (e.g., NaOH), 677 

which inhibited porosity development. In light of these findings, studies are needed to determine 678 

optimal pyro-gasification temperatures when preparing feedstock precursors for activated biochar 679 

production, and particularly via chemical activation.  680 

4.4.2. Residence time and heating rate 681 

Residence time (Fig. 3 a)) and heating rate (Fig. 3 b)) are two parameters that have been 682 

investigated for their impact on the porosity of activated biochars. The effects of various residence 683 

times on the porosity of activated biochars were assessed for pistachio nut and oil palm shells (ash 684 

contents < 1 %) pyrolyzed at 773 and 873 K, respectively, and activated at 1173 K (Fig. 3 a)). 685 

Longer residence time (from 0.5 to 2 h) during slow pyrolysis progressively increased the porosity 686 

due to the improved rudimentary pore structure of the biochars with the release of volatile matter. 687 

However, at longer residence times (i.e., > 2 h), activated biochars presented lower porosity [141, 688 

171, 172]. Hamza et al. [121] also found that the surface area of activated oil palm shell biochars 689 

prepared at 1073 K for 2 to 4 h was reduced from 167 to 138 m2 g-1. Prolonged residence time 690 

results in secondary reactions, notably tar reactions on the biochar surface and tar charring. Higher 691 

and prolonged heat during pyrolysis causes the low-molecular-weight volatiles to increase, soften, 692 

and sinter, hence forming an intermediate melt [172]. This melt formation blocks off some pores in 693 

the chars, resulting in lower porosity development during activation. However, for other feedstock 694 

types, such as date pits [141], the longer the residence time (from 0.5 to 4 h), the higher the porosity 695 

of the final material (from 840 to 1467 m2 g-1). 696 
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The influence of heating rate on the porosity of activated biochars was assessed for pistachio 697 

nut and oil palm shells as precursors (particle size: 2−2.8 nm) pyrolyzed at 773 and 873 K, 698 

respectively, and activated at 1173 K [171, 172] (Fig. 3 b)). When the heating rate was increased 699 

from 5 to 10 K min-1, both materials increased in surface area and subsequently decreased with 700 

increased heating rate from 15 to 50 K min-1. At the highest heating rate (50 K min-1), the materials 701 

exhibited decreased surface area, because the shorter residence time was insufficient to maximize 702 

pore development. For both feedstocks, the optimal heating rate for biochar production was 10 K 703 

min-1.  704 

To summarize, only a few studies have assessed the impact of pyro-gasification conditions on 705 

the porosity of activated biochars. This calls for a comprehensive optimization approach in order 706 

to minimize the energy requirements for biomass thermochemical conversion and maximize the 707 

final porosity.  708 

4.4.3. Reactor design 709 

In the overview of the research on activated biochars (Table 1S), one could see that the majority 710 

of biomass precursors were transformed into biochar with laboratory-scale furnaces, which have 711 

highly controllable parameters. However, some studies used the products or by-products of small- 712 

to large-scale pyro-gasification reactor operations as precursors for activated materials. These 713 

activated biochars were synthesized in a two-step process: 1) torrefaction, slow to fast pyrolysis, 714 

gasification, or kiln charcoal production; and 2) activation in another laboratory-scale furnace 715 

reactor in the presence of physical and chemical agents to develop the porosity. In a pioneering 716 

study, Azargohar and Dalai [178] used biochars produced by a commercial renewable bio-oil 717 

production company. Fast pyrolysis of sawdust biochar yielded 70 % bio-oil, 20 % biochar, and 10 718 

% syngas. The biochar was then chemically activated to produce an added-value biochar with 719 
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surface area up to 1578 m2 g-1. Zhang et al. [179] used a fluidized sand-bed reactor at 7 kg h-1 720 

residue feed rate and 773 K to transform biomass waste (oak wood, corn hulls, and corn stover) 721 

into biochar, then activated it with CO2 at 1073 K to obtain surface areas up to 1010 m2 g-1. 722 

Although both these studies obtained highly porous materials, they used small-scale activation 723 

furnaces: a fixed-bed tubular reactor and a quartz tube reactor vessel, respectively. 724 

Gasification reactors, including a downdraft gasifier and a fluidized bed gasifier, were used to 725 

prepare biochars that were subsequently activated [180]. In the downdraft (co-current) gasifier, the 726 

fuel and the product gas flow in the same direction, forming tar-cracking zones in the reactor at 727 

higher temperatures. The main components of the downdraft gasifier include a cyclone-based 728 

pyrolysis section followed by a fixed-bed gasification section [181]. The fluidized bed consists of 729 

a cylindrical reactor column with a bed of inert material, such as sand. The gasifying mechanism is 730 

fluidization: the fuel combined with the inert bed material behaves like a fluid. This is obtained by 731 

forcing a gas (the fluidization medium) through the solid inventory in the reactor [182]. The 732 

biochars generated by the downdraft gasifier and fluidized bed reactor had surface areas of 64 and 733 

2 m2 g-1, respectively. After KOH-activation in a laboratory furnace, surface areas increased to 900 734 

and 200 m2 g-1, respectively [180]. These findings indicate that the configurations of the two 735 

gasifiers created different gasification conditions, which can strongly influence the porosity of the 736 

end product. 737 

Studies on the use of biochar as a by-product from large-scale pyro-gasification operations have 738 

demonstrated that the synthesized material have characteristics that are suitable for many end uses. 739 

In addition, further activation can develop comparable porosity to that for materials prepared in 740 

small-scale furnaces, which have more controllable parameters due to the small amount of 741 

stationary precursor used. Together, the pyro-gasification conditions (e.g., reactor design, 742 
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temperature, pyrolysis type, heating rate) and the feedstock (with differing morphologies and 743 

chemical structures) wield a significant influence on the characteristics of the final activated 744 

biochars. However, the conditions could be optimized to maximize the porosity and lower the 745 

energy required to achieve material quality. The current challenge in activated biochar production 746 

is that only laboratory-scale furnaces have been tested to date. Braghiroli et al. [174] produced 747 

highly porous physically and chemically activated biochars made from wood residues through a 748 

torrefaction/fast pyrolysis industrial furnace (Airex Energy, Canada, 250 kg h-1) and a prototype 749 

activation furnace (slow pyrolysis in a shaftless screw conveyor reactor, 1 kg h-1). One promising 750 

direction would be to combine both furnaces having flexible and scalable activation processes with 751 

high temperatures (up to 1173 K) and long residence times (1 h minimum) at various heating rates. 752 

Biorefineries could also improve the efficiency of their thermochemical conversion operations and 753 

diversify their product range to include economically attractive biochars, bio-oil, syngas, and 754 

activated biochars.  755 

5. Conclusions and future research directions 756 

This extensive literature review addresses the influence of pyro-gasification and activation 757 

conditions on the properties of activated biochars derived from a large variety of feedstocks. The 758 

main conclusions are summarized as follows: 759 

1. The physicochemical properties of lignocellulosic materials used as feedstock precursors for 760 

activated biochar production vary widely compared to the properties of other materials, such as 761 

animal manure, crop residues, food waste, algae, and wastewater sludge. Because the biochar’s 762 

chemical composition strongly influences the properties of the activated material, biochars must 763 

be physicochemically characterized to determine their suitability for specific applications. 764 
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2. The pyro-gasification conditions (including temperature, residence time, heating rate, and 765 

reactor design) strongly influence the textural properties of the activated biochar. Interestingly, 766 

however, and compared to chemical activation, variations in pyro-gasification temperature (in 767 

the 673−1173 K range) have not substantially affected porosity development in physically 768 

activated biochars. Nevertheless, very few feedstocks have been assessed, and studies are 769 

needed to optimize processing conditions. Improved process efficiency in relation to product 770 

quality would minimize energy requirements (e.g., low pyro-gasification temperatures) without 771 

impacting the porosity of the end product. 772 

3. The activation conditions play an important role in the porosity development of activated 773 

biochars. High temperatures (up to 1173 K), residence times from 1 to 2 h, higher steam or CO2 774 

gas flow rates, and optimal chemical agent:biochar mass ratios produced activated biochars 775 

with suitable porosity structures for specific applications. In addition, longer residence times, 776 

higher heating rates, and higher proportions of physical and chemical agents were also found to 777 

drastically reduce the porosity of activated biochars, resulting in the formation of 778 

ultramicropores or macropores (inaccessible by N2 adsorption analysis), or alternatively, the 779 

collapse of amorphous and thermolabile structures in activated biochars during thermal 780 

treatment. It is therefore recommended to optimize the activation parameters. 781 

4. Chemical activation with KOH was demonstrated effective to obtain highly porous biochars 782 

(SBET up to 3000 m2 g-1) derived from several feedstock types, and particularly lignocellulosic 783 

materials. Agricultural waste residues appear to be promising precursors, as KOH activation 784 

produced biochar surface areas up to 2500 m2 g-1. However, further studies are needed to clarify 785 

the structure of biomass precursors as well as the activation mechanisms. Work is also needed 786 

to improve the final porosity, a critical property for expanded end uses. 787 
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5. Biochar activation is a promising method to improve the textural properties of new, renewable 788 

biomaterials for use in a wide range of fields, including catalysis, electrochemistry, energy 789 

storage, and contaminant removal from drinking water and wastewater. Notably, this review 790 

did not address the cost of activated biochar production. Future studies could explore the use of 791 

flexible and scalable activation methods with higher temperature capacity (up to 1173 K), 792 

longer residence times (e.g., 1 h), and varied heating rates. Advances in this area would 793 

significantly benefit the biorefinery industry and the environment through the development of 794 

sustainable, low-cost biomaterials for a wide range of applications.  795 
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Table captions: 1349 

Table 1 Characteristics of thermochemical biomass conversion processes for biochar production: 1350 

torrefaction; slow, intermediate, fast, and flash pyrolysis; gasification, and hydrothermal 1351 

carbonization 1352 
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Figure captions: 1371 

Fig. 1 The main products obtained from the thermochemical modification of biomass residue materials 1372 

and the applications of biochars and activated biochars 1373 

Fig. 2 Surface areas of activated biochars as a function of pyro-gasification temperature prepared 1374 

by: a) CO2 from pistachio nut shells  (Lua et al. [171]) and  (Işitan et al. [125]), from oil-1375 

palm shells  (Lua et al. [172]) (activated at 1173K), from almond shells  (Marcilla et al. 1376 

[170]) (activated at 1053K), and from white birch − and black spruce + (Braghiroli et al. 1377 

[174]) (activated at 973, 1073 and 1173K); and steam from broiler litter  (Uchimiya et al. 1378 

[173]) (activated at 1073K), and from burcucumber plants  (Rajapaksha et al. [140]) 1379 

(activated at 573 and 973K); and b) NaOH or KOH from rice straw  (Oh and Park [162]), 1380 

from debarked loblolly pine chips  (Park et al. [176]) (activated at 1073K), and from rice 1381 

husks  (Zhang et al. [175]) (activated at 1098K) 1382 

Fig. 3 Surface areas of activated biochars prepared by CO2 or steam as a function of: a) residence 1383 

time: made from pistachio nut shells  (Lua et al. [171]), from oil-palm shells  (Lua et al. 1384 

[172]) (activated at 1173K) and  (Hamza et al. [121]) (activated at 1073K), and made from 1385 

date pits  (Bouchelta et al. [141]) (activated at 973K); and b) heating rate made with the 1386 

same materials and conditions as in a) 1387 
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 1389 

 1390 

 1391 

 1392 
 1393 
 1394 
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Table 1 Characteristics of thermochemical biomass conversion processes for biochar production: 1395 

torrefaction; slow, intermediate, fast, and flash pyrolysis; gasification, and hydrothermal 1396 

carbonization 1397 

 Dry processes  Wet processes 

 Torrefaction Slow 
pyrolysis 

Intermediate 
pyrolysis 

Fast 
pyrolysis 

Flash 
pyrolysis Gasification  Hydrothermal 

carbonization 

Temperature 
(K) 473–593 373–1273 ~ 773 573–1273 673–1273 > 1073  453−533 

Residence 
Time ~ 10–60 min 5–30 min 10–20 s < 2 s < 2 s 10–20 s  5 min−12 h 

Heating rate 
(K min-1) - 5–7 up to 100 300–800 ~ 1000 -  5−10 

Main product Torrefied 
biomass Biochar Bio-oil Bio-oil Syngas Syngas  Hydrochar 

Solid yield 
(wt.%) 80 25–35 25 10–20 10–20 10  45−70 

 1398 
 1399 
 1400 

 1401 
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