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Abstract 20 

In this study, activated biochar was produced using pilot-scale technologies of fast pyrolysis and 21 

activation to create desirable morphology, surface chemistry, and adsorptive properties for 22 

application in supercapacitors. First, residues from white birch were converted into biochar by fast 23 

pyrolysis (~ 450 °C). Then, physical (using CO2) or chemical (using KOH) activation was carried 24 

out in a homemade pilot-scale furnace at 900 °C. These synthesized materials presented distinct 25 

porosity structures: micro-/mesoporous (CO2 material) and highly microporous (KOH material), 26 

reaching surface areas of up to 1700 m2 g-1. Electrochemical results showed that KOH-activated 27 

biochar had higher specific electrical capacitance in both acidic and neutral electrolytes with a 28 

maximum specific capacitance value of 350 and 118 F g-1 at 1 A g-1, respectively; while, for CO2-29 

activated biochar, the maximum obtained values were 204 and 14 F g-1. The greater proportion of 30 

oxygenated and nitrogenated functional groups on the surface of the KOH activated biochar, along 31 

with its high surface area (with wider porosity), improved its performance as a supercapacitor 32 

electrode. Specifically, the low proportion of ultramicropores was determinant for its better 33 

electrochemical behavior, especially in the neutral electrolyte. Indeed, these results are similar to 34 

those found in the literature on the electrical capacitance of carbonaceous materials synthesized in 35 

a small-scale furnace. Thus, the chemical-activated biochar made from wood residues in pilot-scale 36 

furnaces is a promising material for use as electrodes for supercapacitors. 37 

Keywords: Wood residues, biochar, activated biochar electrode, porosity, electrochemistry, 38 

supercapacitors 39 

 40 

 41 

 42 
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1. Introduction 43 

Motivated by the growing consumption and restricted availability of fossil fuels, as well as the 44 

negative environmental impacts of burning these fuels, researchers have spent considerable effort 45 

in recent years to develop environmentally sustainable energy storage devices. Supercapacitors are 46 

one example of electrical energy storage devices; supercapacitors consist of two electrodes 47 

(separated from each other by an electric insulator) and an ionic electrolyte. These devices are of 48 

great interest due to their high energy density, fast charge-discharge time, and long-term operation 49 

stability [1]. Currently, these characteristics allow supercapacitors to be used in electric cars, 50 

electrical grids, electronic devices (e.g., continuous power supplies, power tools), and military 51 

equipment, as well as to be coupled to solar and wind energy systems [2–4].  52 

Generally, the performance of supercapacitors depends on the electrode material and its 53 

physicochemical structure. Several materials, including conducting polymers, metal oxides, and 54 

porous carbons, have been studied to increase the energy density of supercapacitors [5]. Among 55 

these materials, carbon-based materials in various forms, such as single- and multi-walled 56 

nanotubes, black carbon, graphene, carbon gels, and activated carbons, are the most studied. The 57 

feasibility of several biomasses (e.g., lignocellulosic agricultural wastes such as fruit stones, husks, 58 

and hulls) has been also reported for the production of highly porous activated carbons not only for 59 

the adsorption of gases and pollutants from aqueous solution but also as electrodes for 60 

supercapacitors [6,7]. However, scale-up processes are under-explored in the available literature. 61 

The forest industry is an important sector in Canada. Globally, Canada is the leader in forest 62 

products trade [8]. While the province of Québec covers about 25% of Canada’s forests and only 63 

2% of the world’s forests. Québec’s wood-processing sector generates a significant amount of wood 64 

residues, which are stored in large wood-residue deposits across the country [9]. The development 65 

of innovative materials using wood waste, such as bio-based chemicals and renewable energy to 66 
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replace the petroleum-derived materials, could provide new market opportunities. In fact, given 67 

Canada’s commitment to pursuing a national greenhouse gas reduction target of 20% by 2020 [10], 68 

the renewable energy sector is expected to grow in the coming years [8].  In this context, the use of 69 

clean wood residues from sawmills would be suitable to produce carbon electrodes for 70 

supercapacitors and diversify wood-processing markets.  71 

Currently, one of the by-products of the thermochemical conversion of biomass (e.g., 72 

torrefaction, slow to fast pyrolysis, gasification) has also been used as a precursor for the production 73 

of activated carbon. Biochar, a carbon-rich material, possesses limited porosity (surface area up to 74 

200 m2 g-1), but after activation at high temperature and in the presence of chemicals (KOH, H3PO4) 75 

and gases (CO2, steam), porosity is well developed with the gasification of carbon atoms [11]. The 76 

valorization of biochar as a precursor for the production of activated carbons could bring high 77 

profitability for biorefineries as the activated carbon market is expected to rise 3.5% per year 78 

through 2020 [12]. Additionally, activated biochars that have very high surface areas (up to 2500 79 

m2 g-1) were attained, but the properties of activated biochars can be substantially affected by the 80 

distinct feedstock chemical composition, and pyro-gasification and activation operating conditions 81 

[13].  82 

According to González et al. [5], most commercial energy storage devices are manufactured 83 

using activated carbon electrodes with a specific capacitance (i.e., the electrical energy stored 84 

through the system electrode/electrolyte) of 100 to 120 F g-1. Indeed, chemically activated biochars 85 

made with yellow pine [14], woody biomass [15], and spruce whitewood [16] achieved high values 86 

of capacitances of 171, 167, and 245 F g-1, respectively. The most important characteristics of 87 

porous carbon materials for application in supercapacitors reported so far are surface area, the pore 88 

size distribution and pore volume (tailored pore), and amount and nature of some functional groups 89 

that can help enhance the electrical capacitance through reversible redox reactions 90 
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(pseudocapacitance) [17–19]. The porosity of the electrode material directly impacts the 91 

supercapacitor performance, due to intrinsic aspects of material on electrochemical behavior such 92 

as the available area for the double layer formation, charge and discharge speed of the electrode, 93 

and the cell resistance [17,20]. The correlation between the pore size characteristics of carbon 94 

materials and their performance as supercapacitor electrodes has been a widely discussed topic by 95 

different authors around the world from the beginning of the 1990s [21] to the present time [22–96 

24]. Various models have been proposed to elucidate the different electrochemical behaviors of 97 

carbon materials [18–24]. However, the complexity and heterogeneity of their porous structure 98 

hinder a conclusive correlation between the textural properties (surface area, size and shape of the 99 

pores, etc.) and the electrochemical behavior of the supercapacitor electrode material (electrical 100 

capacitance, rate capability, series equivalent resistance, etc.). In addition, the characteristics of the 101 

electrolyte (ion size, ion charge, solvation coordination sphere, etc.) increase the level of 102 

complexity of the analyzed electrode-electrolyte system. Thus, laboratory experiments, models and 103 

interpretations in this field are contradictory. The papers reported by Stoeckli et al. [25] and 104 

Chmiola et al. [26] are just examples of these disagreements.  105 

Thus, appropriate pore size development and analysis must be carefully considered in order to 106 

obtain a more effective match between the pore size and the dimensions of the electrolyte ions.  107 

Furthermore, the active functional groups or heteroatoms on the surface of the carbon material, 108 

together with the nature and density of the active sites intended for the adsorption of electrolyte 109 

ions, play an important role in the performance of electrodes for supercapacitors [18,24]. Indeed, 110 

some surface chemical groups may contribute to the improvement of wettability (e.g., oxygenated 111 

groups)  [27], electronic conductivity (e.g., nitrogenated groups) [28] and the presence of both 112 

functional groups may also improve the interfacial capacitance, thereby giving rise to faradaic 113 

effects [29,30]. Using pilot-scale technologies, this work aimed to prepare activated biochars that 114 
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have various textural and chemical characteristics from Québec’s forest residues for application as 115 

supercapacitor electrodes. The carbon materials were obtained from wood residues from white 116 

birch, using two different activation agents, CO2 and KOH. Different electrochemical parameters 117 

of the materials were determined from galvanostatic, potentiostatic, and electrochemical impedance 118 

spectroscopy (EIS) experiments using neutral and acid aqueous electrolytes. The electrochemical 119 

characteristics of the samples were correlated with their different physicochemical properties, 120 

including specific surface area, pore size, and chemical composition. 121 

 122 

2. Materials and methods 123 

2.1 Activated biochar preparation 124 

Wood residues from white birch (WB) sampled from sawmills in Québec, Canada, were first 125 

converted into biochars. In summary, the biochar (BWB) was produced through a CarbonFX fast 126 

pyrolysis plant (developed by Airex Energy Inc., Bécancour, QC, Canada) at 455 °C in an oxygen-127 

free environment. Chemical and physical activation of the BWB were then achieved using KOH 128 

and CO2 gas, respectively, through an in-house pilot-scale furnace. The furnace is composed of 129 

three parts: 1) a feed hopper, 2) a screw conveyor tube placed in a muffle furnace, and 3) a recovery 130 

hopper. The details of the furnaces and materials preparation have been described elsewhere [13]. 131 

For chemical activation, biochar impregnation was achieved by mixing biochar, KOH (in pellets) 132 

and water in proportions of 1:1:2 based on mass. The mixture was kept at room temperature for 2 133 

h and then dried overnight at 120 °C in an oven. KOH-impregnated biochar was placed in the feed 134 

hopper and the screw conveyor was switched on to activate and transport the material (for 135 

approximately 1 h) to the recovery hopper under a nitrogen atmosphere once the furnace 136 

temperature reached 900 °C. The material was then washed with distilled water until a pH ~ 7 was 137 



7 
 

reached and dried overnight at 105 °C. An almost identical procedure was performed for the 138 

physical activation. BWB was placed in the same furnace under nitrogen atmosphere and CO2 at 3 139 

L min-1 injected for approximately 1 h once the temperature reached 900 °C. The final activated 140 

biochars were designated as KOHBWB and CO2BWB, respectively. 141 

2.2 Materials characterization 142 

After activation, both materials were characterized in terms of porous structure (surface area 143 

and pore volume), CHNSO percentage, pHPZC (point of zero charge), and surface chemistry. Pore 144 

texture parameters were obtained by N2 at -196 °C and by CO2 at 0 °C using a Micromeritics ASAP 145 

2460 Surface Area Analyzer (Norcross, GA, USA). BWB and activated biochars were degassed 146 

under vacuum for 48 h at 105 and 250 °C, respectively, prior to adsorption testing. N2 adsorption 147 

isotherms were treated to obtain (i) the surface area (SBET, m2 g-1) calculated by the Brunauer–148 

Emmett–Teller (BET) model applied to the nitrogen adsorption [31]; (ii) the micropore volume 149 

(Vμ, cm3 g-1) determined by the Dubinin–Radushkevich (DR) equation [32]; (iii) the total pore 150 

volume (V0.97, cm3 g-1) calculated from the amount of nitrogen adsorbed at 0.97 relative pressure 151 

[33]; (iv) the mesopore volume (Vm, cm3 g-1) calculated as the difference (V0.97 – Vµ); and (v) the 152 

average pore diameter (nm). The pore size distribution (PSD) was determined by applying density 153 

functional theory (DFT) using N2 adsorption isotherms [34].  154 

CHNS elemental analyzer (Perkin Elmer 2400 CHNS/O Analyzer; Waltham, MA, USA) was 155 

used for determining elemental carbon, hydrogen, nitrogen, and sulfur contents by sample 156 

combustion in a pure O2 stream. Oxygen content was obtained by calculating the difference (%O = 157 

100 − %CHNS). The point of zero charge (pHPZC), the pH value at which the zeta potential is equal 158 

to zero, of activated biochars was carried out in a Malvern Zetasizer Nano ZS90 equipment. Five 159 

mg of each material were added into 10 mL of NaCl solution (0.01 M) with pH values adjusted 160 
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from 2 to 12 with HCL or NaOH solutions and kept for 24 h before measurements. X-ray 161 

photoelectron spectroscopy (XPS) spectra were recorded with a Kratos AXIS ULTRA system 162 

(Wharfside, MA, UK) equipped with a focused X-ray source (Al Kα, hv = 1486.6 eV) operating at 163 

300 W. The survey scans were acquired using a pass energy of 160 eV and a step size of 1 eV. The 164 

XPS core level spectra were analyzed using CasaXPS (Casa Software Ltd.). 165 

2.3 Electrode preparation and electrochemical measurements 166 

The electrochemical analyses were performed in a three-electrode cell with an Ag/AgCl 167 

wire (saturated in KCl) as a reference electrode and platinum wire as a counter electrode. The 168 

working electrode was prepared through a suspension of 1.1 to 1.4 mg of the analyzed sample in 169 

Nafion® (5 wt.%) coated onto a graphite disk (0.29 cm2). The measurements were performed using 170 

two different electrolytes, 2 mol L-1 H2SO4 (acidic electrolyte) and 1 mol L-1 Na2SO4 (neutral 171 

electrolyte) aqueous solution. The galvanostatic charge-discharge curves were obtained in a density 172 

current range (j) of 1 A g-1 and the cyclic voltammetry in the scan rate of 10 mV s-1, both 173 

experiments had a potential range of 0.1 to 0.9 V vs. Ag/AgCl. Electrochemical impedance 174 

spectroscopy (EIS) measurement was performed in a frequency range of 3 x 10-4–2.5 x 105 Hz. All 175 

the experiments were performed at room temperature using potentiostat/galvanostat/FRA 176 

Vertex.One equipment from Ivium Technologies.  177 

The specific capacitance (Cs) of the samples was determined from the charge-discharge 178 

curves obtained at different applied current, according to the following equation: 179 

 Cs (F g-1) = I·td/E2·me                                                                                                            (1)                                         180 

where I is the constant applied current in amperes (A), td is the discharge time in seconds (s), E2 is 181 

the voltage range during the discharge in volts (V), and me is the mass of the analyzed sample (g). 182 

 183 
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3. Results and discussion 184 

3.1 Physicochemical characterization  185 

The C, H, N, S, and O content of BWB and activated biochars are presented in Table 1. 186 

Compared to BWB, physical and chemical activation increased the carbon content (up to 89.9%) 187 

and decreased the heteroatoms (i.e., H, O) from the original biochar structure, enhancing the 188 

carbonization process. XPS analysis provided information on the carbon bonding states for the 189 

same materials. The XPS C1s peaks were deconvoluted and used to estimate the relative 190 

proportions of the functional groups listed in Table 2. The full range of XPS results has been 191 

described elsewhere [35]. The main peak, which was lower than 285 eV for all materials, was 192 

assigned to aliphatic/aromatic carbon (C–C, C–H, and C=C). The peaks at 285.7–287.1, 286.1−288, 193 

and 288–289.4 eV were then attached to the oxygen-containing moieties (i.e., C–O, C=O or 194 

O−C−O, and O–C=O, respectively) [36]. The highest percentage of total oxygenated functional 195 

groups were found to be in the following order BWB > KOHBWB > CO2BWB. Furthermore, 196 

nitrogen functional groups such as pyridinic, pyrrolidonic, quaternary, and N-oxide were also found 197 

on the surface of KOHBWB (Table 3), which was confirmed by CHNSO analysis (2% of nitrogen 198 

detected) while BWB and CO2BWB possessed less than 1%. In relation to pHPZC results, both 199 

activated biochars had the point of zero charge in the acid range. The pHPZC indicates the 200 

electrokinetic behavior of the material, which usually varies with the properties of the precursor 201 

and the type and temperature of pyrolysis [37]. The acid pHPZC means that mostly acid functional 202 

groups are connected to both materials’ surface, but KOHBWB, having a much lower pHPZC (2.86), 203 

presented more negative charges than CO2BWB (3.95) as evidenced by XPS analysis.  204 

3.2 Surface area and porosity 205 
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Surface area and porosity are among the most important variables for the performance of carbon 206 

materials in energy storage. Depending on the type of activation, distinct surface areas and pore 207 

size distribution were obtained, as seen in Table 1. For example, KOHBWB had a surface area 208 

twofold higher than CO2BWB. However, its pore structure was essentially microporous (Vµ, N2 = 209 

0.75 cm3 g-1 and Vm = 0.00 cm3 g-1) compared to CO2BWB, which had a mixture of micro- and 210 

mesopores (Vµ, N2 = 0.33 cm3 g-1 and Vm = 0.20 cm3 g-1). The nitrogen adsorption/desorption 211 

isotherms at -196 °C, the pore size distribution for KOHBWB and CO2BWB and the CO2 212 

adsorption isotherms at 0 °C are shown in Fig. 1 a, b, and c, respectively. N2 isotherms (Fig. 1 a) 213 

had different shapes depending on the activation method. Nitrogen adsorption isotherm of 214 

chemically activated biochar was Type I, according to the IUPAC classification [38], characteristic 215 

of purely microporous solids. The curve was also characterized by a steep rise of the nitrogen 216 

amount adsorbed at P/P0 lower than 0.05, a narrow knee, and a plateau up to P/P0 equal to 0.99. 217 

On the other hand, nitrogen adsorption-desorption isotherm for physically activated biochar was a 218 

combination of Type I and Type IV, characteristic of micro-mesoporous solids according to the 219 

IUPAC classification [38]. The mesoporosity was also indicated by the slope of the nitrogen 220 

adsorption isotherm (in the P/P0 range from 0.05 to 0.7) and by the prominent hysteresis cycle.  221 

CO2 adsorption-desorption isotherms of biochar-derived materials are shown in Fig. 1 c. 222 

KOHBWB presented the highest amount of CO2 adsorbed compared to CO2BWB. The micropore 223 

volume (Vµ, CO2) obtained from this analysis was 0.28 and 0.36 cm3 g-1 for CO2BWB and 224 

KOHBWB, respectively. However, taking into account that Vµ, CO2 can be mainly related with the 225 

ultramicropores (pore size < 0.7 nm) [11], and considering that the Vµ, N2 values are related with 226 

the total micropore volume (0.33 and 0.75 cm3 g-1, respectively), it can be concluded that the 227 

CO2BWB sample had a much higher proportion of narrower micropores than KOHBWB. CO2 228 
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activation involves a reaction between the carbon present in biochar materials and injected CO2. 229 

This reaction (Boudouard reaction) resulted not only in the opening of blocked pores to form new 230 

micropores, but also in the widening of existing micropores by a gasification reaction, which caused 231 

the formation of mesopores [39]. The high proportion of ultramicropores in CO2BWB could be 232 

then explained by the short residence time during the two-step thermochemical processes in which 233 

BWB was produced within (1) a few seconds during fast pyrolysis, and (2) at approximately 1 h 234 

during activation. Longer activation residence time result in larger volumes of supermicropores and 235 

mesopores, respectively, and a consequent reduction of ultramicropores [40].  236 

3.3 Electrochemical performance of activated biochars 237 

Fig. 2 shows the cyclic voltammograms obtained at 10 mV s-1 in the acidic (Fig. 2 a) and 238 

neutral (Fig. 2 b) electrolytes. For both samples, the voltammograms obtained in acidic medium 239 

show a broad peak in the potential range of 0.4 to 0.7 V vs. Ag/AgCl. Such behavior is typically 240 

related to pseudocapacitive contribution associated with oxygenated surface functional groups in 241 

both samples and/or nitrogenated species found on the KOHBWB sample. The reversible redox 242 

reactions of C=O, O‒C‒O, O=C‒O, C=NH, C–NHOH groups with the H+ ions of the electrolyte 243 

enhance the total observed capacitance [17–19,41]. In addition, the pHPZC results (Table 1) suggest 244 

that both materials, especially KOHBWB, have a predominance of acid functional groups (e.g. 245 

carboxylic, phenolic, and lactonic) on their surface, due to their amphoteric nature [37]. Those 246 

groups might be responsible for the pseudocapacitive reactions observed. These results concur with 247 

the available literature on different carbon materials containing such functional groups [42]. 248 

However, the broad peak observed in both samples using the acidic electrolyte is not seen in the 249 

voltammograms obtained with the neutral electrolyte (Fig. 2 b). In this case, the voltammograms 250 
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present a quasi-rectangular shape, typical of a pure capacitive behavior, and an absence of 251 

pseudocapacitive reactions due to the low concentration of H+ in the electrolyte. 252 

Figs. 3 a and b show galvanostatic curves of the samples using acid and neutral electrolyte, 253 

respectively. The curves obtained in neutral medium (Fig. 3 b) have a typical triangular and 254 

symmetrical shape of a capacitive material, showing a constant slope along with the potential range 255 

of charge and discharge. On the other hand, the curves obtained in acid medium (Fig. 3 a) have a 256 

different slope depending on the potential, more clearly observed in the discharge curves, which 257 

can be related to the presence of pseudocapacitive reactions in certain potential ranges, as 258 

previously discussed. 259 

The Cs was determined from the galvanostatic charge-discharge curves according to the Eq. 260 

1 and the relationship with j shown in Fig. 4. In the acidic medium, both samples had higher Cs at 261 

low current densities (1 A g-1), 350 and 204 F g-1 for KOHBWB and CO2BWB, respectively, which 262 

shows a direct correlation with both (i) their respective specific surface areas and (ii) oxygenated 263 

and nitrogenated functional group contents (Tables 1, 2 and 3). It is reasonable to assume that a 264 

greater portion of the total observed capacitance in the presence of the acidic electrolyte comes 265 

from a pseudocapacitive origin due to the presence of pseudocapacitive reactions and their relation 266 

with these functional groups. Based on the electrochemical double-layer capacitance for carbon 267 

materials (0.10 F m-2 in sulfuric acid electrolyte [25]) and the SBET values (Table 1), the expected 268 

values for the electrical double-layer capacitance is of 88 F g-1 and 170 F g-1 for the CO2BWB and 269 

KOHBWB, respectively. The calculated capacitances determined at 1 A g-1 was 350 F g-1 for 270 

KOHBWB and 204 F g-1 for CO2BWB. Thus, the estimated pseudocapacitive contribution was 43 271 

and 49 %, respectively, which is an important pseudocapacitive contribution in acidic medium. This 272 

fact could also explain the apparent contradiction with the potentiostatic results in terms of 273 

electrical capacitance when comparing the voltammogram of KOHBWB in an neutral electrolyte 274 
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with the voltammogram of CO2BWB in an acidic electrolyte (Figs. 2 a and 2 b). Thus, a portion of 275 

the electrical capacitance determined for CO2BWB (charge-discharge curves in an acidic 276 

electrolyte) cannot be visualized at higher current density due to the characteristics of the 277 

pseudocapacitive reactions (i.e., voltage dependence and kinetics), especially in cyclic voltammetry 278 

at 10 mV s-1.The capacitance values are similar or higher than other values reported in the literature 279 

for similar carbon materials [15,16,18,19,43,44]. Regardless, it is important to highlight that carbon 280 

materials analyzed in this work have an additional advantage over materials described in the 281 

literature: they were produced from renewable precursors in pilot-scale furnaces, which could 282 

reinforce economic incentives for using thermochemical biomass conversion processes, the 283 

development of diversified products, and the creation of a local bioeconomy. The high Cs value 284 

found for KOHBWB, which is about twofold higher compared to CO2BWB, is also related to the 285 

oxygen and nitrogen content. In the neutral electrolyte, the Cs values, determined at low current 286 

densities, were lower than in acidic medium, reaching values of 118 and 14 F g-1 for KOHBWB 287 

and CO2BWB, respectively. These results suggest that the neutral electrolyte ions cannot readily 288 

access the overall porosity of the electrode and there is a clear absence of pseudocapacitive 289 

contribution from oxygenated and nitrogenated groups in the presence of H+ ion. 290 

Thus, the higher values of KOHBWB samples in acid and neutral electrolytes are probably 291 

related to an effective match between the pore size and the dimensions of the electrolyte ions. The 292 

KOHBWB presented a larger quantity of micropores detected by N2 adsorption, while CO2BWB 293 

showed a higher proportion of ultramicropores detected by CO2 adsorption analysis. It has been 294 

recently reported that the size of hydrated Na+ ions (between 0.72─0.9 nm) might be too small to 295 

access the ultramicropores found in CO2BWB (between 0.47─0.69 nm) [45]. In fact, the 296 

relationship between porosity and the electrochemical performance of materials has been 297 

highlighted by different researchers as one of the great challenges to improving the performance of 298 
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supercapacitors. In order to give a clear and generalized explanation of the differences in the 299 

electrochemical behavior of activated biochars, a "universal" model is needed to clarify the 300 

mechanisms of energy storage in carbon materials with different textural characteristics. To date, 301 

there are many doubts and controversies as to the mechanics and determining factors of charge 302 

accumulation in porous materials, especially in materials containing narrow pores (less than 0.7 303 

nm) [20–25], similar to the materials studied in this work.  304 

In recent years, some authors have shed light on this issue, proposing the basis for the 305 

development of a clear model that could explain the enormous and diverse amount of often 306 

contradictory experimental results in this field. In this sense, one of the most outstanding studies 307 

found in the accessible literature is of the researcher Ali Eftekhari. This author recently published 308 

several scientific articles where he decidedly and boldly addressed this problem, proposing the basis 309 

of a rational model to explain these different behaviors [22–24]. In these studies, Eftekhari 310 

questions the formation of electrochemical double layers inside micropores and highlights the 311 

importance of porous surface ion diffusion rather than free ion diffusion in the inner pore volume. 312 

He also questioned the importance of counter-ions in the adsorption and diffusion process of the 313 

main adsorbed ions. According to Eftekhari’s studies, superficial diffusion is also influenced by the 314 

chemical and structural characteristics of the electrode’s surface.  315 

In the present study, the results obtained from the electrochemical experiments and their 316 

correlation with their chemical and textural properties allow us to affirm that, regardless of the 317 

charge storage mechanism (with or without double layer formation), the capacitance is lower in the 318 

presence of the neutral electrolyte compared to the acidic one. This is due to the absence of 319 

pseudocapacitive reactions and the lower double layer capacitance obtained in the neutral 320 

electrolyte. At this point, it is appropriate to consider the following as to how the electrical 321 

capacitance was determined in this study. The capacitance was determined from galvanostatic 322 
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charge-discharge curves performed on three electrodes and using a positive potential window. 323 

Thus, it could be assumed that the non-faradic charge accumulation in both electrolytes are 324 

associated with the adsorption of the anion (HSO4
- and/or SO4

2-). So, why is there a noticeable 325 

difference in capacitance values when the electrolyte is changed? And, why is this difference more 326 

important in the case of CO2BWB than KOHBWB? Should the capacitance not be similar 327 

considering that the adsorption is carried out with the same anion?  328 

Taking into account the obtained results, it seems clear that the counter-ion plays an 329 

important role in the electro-adsorption and/or diffusion of the main ion. Thus, the surface area 330 

associated with larger micropores in KOHBWB might allow a better coexistence (at least near the 331 

narrow pore mouth) of the cation with the anion in the neutral electrolyte, resulting in a larger 332 

available area for adsorption and internal or superficial diffusion of the anion. The counter-ion’s 333 

role not only explains the differences in both samples in a neutral electrolyte, but also the 334 

differences in capacitance obtained for the same sample using different electrolytes. Although the 335 

porosity is the same, the behavior of the adsorbed anion is different since it is affected by the 336 

presence of a different cation. These explanations have been highlighted by Eftekhari's publication 337 

[22].  338 

In summary, the present study does not intend to provide a final answer for all of this 339 

controversy, but at least exposes and discusses the importance of a better comprehension of the 340 

energy storage mechanism in porous carbon materials through a suitable experimental plan and 341 

interpretation of the textural characterization along with a proper correlation of the electrochemical 342 

results. Leaving the fundamental analysis to one side and thinking in a more practical way, the use 343 

of neutral electrolytes in supercapacitor devices has important advantages over acidic ones. Neutral 344 

electrolytes are a non-corrosive dispositive, which reduces health and environmental problems 345 
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associated with handling and discharge of the material, and they are currently used in commercial 346 

technological applications. 347 

The Nyquist plots of activated biochars, from the EIS measurements, are shown in Fig. 5. 348 

The series resistance (Rs) composed of the electrolyte solution resistance, separator resistance, and 349 

electrode resistance [20] were determined from the intersection of the curve with the real axis at 350 

high frequency. Both samples show lower Rs values in the acidic electrolyte (Fig. 5 a) than in the 351 

neutral one (Fig. 5 b) (see the inset figures), which corresponds with the lower ionic conductivity 352 

of the Na2SO4 electrolyte. In the acidic electrolyte, the Rs of KOHBWB is lower than the Rs 353 

observed for CO2BWB (see inset of Fig. 5 a). Rs is usually associated with the electrical resistance 354 

of the electrolyte. Therefore, the difference in Rs values may be associated with a lower electrical 355 

resistance of KOHBWB compared with CO2BWB. In addition, this difference is also observed in 356 

the Nyquist diagram obtained in neutral medium (larger zoom not shown) which is in agreement 357 

with this approach. In the acidic electrolyte (Fig. 5 a) both samples show a typical spectrum of a 358 

non-ideal electrochemical capacitor with a semicircle and a sloppy 45° region at high frequency. 359 

The diameter of the semicircle can be related to the charge transfer resistance due to the reversible 360 

redox reaction (pseudocapacitance), whereas the 45° region can be linked to parameters such as (i) 361 

the ion diffusion into the electrode porous structure, (ii) the electrode roughness, and (iii) the active 362 

site energy dispersion. The last parameter is especially important in pseudocapacitive materials 363 

[18,20]. At low frequencies, KOHBWB shows the most vertical line, suggesting a better capacitive 364 

behavior, which is, in general, attributed to a lower resistance of the ion diffusion into the pore of 365 

the active electrode. This finding is in accordance with the lower proportion of narrow micropores. 366 

In the neutral electrolyte, the Nyquist diagram shows a large, incomplete semicircle due to a higher 367 

ion diffusion resistance. Accordingly, the semicircle diameter of the CO2BWB is much higher than 368 

the KOHBWB, which also highlights the greater proportion of narrow micropores in the sample
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Charge-discharge cycling tests up to 1000 cycles were performed at 2 mA (CO2BWB) and 370 

6 mA (KOHBWB) in the potential range of 0.1 to 0.9 V. The capacitance retention, expressed in 371 

percentage, was calculated from the Cs determined for each cycle divided by the initial Cs from the 372 

first cycle. The capacitance retention as a function of the cycle number in the acidic and neutral 373 

mediums are shown in Fig. 6 a and b. Both samples show good capacitance retention, from ≈ 98 to 374 

≈ 95 %, indicating a low degradation rate for successive charge-discharge cycles, at least up to 1000 375 

cycles. When considering commercial applications of supercapacitor carbon electrodes, 1000 376 

cycles are not enough for a long-term cyclability study. Thus, future studies should be done with 377 

5000−10000 charge-discharge cycles. 378 

Table 4 provides a brief comparison of the electrochemical performances of activated 379 

biochars (CO2BWB and KOHBWB) with similar porous materials as described in the available 380 

literature. As Table 4 demonstrates, the electrochemical results of materials prepared using large-381 

scale technologies and those prepared using carbon materials produced in at laboratory scale using 382 

a solution of H2SO4 1M as an electrolyte [46–49] are similar. Furthermore, the biochar synthesized 383 

in the current project showed a specific capacitance 25% higher using a scan rate 4 times greater, 384 

in comparison to a similar material produced in laboratory scale [49].  385 

On the other hand, in the presence of Na2SO4 as electrolyte, the electrochemical results 386 

presented an intermediate maximum specific capacitance value (118 F g-1) between an activated 387 

carbon [50] and activated biochar [49], both prepared at laboratory scale. However, excellent 388 

stability was found even for the greater scan rate used in this study; thus, the specific capacitance 389 

of the electrode prepared with KOHBWB is still satisfactory as an electrode for supercapacitors. 390 

Besides, the application of a neutral electrolyte minimizes the discharge problems of the final 391 

device because no corrosive liquid is used in the assembly of the energy storage apparatus. 392 

 393 
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4. Conclusions  394 

This study showed that the scale-up preparation of porous carbon materials for electrodes in 395 

supercapacitors were comparable to porous carbon materials prepared at the laboratory scale. Wood 396 

residues from white birch are good precursors to obtain activated biochars with suitable 397 

characteristics for supercapacitor electrode applications. The KOH activation was a great technique, 398 

better than CO2 activation, for the production of activated biochar. This technique allowed us to 399 

obtain a carbon material with a higher specific surface area, suitable porosity, and a high content of 400 

oxygenated and nitrogenated functional groups that were able to perform pseudocapacitive 401 

contribution. Electrochemical results showed that KOHBWB had a higher specific electrical 402 

capacitance in both the acidic and neutral electrolyte. For KOHBWB, a maximum specific 403 

capacitance value of 350 and 118 F g-1 were determined at 1 A g-1 in the acidic and neutral 404 

electrolyte, respectively, as well as good rate capability and capacitance retention. The results with 405 

the neutral electrolyte (Na2SO4) present additional advantages due to the sustainability and low cost 406 

of the material, a reasonable specific capacitance with a high stability at a high scan rate (1 A g-1), 407 

and low impacts on the dispositive discharge because of the non-corrosive nature of the electrolyte. 408 

Moreover, the chemically activated biochar has an additional advantage of being synthesized 409 

through pilot-scale processes and sustainable bioresourced precursors that could contribute 410 

significantly to a circular bioeconomy, with immediate environmental and economic impacts for 411 

Québec and the globe. 412 

 413 

 414 

 415 

 416 
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Table captions: 521 

Table 1. Physicochemical and textural properties of biochar and activated biochars 522 

Table 2. Quantification of C1s bands in XPS patterns for biochar and activated biochars 523 

Table 3. Quantification of N1s bands in XPS patterns for the chemically activated biochar 524 

Table 4. Electrochemical performances in H2SO4 and Na2SO4 electrolytes of different materials 525 

compared to activated biochars synthesized in this work. 526 
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Figure captions: 545 

Fig. 1. a) N2 adsorption–desorption isotherms (full and open symbols, respectively) at -196 °C; b) 546 

pore size distribution determined by the DFT model; and c) CO2 adsorption isotherms at 547 

0 °C for both activated biochars KOHBWB and CO2BWB; 548 

Fig. 2. Cyclic voltammograms obtained for the samples at 10 mV s-1 using a) acidic and b) neutral 549 

electrolytes.  550 

Fig. 3. Galvanostatic charge-discharge curves of the samples obtained in a) acidic at 5 A g-1 and b) 551 

neutral electrolyte at 1 A g-1. 552 

Fig. 4. Specific capacitance vs. current density for the KOHBWB and CO2BWB for a) acidic and 553 

b) neutral electrolytes. 554 

Fig. 5.  Nyquist diagram for the KOHBWB and CO2BWB samples in a) an acidic medium and b) 555 

a neutral medium. Inset plots represent a zoomed-in selected area of the diagrams. 556 

Fig. 6. Cyclic performance performed at 2 mA (CO2BWB) and 6 mA (KOHBWB) in a) acidic and 557 

b) neutral electrolytes during 1000 charge-discharge cycles. 558 

 559 
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Table 1. Physicochemical and textural properties of biochar and activated biochars 561 

 

                                                                    Textural properties 

pHPZC C 
(%) 

H 
(%) 

N 
(%) 

S 
(%) 

O 
(%) 

SBET   
(m2 g-1) 

Vt        
(cm3 g-1) 

Vµ, N2     
(cm3 g-1) 

Vµ, CO2             
(cm3 g-1) 

Vm            
(cm3 g-1) 

Average pore 
diameter (nm) 

BWB  75.4 3.5 0.9 0.5 19.4 177*      

CO2BWB 3.95 89.9 0.9 0.4 0.0 8.8 881** 0.53 0.33 0.28 0.20 2.2 

KOHBWB 2.86 77.5 1.7 2.0 0.1 18.7 1700** 0.75 0.75 0.36 0.00 1.8 

SBET obtained from *CO2 and **N2 adsorption analysis 562 

 563 
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 569 
 570 
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 572 
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 574 
 575 
 576 
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 579 
 580 
 581 
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Table 2. Quantification of C1s bands in XPS patterns for biochar and activated biochars 593 

 
Binding energy (BE) (eV) and area of the peak (%) 

C1s 

 
BE < 285eV      

(graphitic sp2 
carbon) 

285.7 < BE < 
287.1 (C‒OH) 

286.1 < BE < 288 
(C=O or O‒C‒O) 

288 < BE < 289.4 
(O=C‒O) 

BE > 290           
("Shake-up" 

satellites) 

Total 
oxygenated 

groups 

BWB 68.0 17.1 4.6 4.6 5.7 26.3 

CO2BWB 72.1 12.8 4.5 2.2 8.4 19.5 

KOHBWB 61.8 14.7 7.3 3.4 12.8 25.4 

 594 
 595 
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Table 3. Quantification of N1s bands in XPS patterns for the chemically activated biochar 608 

 Binding energy (BE) (eV) and area of the peak (%) 

N1s BE < 399eV      
(Pyridinic N-6) 

399.4 < BE < 399.8  
 (Pyrrolidonic N-5(O)) 

400.8 < BE < 401.4  
(Quartenary N-Q) 

402.5 < BE < 403.62           
(Pyridinic N-oxide N-Ox) 

KOHBWB 44.7 39.9 10.4 4.9 

 609 
  610 
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Table 4. Electrochemical performances in H2SO4 and Na2SO4 electrolytes of different materials 611 

compared to activated biochars synthesized in this work. 612 

Electrode 

material 
Electrolyte 

Maximum specific 

capacitance (F g-1) 

Scan 

rate 

(A g-1) 

Cycle 

number 

Stability 

(%) 

Electrode 

configuration 
References 

Activated biochar 

(KOHBWB) 

H2SO4 350 1 1000 98 
3 electrodes 

This work 

Activated biochar 

(CO2BWB) 

H2SO4 204 1 1000 98 3 electrodes This work 

Activated carbon 

from sugarcane 

bagasse 

H2SO4 300 0.25 5000 77 3 electrodes [46] 

Wood-N-doped 

porous carbon 

H2SO4 347 2 1000 76 3 electrodes [47] 

Activated carbon 

from coconut 

shells 

H2SO4 258 1 3000 97.2 2 electrodes [48] 

Activated biochar H2SO4 280 0.2 10000 86.7 2 electrodes [49] 

Activated biochar 

(KOHBWB) 

Na2SO4 118 1 1000 95 3 electrodes This work 

Activated biochar 

(CO2BWB) 

Na2SO4 14 1 1000 95 3 electrodes This work 

Activated biochar Na2SO4 227 0.2 6000 75 2 electrodes [49] 

Activated carbon 

from banana 

fibres 

Na2SO4 74 0.5 500 85 3 electrodes [50] 
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