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Abstract

The composition of social bees' corbicular pollen loads contains information about both the bees'
foraging behavior and the surrounding floral landscape. There have been, however, few attempts
to integrate pollen composition and floral landscape to test hypotheses about foraging behavior.
Here, we present an individual-based model that generates the species composition of pollen
loads given a foraging model and a spatial distribution of floral resources. We apply this model to
an existing dataset of inflorescence counts and bumble bee pollen loads sampled at different field
sites in California. For two out of three sites, a foraging model consisting in correlated random
walks with constant preferences for each plant species provides a plausible fit for the observed
distribution of pollen load content. Pollen load compositions at the third site could be explained
by an extension of the model, where different preferences apply to the choice of an initial
foraging patch and subsequent foraging steps. Since this model describes the expected level of
pollen load differentiation due solely to the spatial clustering of conspecific plants, it provides a
null hypothesis against which more complex descriptions of behavior (e.g. flower constancy) can
be tested.
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1. Introduction

Along with nectar, pollen constitutes a major food source for social bee colonies. For example, a
typical colony of honey bees (Apis mellifera) consumes 40 kg of pollen a year, requiring millions
of foraging trips (Stanley and Linskens 1974). When foraging, both honey bees and bumble bees
(Bombus spp.) accumulate pollen in the corbicula (or pollen baskets) located on their hind legs.
By determining the composition of these pollen loads, which can be sampled non-destructively
by capturing bees in the field or installing traps at the entrance of the hive or nest, pollination
ecologists can obtain a record of the foragers' visits to different floral types.

Bee pollen analysis has been used to estimate the foraging range of a colony (Beil et al. 2008),
compare vegetation profiles between widely separated locations (Diaz-Losada et al. 1998), study
changes in resource use by one or more colonies over time (Aronne et al. 2012, Boff et al. 2011)
and predict the amount of pollen flow between transgenic and conventional crop varieties
(Ramsay et al. 2003). Most published studies report aggregated results — i.e. the average
proportion of pollen sources at the hive level — and until recently, there were few attempts to
model the variability in composition between pollen loads (de Valpine and Harmon-Threatt
2013).

Although it may simplify the determination of colony-level components of foraging behavior, the
aggregation of pollen loads obscures other aspects of foraging — such as the area covered in a
single bout or the level of flower constancy shown by pollinators — that could be investigated by
analyzing pollen samples from individual bees. Extracting this information from a given case
study requires, in addition to the compositional pollen data, an estimate of the spatial distribution
of visited plants as well as a modelling framework that links plant distribution, foraging behavior
and pollen load composition.

In this study, we establish such a link — between floral landscape, foraging behavior and pollen
load composition — through an individual-based modelling approach. Using estimates of the
spatial distribution of each pollen source in the field, our model simulates foraging paths by
following stochastic rules describing the bees' movement and floral preferences. Its output is a
distribution of pollen load compositions corresponding to the specific field configuration and
foraging parameters.

We present a simple parametrization of the model, where foraging paths consist of correlated
random walks and floral preferences are summarized in fixed vectors describing the relative
attractiveness of each species. We apply the resulting model to a data set that includes pollen
counts from bumble bees (Bombus vosnesenskii) foraging at different sites in Northern California
as well as inflorescence counts sampled on a quadrat grid at each site. We demonstrate through a
sensitivity analysis that the effective parameter space of the movement model can be reduced as
many parameters have redundant effects on the model output. Finally, we use approximate
Bayesian computation (ABC) to estimate the model's parameters based on a comparison of
simulated and observed summary statistics — specifically, the average prevalence of each species'
pollen and the compositional differentiation between individual pollen loads.



2. Materials and methods

2.1. Model specification
The model description in this section follows the ODD (Overview, Design concepts, Details)
protocol (Grimm et al. 2006, 2010).

2.1.1. Purpose

Our model aims to predict the composition of bee pollen loads given the spatial distribution of
pollen sources and parameters of bee foraging behavior (shape of foraging paths and preferences
for certain floral species); conversely, the model would serve to infer parameters of foraging
behavior from the observed composition of pollen loads sampled from a known floral landscape.

2.1.2. Entities, state variables and scales

The spatial distribution of floral resources is described as a density field d, where d;(x,y) is the
density (inflorescences m™) of species j at the field coordinates (x,y). Inflorescences (clusters of
flowers arranged on a stem) are used as the basic floral unit since their abundance was found to
be a better predictor of resource use for the different sites studied here (Harmon-Threatt,
unpublished data). From empirical estimates of d on a rectangular grid of n, by n, grid points
with spacings of A: and A, , the model interpolates the density field at any point within the grid
(see interpolation submodel below).

Each run of the model simulates the activity of n, foraging bees based on two sets of parameters,
which are the same for all bees in a given min. The first set of parameters is used in modelling
foraging paths as correlated random walks (CRW) and includes: the number of inflorescences
visited on the path (ns); the root mean square (RMS) value of the step length (I); the mean cosine
of the turning angle distribution (p); the frequency (f;) and RMS length (I;) of occasional larger
steps or “jumps” in the path. Details of the CRW model are presented in the submodels section
below. The second set of parameters describes the relative attractiveness of each species to
foragers and includes two vectors, ag;: and a.,: the former affects bee preferences for the starting
point of the foraging bout while the latter affects bee preferences for successive flower visits.
This distinction is motivated by the observation that bees may be attracted to a patch by a specific
floral type, but will also visit less preferred flowers located in the same patch (Seifan et al. 2014).
Therefore, we expected @ to show either the same or more even (less discriminative)
preferences than @ .

During the simulation, the state of a bee is represented by its current position (x,y), its current
direction @ (based on a line from the last to the current position), the plant species visited at the
current position as well as the total number of steps taken to this point. The output of a model mun
is the composition matrix P where P; represents the proportion of the j® floral species in the i
bee's pollen load. A summary of the parameters and outputs of the model is presented in Table 1.

We note that while all positions and distances in the field are expressed in meters, the foraging
parameters [; and [; are dimensionless. As we explain in the CRW submodel description, the
actual step size is adjusted dynamically based on the local inflorescence density.



2.1.3. Process overview and scheduling

The model simulates each forager’s activity as an independent realization of the following
stochastic algorithm:
® The bee selects one of the grid points as the first position on its foraging path. Its initial
direction (@, in radians) is selected uniformly over (-x, ). The probability of starting
from a given point is proportional to a weighted sum of the densities of all species present
at that point, with weights given by awm: . That is, using j as an index over species and k as
an index over grid points:
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Foraging paths are restricted to start on one of the grid points because the interpolation method
does not produce a simple analytical form of the density field. Thus sampling the initial position
in continuous space would be impractical.
¢ Starting from that point, the bee's path is simulated using the CRW submodel.
® The inflorescence density at each point in the path, which serves both to scale the CRW
step size and to determine the probability of visiting each species, is calculated by the
interpolation submodel.
® The inflorescence type visited at each point in the path is selected with a probability
proportional to the local density of each species, this time weighted by a.,. :
a, d Xy
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® The proportion of each species in the bee's pollen load is taken to be equal to the
proportion of inflorescences of that species among those visited.
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2.1.4. Design concepts

Here we highlight some of the basic principles or key assumptions that are implicit in the model
overview above. First, we treat inflorescence density as a continuous quantity. This is primarily
done for computational efficiency, since at the densities and field sizes typical of our data, the
number of individual inflorescences by field is of the order of 10*-10°. Although the foraging
path and floral choices are based on a stochastic model, we assume the parameters of that model
are fixed for all foragers in a given simulation. Finally, our model does not take into account the
variation in pollen rewards between inflorescences of the same species or across different species.

Notably absent from this model are the collective aspects of social bee foraging behavior — the
interactions between foragers, colony-level information gathering processes about the floral
landscape, etc. Without explicitly modelling these processes, we can consider that the
attractiveness vectors @ and as. reflect foraging objectives or priorities learned at the colony
level, and that conditional on these parameters, the paths of individual foragers are independent.
Our algorithm for selecting an initial foraging point implicitly assumes that the colony has some
knowledge of the whole field and apportions foraging effort between different areas in proportion
to the density and attractiveness of species present.



The model also ignores how an individual forager’s behavior may adapt to information gathered
within a bout, such as the diminution of pollen rewards obtained from a preferred species. This
would be an important factor to include in future iterations of this model, for cases where data on
the variation of pollen rewards between inflorescences is available.

As stated above, the main observable output of our model is the a matrix P of pollen load
compositions, from which we calculate the summary statistics used to evaluate the model's
agreement with field data. In addition to the average proportion of each species across pollen
loads, denoted as the vector p, we are interested in the level of differentiation between pollen
loads. We quantify the latter using an analog of Fsr, the fixation index of population genetics:
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where p; and G, are respectively the mean and variance of the proportion of species j across
pollen loads. In this context, Fsr can be interpreted as the portion of the total species diversity
(more specifically, the Gini-Simpson index) that is due to variation between, as opposed to
within, pollen loads. In particular, Fsr = 1 if only a single species is represented in each pollen
load; in our model, this would suggest that monospecific floral clusters are large compared to the
typical bee foraging area.

F

2.1.5. Initialization

Since we use a Bayesian framework to infer foraging parameters, as described in section 2.3,
their values for each model run are selected from a prior distribution.

2.1.6. Input data

All aspects of the field description, including the number of plant species, the sampling grid size
and spacings, and the density estimates for each grid point are supplied as fixed input for the
model.

2.1.7. Submodels

Density interpolation: We use inverse distance weighing (IDW) to interpolate the inflorescence
density between grid points. The density of each species at the bee's current position is estimated
as the weighted average of its density at the four nearest grid points, with weights proportional to
some inverse power of the distance to those grid points. When comparing different techniques for
the interpolation of weed densities in a field, Dille et al. (2003) found that IDW with an exponent
of 2 or 4 performed as well or better than more computationally-intensive methods such as
kriging. We used an exponent of 2 for our main results, while verifying the effect of changing this
exponent as part of the sensitivity analysis.

Correlated random walk: Studies of foraging behavior often model foraging paths as variants of
the simple random walk (Codling et al. 2008). Here, we simulate movement between

inflorescences as correlated random walks (CRW) with ns steps. The turning angle (change in &)



between steps follows a wrapped Cauchy distribution and is generated through this formula from
Bartumeus et al. (2005):
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where u is a uniform random variable over (0,1). The parameter p corresponds the mean cosine of
the turning angle. When p = 0, the turning angle is uniformly distributed and the path is an
uncorrelated random walk; in the limit p = 1, the path is a straight line.

AB=2arctan tan

To account for variation in inflorescence density across the field, we scale the length of each step
of the random walk by a factor dw, an estimate of the “nearest-neighbor distance™ between
inflorescences, equal to the inverse square root of the total density at the current position of the
bee:
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This choice is motivated by the results of Levin and Kerster (1969), who found that the length of
foraging steps is proportional to the spacing between inflorescences for multiple bee and plant
taxa. In our model, the length L of a step follows a Rayleigh distribution with a root mean square
(RMS) value equal to the product dm Is. It is generated from the following formula:

L=d, I —Inv (6

where v is a uniform random variable over (0,1). Since this distribution may underestimate the
variability in step size along the foraging path, we consider an alternative parametrization where
the bee may, with a probability f;, take larger steps or “jumps” of RMS length J; , which replaces I;
in Eq. (6).

A few restrictions were added to implement this basic CRW model. We set an absolute upper
bound I (in meters) to prevent the step length from becoming unrealistically large in low-
density regions of the field. Furthermore, if a step would result in the bee exiting the boundaries
of the field grid, this step was rejected and a new step was generated, with the turning angle
chosen from a uniform distribution (i.e. forcing p = 0) to prevent the bee getting stuck in a corner.

The individual-based model was implemented in Fortran 95 in order to rapidly perform the large
number of simulations required for the ABC analysis. The model code is included in the
electronic supplementary materials.

2.2. Bee pollen and plant data

We applied our model to a pollen data set collected by A.N. Harmon-Threatt (unpublished study).
Harmon-Threatt sampled pollen loads from individual foragers of the species Bombus
vosnesenskii at five different 1-ha sites at Mt. Diablo State Park and Briones Regional Park in
Contra Costa County, California in 2009. Each site was separated by at least 1 km to limit overlap
in foraging range of bee species. Sampling was conducted every two weeks between late May
and early August resulting in 5 sampling rounds. Sites were only sampled when bees were
present resulting in a total of 15 site-date combinations. Bees were hand netted on flowers within
the 1-ha site and one pollen load was removed for later identification of plant species visited and
to prevent recapturing the same bee. Between 4 and 21 bees were captured at each site-date with



a mean of 15.4 and a total of 231 bees. Pollen loads were homogenized and stained with fuchsin
to allow identification of 300 randomly selected pollen grains under the microscope. Pollen
samples from each blooming species were collected throughout the sampling to provide a library
for comparison. Plant diversity was sampled in 100 one-m? quadrats arranged in a regular grid in
the field: 10 quadrats spaced by 10 m in one direction, 5 quadrats spaced by 20 m each in the
other, for a total area of 90 m x 80 m inside the one hectare site.

For the present work, we only considered plant species that composed at least 10% of one or
more pollen loads. Trace pollen amounts from other species are less likely to be the result of
active pollen foraging: they could be incidentally collected when foraging for nectar and later
groomed into pollen baskets. In our analysis, we also ignored pollen loads where over 10% of the
pollen was either unidentified or from species not found in any of the quadrats sampled at that
site. This left us with three sites (BRD, MD4 and MD5) and two sampling dates per site where
multiple species were present in significant amounts and enough (>10) pollen loads were
available for analysis. California poppy (Eschscholzia californica) was represented in pollen
loads from every site, while yellow star-thistle (Centaurea solistitalis), wide-bannered lupine
(Lupinus microcarpus), fewflower clover (Trifolium oliganthum) and hairy vetch (Vicia villosa)
constituted a major pollen source for at least one of the sites. For each pollen load, we calculated
the proportion of each pollen type as if only those major species were present; these proportions
formed the dataset which we compared to our simulation results.

By using the pollen proportions rather than the raw counts as our data, we ignore the additional
variance caused by (multinomial) sampling of pollen from each bee. Preliminary simulation
results incorporating this multinomial sampling confirmed that its contribution to Fsr (~ 1/N,
where N = 300 pollen grains per bee) was small enough to be neglected for the sake of reducing
computation time, especially considering that the small number of bees sampled introduces much
greater variability in Fsr.

2.3. Model fitting and checking

We fit our model to the observed bee pollen statistics by approximate Bayesian computing
(ABCQ), a technique developed to infer parameters of stochastic simulation models for which the
exact likelihood is intractable. ABC originated in the field of population genetics, where the high-
dimensionality of genetic datasets and the large number of possible system histories (genetic
trees) often prevent the efficient computation of full data likelihoods, even with Markov chain
Monte Carlo (MCMC) methods (Tavaré et al. 1997, Beaumont et al. 2002). In the last five years,
a increasing number of studies have applied ABC to various ecological models, including stage-
structured population dynamics (Scranton et al. 2014) and community assembly (Jabot and Chave
2011).

In its most basic form, ABC consists in performing multiple simulations of the model, with
parameters drawn from a prior distribution, then accepting those parameter values that provide
results close enough to the data (based on a chosen distance measure and set of summary
statistics) as an estimate of the posterior distribution. It provides a better approximation of the
true likelihood if the chosen statistics are sufficient with respect to the parameters of interest and
if the tolerance range (the distance above which a simulation is rejected) is narrow. The
approximation of the posterior distribution of each parameter can be further improved by



performing a linear regression of this parameter as a function of the summary statistics, then
using this regression to correct each parameter value towards the observed values of those
statistics (Beaumont et al. 2002).

We used the 'abc' package (Csilléry et al. 2012) in R (R Development Core Team 2008) to
estimate model parameters from the output of our simulation program. The 'abc' package uses the
Euclidean distance to compare simulated and observed vectors of summary statistics, scaling
each statistic by an estimate of its standard deviation to prevent any component from dominating
the distance measure. It produces a posterior distribution by accepting parameter values for which
the simulated summary statistics lie within a specified tolerance range, then corrects these
parameter values based on a linear regression, as described above.

The 'abc’ package also includes a cross-validation function that successively picks different
individual outputs from the simulated set, treats that particular output as the "data" and attempts
to predict the parameters that generated it by applying the ABC algorithm with the remaining
simulations in the set. We used cross-validation to choose a tolerance rate for ABC that would
maximize the precision of posterior estimates.

We fit the model separately at each of the three sites, using a vector of summary statistics that
combined the mean proportions p and the level of differentiation Fsr for each of the two dates at
that site. We left out the last component of p for each site-date combination, since it is fixed by
the constraint that proportions sum to 1. We first attempted to fit a model with a single set of
attractiveness coefficients (@init = @succ); if that model could not have plausibly produced the
observed summary statistics at a given site, we considered a different model where the values
asucc may be more uniform than ain (for reasons stated in section 2.1.2 above). We used posterior
predictive checks (Gelman et al. 1996) to evaluate model goodness of fit. Specifically, we
performed multiple simulations of the data using the median parameter values from the posterior
distribution and obtained a predicted distribution of summary statistics. These include p, Fsr as
well as an additional statistic corresponding to the number of mixed pollen loads — defined
arbitrarily as those where no more than 90% of the pollen comes from a single species.

3. Results
3.1. Pollen and inflorescence data summary

For each site and date, Table 2 shows the number of pollen loads used in our analysis as well as
the summary statistics calculated from the composition data. Pollen loads sampled at site MD5
were notably less differentiated — as indicated by the low Fsr and high number of mixed loads —
than those from the other two sites. Table 3 indicates the mean inflorescence density per site and
date for the five main pollen sources, calculated as the average of the inflorescence counts over
all 1-m? quadrats. From these two tables, we note that each of the five plant species was a
significant pollen source (forming at least 10% of at least one pollen load) for each site and date
where it was present in quadrats.

3.2. Sensitivity analysis

For a given field configuration (distribution of inflorescences) and fixed values of the



attractiveness coefficients @mi and aswee, we found that the various parameters of the random walk
model only influenced the simulated summary statistics based on their effect on the RMS
distance (D) between the first and last inflorescences visited (Fig. 1). That is, any parameter
variation that increased D by a certain amount — either by adding steps (n:), making each step
longer (Is), adding occasional large steps (I;) or increasing directional correlation in the path (p) —
had approximately the same effect on the output statistics. (The specific parameter sets used to
produce the results in Fig.1 are included in the electronic supplementary materials as Table S1.)
This finding is consistent with the results obtained by Marchand (2013) using a simpler version
of the model that did not account for variations in inflorescence density or differences in
attractiveness between species. It allows us to reduce the dimensionality of our parameter space
in the following ABC analysis by only varying one of the random walk parameters.

In most cases, increasing D led primarily to a reduction in Fst, which is to be expected as bees
have more probability of leaving monospecific plant clusters. Since our model's random walks
are not directionally biased, longer walks also increase the chance of bees encountering less
attractive species that are present at high densities, although our simulations show this effect is
small (Fig. 1a). A special case occurs when the bees always start foraging on the same species
(i.e. am = 1 for that species), but are less discriminative on successive steps (Fig. 1b). As we will
see from the ABC results, this behavior best explains the observed statistics at site MD5. In that
case, the primary effect of longer walks is to increase the representation of the less attractive
species, while Fsr varies little with D.

As previously noted, we interpolated the inflorescence densities from quadrat counts using the
IDW method with a exponent of 2, i.e. the weight assigned to each grid point is proportional to its
inverse square distance from the point where the density is to be interpolated. The choice of IDW
exponent is expected to affect the predicted pollen load differentiation, since lower exponents
result in smoother density fields and less demarcated species clusters. We found that using an
exponent of 1 reduces Fsr by 10% to 20% from the values shown in Fig. 1, while using an
exponent of 4 increases Fsr by 5% to 15%. Based on the relationship between Fsrand D (e.g. in
Fig. 1a), a change in the interpolation exponent would thus affect the inferred value of the
random walk parameters for a given empirical value of Fsr. In the absence of plant density at a
smaller scale, it is difficult to determine the optimal exponent value for this dataset; however, it
should be kept in mind that this choice introduces an additional source of uncertainty above that
reported by the ABC analysis below.

3.3. Parameter estimation by ABC

For each site, we generated 100,000 sets of parameters. Each parameter set was used to simulate
100 pollen loads for both inflorescence distributions (i.e. different sampling dates) at that site. We
picked @ from a uniform distribution over k-simplexes (vectors that sum to 1), where k is the
number of species present at that site. When fitting the model with ag. different from ag: , we
picked each component of @me uniformly between the corresponding component of ag; and the
value making all species equally preferred, e.g. if there are two species and aist = 0.75 for species
1, then asu for that species is picked from the interval (0.5, 0.75). The last component was
automatically set by the unit sum condition. Since our sensitivity analysis showed that only one
random walk parameter had to be adjusted, we chose to vary I; and picked it from a uniform



distribution over (0.5, 10). The other random walk parameters were fixed as n, = 100, p=0and f;
= 0 (i.e. no “jumps”). For all results reported in this paper, we set the maximum step length (In)
to 20 m.

Based on cross-validation results, we chose a tolerance rate of 1% for the ABC analysis (i.e. keep
1000 parameter sets to estimate the posterior distribution), which in most cases resulted in the
lowest cross-validation error. However, we note that changing the tolerance rate between 0.5%
and 10% had only a small effect on either the cross-validation error or the posterior estimates.
Cross-validation plots are included as Fig. S1 in the electronic supplementary materials. We also
found that a correction based on local linear regression was more effective in reducing cross-
validation error than one based on ridge regression, and therefore used the former method to
produce the estimates below.

We chose the median of the posterior distribution as a point estimate of each parameter and the
95% Bayesian credible interval (or BCI, i.e. the 95% central range of the posterior) to indicate the
precision of this estimate (Table 4). The estimates of I < 1 at BRD and MD4 do not necessarily
mean that the RMS step length is less than the local inter-inflorescence distance; a more plausible
scenario is that n, < 100, producing an equivalent decrease in the typical foraging distance D. The
attractiveness coefficients, which express relative preferences, are difficult to compare between
sites: the only two species shared by more than one site are poppy and vetch, and the latter is only
marginally present at MD5.

We did not retain the model with i = s at site MD5, since it failed to qualitatively reproduce
a key characteristic of that site: a high prevalence of poppy pollen combined with a low pollen
load differentiation. The alternative model's best fit suggests that bees always prefer to start
foraging on poppy over thistle, but are less discriminative for successive steps. Under this
specific scenario, our sensitivity analysis shows that varying the random walk parameters has a
much smaller effect on pollen load differentiation (Fig. 1b). This may explain why the posterior
range of I, is comparable to its prior distribution at MD5, indicating that our data provides little
information on that parameter (Table 4).

Setting each parameter to the median of its posterior distribution, we performed 1000 replicate
simulations with the same number of pollen loads by site and date as our data. Most observed
values of p, Fsr and the number of mixed pollen loads lie within the 95% central range of
simulated statistics, although due to the small sample sizes — between 16 and 21 pollen loads by
site and date — those ranges are relatively large (Fig. 2). The exceptions occur at site BRD, where
the prevalence of the minority species (poppy) on June 5™ is above the simulated range, and the
pollen load differentiation on June 14" is slightly below the 95% central range (<= 2.1% of
simulations). We note that the very low bound of the prediction interval for Fsr on June 5% is due
to simulations where the minority species is nearly absent from pollen loads and Fsr thus
approaches zero. Fsr is undefined when only one species is present in the whole sample.

We could improve the fit of our base model (with @mit = @sme) for sites BRD and MD4 — unlike
MDS5 — by allowing the parameters to vary between the two sampling dates. In particular,
temporal changes in the attractiveness coefficients may be expected based on each species' peak
pollination time. However, this more flexible model produced equal or greater cross-validation



errors for all parameters, which indicates overfitting (results not shown here).
4. Discussion

In this study, we present an individual-based approach that relates the compositional statistics of
bee pollen loads to the spatial distribution of floral resources through the simulation of individual
foraging paths. A major strength of this approach is that it can accommodate complex
descriptions of both the floral landscape and foraging behavior. We can use approximate
Bayesian computation to estimate parameters from this type of models without the need to
explicitly calculate the likelihood function. One application of this modelling framework is to
infer foraging parameters from pollen load data and surveys of the floral resources, as illustrated
in this study. Alternatively, if foraging parameters can be estimated by independent observations,
such as radio-tracking of bees (Osborne et al. 1999), the model could serve to infer properties of
the spatial distribution of floral resources (such as their level of clustering) based on the
compositional statistics of pollen loads.

Under a relatively simple parametrization of the model, where foraging paths follow correlated
random walks and bee preferences are described by an attractiveness coefficient associated to
each species, we could reproduce key compositional statistics of pollen loads sampled from B.
vosnesenskii foragers across multiple field sites, including one statistic (the number of mixed
pollen loads) that was not directly used in fitting the model. However, for the sample sizes of this
study (~ 20 pollen loads by site and date), our model also predicts a high level of variability in
those summary statistics. Increasing the number of pollen loads sampled — while identifying the
same number of grains per pollen load — would be the simplest way to reduce the portion of the
variance that is due to the sampling process and thus increase the power of this type of analysis.
The ongoing development of robust genetic methods for identifying single pollen grains (Isagi
and Suyama 2011, Bektas and Chapela 2014) offers a higher-throughput alternative to
morphological identification methods, and could allow the analysis of larger pollen samples as
needed to effectively discriminate between foraging models.

Even with a large sampling variance, our analysis could identify foraging behavior that was
qualitatively different at one of the sites in our dataset (MD5). At that site, bees exhibited a very
strong preference for California poppy (E. californica) pollen over yellow star-thistle (C.
solistitalis), and the two plants were rarely found in the same quadrats, yet bees had more mixed
pollen loads and less unifloral poppy pollen loads than at the other sites. Those results fit the
model only by assuming that bees always start on poppy but are less discriminative as they
continue foraging. The cause of this particular behavior remains unclear, although we can
hypothesize that the strong preference for poppy pollen at MD5 combined with its low abundance
could lead to a rapid depletion of this resource, forcing bees to seek less preferred pollen. Testing
this hypothesis would require an extension of the model to incorporate the variation in pollen
rewards between flowers as well as pollen depletion.

In a different analysis of this pollen load content and plant abundance dataset, Harmon-Threatt
and Kremen (2015) found that the overall mix of pollen sources visited by the bees was not
random, but tended to produce a balanced nutrient intake (e.g. amino acid content) at each site.
This result does not necessarily imply that individual foraging bouts should include a diversity of
pollen types, which would be unoptimal when plants are spatially clustered by species. However,



it shows that the bees' relative preferences for one species over another depend not only on
factors intrinsic to the two species (e.g. quantity of pollen by flower), but also on the overall
composition of the floral landscape as it determines which nutrients would be limiting.

By modelling foraging bouts within the confines of a 90 m x 80 m field, and by excluding pollen
loads predominantly composed of species not found within the sampling quadrats, our analysis
ignores foraging behavior at a larger scale. Even if bumble bees can travel large distances to
exploit floral patches, both optimal foraging theory and empirical observations suggest that they
follow compact paths while foraging, visiting neighboring inflorescences and only leaving a
patch when rewards fall below a critical threshold (Zimmerman 1982, Lefebvre et al. 2007). The
appropriateness of our field scale for the analysis of pollen load composition is also supported by
the observation than less than 10% of pollen loads from the sites studied contained above trace
levels of pollen from external or unidentified sources.

From a theoretical point of view, one interesting result from our simulations is that for foraging
paths represented as correlated random walks, the pollen load composition statistics (for a given
field configuration) only depend on the RMS distance between the ends of the path, rather than
on the specific random walk parametrization. This result holds even if the plant density varies
across the field (if the foraging steps scale with plant spacing) and if the bees prefer certain
species (as long as those preferences are fixed). Alternative stochastic models represent bee
foraging paths as biased rather than correlated random walks, where the bias may be in the
direction of patches with preferred species or higher plant density (e.g. Hanoteaux and al. 2013).
In further development of this model, we could investigate to which extent the results reported
here generalize to biased random walks.

For the simplest version of our model (with aiic = asuc), the attractiveness coefficients determine
the average prevalence of each species in pollen loads, whereas the typical scale of foraging paths
(indicated by D) determines the level of differentiation (species sorting) between pollen loads.
This model thus formalizes a “null hypothesis” according to which pollen load differentiation is
due solely to spatial factors, i.e. monospecific clusters in the field and the limited distance
covered in a foraging bout. Departures from the model's predictions would provide evidence of
more complex foraging behavior: an excess of unifloral pollen loads would suggest flower
constancy, i.e. the tendency of individual foragers to stick to one species per bout (Chittka et al.
1999) , whereas an excess of mixed pollen loads could suggest that bees are actively seeking
multiple resources or — as in our alternate model for site MD5 — that they are relaxing their
preferences in the course of a foraging bout.
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Table 1 Main variables and parameters of the bee foraging model

Model inputs

Ainit Vector representing the relative attractiveness of each plant species when
selecting the initial foraging position

Asuce Vector representing the relative attractiveness of each plants species for
successive foraging steps

d(x,y) Vector of densities (inflorescences m™) for each of the plant species at position
(x,y) in the field

ns Number of steps (inflorescences visited) in a foraging bout

L Root mean square (RMS) length for a step (dimensionless #)

fi Frequency of jumps (occasional large steps)

1] RMS length for a jump (dimensionless ®)

P Mean cosine of the wrapped Cauchy distribution; represents the directional
correlation between successive steps

Output and summary statistics

P Pollen load composition matrix: p; is the proportion of species j in pollen load i

] Vector representing the average proportion of each species (over all pollen loads)

Fsr Differentiation in composition between pollen loads (see definition in text)

*When determining the RMS step or jump length, I and J; are multiplied by the inverse square
root of the local inflorescence density (see text).



Table 2 Summary statistics of the bee pollen data

Site Date Number of  Species 1 ~ Species2  Species 3 Fsr Number
pollen loads p p p of
mixed
loads ®
BRD  05-Jun-2009 16 Vetch Poppy 0.82 3
0.73 0.27
BRD  19-Jun-2009 17 Vetch Poppy 0.61 5
0.73 0.27
MD4  14-May-2009 17 Poppy Lupine Clover 0.73 6
0.46 0.45 0.09
MD4  03-Jun-2009 16 Poppy Lupine 0.91 1
0.77 0.23
MD5  17-Jun-2009 19 Poppy Thistle Vetch 0.24 12
0.79 0.20 0.01
MD5  01-Jul-2009 21 Poppy Thistle 0.26 13
0.81 0.19

 Pollen loads containing no more than 90% of any single species.



Table 3 Inflorescence density of pollen sources by site and date

Site Date Mean density (inflorescences m™) °

Clover Lupine Poppy Thistle Vetch
BRD 05-Jun-2009 0.14 2.12
BRD 19-Jun-2009 1.48 4.76
MD4 14-May-2009 1.42 0.70 2.68
MD4  03-Jun-2009 0.26 0.60
MD5 17-Jun-2009 1.04 1.72 0.10
MD5 01-Jul-2009 0.76 15.30

® Average count from fifty 1 m* quadrats at each site/date pair. An empty cell means no
inflorescences of the plant were observed in any quadrat.



Table 4 Parameter estimates by approximate Bayesian computation

Slte dinit dsucc IS
Species: Median (95% BCI?) Species: Median (95% BCI)® Median (95% BCI)
BRD Vetch: 0.44 (0.39-0.49) same as Qinit 0.5 (0.2-1.3)
MD4 Poppy: 0.35 (0.30-0.39) same as Qinit 0.8 (0.6-1.0)
Lupine: 0.56 (0.48-0.64)
MD5 Poppy: 0.86 (0.61-1.00) Poppy: 0.61 (0.51-0.78) 4.7 (2.1-12.8)°
Thistle: 0.00 (0.00-0.00) Thistle: 0.24 (0.02—-0.39)

? BCI: Bayesian credible interval.

> Only estimated for site MD5 where the model with @it = s failed to qualitatively reproduce
summary statistics.

¢ Cases where the 95% BCI has a range comparable to the prior (0.5-10 for L).



Figure 1

Value

Figure captions

Fig. 1 Pollen load statistics (p, Fsr) predicted by model simulations as a function of the RMS
distance between the first and last foraging step (D), for two field confirgurations: (a) MD4 on
14-May-2009 and (b) MD5 on 01-Jul-2009. For each field, the attractiveness coefficients were
fixed as (2) @it = Asmec = (0.20 [poppy], 0.73 [lupine], 0.07 [clover]) and (b) aumi = (1 [poppy], 0
[thistle]), Asmce = (0.5, 0.5), while the random walk parameters varied over the following ranges: n.
(100-800), L, (14), p(00.92), l; (1-12.3) with f; = 0.1. Grey lines represent linear regression
fits. Ten thousand pollen loads were simulated for each set of parameters, resulting in a standard
deviation of under 0.005 for each statistic shown here.

Fig. 2 Values of (a) p, Fsr and (b) the number of mixed pollen loads in 1000 simulations of the
data, using the median parameters estimated by ABC. Filled circles and error bars represent the
median and 95% central range of the simulated statistics, while open circles show the observed
statistics. Note that pz only applies to site-date pairs (MD4-14-May and MD5-17-Jun) where

three pollen species were found above trace levels.
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Supplementary electronic material for :

Testing models of bee foraging behavior through the analysis of pollen loads and floral density
data

Fortran 95 code used to simulate bee foraging and produce summary statistics for approximate
Bayesian computation (ABC) analysis.

PROGRAM bee_sim2f
! THIS PROGRAM SIMULATES BEES IN TWO FIELDS WITH SAME FORAGING PARAMETERS
! The program performs NREP simulations of n_bee bees foraging in a field
! and outputs species composition of pollen loads for use in ABC analysis

IMPLICIT NONE

INTEGER, PARAMETER :: FILENUM = 1

REAL, PARAMETER :: PI = 3.141593, TWOPI = 6.283185, EPS = 1.0E-6 ! EPS: tolerance from 0
INTEGER, PARAMETER :: NREP = 100000 ! number of simulations to run

! Grid dimensions (nx * ny), field size and grid steps (in meters)
INTEGER, PARAMETER :: NX = 10, NY =5
REAL, PARAMETER :: XF = 90.0, YF = 80.0, XGS = 10.0, YGS = 20.0

I Input data
INTEGER :: n_bee, n_spc, n_stp ! # bees by sim., # of plant species, # of steps by bee
INTEGER :: i_sim, i_rep, i_spc, i_fld ! counter variables for above

REAL :: 1 stp, 1. max, 1_jmp, f_jmp, rho ! random walk parameters
REAL, ALLOCATABLE :: a_init(:), a_succ(:) ! attractiveness of species to bees (initial
! step, successive steps)
REAL :: evenp ! fraction to hold "even preference" (a_succ = 1/n_spc for all species)
REAL, ALLOCATABLE :: quad_counts(:,:,:) ! quad_counts(X,Y,SPC) # inflorescences of
! SPC for quadrat at (X,Y) (current field)

REAL, ALLOCATABLE :: quad_counts2(:,:,:,:) ! quad_counts for both fields

! Output: p by species by bee, average p and variance by species, fst
REAL, ALLOCATABLE :: p_sim(:,:), pm(:), var(:)
REAL :: fst

! Initialize RNG

INTEGER :: i_seed, ssize, clock

INTEGER, ALLOCATABLE :: seed(:)

call random_seed(size=ssize)

allocate(seed(ssize))

call system_clock(count=clock)

seed = clock + 37 * (/ (i_seed - 1, i_seed = 1, ssize) /)
call random_seed(put = seed)

call load_data

n_bee = 100

1 max = 20.0

allocate(a_init(n_spc), a_succ(n_spc))
allocate(p_sim(n_spc,n_bee), pm(n_spc), var(n_spc))
open(unit=FILENUM, file="beesim_out.txt", action='write')

do i_rep = 1, NREP
I Generate a random simplex for a_init
do
do i _spc =1, n_spc-1
call random_number (a_init(i_spc))
end do



if (sum(a_init(1:n_spc-1)) < 1) exit
end do
a_init(n_spc) = 1 - sum(a_init(1:n_spc-1))

! Generate a_succ w/ condition that it's "more uniform" than a_init
evenp = 1.0 / real(n_spc)
do
do i _spc =1, n_spc-1
call random_number (a_succ(i_spc))
a_succ(i_spc) = evenp + a_succ(i_spc)*(a_init(i_spc) - evenp)

end do
if (sum(a_succ(1l:n_spc-1)) < 1) exit
end do

a_succ(n_spc) = 1 - sum(a_succ(l:n_spc-1))

! Pick 1 _step between (0.5,10) (dimensionless, as explained in article)
call random_number(1l_stp)

1l stp = 1_stp*9.5 + 0.5

! Set other random walk parameters

n_stp = 100
rho = 0.0

f_jmp = 0.0
1 jmp = 0.0

! Perform simulations (get_psim subroutine) and calculate statistics
! Repeat for both fields
do i_fld = 1,2

quad_counts = quad_counts2(:,:,:,i_f1d)

do i_sim = 1, n_bee

p_sim(:,i_sim) = get_psim()

end do

pm = sum(p_sim,2)/n_bee

var = sum(p_sim**2,2)/n_bee - pm**2

fst = sum(var) / (1 - sum(pm**2))

write(FILENUM, *) a_init(1:n_spc-1), a_succ(l:n_spc-1), 1 stp, pm, fst
end do

end do

close(FILENUM)

CONTAINS

SUBROUTINE load_data
! Input plant distr. data (inflorescences per 1mA2 quadrats for each species)
open(unit=FILENUM, file="quad_counts.txt", action='read')
read(FILENUM, *) n_spc
allocate(quad_counts(NX,NY,n_spc))
allocate(quad_counts2(NX,NY,n_spc,2))
read (FILENUM, *) quad_counts2
close(FILENUM)
END SUBROUTINE load_data

FUNCTION dens(s,p)
REAL :: dens
INTEGER, INTENT(IN) :: s
REAL, INTENT(IN) :: p(2)
INTEGER :: ix, iy
REAL :: dx, dy, we0, wol, wl0, wll

! Interpolates the density of species s at point p(Xx,y)

! using inverse square distance weights (w00..wl1l)

I (ix,1y) is "bottom-left" closest data point; (dx,dy) distance to that point
ix int(p(1)/X6S) + 1

iy = int(p(2)/YGS) + 1



dx = p(1) - (ix-1)*XGS

dy = p(2) - (1y-1)*YGS

if (dx < EPS .and. dy < EPS) then
dens = quad_counts(ix, iy, s)

else
woo = 1.0/(dx**2 + dy**2)
WOl = 1.0/(dx**2 + (YGS-dy)**2)
wl0 = 1.0/((XGS-dx)**2 + dy**2)
wll = 1.0/((XGS-dx)**2 + (YGS-dy)**2)

dens = (w@@*quad_counts(ix,iy,s) + w@l*quad_counts(ix,iy+1,s) &
+ wl@*quad_counts(ix+1,1iy,s) + wll*quad_counts(ix+1,iy+1,s)) &
/ (WOO + wel + wl@ + wll)
end if
END FUNCTION dens

FUNCTION spc_id(p)
INTEGER :: spc_id
REAL, INTENT(IN) :: p(2)
INTEGER :: s
REAL :: wdens(n_spc)
REAL :: run_sum, tot_sum, rnd

! Choose species at point p (prop. to density*attractiveness)
do s =1, n_spc
wdens(s) = dens(s,p) * a_succ(s)
end do
tot_sum = sum(wdens)
run_sum = 0.0
call random_number (rnd)
rnd = rnd * tot_sum
do s =1, n_spc
run_sum = run_sum + wdens(s)
if (rnd <= run_sum) then
spc_id = s
exit
end if
end do
END FUNCTION spc_id

FUNCTION p_init()
REAL :: p_init(2)
INTEGER :: s, ix, 1y
REAL :: tot_mat(NX, NY)
REAL :: tot_sum, run_sum, rnd

! Pick initial foraging point (among points with data)
! with prob. prop. to preference-weighted total density (tot_mat)
tot_mat = 0.0
do s = 1, n_spc
tot_mat = tot_mat + a_init(s)*quad_counts(:,:,s)
end do
tot_sum = sum(tot_mat)
run_sum = 0.0
call random_number(rnd)
rnd = rnd * tot_sum
outer: do ix = 1, NX
do iy = 1, NY
run_sum = run_sum + tot_mat(ix,iy)
if (rnd <= run_sum) then

p_init(1) = (ix-1)*XGS
p_init(2) = (iy-1)*YGS
exit outer

end if

end do
end do outer
END FUNCTION p_init



FUNCTION get_psim()
REAL :: get_psim(n_spc)
INTEGER :: i, s
REAL :: u, v, rnd
REAL :: tot_dens, dnn, dl, theta, dth, theta_new
INTEGER :: s_count(n_spc)
REAL :: b_path(2,n_stp)

! Simulate a single bee foraging trip using a
! correlated random walk (coords. in b_path)
I Returns the proportion of each species
b_path = 0.0
b_path(:,1) = p_init()
call random_number (theta)
theta = (theta-0.5)*TWOPI
tot_dens = 0.0
do s =1, n_spc
tot_dens = tot_dens + dens(s,b_path(:,1))
end do
dnn = 1.0 / sqrt(tot_dens) ! Expected local nearest-neigbour dist.

do i =2, n_stp
do ! until suitable step is found
call random_number (u)
call random_number(v)
call random_number (rnd)
if (rnd <= f_jmp) then
dl = min(dnn*1_jmp*sqrt(-log(u)), 1l_max)
else
dl = min(dnn*1_stp*sqrt(-log(u)), 1l_max)
end if
dth = 2.0*atan((1.0-rho)/(1.0+rho) * tan(PI*(v-0.5)))
theta_new = theta + dth
if (abs(theta_new) > PI) then
! Bring theta_new within (-PI,PI) if needed
theta_new = theta_new - sign(TWOPI, theta_new)
end if
b_path(1,i) = b_path(1,i-1) + dl*cos(theta_new)
b_path(2,i) = b_path(2,i-1) + dl*sin(theta_new)
if (b_path(1,i) > 0 .and. b_path(1,i) < XF &
.and. b_path(2,i) > © .and. b_path(2,i) < YF) then
tot_dens = 0.0
do s = 1, n_spc
tot_dens = tot_dens + dens(s,b_path(:,1))
end do
if (tot_dens > EPS) then
dnn = 1.0 / sqrt(tot_dens)
theta = theta_new
exit
end if
end if
end do
end do

s_count = 0O
do i =1, n_stp
s = spc_id(b_path(:,1))
s_count(s) = s_count(s) + 1
end do
get_psim = real(s_count) / real(n_stp)
END FUNCTION

END PROGRAM bee_sim2f



Table S1 Random walk parameters and simulation outputs for the sensitivity analysis

Parameters * Output for MD4 on 14-May-2009® | Output for MD5 on 01-Jul-2009 ©
ns I p L | D Popey Pugie Paoe Fst | D Prosey  Puste  Fst
100 1 0 nfa 278 0471 0441 0.088 0.657 3.21 0.858 0.142 0.274
200 1 0 wna 395 0473 0438 0.088 0.611 4.49 0.842 0.158 0.253
400 1 0 n/a 56> 0482 0428 0.090 0.539 6.28 0.820 0.180 0.240
600 1 0 nfa 692 048 0417 0.094 0.489 7.60 0.801 0.199 0.242
800 1 0 nfa 803 049 0408 0.096 0.449 8.71 0.785 0.215 0.248
100 2 0 n/a 568 0483 0427 0.090 0.543 6.29 0.819 0.181 0.246
100 3 0 n/a 866 0500 0402 0.098 0.434 9.19 0.781 0.219 0.253
100 35 0 n/a 1019 0510 0.350 0.100 0.383| 10.56 0.761 0.239 0.263
100 4 0 n/a 1163 0516 0378 0.105 0.349 11.9 0.743 0.257 0.271
100 1 03 nfa 365 0474 0437 0089 0.628 4.08 0.848 0.152 0.258
100 1 05 nfal 466 0477 0434 0.089 0.593 5.01 0.836 0.164 0.246
100 1066 nfa 601 0479 0429 0092 0.547 6.22 0.822 0.178 0.236
100 1 08 nfa 837 0487 0418 0094 0.48 8.16 0.797 0.203 0.234
100 1092 nfa 1356 0498 0399 0.103 0.258 12.3 0.743 0.257 0.254
00 1 0 3| 3.73 0475 0437 0.088 0.622 4.24 0.844 0.156 0.261
100 1 0 56 562 0483 0426 0091 0.551 6.13 0.821 0.179 0.248
00 1 0 9 844 0491 0411 0.098 0.463 8.79 0.786  0.214 0.255
100 1 0123|1131 0505 0392 0103 0.385 11.3 0.754 0.246 0.269

* f; = 0.1 for all cases when "jumps" are used in the path (i.e. [; is not listed as n/a).
® @it = @smce = (0.20 [poppy], 0.73 [lupine], 0.07 [clover])
© it = (]_ [PDPP}F]J 0 [thlSﬂE]), Asuce — ({].5, ':]5)

Supplementary figure captions

Fig. S1 Cross-validation plots produced by the 'abc’ package in R, for sites MD4 and MD5. For
each of the 100 repeats of the cross-validation procedure, the output of one of the simulations is
chosen as the observed statistics, and the parameter values for this simulation ("True value") are
inferred by performing the ABC analysis based on all the other simulations ("Estimated value").
The process was repeated using four different values of the tolerance rate. A line representing exact
inference (Estimated value = True value) is shown on each plot.
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