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Abstract

Context Wildfires play a crucial role in maintaining

ecological and societal functions of North American

boreal forests. Because of their contagious way of

spreading, using statistical methods dealing with

spatial autocorrelation has become a major challenge

in fire studies analyzing how environmental factors

affect their spatial variability.

Objectives We aimed to demonstrate the perfor-

mance of a spatially explicit method accounting for

spatial autocorrelation in burn rates modelling, and to

use this method to determine the relative contribution

of climate, physical environment and vegetation to the

spatial variability of burn rates between 1972 and

2015.

Methods Using a 482,000 km2 territory located in

the coniferous boreal forest of eastern Canada, we

built and compared burn rates models with and

without accounting for spatial autocorrelation. The

relative contribution of climate, physical environment

and vegetation to the burn rates variability was

identified with variance partitioning.

Results Accounting for spatial autocorrelation

improved the models’ performance by a factor of

1.5. Our method allowed the unadulterated extraction

of the contribution of climate, physical environment

and vegetation to the spatial variability of burn rates.

This contribution was similar for the three groups of

factors. The spatial autocorrelation extent was linked

to the fire size distribution.

Conclusions Accounting for spatial autocorrelation

can highly improve models and avoids biased results

and misinterpretation. Considering climate, physical

environment and vegetation altogether is essential,

especially when attempting to predict future area

burned. In addition to the direct effect of climate,

changes in vegetation could have important impacts

on future burn rates.
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QC J9X 5E4, Canada

123

Landscape Ecol (2018) 33:19–34

https://doi.org/10.1007/s10980-017-0578-8

http://orcid.org/0000-0002-9706-5155
http://dx.doi.org/10.1007/s10980-017-0578-8
http://crossmark.crossref.org/dialog/?doi=10.1007/s10980-017-0578-8&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10980-017-0578-8&amp;domain=pdf
https://doi.org/10.1007/s10980-017-0578-8


Keywords Coniferous boreal forest � Quebec �
Eastern Canada � Wildfires � Burn rate � Spatial
autocorrelation � RAC models � Autocovariate

Introduction

Wildfires have been shaping boreal forests for millen-

nia by creating mosaics of landscapes of different age

structure, size, and composition (Stocks et al. 2003;

Gauthier et al. 2015a). In the north American conif-

erous boreal forest, the spatial variability of fire

regimes has been demonstrated at scales of millennia

(Hu et al. 2006; Senici et al. 2015), centuries (Girardin

and Mudelsee 2008) and decades (Kasischke and

Turetsky 2006). This spatiotemporal variability is

decisive for many ecological attributes such as biodi-

versity (Gauthier et al. 2015a), and societal attributes

such as forest management (Johnson et al. 1998). For

these reasons, better understanding wildfires consti-

tutes a burning challenge in landscape ecology,

especially as their semi-random nature makes them a

complex process to study.

A notable issue is the spatial autocorrelation related

to the contagious nature of fire spreading which

requires appropriate spatially explicit methods (Reed

et al. 1998). Indeed, two locations close to each other

are unlikely to be independent, which breaks the

assumptions of most standard statistical analyses

(Dormann et al. 2007). Spatial autocorrelation is often

disregarded by fire studies, but this omission can lead

to type I error and consequently to incorrect estimation

of parameters and important misinterpretation (Reed

et al. 1998; Dormann et al. 2007; Mishra et al. 2016).

Fire regimes often vary depending on various

environmental factors (Larsen 1997; Hu et al. 2006).

Many fire studies in boreal ecosystems attempt to

better understand the spatial heterogeneity of fire

regimes by investigating top-down effects, such as

climate at regional to global scales (Drever et al. 2008;

Girardin andWotton 2009), or bottom-up effects, such

as vegetation (Cumming 2001; Terrier et al. 2013) and

physical environment (Rogeau and Armstrong 2017)

at local to regional scales. Some studies have evalu-

ated the relationship between the spatial heterogeneity

of fire regimes and several of these attributes (e.g.

Drever et al. 2008; Marchal et al. 2017; Rogeau and

Armstrong 2017). However, some uncertainties

remain about the contribution of all these factors

relative to each other.

The goal of our study was (i) to implement a

spatially explicit method involving residuals autoco-

variate (RAC) models (Crase et al. 2012) in burn rates

analyses, and to test its performance against more

standard models not accounting for spatial autocorre-

lation; and (ii) to use this method to determine the

relative contribution of climate, vegetation and phys-

ical environment to the spatial variability of burn rates

in the coniferous boreal forest of eastern Canada. First,

we used ordinal logistic models to test for the effects of

climate, vegetation and physical environment on the

spatial variability of burn rates. Then, in order to

account for spatial autocorrelation, RAC models

(Crase et al. 2012) were built based on the ordinal

logistic models. The extent of the spatial autocorre-

lation was linked to the fire size distribution of the

study area. The relative importance of each group of

factors to the variability of burn rates was calculated

and their individual effects were identified.

Materials and methods

Study area

The study area is located in the boreal vegetation zone

of Quebec, eastern Canada. It covers 482,000 km2 and

stretches between latitudes 49�N–53�N and between

longitudes 79�300W–57�W. Total mean annual pre-

cipitation increases from west to east, and to a lesser

extent from north to south, ranging from 651 to

1236 mm (Fig. 1a). The mean annual temperatures

vary from- 4.9 �C in the north to 1.6 �C in the south.

The topography notably varies across the study area

(Robitaille et al. 2015).While theWest has a relatively

flat topography and low elevation, the north-central

portion experiences a higher elevation with a gentle

relief. Towards the Southeast, relief is strongly

dissected by broad north-south valleys. Further east,

highly fractured relief rises gradually from sea level to

1000 m. Magnitudes of relief and elevation then

gradually decrease towards the eastern lower north

shore region of the Saint Lawrence River. In terms of

surficial deposits, thick and thin tills and organic

deposits are the most abundant, although an important

amount of rock is found in the Southeast (Fig. 1b;

Robitaille et al. 2015). Forests are largely dominated
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by black spruce (Picea mariana (Mill.) B.S.P.), but

also contain other species in smaller proportions, such

as jack pine (Pinus banksiana Lamb.), balsam fir

(Abies balsamea (L.) Mill.), trembling aspen (Populus

tremuloides Michaux) and white birch (Betula papyr-

ifera Marsh.).

Analyses were performed at the scale of Land

Districts (LDs) that are ‘‘areas of land characterized by

a distinctive pattern of relief, geology, geomorphol-

ogy, and regional vegetation’’ (Jurdant et al. 1977) and

are levels of the Ecological Land Classification

Hierarchy developed in Quebec (Robitaille and

Saucier 1996). A notable advantage of using LDs is

that there is a number of environmental variables

available at this level. Our study area contains 1114

LDs, with an average size of 42,700 ha. Three LDs

were removed from the dataset because they were

almost exclusively composed of large bodies of water

(Lake Mistassini, Lake Albanel, and Manicouagan

reservoir).

Data

Fire

Fire archives obtained from the Ministère de la Forêt,

de la Faune et des Parcs du Québec (MFFP) were

compiled over the 1972–2015 period (Fig. 2a). All

recorded fires were included in the analyses, regard-

less of their size. South of the limit of the commercial

forest established in 2002 (Fig. 2a), data has been

submitted to quality control and fire dates are consid-

ered more precise (Gauthier et al. 2015b) than in the

North where remote sensing techniques have been

used to delimitate the boundaries of burns and to

determine fire dates. Consequently, a few fires in the

North could not be precisely dated, which is why the

fire dates have been specified in 5-year intervals

(Leboeuf et al. 2012). For those, the middle year of the

class was used in the analyses. Minimum, maximum,

and mean fire size in the study area were respectively

0.4, 494,340 and 5138 ha. In total, 2079 fires were

recorded.

Climate

Variables were extracted at each LD’s centroid using

the BioSIM 9 software (Régnière and Saint-Amant

2008). BioSIM compensates for the scarcity of

weather stations in the study area by interpolating

climate data from nearby weather stations, adjusting

for elevation, latitude, and longitude (Régnière and

Saint-Amant 2008). Climate data was extracted over

the 1971–2009 period (Lord 2013). Climate variables

included mean annual precipitation (Fig. 1a) and

Drought Code (DC) calculated for spring months

(May and June) and for the month of July. The DC is

part of the Fire Weather Index System and is derived

frommeteorological observations, namely rainfall and

temperature (Amiro et al. 2004).

Physical environment

The physical environment was represented by three

variables compiled at the LD level: dominant relief,

dominant surficial deposit (SD) (Fig. 1b) and percent-

age of water. Dominant relief and SD refer to the

dominant type of relief and SD (i.e., type covering the

largest area) in an LD. The dominant relief was

classified as either plains and valley bottoms (flat), low

hills and hills (minimally rugged) or high hills and

mounts (moderately to highly rugged). SDs are an

indicator of the drainage potential of the forest floor.

This variable was classified based on the texture of the

dominant SD, i.e., coarse, medium or fine, except

when the dominant SD was organic or when an LD

presented mostly bare bedrock at its surface, in which

cases the variable was classified as organic or bedrock,

respectively. The percentage of water refers to the

percentage of an LD covered by lakes and large rivers.

Vegetation

Potential vegetation (Fig. 1c) was compiled at the LD

level and refers to the dominant type of potential

vegetation in an LD. This variable was used as an

indicator of the type of fuel theoretically dominating

an LD while minimizing the influence of the last

disturbances that occurred. Potential vegetation rep-

resents a specific tree assemblage that was determined

based on physical environment’s characteristics,

established vegetation, presence of indicator species,

pre-established regeneration, and successional path-

ways (Grondin et al. 2007). Potential vegetation was

grouped into five forest categories: spruce–moss, fir-

dominated, open, wetlands and mixed forests. Anal-

yses have also been performed with current vegetation

(see Appendix A in Supplementary Material) in order
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to compare the results with potential vegetation.

Contrary to potential vegetation, current vegetation

is mainly determined by the recent disturbance history

(Grondin et al. 2014). This variable represents the

dominant vegetation type that was present in an LD in

2009 (Leboeuf et al. 2012).

Statistical analyses

Burn rates

Compiling burn rates at the LD level was realized

using ArcGIS software v10.2.2. First, one grid with a

resolution of 1 km 9 1 km was built for each year of

the 44-year study period. In each grid, each cell was

assigned with one if a fire burned part or the entirety of

the cell during the year into consideration, or with zero

if it did not burn during that year. The grids were then

smoothed using a 400 km2-window, the approximate

mean size of an LD. To achieve this step, each cell was

assigned with the mean value of the surrounding 400

cells, corresponding to the proportion of the surround-

ing landscape that burned during the year into

consideration. All 44 yearly grids were then averaged

so that each cell showed the mean smoothed annual

burn rate (Fig. 2b). The mean annual burn rate (BR)

was then extracted at each LD’s centroid and

converted to percentages. This smoothing process

reduced the bias resulting from the fact that fires do not

stop spreading at LDs’ boundaries. Moreover, this

method uniformized the area on which BRs were

calculated, therefore dealing with potential biases

associated with the varying size of LDs.

BRs were then classified into 4 classes representing

the recent past natural variability of BRs in eastern

Canada (Bergeron et al. 2006): Null (BR = 0;

n = 331); Low (BR\ 0.5%; n = 486); Medium

(0.5%\BR\ 1.5%; n = 219); and High

(BR[ 1.5%; n = 78) (Fig. 2c).

Ordinal logistic regression

Statistical analyses were performed using R software

v3.3.2 (R Core Team 2016). Ordinal logistic

regression was used to test the relationship between

BR classes and vegetation, climate and physical

environment at the LD level. First, a full model was

built containing all variables, on which the propor-

tional odds assumption was verified. Secondly, a

backward AIC (Akaike Information Criterion) model

selection was realized. In order for a variable to be

removed, the AIC value of the model without the

variable had to be no greater than two compared with

the AIC value of the model with the variable. Once no

variable could be further removed, and in case several

models were within two delta-AIC of the best model,

the most parsimonious model was kept as final model.

The AIC of the final model was compared with the

AIC of the null model to ensure the overall improve-

ment. Ordinal logistic models were built using the lrm

function of the ‘‘rms’’ R package (Harrell 2016).

Residual autocovariate (RAC) models

Our data cannot be considered independent because of

the spatial autocorrelation between LDs. Indeed, two

neighboring LDs are more likely to share common

characteristics than those further apart, whether it is in

terms of area burned because of the contagious way

fires are spreading, or in terms of environmental

factors. Autoregressive models are widely used to

account for spatial autocorrelation in species distribu-

tion studies (Lichstein et al. 2002; Dormann et al.

2007), and have shown interesting results in at least

one fire study (Mishra et al. 2016). They are built by

adding an autocovariate, calculated from the spatial

autocorrelation contained in the response variable, as

an additional variable to a regular model. It efficiently

reduces the bias resulting from spatial autocorrelation

that can often lead to biased parameter estimates and

increase type I error rates (Dormann et al. 2007; Crase

et al. 2012).

Here, we used an extension of the common

autoregressive approach, known as the Residuals

Autocovariate (RAC) approach (Crase et al. 2012).

The autocovariate of a RAC model, derived from the

model residuals instead of the response variable itself,

represents the strength of the relationship between

model residuals at a given location and residuals at

neighboring locations (Crase et al. 2012). The advan-

tage of RAC models over usual autoregressive models

is that by fitting the autocovariate on model residuals,

explanatory variables that are also spatially correlated

bFig. 1 Maps of the study area showing distributions of a mean

annual precipitation, b dominant SD texture, and c potential

vegetation
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have a chance to account for the spatial autocorrela-

tion of the response variable. RAC models better

estimate the true influence of explanatory variables

because the autocovariate only represents the variance

resulting from the spatial autocorrelation that is

unexplained by these variables (Crase et al. 2012).

Several steps were required to build the RAC

model. First, a distance matrix was calculated based on

the geographic coordinates of LDs’ centroids and the

size of a predefined lag using the dnearneigh function

of the ‘‘spdep’’ R package (Bivand et al. 2016). The lag

is defined as the distance between two neighbors when

all observations are equally spaced out. As LDs have

different shapes and sizes, here we defined lag 1 as the

distance at which 95% of the LDs had at least one

neighbor, i.e., 25 km (Fig. 3a). Therefore, lag 2 refers

to LDs within 50 km, lag 3 to LDs within 75 km, and

so on.

Secondly, Li and Shepherd’s residuals were

extracted from the final ordinal logistic model. They

are well adapted to measuring residuals correlation as

they provide a single value per observation and

contain directional information (i.e., under- or over-

estimation) between the observed value and the fitted

distribution (Li and Shepherd 2012; Harrell 2016).

Thirdly, a spatial correlogram was built based on

the distance matrix and the model residuals using the

sp.correlogram function of the ‘‘spdep’’ R package

(Bivand et al. 2016). The correlogram measures, for

different lags, the spatial autocorrelation strength in

the residuals with Moran’s I (Legendre and Legendre

1998). Moran’s I is an index ranging from - 1 that

indicates strong negative spatial autocorrelation, such

as dispersion, to 1 that indicates strong positive spatial

autocorrelation, such as clustering. A value of zero

means a random pattern with no spatial autocorrela-

tion (Cliff and Ord 1981). In order to test for the

significance of the Moran’s I for each lag distance,

confidence intervals were computed using a progres-

sive Bonferroni correction (Legendre and Legendre

1998). The Bonferroni-corrected significance level

(a’) of the k-th lag equals the significance level

(a = 0.05) divided by k, so that a’ = a/k (Legendre

and Legendre 1998). This approach was applicable

because it requires autocorrelation to be expected in

the smallest distance classes.

Fourthly, an autocovariate was calculated for each

lag at which the correlogram showed a significant

spatial autocorrelation using the autocov_dist function

of the ‘‘spdep’’ R package (Bivand et al. 2016). One

RAC model was built per autocovariate. Finally, a

pool of models was compiled, containing the final

ordinal logistic model and all RACmodels. The model

having the lowest AIC value was kept as best model.

Spatial autocorrelation in the RAC models’ residuals

was assessed to ensure that the inclusion of autoco-

variates led to residuals independency.

Goodness of fit

The goodness of fit of the final RAC model was

determined using Nagelkerke’s Pseudo-R2. Moreover,

its predictive capacity was assessed by calculating the

bFig. 2 Maps of a fires that occurred in the study area during the
period 1972–2015; b smoothed BRs, and c final BR class of LDs

Fig. 3 a Representation of lags one to three around an LD, as

well as fires that occurred over the 1972–2015 period. The LD in

this example was chosen because it was the same size as the

mean size of LDs. b Spatial correlogram calculated on the

residuals of the final ordinal logistic model. The correlogram

shows Moran’s I associated with each lag as well as their

respective Bonferroni-corrected confidence intervals
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Correct Classification Rate (CCR) (Hosmer and

Lemeshow 2000; Nur Aidi and Purwaningsih 2013).

The CCR is expressed in percentage and was calcu-

lated for the accuracy of the overall model and of each

class separately using the following equation (Hosmer

and Lemeshow 2000):

CCR ¼ number of correct predictions

number of observations
� 100 ð1Þ

Variance partitioning

Variance partitioning was used on the best RACmodel

to determine the relative importance of vegetation,

physical environment, and climate in the BR variabil-

ity. The calculation of exclusive and shared variance

of the three groups of factors was derived from the

method described by Legendre and Legendre (1998),

after being adapted for three groups of factors instead

of two. Variance was calculated with McFadden’s R2

(McFadden 1974).

Results

Model selection

The backward model selection showed that four

ordinal logistic models, including the full model, were

concurrent candidates to best explain the BR classes of

LDs (Table 1). The final model, the most parsimo-

nious, included one variable from the climate group

(mean annual precipitation), all variables from the

physical environment group (dominant relief, domi-

nant SD and percentage of water), and the vegetation

group variable (potential dominant vegetation). Anal-

yses performed with current vegetation instead of

potential vegetation produced a similar final ordinal

logistic model (Table A1 in Supplementary Material).

Performance of RAC models

The spatial correlogram indicated a significant spatial

autocorrelation in the residuals of the final ordinal

logistic model at lag one to lag three, i.e., within

25–75 km of the LDs’ centroids (Fig. 3). The correlation

was strongest at lag one, weakening as lags increased.

The AIC-based comparison between the final ordinal

logistic model and the three RAC models (one for each

lag at which spatial autocorrelation was significant)

showed that the RAC model containing the first order

autocovariate (i.e., autocovariate calculated at lag 1)

performed best, both in terms of AIC and Nagelkerke’s

pseudo-R2 (Table 2). RAC models’ Nagelkerke’s

pseudo-R2 were between 1.4 and 1.5 times higher than

that of the final ordinal logistic model (Table 2). The

CCR and CCR plus or minus one class of the first order

RAC model are presented in Table 3. Analyses per-

formed with current vegetation produced a similar final

RAC model as those realized with potential vegetation.

However, the AIC value of that model was greater by 19

than that of the first order RAC model factoring in

potential vegetation, indicating that the latter performed

best (Table A2 in Supplementary Material).

Effect of climate, physical environment

and vegetation on BRs

The variables’ effects on BRs were extracted from the

first order RAC model. They can be expressed either

Table 1 Ordinal logistic models within 2 DAIC of best model resulting from the backward model selection process, as well as full

and null models

Ordinal logistic models AIC DAIC with best model

Climate Physical environment Vegetation

Precipitation Relief 1 SD 1 % water Potential vegetation 2255.4 0.0

Precipitation ? DC spring Relief ? SD ? % water Potential vegetation 2255.5 0.1

Precipitation ? DC July Relief ? SD ? % water Potential vegetation 2255.6 0.2

Full model 2256.8 1.4

Precipitation ? DC spring ? DC July Relief ? SD ? % water Potential vegetation

Null model 2735.7 480.3

The model used in the subsequent analyses is in bold type
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using odd ratios, i.e., the probability that the BR

increases from one class to the next higher one

(Table 4), or using the cumulative probability of

minimally belonging to a non-null BR class, which is

equivalent to the probability for an LD of having at

least a low BR, at least a medium BR, or a high BR

(Fig. 4). All variables had a significant effect on BRs

(Table 4).

First, the probability of belonging to any non-null

BR class decreased with increasing precipitation, and

precipitation became more limiting as the BR class

increased (Fig. 4d). The probability of having a high

BR reached a near to zero value when precipitation

exceeded 900 mm, while the probability of having at

least a low BR was still close to 0.25 in LDs

experiencing 1200 mm of precipitation. Secondly,

the probability of belonging to any non-null BR class

varied with dominant SD (Fig. 4a). LDs dominated by

medium and coarse textures had the highest probabil-

ities of belonging to any non-null BR class, followed

by those dominated by bedrock, organic, and then fine

texture. Thirdly, LDs dominated by low hills and hills

had the highest probabilities of belonging to any non-

null BR class, followed by those dominated by plains

and valley bottoms and then high hills and mounts

(Fig. 4b). Fourthly, LDs covered with a high percent-

age of water tended to have a lower probability of

belonging to any non-null BR class (Fig. 4e). Lastly,

in terms of vegetation, LDs dominated by spruce–

moss forests had the highest probabilities of belonging

to any non-null BR class, followed by those dominated

by open forests, fir-dominated forests and then wet-

lands and mixed forests (Fig. 4c). When factoring in

current vegetation, LDs dominated by open forests had

the highest probabilities of belonging to any non-null

BR class. Next were those dominated by wetlands,

mixed forests and coniferous-moss forests, all of

which showing similar effects on BRs (Fig. A4;

Table A4 in Supplementary Material).

Variance partitioning

Variance partitioning showed that climate, physical

environment, and vegetation were responsible for

12.0, 10.4, and 11.0% of variance, respectively

(Fig. 5a). Both the vegetation and climate groups, as

well as the vegetation and physical environment

groups shared a fraction of variance. In contrast, the

climate and physical environment groups did not—

their shared fraction was negative and close to zero (-

0.9%). This was also the case for the three groups

altogether (- 1.3%). A null value indicates that the

groups of factors contain no redundant information on

BRs, whereas a negative value indicates that the

groups of factors together explain the BR better than

the sum of the individual effects of these groups

(Legendre and Legendre 1998). Therefore, the vari-

ance partitioning could be represented by a linear

Venn diagram (Fig. 5a). The Venn diagram of the

RAC model using current vegetation was similar to

that of the model using potential vegetation (Fig. 5).

However, the fractions of variance of vegetation alone

and shared between vegetation and physical environ-

ment were smaller in the case of current vegetation

than potential vegetation.

Table 2 AIC and Nagelkerke’s pseudo-R2 of the final ordinal logistic model and of the RAC models

Models AIC DAIC with best model Nagelkerke’s pseudo-R2

1st order RAC model 1862.2 0.0 0.61

2nd order RAC model 1918.7 56.5 0.58

3rd order RAC model 1971.7 109.5 0.56

Final ordinal logistic model 2255.4 393.2 0.40

The best model used in the subsequent analyses is in bold type

Table 3 CCR and CCR ± one class in percentage showing

the accuracy of the overall model and of each BR class

separately

BR class

Null Low Medium High Overall

CCR 67.1 74.9 48.4 25.6 63.9

CCR ± one class 100 99.6 99.1 91.0 99.0
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Discussion

Importance of taking spatial autocorrelation

into account in fire studies

Although rarely accounted for, spatial autocorrelation

represents a great issue in fire studies, mainly because

fires have a contagious way of spreading (Reed et al.

1998). Consequently, regardless of the scale used in

one’s study, fires can spread over two or more units

and connect them to each other. We used a smoothing

process in the calculation of BRs at the LD level, as

well as RAC models as a spatially explicit method in

order to control for spatial autocorrelation. RAC

models have demonstrated their excellent perfor-

mance in other fields, such as species distribution

modeling (Crase et al. 2012). Although more classic

autocovariate models have been used in fire studies

(e.g. Mishra et al. 2016), we here report the first use of

this RAC method in such study. The RAC ordinal

logistic models were found to be a great improvement

compared to the corresponding simpler ordinal logis-

tic model, thus underlining the need for taking spatial

autocorrelation into account in fire studies (Reed et al.

1998; Mishra et al. 2016). Indeed, our method led to a

pseudo-R2 1.5 greater than that of the model that did

not account for spatial autocorrelation.

Another advantage of using residuals autocovari-

ates is that it also accounts for the spatial autocorre-

lation that remains in the explanatory variables after a

model was built (Crase et al. 2012). Consequently, the

variance partitioning analysis that was based on the

first order RAC model was more likely to provide the

unadulterated contribution of climate, physical envi-

ronment and vegetation to the variability of BRs. For

instance, we showed that climate and physical envi-

ronment did not share any fraction of variance,

although LDs close to each other were highly likely

to share the same climatic and physical characteristics.

Without controlling for spatial autocorrelation, a

shared contribution—likely related to a type I

error—could have been expected, as found by Grondin

et al. (2014).

The inclusion of autocovariates calculated at sev-

eral lags showed that accounting for spatial autocor-

relation required to consider LDs that had their

Table 4 Odd ratios of variables from the first order RAC model and their 95% confidence intervals (95% CI)

Variables Odd

ratios

95% CI p-values

Climate Precipitation (for an increase of 1 mm) 0.99 0.98–0.99 \ 0.0001

Physical

environment

Dominant SD (reference level = Fine

texture)

Organic 1.80 0.71–5.00 \ 0.0001

Bedrock 4.61 1.81–12.49

Coarse texture 9.07 3.87–22.75

Medium texture 10.15 4.61–24.03

Dominant relief (reference level = high

hills and mounts)

Plains and valley

bottoms

1.44 0.88–2.54 \ 0.0001

Low hills and hills 2.37 1.56–3.65

Percentage of water (for an increase of 1%) 0.99 0.97–1.00 0.0493

Vegetation Potential vegetation (reference

level = mixed)

Wetlands 1.00 0.26–4.10 \ 0.0001

Fir-dominated 2.83 0.77–13.25

Open 3.94 1.18–15.83

Spruce–moss 6.67 2.13–27.19

Odd ratios represent the odds of going from one BR class to the next higher one. Their values are always positive. For instance, for an

increase of 1 mm of precipitation, the odds of going from one BR class to the next are multiplied by 0.99, so precipitation decreases

the odds of having a higher BR. For dummy variables, the odd ratios are given compared to a reference level. For example, the

reference level of the relief variable is high hills and mounts. Therefore, the odds of plains and valley bottoms, and low hills and hills

going up one class of BR are respectively 1.44 and 2.37 times greater than those of high hills and mounts. The 95% CI was obtained

by bootstrap after 1000 randomizations with replacement of the original dataset and computation of the upper and lower percentiles

of the 1000 resulting odd ratios of each variable
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centroids up to 25 km apart. The area corresponding to

that radius could fit 99.8% of all fire sizes, suggesting

that the distribution of fire size is a good indicator of

the extent to which data might be spatially correlated.

This has great implications for future fire studies,

where spatial scales could be partly determined based

on the size of fires. For instance, using units larger than

the maximum fire size of the study area could reduce

the spatial autocorrelation between units. Moreover,

fire size is expected to increase in the future in

response to the facilitation of fire spread by a more

intense and longer drought events (de Groot et al.

2013; Flannigan et al. 2016). As a result, spatial

autocorrelation could become an even more important

issue in the future, and consideration of the future fire

size could be necessary in studies interested in future

area burned.

Factors controlling the BR

Climate, physical environment and vegetation were

found to equally contribute to the BR variability,

Fig. 4 Effects of

precipitation and a dominant

SD, b dominant relief, and

c potential vegetation; as
well as effects of

d precipitation alone and

e percentage of water alone
on the cumulative

probability of experiencing

at least a low BR, at least a

medium BR, or a high BR.

In each panel, the

continuous variables that are

not represented were

included in the model’s

predictions using their mean

value. For dummy variables,

the most represented class

was used. In panel c, the
curve representing mixed

forests is not visible because

it is concealed by the curve

representing wetlands
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supporting similar conclusions reached by a study

conducted in a smaller portion of our study area

(Cavard et al. 2015). This also reinforces the impor-

tance of considering all these factors together when

attempting to predict area burned in boreal ecosystems

(Cavard et al. 2015; Marchal et al. 2017). Indeed,

exclusively focusing on climate and neglecting the

effects of both vegetation (in terms of fuel) and

physical environment on fire regimes could lead to

highly misleading results (Marchal et al. 2017).While,

as previously mentioned, climate and physical

environment did not share any fraction of variance,

vegetation shared some with both of them.

The fraction of variance shared between vegetation

and physical environment was smaller in analyses

performed with current vegetation than with potential

vegetation. This could reflect the fact that physical

environment is a greater determinant of potential

vegetation than current vegetation, while the latter

mainly results from the recent disturbance history

(Leboeuf et al. 2012; Grondin et al. 2014). The

fraction of variance brought by vegetation alone was

greater and the fit of the model was better when using

potential vegetation than current vegetation. This

indicates that potential vegetation is a better predictor

of the BR variability than current vegetation, partly

because it better represents the vegetation that was

present before the last fire events.

Climate

The importance of weather in driving fires has been

demonstrated (e.g. Drever et al. 2008; Cavard et al.

2015), but its role is observed over shorter time periods

and smaller spatial scales than those at which our study

was conducted. Therefore, the effects of climate on

BRs are discussed in this paper in terms of general

climatic averages experienced in the LDs. Although

different drought indices based on temperatures and

precipitation were tested, only mean annual precipi-

tation was retained in the analyses as a climatic

variable influencing the BR. This suggests that

climatically speaking, the spatial variability of BRs

over the 1972–2015 period was mainly driven by

precipitation. When falling during the fire season,

precipitation leads to moister forest floors and fuel that

are less prone to fire spread (Flannigan et al. 2016). On

the other hand, high winter precipitation impacts fire

regimes by remaining on site for a longer time in

spring, taking longer to melt and therefore shortening

fire seasons (Westerling et al. 2006).

This result has great implications in a climate

change context. The north American boreal zone is

expected to experience higher temperatures, changes

in the distribution of precipitation throughout the year

and increasing annual precipitation in the future (IPCC

2014). However, the increase in precipitation might

not be able to compensate for the increasing fuel’s

evapotranspiration resulting from higher temperatures

(Girardin and Mudelsee 2008; Bergeron et al. 2010;

Fig. 5 Venn diagrams of variance partitioning of the first order

RAC models a factoring in potential vegetation and b factoring

in current vegetation. Variance is calculated as McFadden’s R2.

The total percentage of variance explained by a given group of

factors equals the sum of all percentages within the correspond-

ing circle
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Flannigan et al. 2016). The limiting effect of precip-

itation being reduced, drier fuels could facilitate fire

spread and lead to an important increase in BRs

(Amiro et al. 2004; Flannigan et al. 2016). The fire

regime could therefore gradually shift towards being

controlled by temperatures instead of precipitation.

This phenomenon may already be happening in the

northwestern part of the study area where the fire

regime has intensified since the 1980s (Erni et al.

2016).

Physical environment

Physical environment was shown to influence BRs

through dominant SD, dominant relief and percentage

of water. Previous studies at local scales in eastern

Canada have shown that SDs influence fire cycles

(Mansuy et al. 2010; Bélisle et al. 2016). At our larger

scale, LDs dominated by SDs presenting a coarse or

medium texture were the most likely to have a non-

null BR, followed by LDs dominated by bedrock, and

finally LDs dominated by fine texture SDs or organic

deposits. Coarse and medium textures have a high

drying potential which leads to dry forest floors that

ease fire spread (Flannigan et al. 2016). Although

bedrock also has a high drying potential, it usually

presents a low vegetation cover due to the absence of

soil (Robitaille et al. 2015), and such a limited fuel

continuity can reduce fire spread (Murray et al. 1998).

Fine texture SDs and organic deposits have an

excellent water retention potential and produce mod-

erately to highly wet soils able to slow down or even

stop fire spread.

Dominant relief was also shown to affect BRs, with

LDs dominated by low hills and hills having the

highest probabilities of belonging to any non-null BR

class, followed by LDs dominated by plains and valley

bottoms and finally by high hills andmounts. Low hills

and hills are mostly found on thick till deposits with

coarse or medium textures (Robitaille et al. 2015) that

facilitate fire spread. In contrast, high hills and mounts

are generally found on thin tills and bedrock in rugged

landscapes that can act as firebreaks (Bélisle et al.

2016). Moreover, high hills and mounts most often

have a higher elevation than the other two relief

classes. High elevation areas tend to be subject to

lower fire frequency (Rogeau and Armstrong 2017) as

they experience shorter fire seasons resulting from

lower temperatures and delayed snow melting

(Westerling et al. 2006). In addition, there can be a

cooling effect from orographic lifting of air masses,

leading to increasing relative humidity and eventually

precipitation (Rogeau and Armstrong 2017). Lastly, if

a few plains and valleys are found in mid- to high

elevation, most are located in the low elevation James

Bay area. These landscapes are covered with extensive

bogs and dominated by fine texture and organic SD

(Robitaille et al. 2015), thus preventing fire spread.

Vegetation

Vegetation was shown to impact BRs, as suggested by

previous studies (Cavard et al. 2015; Boulanger et al.

2017). LDs dominated by spruce–moss forests had the

highest probability of belonging to any non-null BR

class, followed by LDs dominated by open forests, fir-

dominated forests, and then by wetlands and mixed

forests. As this probability was lower for LDs

dominated by open forests than for those dominated

by the denser spruce–moss forests, this suggests that

fires need a continuous forest cover for spreading

(Murray et al. 1998; Senici et al. 2015). This also

confirms previous findings suggesting that boreal

forests present a resistance to high BRs, as when

stands are open, fires cannot spread because of the lack

of fuel, thus inducing a negative feedback between

forest cover continuity and fire spread (Héon et al.

2014). Wetlands have an important water retention

potential, and often reduce or stop fire spread (Senici

et al. 2015; Erni et al. 2016). In the same way,

deciduous species that are present in the mixed forests

category have been shown to significantly reduce fire

risk (Cumming 2001; Terrier et al. 2013).

One distinguishing feature of this study was the use

of potential vegetation instead of current vegetation.

In fact, we showed that using current vegetation could

bias the interpretation of results, mainly because it is

highly determined by the recent disturbance history

(Grondin et al. 2014). First, recently burned LDs were

classified as open in the current vegetation classifica-

tion. As a result, open forests were suggested to lead to

the highest probabilities of belonging to any non-null

BR class, which is a misinterpretation of the current

vegetation being a cause instead of a consequence of

the BRs. This also contradicted the results obtained

with potential vegetation which suggested that poten-

tial open forests could limit BRs because of their lack

of fuel (Héon et al. 2014). Similarly, fir-dominated and
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spruce–moss forests are combined into a single

coniferous-moss forest type in the current vegetation

classification, a consequence of the impossibility of

distinguishing spruce and fir from photointerpretation.

This combined coniferous-moss forest type resulted in

the lowest probabilities of belonging to any non-null

BR class. However, fir-dominated and spruce–moss

forests have been previously shown to be associated

with very different fire regimes (Bouchard et al. 2008),

corroborating our results from the analyses factoring

in potential vegetation. These results reinforce the

benefits of using potential vegetation over current

vegetation to produce more reliable results concerning

vegetation effects on BRs. Although considering the

vegetation that burned (i.e. that was present prior to

fires) would have been the best way to evaluate the

effect of vegetation on BRs, such dataset does not

exist. Potential vegetation seems to be the most

adequate substitute despite the fact it only is a proxy

and therefore could come with some biases.

Conclusion

We showed that RAC models are an efficient method

to account for spatial autocorrelation in fire studies,

and that fire size distribution can be used to assess the

extent of the autocorrelation. Given the improvements

to our models brought by this method, we insist that

accounting for spatial autocorrelation in fire studies is

highly necessary. Moreover, our results support those

of other studies (e.g., Cumming 2001; Cavard et al.

2015; Marchal et al. 2017; Rogeau and Armstrong

2017) that showed that vegetation and physical

environment are as important as climate to explain

the BR variability in boreal ecosystems. All these

factors should therefore be accounted for in fire regime

studies, particularly in sight of climate change. For

instance, studies attempting to predict future BRs

should not only consider future climate, but also

possible vegetation changes (Boulanger et al. 2017).

Current policies regarding forest management in

Canada encourage planners to take fire regime into

account in decision making. Our results further

support previous studies suggesting that forest man-

agement can be used to reduce fire risk (Terrier et al.

2013). Reforestation activities could favor, for exam-

ple, vegetation less likely to increase BRs in an area

already at high burning risk due to its physical

environment and climate.

Acknowledgements We are grateful to Mélanie Desrochers
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sources Naturelles du Québec (ed) Rapport du Comité
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tion in Southern Québec forests: implications for fire risk

management. PLoS ONE 12:1–18

McFadden D (1974) Conditional logit analysis of qualitative

choice behavior. In: Zarembka P (ed) Frontiers in Econo-

metrics. Academic Press, New York, pp 105–142

Mishra NB, Mainali KP, Crews KA (2016) Modelling spa-

tiotemporal variability in fires in semiarid savannas: a

satellite-based assessment around Africa’s largest pro-

tected area. Int J Wildl Fire 25:730–741

Murray MP, Bunting SC, Morgan P (1998) Fire history of an

isolated subalpine mountain range of the Intermountain

Region, United States. J Biogeogr 25:1071–1080

Nur Aidi MMS, Purwaningsih TSS (2013) Modeling spatial

ordinal logistic regression and the principal component to

predict poverty ptatus of districts in Java Island. Int J Stat

Appl 3:1–8

R Core Team (2016) R: a language and environment for sta-

tistical computing

Reed W, Larsen C, Johnson E, MacDonald G (1998) Estimation

of temporal variations in historical fire frequency from

time-since-fire map data. For Sci 44:465–475
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