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Abstract 

Although amphibians typically exhibit high site fidelity and low dispersal, they do 

undertake rare, long-distance movements. The factors influencing these events remain poorly 

understood, partly because amphibian spring movements tend to radiate from breeding sites and 

the animals are often difficult to locate at other times of the year. In this study, we investigate 

whether these movement patterns can be reproduced by a parsimonious model where foraging 

steps follow a heavy-tailed, Lévy alpha-stable distribution and individuals may either return to a 

previous refuge site or establish a new one. We consider three versions of the return behaviour: 

(1) a distance-independent probability of return to any previous refuge; (2) constant probability 

of return to the nearest refuge; or (3) a distance-dependent probability of return to each refuge.  

Using approximate Bayesian computation, we fit each version of the model to radiotracking data 

from a population of Fowler’s Toads, which inhabits a linear sand dune habitat on the north shore

of Lake Erie in Ontario, Canada. Only the model with distance-independent, random returns 

provides a good fit of the inter-refuge distance distribution and the number of refuges visited per 

toad. Our results suggest that while toads occasionally forage over long distances, the 

establishment of new refuges is not driven by the minimization of energy expenditure.

Keywords: amphibian; animal movement; approximate Bayesian computation; foraging; Lévy 

walk; radiotracking
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1. Introduction

The movements that individual animals undertake to go from place to place are 

fundamental to virtually every aspect of animal ecology and behaviour. How small movements 

of animals at daily or hourly scales result in such larger phenomena as home-ranges, dispersal 

and migrations at seasonal, annual or life-time scales, however, remains a difficult problem to 

understand. It has commonly been observed that a high-frequency of short-distance movements 

combined with rare, long-distance movement events results in a movement step size distribution 

that is strongly leptokurtic, with a sharper peak and longer tails than expected of a normal 

distribution, and possibly heavy-tailed, i.e. with the long-distance probability tail extending past 

that of an exponential distribution (e.g., Cecala et al., 2009; Gomez and Zamora, 1999; Morales, 

2002; Paradis et al., 1998; Skalski and Gilliam, 2000). Such heavy-tailed distributions in animal 

movement may be consistent with the Lévy flight foraging hypothesis (Viswanathan et al., 

1999), according to which optimal search patterns follow a power-law distribution of step sizes, 

with the frequency of steps proportional to some inverse power of their length. However, tests of 

this hypothesis have been the subject of numerous statistical challenges (Edwards, 2011). 

In actuality, animal movement is not scale-free and must be constrained by biological 

limits, so that the power-law distribution can only hold within a certain range of step sizes 

(Benhamou, 2007). Over the longer time scales that encompass multiple individual movements, 

such as may occur during foraging or dispersal behaviours, movement distances may also depend

on the animal’s memory and “cognitive map” of the environment, features that are poorly 

represented in movement models based on independent steps (Gautestad and Mysterud, 2013). 

More complex models that can accommodate both specific movement rules and memory effects 
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may be required, but their outcomes may not be expressible in terms of analytical likelihood 

functions.

Although the absence of a likelihood function previously precluded formal statistical 

analysis, computational and statistical advances in the last 20 years have made it possible to 

derive inferences from simulation-based models (Hartig et al., 2011). Approximate Bayesian 

computation (ABC) is a simulation-based inference method originally developed in the field of 

population genetics, wherein the large number of possible genetic histories and intermediate 

states leading to a given outcome make explicit likelihood calculations intractable (Beaumont et 

al., 2002). Since analogous challenges, i.e. path dependence and a large number of unobserved 

intermediate states, are also encountered in the study of animal movement, ABC provides a 

flexible mean to test foraging and dispersal behaviour models with empirical data (Marchand et 

al., 2015). 

Anuran amphibians, although they have generally been considered poor dispersers 

relative to larger, more vagile terrestrial vertebrates, can be valuable subjects for testing models 

of animal movement. Individuals may show a high level of site fidelity yet mark-recapture 

studies have also shown that anurans will undertake relatively rare long-distance movements of 

up to a few km in a matter of days, or as far as 35km over the course of a season (Smith and 

Green, 2005, 2006).  Whether site fidelity is advantageous should depend on the tradeoff 

between the benefit of a known location relative to the cost of returning to that location (Wells, 

2007). As many amphibian species make use of refuge sites as part of their daily activity cycles, 

this makes discretizing movement simpler as time periods between movement steps are more or 

less standardized and biologically meaningful. Nevertheless, locating individual anurans outside 
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of the breeding season can be difficult with many species as they tend to be mostly nocturnal 

foragers that hide during the daytime. Moreover, the small size of most species precludes the use 

of GPS satellite telemetry methods that can provide long-term, high-resolution movement time-

series for larger terrestrial animals (Wikelski et al., 2007). Both of these difficulties can be 

overcome, however, with the appropriate model species.

In this study, we develop a parsimonious model that describes both site fidelity and long-

distance movements, and apply this model to the movements of Fowler’s Toads (Anaxyrus 

fowleri) in a population inhabiting a linear sand dune habitat on the north shore of Lake Erie in 

Ontario, Canada. In this environment, adult Fowler’s Toads are readily locatable as they forage 

on the beaches at night (Greenberg and Green, 2013). Previous capture-mark-recapture data 

(Smith and Green 2005, 2006) have established and quantified the heavy-tailed movement 

distribution curve of these toads. The toads can also be fitted with small radio-transmitters 

(Boenke, 2011), which allow them to be tracked to their daytime hiding places in the sand dunes 

fronting the beaches. Based on this radiotracking data, we use ABC to estimate the parameters of

the movement model, including the scale and shape of a Lévy-stable distribution of movement 

steps and the probability of returning to a known refuge rather than establishing a new one.

To assess the importance of energy constraints on movement, we compare the relative fit 

of three versions of the return step: (1) toads return to a randomly selected previous refuge, 

independent of distance; (2) they return to the nearest refuge from their current location; or (3) 

the probability of return to any previous refuge is a decreasing function of the distance to that 

refuge. We hypothesize that either of the last two models would provide a better fit if minimizing

energy expenditure were the primary factor determining refuge choice. 
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2. Methods

2.1. Study site and population

We studied the movement ecology of Fowler’s Toads at Long Point in Ontario, Canada, 

along the beaches of Long Point Provincial Park and the Long Point National Wildlife Area 

Thoroughfare Point Unit (UTM zone 17 N: 550700 – 553000 Easting,  4713615 – 4714200 

Northing; NAD 83 Datum). Although the dune ecosystems along the north shore of Lake Erie are

highly dynamic (Gelinas and Quigley, 1973; Stenson, 1993), human disturbance at this site is 

minimal and movement by toads not constrained either by lack of suitable habitat or by lack of 

connectivity between habitat patches (Smith and Green, 2005, 2006). The toads generally take 

refuge in the sand dunes fronting the beach during the day and emerge to forage for invertebrate 

prey along the lakeshore at night. 

2.2. Stochastic movement model

To reflect both the high rate of apparent site fidelity and the heavy-tailed distribution of 

dispersal steps present in the previous mark-recapture data (Smith and Green, 2006), we used a 

variant of the multiscaled random walk (MRW) model proposed by Gautestad and Mysterud 

(2005). The MRW is based on a power-law step length distribution, but differs from a classic 

Lévy flight by allowing a certain frequency of return steps, wherein the individual revisits a 

location chosen at random from previous points in the walk. As each successive visit to a 

location increases its effective weight for future return steps, the MRW model allows home range

patterns to emerge without the need to specify an ad hoc homing process.
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In our model, we assumed that return steps only occurred at the end of the nighttime 

foraging path, when the toad is at a position Δxn away from the previous day’s refuge site. At this

point, the toad either takes refuge at its current position or returns to a known refuge site. 

2.2.1. Return steps

Our three model versions differ in how they describe the return behaviour:

 Model 1 (random return): The probability of return is constant (pret = p0), and the toad selects a 

refuge at random from all the previous days’ refuges. As in Gautestad and Mysterud’s model, 

multiple visits to a refuge increase its “weight” for future return steps.

Model 2 (nearest return): The probability of return is constant (pret = p0), but the toad always 

returns to the nearest refuge.

Model 3 (distance-based return probability): The probability of returning to a given site decays 

exponentially with the distance di to that refuge:

pret (i)= p0 e
−di
d0 , (1)

where d0 is a characteristic distance to be estimated along with p0. The probability of not 

returning to any previous site is the product of the complements of the pret(i) :

1−pret=∏ (1− pret (i)) , (2)

where R is the number of distinct previous refuges. 

In the case of a return event, the probability of each refuge being chosen is given by: 

P (return at i|return)=
pret ( i)

∑ pret ( i)
.  (3)

With an additional parameter, the third model allowed us to consider intermediate cases 

of distance-dependence. As the characteristic distance d0 decreases, it becomes increasingly 
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likely that the toad will choose the nearest refuge; yet the outcome differs from that of model 2, 

since the probability of return is not constant but decreases with distance. In the limit where d0 is 

very large, pret(i) = p0 and all previous sites have the same probability of return. Contrary to model

1, however, the probability of returning to any site is not constant but increases with R (as a 

consequence of Eq. 2). Moreover, since model 3 considers distinct refuge sites, multiple visits to 

the same refuge do not increase its probability weight.

2.2.2. Overnight displacement 

The net overnight displacement, Δxn, in the model followed a symmetric, zero-centered 

stable (a.k.a. Lévy alpha-stable) distribution, S(α, ), with stability parameter α (0 < α ≤ 2) and 

scale parameter  > 0. With α = 2, the stable distribution reduces to a normal law, whereas 

decreasing values of α produced increasingly leptokurtic (i.e. heavy-tailed) distributions, 

including the Cauchy distribution (α = 1) as a special case (Uchaikin and Zolotarev, 1999). For α 

< 2, the tails of the probability density followed a power law decay with exponent −(1 + α).

Although there is no closed form of the stable probability density for arbitrary α, random 

draws from S(α, ) can be generated by the CMS algorithm (Chambers et al. 1976):

S=γ
sin αU

(cosU )
1
α
[ cos ((1−α )U )

W ]
1−α
α

, (4)

where U is a uniformly distributed angle in (−, ) and W has a standard exponential 

distribution.

A key property of the stable distribution is that the sum of stable random variables is also 

stable; in particular, the sum of N independent variables distributed as S(α, ) is stable with the 
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same stability parameter α and a scale N = N1/α . Furthermore, the generalized central limit 

theorem of Gnedenko and Kolmogorov (1954) shows that the sum of independent variables 

following a common distribution with asymptotic power-law tail converges to a stable 

distribution.

Given these properties, our assumption that Δxn has a stable distribution was robust to 

differences in the small-scale foraging behaviour. For example, while foraging steps are probably

correlated on a short-term scale, as long as there is some intermediate time scale where 

successive displacements can be modelled as independent and following a heavy-tailed (power-

law) distribution, the stable distribution will be a reasonable approximation of net displacement.

2.3. Model fitting with approximate Bayesian computation

We fitted our model by approximate Bayesian computation (ABC) using the ABC-

rejection algorithm, as implemented in the ‘abc’ package (Csilléry et al., 2012) in R (R Core 

Team, 2016). Consider a simulation model that takes an input parameter vector  and outputs a 

vector of summary statistics (S) calculated from the simulation outcome. Given a set of  

vectors, drawn from the parameters’ prior distributions, and a corresponding set of simulation 

outputs S(), ABC-rejection simply selects a subset of  for which the output statistics are close 

to those of the observed data D, i.e. where d[S(), S(D)] <  for a chosen distance function d and 

tolerance level . The selected subset approximates the joint posterior distribution of . The 

approximation accuracy can be further improved by fitting a local-linear regression model of  

vs. S() and using that empirical model to correct each  towards the value it would have at S(D) 

(Beaumont et al., 2002).
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The ABC-rejection algorithm can be naturally extended to the problem of model selection

by treating the choice of model as a discrete parameter (Toni et al., 2009). If the number of 

simulations run under each model is proportional to its prior probability, then the representation 

of a model among the simulations retained following the rejection step is an estimate of its 

posterior probability. As in the parameter estimation case, the approximation can be improved by

fitting a regression of the discrete model probabilities, i.e. a multinomial logistic regression, as a 

function of the summary statistics in the vicinity of the observed statistics (Beaumont, 2008).

The main drawback of ABC-rejection is the high number of simulations necessary to get 

a sufficient number of results in the vicinity of the data. Alternative ABC algorithms use Markov 

chain Monte Carlo or sequential Monte Carlo (a.k.a. particle filter) methods to gradually 

concentrate the sampling effort in the areas of high-agreement between simulated and observed 

statistics (Marjoram et al., 2003; Sisson et al., 2007).  Yet, ABC-rejection has the advantage of 

decoupling the simulation and estimation steps, which allows the entire set of simulations to be 

run ahead of time and, possibly, in parallel on a high-performance computing cluster. Multiple 

estimations can then be performed from this set of simulation outputs, which is especially helpful

when performing cross-validation.

2.3.1. Prior distributions and summary statistics

Our results were based on 10,000 simulations of each version of the stochastic model. For

each simulation, we drew parameters from the following uniform prior distributions: α ~ U(1, 2),

 ~ U(10m, 100m), p0 ~ U(0, 1) and (for model 3 only) d0 ~ U(20m, 2000m). To match the size 

and structure of the observed dataset, we simulated the movement of 66 toads over 63 days, then 
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subset the results to keep only the (Toad, Day) observation points present in the data. For each of

four different time lags (1, 2, 4 and 8 days), we calculated three statistics over all pairs of points 

with the same toad and the corresponding time lag: (1) the frequency of returns (defined as |Δx|< 

10m), as well as (2) the mean and (3) standard deviation of log (Δx)2 for non-returns, over all 

pairs of points with the same toad and corresponding time lag. We chose these 12 summary 

statistics as well as the 10m distance threshold to capture the key characteristics of the empirical 

distribution of relocation distances at multiple time scales (see section 3.1 and Fig. 1). We used 

the Euclidean distance (sum of squared differences) to compare this vector of summary statistics 

to the corresponding statistics of the radiotracking data. 

2.3.2. Cross-validation

We used the ‘abc’ package’s cross-validation feature to verify the identifiability of our 

model, i.e. determining whether the size of the dataset and the chosen summary statistics are 

sufficient to estimate the parameters of interest for each model version, and distinguish the 

outcome of the alternate model versions. We also used cross-validation to choose an optimal 

tolerance rate, which is the fraction of best-fitting simulations to keep for estimating the posterior

distribution. 

For the parameter estimation problem, cross-validation was performed separately for 

each model version. Taking one of the simulation results as the “data”, we applied ABC to 

estimate the true parameters of that simulation based on the remainder of the simulation results. 

We repeated this process for 100 sampled simulation results and four different tolerance rates 

(0.5%, 1%, 5% and 10%). The cross-validation accuracy was quantified using the relative 
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estimation error, defined as the mean square difference between estimated and true parameter 

values divided by the variance of the true values over the 100 sampled simulations.

For the model selection problem, cross-validation consisted in taking one simulation 

output as the data and applying ABC to the remaining 29,999 simulation results (combined from 

all three models) to estimate the posterior probabilities of each model version. We repeated this 

process for 100 sampled simulations per model version, using the same tolerance rates as above. 

Model selection accuracy is quantified by the misclassification rate: the fraction of cases where 

the model version with the highest posterior probability differed from the true model.

2.3.3. Parameter estimates and model selection

We estimated the posterior distribution of each parameter via ABC-rejection, using the 

tolerance rate selected by cross-validation and applying the local-linear regression correction of 

Beaumont et al. (2002). For the regression correction, we applied a logit transformation to the 

stability parameter (α) to keep the inferred values within the (1, 2) bounds, and a log 

transformation to d0 to constrain its range to positive values. Parameters were estimated 

separately for the three versions of the model. 

To compare the fit of the different model versions, we first estimated the posterior 

probabilities of the three models by ABC-rejection, followed by multinomial logistic regression 

of model probabilities in the vicinity of the observed summary statistics (Beaumont 2008). We 

then verified that simulation outputs from the fitted version of each model (with parameters 

drawn from their posterior distribution) could reproduce the observed summary statistics. 
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As an additional posterior predictive check, we compared the number of distinct refuge 

sites in the simulated and observed datasets. In practice, we defined this quantity as the number 

of clusters obtained at a distance threshold of 10m, when performing hierarchical clustering of 

the point locations using the complete-linkage method (‘hclust’ function in R). The complete-

linkage criterion ensures that each pair of points in the cluster is separated by no more than the 

specified distance threshold.

2.4. Radiotracking data

We collected radiotracking data on Fowler’s Toads at our study site during mid-June to 

late August of 2009 and 2010 (Boenke, 2011). Toads were captured opportunistically while they 

were foraging on the beach, and outfitted with either Holohil BD-2 (in 2009) or BD-2N (in 2010)

radiotransmitters, which were attached to the toad via a filament covered in plastic tubing 

(following Bartelt and Peterson, 2000). The total weight of the transmitter and harness (ca. 2 g) 

constituted ~5% of the typical adult toad weight, and in no case exceeded 10% of the 

individual’s weight, as recommended by Rowley and Alford (2007). Toads were tracked with an 

HR2600 Osprey Receiver (H.A.B.I.T. Research, Victoria, BC, Canada) and Yagi 3-element 

antenna. Upon finding each toad, its position was recorded with a Magellan Mobile Mapper 6 

GPS unit (Magellan Navigation, Inc., Santa Clara, CA, USA). The location of each tracked toad 

was recorded at least once per night (active foraging) and once per day (resting in refuge) but we 

only used the daytime locations in the present study. The number of consecutive days in a 

tracking bout varied by toad, as some individuals shed their transmitter, or else it had to be 

removed to alleviate skin irritation. Since individuals were identified by toe clipping or 
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distinctive marks from digital photographs, toads that lost their transmitter could sometimes be 

retrieved, allowing multiple tracking bouts per toad (Boenke, 2011). All procedures with animals

were conducted under McGill University Animal Use Protocol No. 4569. 

The position of toads’ daytime refuges relative to the shore is governed by tradeoffs between 

wave avoidance, predator avoidance, elevation and proximity to water (Boenke, 2011). In 

contrast, movement along the shoreline is unconstrained, meaning that dispersal occurs mostly 

along a single dimension. For this reason, we projected all refuge locations on a single axis, 

obtained by linear regression of the two-dimensional coordinates, and only modeled this one-

dimensional component of toad movement.

2.5. Source code and data access

The dataset used for this study and the R code for all simulation and analyses can be 

downloaded from GitHub: http://github.com/pmarchand1/fowlers-toad-move/.

3. Results

3.1. Empirical distribution of relocation distances

The radio-tracking dataset included 66 toads, with between 2 and 30 daytime points 

recorded, for a mean of 12 locations per toad per season. 

When shown on a logarithmic scale (Fig. 1), the distribution of distances between 

daytime refuges of a toad was characterized by a symmetric peak combined with an inflated 

number of low-distance events. Given the GPS margin of error of 3 – 5m per point, distances of 

less than 10m could not be measured reliably (Boenke, 2011). Therefore, the excess probability 
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in that part of the distribution would be consistent with toads returning to previous sites. In 

contrast with the expectations of a random walk model, where the whole distribution would shift 

to larger distances as the time step increases, the peak of relocation distances varied little 

between time lags of 1 to 8 days. Instead, longer time lags increased the total probability on the 

high end of the distribution as the fraction of short-distance (or return) events decreased.

 

3.2. Approximate Bayesian computation

3.2.1 Cross-validation

With the exception of d0 in model 3 (see below), the cross-validation results (Table S1 in 

the supplementary data) showed a good agreement between the true values of the parameters and

their posterior median estimated via ABC. Overall, the relative estimation error was minimized 

with a 5% tolerance level; the supplementary Fig. S1 shows how the estimated and true values 

compare across all parameters at that tolerance level. For all three model versions, the relative 

error was higher for α (10% to 14%) than for  (around 7%) or p0 (1% to 5%). Since α 

determines the power-law tail of the stable distribution, its value is sensitive to rare, long-

distance events, which could explain the higher estimation variance. The characteristic distance 

d0 had the highest estimation error, at over 60% of the prior range. Therefore, this parameter 

might only be identifiable with a larger dataset. 

The ABC model selection algorithm could discriminate well between Model 2 and either 

other version. However, 35% of the Model 1 runs were misidentified as Model 3 and 23% of 

Model 3 runs were misidentified as Model 1 (Table 1). This is consistent with the behaviour of 

Model 3 approaching random returns in the limit of high d0; while there are still differences 
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between the two models in that limit, they might not be detectable with the chosen summary 

statistics.

3.2.2. Parameter estimation

The posterior median and 95% Bayesian credible interval for all parameter estimates are 

shown in Table 2. The estimates of the stable distribution parameters were similar for Model 1 (α

= 1.7,  = 34 m) and Model 3 (α = 1.65,  = 32 m), whereas both values were higher for Model 2 

(α = 1.83,  = 46 m). 

The estimated values of α suggest a power-law tail with an exponent between −2.6 and 

−2.8. The estimates of α could be biased upwards, however, since long-distance dispersal events 

are more likely to take toads outside of the tracking range. That is, the power-law tail could 

extend further than inferred from the data.

As expected based on the poor cross-validation results, the estimate of d0 in model 3 has a

very wide credible interval (220 to 1697 m). In comparison, the largest distance between any two

observations of the same toad in the dataset was 1198 m, and only 4 out of 66 toads visited 

locations more than 350 m apart. Most of the posterior distribution thus lies in the high d0 range 

where refuge choice is not primarily constrained by distance. Note that the estimates of p0 in 

Model 3 (0.43) and Model 1 (0.60) are not directly comparable even in the distance-independent 

case, since the actual probability of return in Model 3 increases with the number of visited 

refuges (see section 2.2).

We verified that our posterior parameter estimates did not significantly change when 

performing additional simulations beyond the current 10,000 per model version (Fig. S2 in the 

supplementary data).
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3.2.3. Model selection

The ABC model selection process resulted in posterior probabilities of 15% for Model 1 

(random return),  0% for Model 2 (nearest return) and 85% for Model 3 (distance-dependent 

return probability). Given the high probability of misclassification between Model 1 and 3 (Table

1) and the difference in complexity between the two models (3 versus 4 adjustable parameters), 

this result alone does not provide strong evidence of a better fit for Model 3.

The comparison of observed and simulated summary statistics from the three models, 

with simulation parameters drawn from their respective posterior distribution, shows that Model 

2 is too dispersive. That is, the mean log distance increases – and the probability of return 

decreases – too rapidly with greater time lags. In contrast, the range of simulated results from 

Models 1 and 3 is consistent with the observed statistics at all time lags (Fig. 2).

Finally, we computed the number of distinct refuge sites, defined in section 2.3 as 

clusters of points with diameter less than 10m, for each toad in both the empirical data and the 

output of each simulation model (with parameters drawn from their posterior distribution). This 

quantity is strongly dependent on the number of observations by individual; our results show that

this relationship can be well approximated by a linear regression on a log-log plot (Fig. 3). Note 

that the simulation results show less variance as they represent the average of 500 simulated 

paths by toad. This number of refuges statistic, which wasn’t directly used in fitting the 

parameters of each model, shows a better fit for Model 1: the 95% confidence intervals of the 

regression lines for observed and simulated points overlap. Model 3, in contrast, results in too 

few distinct refuges for toads with many observations. This may be due to the functional form of 
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the probability of return in this model (Eq. 2), which increases with the number of distinct 

refuges already visited.

4. Discussion

In the analysis above, we showed that a parsimonious model of foraging behaviour (our 

Model 1) successfully reproduced the main patterns of refuge site fidelity and relocation among a

population of Fowler’s Toads. The model assumed that the net displacements of toads during 

nighttime foraging follows a heavy-tailed, Lévy-stable distribution, and that toads may either 

take refuge at the end of their foraging path, or return to a random refuge among those previously

visited. 

The assumption that toads returning to a previous refuge choose one at random may seem

unrealistic. Yet it fit the data better than two alternative models we tested, where the probability 

of return and/or the choice of refuge were distance-dependent. It might be that movement cost is 

only one of many factors determining refuge selection, along with slope, elevation and 

vegetation cover of potential refuge sites (Boenke, 2011). Without knowing the spatial structure 

of these microhabitat variables along the beach length, it is difficult to determine how they could 

affect the movement statistics. Even if additional environmental data were available, the size of 

the tracking dataset (individuals and locations per individual) would also set a limit to the 

complexity of verifiable models: the very diffuse posterior distribution for the characteristic 

distance d0 in model 3 provides a good example of this problem.

Even for this simple model, this study illustrates the power and flexibility of approximate

Bayesian computation for the calibration and testing of mechanistic movement models from field
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data. In particular, ABC doesn’t require the stochastic process of interest to have a known 

analytical likelihood, and it can easily accommodate gaps in observations (by subsetting the 

simulated data) as well as sources of error and censoring. In this study, we took into account the 

unreliability of GPS measurements at short distances, and if we had an independent measure of 

long-distance censoring, that effect could have been included as well.

 Our results indicate that long-term movement patterns, such as dispersal, may be 

profoundly affected by small-scale micro-habitat choices and day-to-day movement. Sand dunes 

and beaches are highly dynamic environments that are strongly affected by both weather 

conditions and waves. The large temporal variation in habitat quality, combined with a relatively 

lower spatial variability in the direction parallel to the shore, matches conditions that have been 

found to favor heavy-tailed movement patterns (Lowe, 2009). Temporal habitat variability can 

also contribute to the decrease in the probability of return with larger time steps, as preferable 

refuge locations shift during the season.

This stochastic movement model, calibrated through individual-level tracking data, 

provides a measure of home range size that is robust to changes in the scale or number of 

observations. We note that while the number of refuges sites utilized by a toad increases with the 

number of observation days, the median relocation distance (the peak on the log scale of Fig. 1) 

varies little with time. This suggests that most toads’ movement remains within that spatial 

range. Conversely, the probability of rare, long-distance dispersal events predicted by the model 

can serve to estimate the level of connectivity between toad populations separated by a given 

distance along the shore.
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Tables

Model 1 predicted Model 2 predicted Model 3 predicted

Model 1 true 62.2% 3.2% 34.5%

Model 2 true 8.4% 88.4% 3.2%

Model 3 true 22.6% 3.0% 74.4%

Table 1: Confusion matrix for model selection, based on cross-validation results. For each model 

version, we selected a random subset of 100 (out of 10,000) simulations, considered each 

one in turn as the “data”, and applied the ABC model selection procedure (with a 5% 

tolerance level) to determine which of the three model versions had the highest 

probability of being the source of the simulated dataset.

Parameter a g (m) p0 d0 (m) 

Uniform prior range (1, 2) (10, 100) (0, 1) (20, 2000)

Model 1 Median 1.70 34 0.60

95% BCI (1.41, 1.94) (26, 42) (0.53, 0.65)

CV error 10.3% 6.6% 1.0%

Model 2 Median 1.83 46 0.65

95% BCI (1.35, 1.99) (34, 60) (0.54, 0.72)

CV error 13.6% 7.6% 1.3%

Model 3 Median 1.65 32 0.43 758

95% BCI (1.37, 1.91) (26, 40) (0.31, 0.59) (220, 1697)

CV error 10.0% 7.0% 4.8% 63.1%

Table 2: Approximate Bayesian computation estimates of the simulation model parameters. 

Posterior parameter distributions are obtained through selection of the 500 (out of 

10,000) best-fitting parameter sets for each model version, followed by a local-linear 
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regression adjustment. The table shows the median and 95% Bayesian credible interval 

(BCI) of the parameter’s posterior distribution, along with the relative error estimated 

from cross-validation (CV error).
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Figure captions

Figure 1: Kernel density estimates for the x-axis (parallel to shore) distance – shown here on a 

log scale – between daytime refuges for time lags of 1, 2, 4 and 8 days. We calculated distances 

between all pairs of fixes separated by the given time lag for each tracked toad. Distances 

smaller than 10m (indicated by the finely dotted line) are within the GPS margin of error and 

thus considered return events for the purpose of our model.

Figure 2: Kernel density estimates of the summary statistics from 500 simulations of each 

movement model, with parameters drawn from the posterior distributions obtained by 

approximate Bayesian computation. The red lines indicate the summary statistic’s value in the 

observed data.

Figure 3: Number of refuge sites (point clusters of diameter < 10m) as a function of the number 

of radiotracking observations by toad for the three simulation model versions, compared with the

observed data. In each case, we estimate a linear trend on a log-log scale and show the 

corresponding 95% confidence interval (shaded area). The simulated number of refuges shown 

for each model version is the mean of 500 model runs with parameters drawn from their 

posterior distribution.
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A stochastic movement model reproduces patterns of site fidelity and long-distance dispersal in a 
population of Fowler’s Toads (Anaxyrus fowleri)

Supplementary table

Table S1: Relative estimation and model selection errors calculated by cross-validation, as a function of
the tolerance level (% of accepted simulations). The lowest value for each estimate is highlighted. For 
parameter estimation, the relative error is the mean square difference between the true parameter value 
and the estimated value, divided by the variance of the true parameter value across the 100 cross-
validation replicates. The model selection error for model i is the fraction of cross-validation replicates 
of model i where the selected model was not i.

Tolerance Model 1 estimation Model 2 estimation Model 3 estimation Model selection

a g a g a g Model 1 Model 2 Model 3
0.5% 16% 7.1% 1.3% 23% 6.9% 1.4% 17% 12.5% 6.4% 94% 37% 10% 31%
1% 13% 6.2% 1.0% 14% 7.4% 1.1% 12% 8.4% 4.7% 76% 36% 11% 28%
5% 10% 6.6% 1.0% 14% 7.6% 1.3% 10% 7.0% 4.8% 63% 38% 12% 26%
10% 11% 5.6% 1.2% 13% 7.0% 1.6% 10% 7.1% 5.0% 63% 39% 12% 27%

p
0

p
0

p
0

d
0



A stochastic movement model reproduces patterns of site fidelity and long-distance dispersal in a 
population of Fowler’s Toads (Anaxyrus fowleri)

Supplementary figures

Fig. S1. Cross-validation results for the approximate Bayesian computation (ABC) estimation 
procedure, for (a) Model 1 (random return), (b) Model 2 (nearest return) and (c) Model 3 (distance-
based return probability). For each model version, we selected a random sample of 100 (out of 10,000) 
simulation results, considered each one in turn as the “data” and ran the ABC-rejection algorithm (with 
5% tolerance level) on the remainder of the simulation results to infer the true parameter values of the 
left out simulation. The diagonal line on each plot indicates equality between true and estimated values.
The point estimates shown are the median of the posterior distribution, while error bars represent the 
95% credible interval.

Fig. S2. Variation in the posterior parameter distribution quantiles (median and bounds of the 95% 
Bayesian credible interval) as a function of the number of simulations (Nsim), for (a) Model 1 (random 
return), (b) Model 2 (nearest return) and (c) Model 3 (distance-based return probability). The error bars 
show the 95% central range for each estimate and were obtained from 100 bootstrap replicates at each 
value of Nsim.
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