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RESUME

Ce projet fut réalisé en collaboration avec Patriot Battery Metals Inc. et visait & développer un cadre
géométallurgique pour évaluer le comportement du minerai de spodumeéne d’ongine pegmatitique
lors de la séparation gravimétrique. Une attention particuliére a été portée a la description des
carottes de forage et a la subjectivité inhérente aux observations géologiques, pusque les données
produites par les géologues sont utilisées pour évaluer les performances des tests de séparation par
liquide lourd (heavy liquid separation ou HLS). Etant donné que la HLS est étroitement liée  la
séparation par milien dense (dense media separation ou DMS), et que la taille des grains de
spoduméne montre une forte corrélation avec la récupération en HLS, on s’attend a ce que les

performances du DMS puissent également étre prédites a partir de 1’analyse des carottes.

Comme I’entreprise capture déja des images RGB haute résolution des carottes, cette étude vise en
premier lieu a rédwre la subjectivité des observations des géologues en appliquant des techmques
de tratement d’image a ces wvisuels existants, limitant ainsi le besomn de fravaill manuel
supplémentaire. Les images tfraitées ont été analysées a 1'aide d’algonthmes d’apprentissage
machine pour automatiser la détection et I’estimation de la taille des minéraux. Etant donné que la
taille des grans a une nfluence directe sur la récupération au HLS, et par extension sur la
performance du DMS, cette intégration de la description des carottes, de la géométallurgie, du
traitement d’image et de I’ apprentissage automatisé devrait améliorer la précision et ’efficacité de
la caracténisation du munerai de spodumeéne. En fin de compte, le projet vise a optimuser les
opérations de trartement du minerai.

Cette approche intégrée a condwt a plusieurs résultats notables. Le modéle d’apprentissage
automatisé a pernus de détecter et de quantifier la taille des grains de spodumeéne a partir d’1mages
RGB des caroftes avec une forte corrélation par rapport aux observations des géologues et aux
résultats des tests HLS. Plus précisément, le diamétre équivalent moyen (d.;) a montré une
corrélation plus forte (R? = 79,72 %) avec la récupération de lithmum que les estimations visuelles
des géologues (R* = 71,78 %). De plus, I’analyse automatisée a permus de générer des courbes
complétes de distribution granulométrique, ce qui était auparavant trés fastidieux avec les méthodes
traditionnelles. Ces distributions suivent bien les modeles classiques utilisés en fragmentation tels
que ceux de Gates-Gaudm-Schuhmann et Rosin-Rammler, renforcant ainsi la crédibilité de la
méthode automatisée. De plus, la méthode basée sur I’analyse d’image a fourm des estimations
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plus fiables du pourcentage de spodumeéne par rapport aux observations de géologues, avec un
coefficient de détermination presque deux fois plus élevé que celm obtenu par les estimations
humaines. Ces résultats démontrent que 1’ apprentissage automatisé appliqué aux images de carottes
peut améliorer la cohérence, 1’objectivité et la précision quantitative des évaluations géologiques,
constituant amnsi un outil précieux pour affiner les prédictions géométallurgiques du comportement

du spodumeéne en traitement du minerai.



ABSTRACT

This project was conducted in collaboration with Patriot Battery Metals Inc. and focused on
developing a geometallurgical framework for evaluating the behavior of spodumene pegmatite ore
m gravity separation. A key emphasis was placed on drill core logging and the subjectivity inherent
m geological observations, as the data produced by geologists was used to evaluate heavy liqud
separation (HLS) test performance. Since HLS 1s closely related to dense medimm separation
(DMS), and spodumene grain size has shown a strong correlation with HLS recovery, 1t 1s expected
that DMS performance could also be predicted from drill core analysis.

As the company already captures high-resolution RGB-1images of dnill cores, this study aims to
reduce subjectivity in logging by applying image processing techmiques to these existing visuals,
elinunating the need for additional manual work. The processed images are analyzed using machine
learning algorithms to automate the detection and size estimation of mineral grains. Since grain
size has a direct influence on HLS recovery, and by extension, DMS performance, this integration
of core logging, geometallurgy, image analysis, and machine learming 1s expected to enhance the
accuracy and efficiency of spodumene ore characterization. Ultimately, the project seeks to

optinuze mineral processing operations.

This integrated approach led to several notable findings. The machine learming model was able to
detect and quantify spodumene grain sizes from RGB dnll core images with strong correlation to
HLS test results. Specifically, the mean equivalent area diameter of spodumene grains showed a
stronger correlation (R? = 79.72%) with lithium recovery than geologists” visual estimates (R? =
71.78%). Moreover, machine-based analysis enabled the generation of full grain size distribution
curves — a tedious task in traditional core logging. These distributions were well-fitted with
classical crushing models such as Gates-Gaudin-Schuhmann and Rosin-Rammler, increasmng the
credibility of the automated method. Additionally, the image-based method provided more reliable
spodumene percentage estimations compared to manual loggmg, with a coefficient of
determination nearly double that of human estimates. The results collectively demonstrate that
machine learning, when applied to drill core images, can enhance the consistency, objectivity, and
quantitative resolution of geological assessments, providing a valuable tool for improving
geometallurgical predictions of spodumene processing behavior.
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CHAPTER 1 INTRODUCTION

1.1 PROBLEM STATEMENT

Miming and exploration companies operating at the exploration stage benefit greatly from fast and
reliable methods for nineralogical quantification. Traditionally, exploration work involves drilling
and the subsequent visual assessment of drill cores by geologists. This assessment can be supported
by so-called light analytical techmques, such as image analysis or other scanming methods, to
determine which minerals are present based on characteristics like color or texture. However, visual
estimates of parameters such as grain size or the number of mineral grains, can be subjective and
prone to vanation between geologists. For example, one common way to do core logging 1s for
geologists to estimate the percentage of certain ninerals and their grain size. However, this process
mtroduces two potential sources of bias. First, the estimated proportion of munerals will vary
depending on the observer. Second, since not every single geologist measurement can be made
using a ruler, the size of the mineral grains can itself be subjectively determined: what one geologist
observes as 6 mm, another mught estimate to be 7 mm or even 10 mm These combined
mconsistencies can sigmficantly affect the quality of the logging data and, consequently, the
decisions made 1n subsequent stages of the project. While advanced nuneralogical methods (e.g.,
XRD or SEM analyses) can provide more accurate information, these are often time-consuming
and costly, especially duning early exploration when many samples are evaluated.

Industrial-scale separation of spodumene 1s typically done using dense media separation (DMS),
but its application at test scale 1s impractical due to the large sample size required. Instead, heavy
liquud separation (HLS) tests offer a more feasible alternative for laboratory settings, requiring
smaller sample volumes. However, little remains known about how spodumene grain size affects
liberation and, in turmm, HL.S and DMS performance. Hence, to support geometallurgical model
developmenent, there 1s a need to find links between mineralogical data such as spodumene grain
size, liberation and specific gravity-based separation performance.



1.2 RESEARCH OBJECTIVES

The primary objective of this research 1s to improve the understanding of how mineralogical and
geological charactenistics mfluence spodumene gravity separation, enabling geometallurgical
predictions. The study focuses on dnll core samples from Patriot Battery Metals® CV5 Lithium
pegmatite deposit. The aim 1s to establish a foundation for predicting the outcomes of metallurgical
tests using geological data and/or cost-effective laboratory tests combined with modern machine
learning (ML) tools.

To achieve this main objective, three sub-objectives are 1dentified as follows:

1. Establish the hink between drill core data and HLS test results.

2. Identify and validate simple tests for prediction of the outcome of HLS tests.

3. Investigate the potential of machine learning based image analysis in improving the
consistency and accuracy of visual core logging.

The approach of this research 1s also summanzed mn Figure 1.1
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Figure 1.1 Approach of the thesis project.




1.3 HYPOTHESIS AND RESEARCH QUESTION
The hypotheses underpinming this work are as follows:

e Drill core features, such as grain size, color, and texture, are correlated with HLS results.

e A machine learming model based on RGB drill core images can reliably detect, quantify
and characterize spodumene grains size.

e  Gram size and liberation largely drive specific gravity-based separation performance.

The main research question addressed in this thesis 1s:

Can better dnll core data acquisition methods be used to better predict the gravimetnic separation
of lithram?

1.4 THESIS STRUCTURE

Thas chapter (Chapter 1) presents an overview of the problem statement of this thesis and explains
the objectives and hypotheses, including the formal research question. Chapter 2 provides a
literature review on the topics of geometallurgy of hithum ores and spodumene beneficiation
methods, focusmg on gravimetric separation. An overview of basic machine learming models and
mmage processimng techniques 1s also presented. Chapter 3 presents the matenals and methods used
to conduct laboratory test work contamning crushing and HLS testing as well as the creation of the
ML algorithm for mineral gramn identification and grain size estimation. Chapter 4 then covers the
obtained results from the laboratory test work, and the achievements of the ML models in terms of
nmuneral grain charactenization and geometallurgical implications. Finally, chapter 5 summarizes
and concludes the results of this research work and suggests some recommendations for the future.



CHAPTER 2 LITERATURE REVIEW

In modem times, humankind has conquered new fields of study and technology to address global
challenges and crises. The greatest threats to Earth are said to be climate change, biodiversity loss,
plastic pollution, and deforestation (15 Biggest Environmental Problems of 2024). Groundbreaking
technologies, such as Li-1on batteries and various applications of artificial intelligence, have made
significant steps in recent years to tackle these 1ssues. However, a common factor for all these
technologies and challenges 1s the need for raw maternals, such as lithtum, which act as a bndge
between brilliant ideas and practical implementation, enabling mnovative progress towards the
future.

Elemental lithium (Li1) belongs to the alkali metals group (Jeppson et al, 1978), which 1s located
on the left side of the periodic table. Lithium 1s known to be the lightest metal, with only half the
density of water (Hodgman et al , 2014). The lithium atom consists of 3 protons, 3 electrons and 4
neufrons resultmg in an atomic mass of 6.9410 u (Jeppson et al., 1978). Due to 1ts atomic structure
(only 1 electron on “s” orbital), lithmum tends to easily lose the electron and thus it easily reacts
with anions forming both organic and morganic compounds (Jeppson et al., 1978).

In 1ts pure form, hithium 1s a silver wiute and soft metal (Jeppson et al , 1978; Tadesse et al., 2019).
At room temperature, lithium appears as a solid. It has a melting point of 180,54 °C and a boiling
point of 1347 °C (Hodgman et al , 2014). Lithium 15 also flammable and when exposed to sufficient
heat, burning with a red flame (Koch & Jenmings-Whate, 2009).

Lithimum has long been used for various applications. Traditional usages of lithium have been the
glass and ceramic mndustry as well as grease/casting covering over 30% of hithium usage m 2011
(Bae & Kim, 2021; Meshram et al, 2014). The first commercial lithium-10on battery was bualt in
1991, and the number of battery applications have increased rapidly ever since (Bae & Kim, 2021).
The consumption of lithmum-1on batteries has more than doubled in the last 8 years due to the recent
growth 1n demand for lithium applications, such as EV and ESS as well as other electronics (Bae
& Kaim, 2021). Figure 2.1 represents the lithium usage i different sectors in 2023.
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Figure 2.1 Estimated global market for lithium in various sectors for the 2023. Data 1s taken from (Natural Resources
Canada, 2025)

As discussed above, L1 easily forms inorganic compounds and therefore pure elemental Li 1s not

found m nature. Therefore, common lithium bearing munerals such as spodumene, petalite,

amblygomite and lepidolite are the main sources of Li emanating from hard rock deposits

(Bulatovic, 2015; Tadesse et al , 2019). Other Li-bearing minerals such as zinnwaldite, eucryptite

and triphylite are also stated in the literature (Colton, 1957; Grosjean et al_, 2012).

The coarse-gramed hard rock deposits commonly exploited for lithmum are also known as pegmatite
deposits and constitute the major source of hithium (USGS, 2025). Lithium can also be found in
brines and sedimentary rock deposits (Marcmov et al | 2023). The distribution between different
resources 15 presented Figure 2 2a. Lithium brines, commonly found in salt lakes, are a major
source of lithmum and have historically accounted for 59—62% of global production (Grosjean et
al, 2012; Tadesse et al., 2019). However, m recent years, hard rock sources have become
mcreasingly important in terms of production, despite brines still representing the largest global
Lithium resource (Marcinov et al | 2023).
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Figure 2.2 (a) Distribution of different deposit types (Gutiérrez ef al.. 2022), (b) Distribution of lithium wealth
{Natural Resources Canada, 2025), (c) Distribution of production of lithimm (Natural Resources Canada, 2025).
As presented m Swain (2017), lithum extraction from hard rock deposit munerals (such as
spodumene) can be done in three different ways depending on the ore type and the nuneral in
question. Followmg the physical separation of lithium-bearing minerals, the produced concentrate
15 often treated by using a combination of chenucal and pyrometallurgical processes (May et al.,
1980; Swain, 2017). The most common combinations are roasting/calcination or a chlornation
process resulting in the overall Li-recovery of > 85% (Swain, 2017). The second way of extracting
lithrum 1s to use pressure leaching. As reported by Zhou et al. (2024) using nitric acid pressure
leaching 1n 1L titamum autoclave, the extraction efficiency and reaction kinetics were improved,
resulting up to 95% Li-recovery. Unlike extractive metallurgy and pressure leaching, bioleaching,
as the third approach for L1 extraction, 1s an attractive option due to the cost, environmental, and
energy efficiency of the process. The downside of this method, on the other hand, 1s the extremely
slow reaction kinetics (Swain, 2017). All three of these methods depend on the production of a
high-grade spodumene concentrate (typically >55-6% L12O, corresponding to 68-75%

spodumene).
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Lithium resources and production are unevenly distributed. According to Stnngfellow & Dobson
(2021), the primary commercial hard-rock sources are in Australia and China, while major brine
production occurs in Argentina, Chile and China; these countries account for most global
production. Estimations of hithium distrnbution between different resources vary but roughly 65%
of lithum 1s sources in brines, 25% in hard rock deposits and about 8% in sedimentary rocks
(Meshram et al , 2014). While brines hold the largest hithium reserves, lithum production i1s
donunated by hard rock miming, particularly in Australia, which has extensive spodumene deposits
(Swain, 2016). China follows as the second-largest producer due to its combination of hard rock
and brine-based lithmum extraction. Current production is driven by hard rock miming due to
economuc and technological factors (Swain, 2016). Figure 2 2b and 2 2¢ summarnizes the unequal
geological distribution of lithum resources as well as the distribution of the litham production
worldwide.

The demand for lithtum has seen large spikes in recent years. Thus 1s reflected i the fact that the
global L1;CO; price, which 1s often referred to i the lithium market, has increased 5.4 times, from
$12 600 per tonne m 2021 to $68 100 per ton i 2022 as shown in Figure 2.3. However, this highest
peak has passed due to concemn of a short-term lithium oversupply, expiration of the Chinese
Government’s decade-long program of subsidies for electric vehicle (EV) purchases, and weaker
than expected EV sales worldwide caused a clear decrease of the Li1,CO; price 1n 2023, when 1t
settled around $46 000 per ton. (Jaskula, 2024). The consumption of lithium has also increased as
well due to nsing demand, where a 27% rise has been reported in lithium consumption from 142
000 tonnes to 180 000 tonnes between 2022 and 2023 (Jaskula, 2024). It has been estimated that
handheld electronics, such as smartphones, laptops and tablets, contain approximately 2 to 20 g of
lithrom each, whereas in larger electric equipment, like electrical vehicles (EV) and energy storage
systems (ESS), the amount of lithium 1s thousandfold higher or even more, ranging between 20 kg
and 700 kg of lithium (Bae & Kim, 2021).
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Figure 2.3 Lithium price from 2020 to 2025. Data is taken from (Benchmark Mineral Intelligence, 2025).

Interestingly enough, lithium is the 25% most common element in earth’s crust (at 20 mg/kg) and
thus 1t 1s not a rare element (Meshram et al | 2014). However, not all lithmum 15 easily, and most
mmportantly, econonucally extractible. The lithmum grade, location, resource type (hard rock, brine
or sedimentary rock), and lithium market price will have a great impact on the economic viability

of a lithium mine.
2.1 MINERALOGY AND GEOLOGY

The Earth’s crust contains a wide spectrum of different elements and minerals. However, the crust
15 not homogeneous and different elements and minerals are more abundant than others depending
on the region or geological location on the earth. The goal of geology has been defined by one
person as “to explore that part of the earth that 1s accessible to direct observation and to establish
1ts history™ (Gohau et al., 1990). As well, ninerology has been defined as “The science that treats
of those morganic species called minerals, which together in rock masses or in 1solated form make
up the matenial of the crust of the earth, and of other bodies in the umiverse so far as it 15 possible
to study them i the form of meteontes™ (Dana, 1922). As emphasized, geology and mineralogy
are closely related and can be considered more supportive fields of study rather than completely
separate scientific disciplines. This section will discuss muneralogy and geology in the context of

hithium ore.



2.1.1 Lithium-bearing minerals and typically associated gangue minerals

As reported by Grew (2020), lithtum-bearing munerals are found m four different types of
geological environments: (1) lithium—cesmum—tantalum (LCT) gramtic pegmatites and associated
metasomatic rocks; (2) highly peraluminous pegmatites; (3) metasomatic rocks not directly
associated with pegmatites; and (4) manganese deposits. Although several classification schemes
exist, thus study focuses on the LCT pegmatite type, which hosts spodumene at (Patriot Battery
Metals) PBM’s CV5 deposit and 1s the most relevant for lithium processing in this context.

Ore and gangue minerals of LCT pegmatites a can be affected by alteration which can change
colors of the minerals. Alteration 1s a process in which rocks undergo chemical and mineralogical
changes i an open system (Chischi, 2023). While this 1s similar to metamorphism (usually closed
system), the chemical changes caused by alteration are typically more mtense. The difference
between the two processes can be subtle, especially when deposits form from metamorphic fluds,
such as in the case of orogenic gold deposits (Phullips & Powell, 2010). Weathening also causes
significant chenucal and mineralogical changes, but unlike hydrothermal alteration, 1t 1s confined
to surface rocks and occurs at lower temperatures (Mathieu, 2018).

There are more than a 100 known lithium bearing minerals i the world (Talens Pewro et al |, 2013;
Ralph et al | 2025). Despite the high abundance of L1 mn the Earth’s crust (Meshram et al | 2014),
the diversity of Li-bearing nunerals 1s relatively low if compared to other common elements. For
mstance, iron and copper are reported to form 953 and 643 different mineral species, respectively
(Krivovichev et al , 2018) which 1s sigmificantly more than lithmum However, this 1s partly
explamned by their much higher natural concentrations i the Earth’s crust.

Not all Li-bearing minerals are well known or of mterest in terms of economue Li extraction. The
most well-known and most widely used Li-bearing mineral 1s spodumene (LiAlS1>0Os). Other
mmportant minerals include petalite, lepidolite, amblygomite, and eucryptite, which are the main
sources of L1 (Bulatovic, 2015; Tadesse et al_, 2019; Talens Peiro et al., 2013). Zinnwaldite and
triphylite are also mentioned in the hiterature (Colton, 1957; Grosjean et al_, 2012).

The name spodumene originates from the ancient Greek word spodumeneos meamng “burnt to
ashes” (Dessemond et al , 2019). This figure of speech 1s quite an accurate illustration of the
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appearance of spodumene's greyish, ash-like form after prinding. However, in nature 1t 15 possible
for tlus lhithmum aluminosilicate to produce two different kinds of gems of different colors.
Hiddenite 1s known as the green spodumene gem, whereas kunzite gems have color of pink and
purple (Stuhlman, 1929). In terms of L1-O grade, spodumene has a theoretical grade of 8.03% Li20
(Gao et al, 2023). Nowadays, the quantification of spodumene grade (as opposed to chemical L1
or L12O grade), especially through online analysis, 1s also of interest and can be accomplished using
different analytical methods, such as Infrared spectroscopy (IR), Hyperspectral imaging (HSI) and
Timegated Raman spectroscopy (TRS). Out of these, TRS indicates a lugh potential for online
spodumene content quantification from both solid and slurry samples (Laitinen et al | 2024).

Spodumene can exist in three different crystalline structures (Abdullah et al., 2019), of which a-
spodumene 1s the naturally occurmng monoclimc structure (C2/c) found m nature. This
monoclinic structure can be modified to a tetragonal one (p-spodumene) by heating a-
spodumene at 800 — 1100°C for 30 - 60 minutes (Salakjani et al, 2016). The third phase of
spodumene (y-spodumene) 1s metastable (hexagonal) and 1s formed when a-spodumene is heated
at lower temperatures (700 — 900°C). However, it can be converted to p-spodumene if the
temperature 1s raised further (Aylmore et al , 2018; Salakjam et al , 2016). Figure 2 4 illustrates the
transformation temperature between different spodumene phases.

B-spodumene

Ne)
S %
S O
> <
rd
N -~
o 2.
O
a-spodumene | > y-spodumene

700 —900°C

Figure 2 4 Spodumene crystallime modifications fransits at different temperature. (Modified from Dessemond et al ,
2019).
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Petalite (L1A1S140y) 1s a lithmum aluminosilicate whose chemical composition consists of LnO
4.86%, AlO3 16.65% and S102 78.48% when expressed as individual oxides. Petalite 1s the high
temperature-low pressure phase of spodumene (London, 1984). After spodumene, petalite 1s the
most abundant L1 mineral in LCT pegmatite (Grew, 2020). The name petalite 15 from the ancient
Greek word petalion, meamng leaf or blade (Stempkowska, 2021). Petalite presents a monoclimic
crystallographic system and has a space group P2/a (Stempkowska, 2021) and 1t tends to form big
crystals (London, 2017). In terms of color, petalite can be colorless or yellow, grey or white,
depending on surrounding conditions such as elemental substitutions within the crystal structure.
Petalite 1s also known to have highest L120/Al>:Os ratio among natural munerals (Stempkowska,
2021).

Lepidolite (K(Li,Al)3(S1,Al)4010(F OH);) belongs to the mica group (Ogorodova et al., 2005). As
seen from the chemical formula, lepidolite 1s known to have high varability m its chemucal
composition due to its tendency for forming solid solutions with muscovite, phlogopite and other
lithrom micas (Ogorodova et al., 2005). As other types of mica are characterized by their glossy
and layered texture, lepidolite also possesses these features and it exasts typically m rare-metal
granites and pegmatites (Ogorodova et al., 2005). Lepidolite crystals have a umque color varying
from pink to purple (Meshram et al_ | 2021) which 1s due to traces of Mn’" and it is often observed
as an alteration mineral of spodumene. However, the color can also have light hues of yellow,
green, or gray based on traces of wron (Fe) or other chromophores (London, 2017). Notably, the
color of the nuneral 1s not an indication of the lithium content. Lepidolite deposits often contain
other valuable elements such as rubidium (Rb) and cesium (Cs) which usually are separated during
lepidolite hydrometallurgical processing (Luong et al, 2013; Ogorodova et al, 2005; Yan et al |
2012). Theoretical L1;0 grade for lepidolite 1s reported to be 7.7% whach 1s less than spodumene
but clearly higher than petalite (Gao et al_, 2023).

Amblygomte ((L1,Na)AIPO4(F,OH)) 1s a fluorine-rich aluminophosphate and 1s geologically found
m pegmatite and fluorine-nich topaz-beanng gramite (Choubey et al_, 2016)_ It has a triclinic erystal
structure and naturally high L1 content, up to ~10% of L1:O, which 1s even higher than that of
spodumene (Xie et al , 2023; Zhou et al_, 2024). Despite the fact that amblygonite has the highest
lithrum oxide content out of the Li-bearing minerals, the extraction of amblygomte has received
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little attention in the literature (Choubey et al., 2016; Zhou et al , 2024), possibly because no
economucally viable deposits of amblygonite exist.

Eucryptite (L1AlS10y), rarely occurs alone and 1s often associated with spodumene and petalite
pegmatites. Eucryptite 1s the low temperature, low pressure phase of spodumene, to which
spodumene 1s usually transformed duning alteration. Based on 1ts physical and optical properties,
eucryptite closely resembles quartz, making 1t difficult to distinguish without ultraviolet hight,
under which it enuts a bright red fluorescence (London, 2017).

Gangue munerals often associated with spodumene, and pegmatite ores include quartz, feldspars
and mucas along with tourmaline, garnet and beryl (Anthony et al | 2003; Aylmore et al , 2018). In
addition, economically valuable accessory minerals such as columbite and pollucite may also be
present. However, these silicate minerals can be abundant in spodumene deposits with 30-45%
each of quartz and feldspar beimng common (Xie et al , 2021). The abundance of these nunerals can
cause 1ssues 1n the pretreatment of spodumene ore, for example, 1n gravity or magnetic separation
(3e et al | 2021). Micas are common and may be abundant gangue nmunerals associated with
pegmatite deposits (London, 2017). In most cases, micas are volumetrically minor, but some
deposits can be very rich in coarse muscovite for example. Abundant mica concentration may cause
1ssues i the flotation of Li-rich minerals but also i the DMS due to particle shape and near density
to spodumene (Gibson et al., 2017).

2.1.2 Drill core observations

One of the main ways to obtain critical imformation from the Earth’s crust for the mining or
exploration operation 1s core dnlling. Drnll cores are important as for the knowledge that they
provide of the rock masses under the soil. Based on core data, companies get a comprehensive
picture of the geological environment. There are many methods to produce data from drill cores.
For example, core data can be merged to create a geological map of a deposit which can be used
to calculate ore grades and delineate between economic and non-economic zones. This chapter
provides an overview of the analysis of drill cores and what properties geologists typically evaluate.

Geological data 15 first obtammed from what 1s typically termed as “drill core logging™ where
collected drill cores are used such as seen in Figure 2.5. The logging data consists of different types
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of information, such as alteration, lithology, as well as structural, mineralization, and geotechnical
data (Glacaalle, 2017). From the literature, the most common information recorded in dnll core
logging are the length of dnll cores, core recovery, identification of rock and nuneral types, visual
estimation of mineral content, texture, structure, mineralization, alteration, vein and fracture
frequency, and rock quality designation (RQD) (Glacialle, 2017). Owing to the fact that they are
obtamned via visual inspection, most of these measurements present some subjectivity and are
therefore highly dependent on the logger’s experience and perception. The accuracy of the data 1s
thus usually highly vanable and unmeasured, although some systematic logging methods can be
found in the literature aiming to mifigate this subjectivity (Bright et al., 2014). However, relying
only on visual data, especially in terms of rock and mineral identification, these logging methods
have shortcomings and would benefit from the use of supplementary methods, such as portable X-
ray fluorescence (XRF) or laser induced breakdown spectroscopy (LIBS), core scanming, and
laboratory/chemical analysis (Glacialle, 2017).
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Figure 2.5 Drill cores stored in wooden boxes after collection from the site. The core box length is approximately 1.2
meters. Geologists have analyzed these cores visually and marked the location info on the cores. Example from a
spodumene-bearing pegmatite of Patriot Battery Metals's Shaakichiwwaanaan project.
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The length of the core and location of geological parameters (contact, mineralization, fault, .. ) are
measured using a tape measure. Core recovery refers to the fact that not all cores are recovered due
to fractures and breakage Hence, the total recovered core is calculated by dividing the length of
the core by the length of drilled interval This factor indicates how well the recovery of the core
was (Lemy et al , 2013).

Textures are commonly described using various qualifiers, mcluding grain size and mnternal
structures such as mineral alipnment, bedding, and deformation degree (Bons et al , 2012; Cacciarn
& Futai, 2019; Okubo, 2010). These descriptors are used qualitatively to differentiate between
lithologies, making the method somewhat subjective. Typically, compamies report only the average
grain size and sometimes a general range (e_g., Pyrite 10%; 1-2 mm_ up to 5 mm). However, in the
case of PBM, grain size classification at the CV5 deposit 1s more detailed and mncludes estimations
of the proportion of grains above or below certamn size thresholds. Although thus approach is not
common mdustry practice, 1t provides valuable information. As shown mn thus study, such
classification helps highlight the linitations of standard logging practices, especially in terms of
representing full grain size distributions.

Geotechnical measurements such as core recovery, vein and fracture frequency, and RQD are
typically assessed first by a technician upon recerving the core. For example, vemn and fracture
frequency 1s measured by dividing the number of fractures, counted by techmician, by the length of
the sample. This method 15 not reliable because some core are broken duning the dnlling process
or are fractured by the driller while recovering the core from the core barrel, making it impossible
to count the exact number of real fractures. Therefore, these factor is calculated based on the fact
that non-natural fractures are a low percentage of observed fractures (Séguret et al, 2015).
However, a more common factor 1s usually calculated, the RQD, which gives a better evaluation
of rock mtegnty (Séguret et al | 2015).

Rock quality designation (RQD) 1s a calculated recovery index which 1s widely used to illustrate
the quality of the rock and to indicate its structural integrity. RQD provides an estimation of the
“rock quality” (or competence) and 1s used as a first indicator of areas of poor-quality ground
(Lemy et al , 2013). This method was first presented by Deere (1963). The protocol for calculating
the value 1s to sum the length of all the pieces of core that are over 100 mm long and then divide
the sum by the total length of the core (Lemy et al , 2013; Milne et al, 1998). RQD has some
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limitations as it 1s sensitive to onentation and insensitive to widely spaced jomts. Another problem
anises with the diameter of the core because a smaller core tends to break more easily (Milne et al |
1998). Some other methods for RQD have been presented in the literature, mcluding “Handled
Rock quality designation” (HRQD), which 1s measured the same way as onginal RQD, first
handling the core by twisting and bending, but without using a significant force (Milne et al | 1998).

In addition to RQD, various other empirical correlations have also been suggested to estimate the
engineening properties of jointed rock masses using classification indices (L. Zhang, 2016). Rock
Mass Rating (RMR) was first introduced by Biemawski (1973). It 1s a well-known and widely used
mdex to validate rock mass quality. The use of this index has had a great impact on c1vil engineering
and nminmng activities (Ferran et al , 2014). The main applications are to evaluate the geomechanical
features and stability conditions in areas of interest. Moreover, in terms of mining, RMR 1s critical
especially in tunnelling and foundations as well as geological risk management. The RMR system
can also be used to verify how likely rock slopes are to slide and to find the weaker areas of rock
where it might break or collapse (Ferran et al , 2014). RMR 1s typically presented as a sum of
different factors as shown in equation 2.1 (Biemawski, 1973). RMR value can be used to describe
the rock quality and fracture abundance based on critena presented i Figure 2 6.

RMR = UCS 4+ RQD + SD + CD + GC + 0D (2.1)
Where ucs = Umiaxial Compressive Strength of rock nuneral
RQD = Rock Quality Designation
SD = Spacing of Discontinuities
CD = Condition of Discontinuities
GC = Groundwater Conditions

oD = Orientation of Discontinmties
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Figure 2.6 Criteria for classification of fracture condition in RMR (Qazi & Singh  2023).

Another important index for miming and more specifically tunnelling is called “Rock mass quahity™
also known as Q-system. This method was first mtroduced by Barton et al. (1974). The Q-system
considers six different features to evaluate the quality of rock. These dependencies are presented

as follows (Barton et al | 1974):

o=(22) () ()

rock quality designation
joint set number

joint roughness number
joint alteration number
joint water reduction factor

stress reduction factor

(2.2)
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A third widely used approach for determiming rock quality and charactenistics (and used by Patriot
Battery Metals on the Shaakichiowaanaan project) 1s the globally recognized and standardized
ISRM methods, which include 62 suggested procedures for assessing rock quality. These methods,
designed for both laboratory and i situ testing, provide defimtive guidelines for rock
charactenization, testing, and momitoring in rock engineering. They enable the identification,
measurement, and evaluation of various rock properties, ensuring rehiable test results (Ulusay,
2015).

The Schomdt Hammer Rebound Hardness (SHRH) test 15 a widely used method for estimating the
umaxial compressive strength (UCS) of rock. Its simplicity and broad applicability make 1t a
popular index tool. The revised method emphasizes using the SHRH to measure rebound hardness
m both laboratory and in situ conditions, serving as an mdicator for UCS and the modulus of
elasticity (E). The SHRH operates with a spring-loaded piston that impacts a surface when the
plunger 1s pressed. The rebound height, which depends on the material’s hardness and resistance
to impact, 15 measured as a percentage of the spring’s maximum stretch before release (Ulusay,
2015).

In addition to the traditional Schmmdt Hammer, a similar rebound-based hardness testing method,
Equotip, 1s now widely used for rock hardness assessment. Originally designed for metals, Equotip
measures rebound velocity using an induction coil, with results expressed as Leeb Hardness. It 15
particularly useful for small rock, such as dnll core samples and provides digital readouts with
automatic impact direction compensation (Viles et al , 2011).

Another example of an ISRM method 1s the Dynamic Strength (DS) test, which measures the
dynamic umaxial compressive strength of cylindrical rock specimens. This method 1s primanly
used for classifying and characterizing intact rocks. The apparatus, known as the Split Hopkinson
Pressure Bar, generates and records stress waves interacting with the rock specimen. In addition to
DS, other less common methods for estimating unaxial compressive strength include the point
load test and seismuc velocity measurements, which provide indirect assessments of rock strength
(Ulusay, 2015).
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2.2 MINERALOGICAL PROCESSES FOR CONCENTRATING LITHIUM
MINERALS

Before lithum finds its way into the batteries of electrical vehicles, lithium itself needs to be
separated from the ore. There are multiple ways to process lithium ores to an end product. The
selection of the beneficiation methods 1s highly dependent on the surrounding factors, such as the
type of deposit, its location and the geological parameters (ore and gangue minerals present, grain
size, alteration, etc). For example, PBM 1s proposing a DMS only flowsheet for spodumene
recovery due to the CV5’s large spodumene grain size. In addition, the market price of lithium wall
affect the selection of the process equipment and the whole life cycle of the mine site.

2.2.1 Main processes with examples of DMS and crushing

Generally speaking, the beneficiation of a lithmum ore starts when the mined ore reaches the mmll
(concentrator). In some flowsheets the first operation 1s ore sorting to reject waste or upgrade the
feed, but this 1s not universal and many plants begin directly with crushing. Primary and, i1f needed,
secondary crushing are then used to obtain adequate particle size for further processing. Crushing
15 typically carried out using open-circumit primary crushing (usually a jaw crusher) followed by
closed-circurt secondary cone crushing. In some cases, however, separation techniques may
already be applied to the mn-of-mine ore prior to crushing, or immediately after pnmary crushing,
such as screeming or density-based pre-concentration (Welham, 2019a). Often, the run-of-mune
spodumene ore 1s crushed to 100% passing -16 mm if the flowsheet does not include DMS, and to
-12 mm 1f DMS 1s included (Tadesse et al | 2019). In practice, however, achieving these particle
sizes typically requires tertiary and sometimes even quaternary crushing stages, depending on the
ore and circuit design. The optimum particle size 1s dependent on muneral liberation properties
(gram size and how 1t liberates as 1t breaks), the grade of the ore and the downstream beneficiation
steps. Figure 2.7 presents a typical comminution circuit used in spodumene processing. This sub-
section discusses other processes, leaving gravify-based separation processes to be discussed

more details in section 2 3.
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Figure 2.7 Spodumene concentration crushing circuit flowsheet, inspirated by (Oliazadeh et al | 2018).

The crushing stages are usually followed by the dense media separation (DMS) circuit or the
grninding circut (prior to flotation), depending on the layout. The DMS process 15 highly dependent
on particle size and 15 only applicable to certain size fractions, with circwts often consisting of one
or more cyclones with different cut sizes (Tadesse et al, 2019). The flowsheet shown in Figure
2.8. also includes a scrubber, whose role 1s to wash the crushed ore, remove clay and fines, and
condition the material before 1t enters the DMS circuit, thereby improving separation efficiency
through cleaner particle surfaces and more stable media performance.
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Figure 2 8 An example of preliminary scrubbing and DMS circuit. Inspired by (Oliazadeh et al | 2018).

Regardless of whether DMS 1s mncluded in the flowsheet, flotation 1s then typically applied to finer
fractions as part of the process flowsheet (Xie et al_, 2021). Exceptions mclude the Bald Hill lithium
and tantalum operations in Australia (Tadesse et al., 2019). In these flowsheets, the flotation of
spodumene 1s not included with varnious gravity-based separation steps being used instead and the
fine fractions (< 0.85 mm) being rejected to tails. Another example of a flotation-free layout has
been presented for the Shaakichirwaanaan Project by Patriot Battery Metals (PBM) i Quebec,
Canada, who plan to build a nill where the main separation method 1s DMS. Flotation 1s, however,
a consideration for future use in processing fine particles to be collected at the beginning of the
mine's life (Patriot Battery Metals, 2024).

It 1s also becoming more common to apply classical ore sorting based on color and density
differences before the ore processing, as sensor-based sorting has become a more important
separation method. Optical sorting can detect differences in color and morphology of the nunerals.
While grain size vanations may influence sorting efficiency, the sensors primarily rely on optical
properties rather than direct size measurements (Brandt & Haus, 2010; Tadesse et al , 2019). In
addition, the rise of artificial intellipence (AT) has enabled even more accurate sorting applications
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which are based on etther machine learming (Maitre et al | 2019) or deep learming (Latif et al |
2022).

The DMS circuit, when complemented by other means, 1s usually followed by a grinding circuat
where the material 1s ground to reach a higher degree of liberation and thereby enable higher
recovery rates and upgrading in subsequent flotation. Typically, grinding 1s conducted in a ball mmll
(down to 500 pm), since the feed matenal 1s already crushed to a sufficiently small size, and the
particle size 15 not enough to justify SAG or AG mulling. Notably, 500 pm also marks the lower
practical linut for conventional gravity-based separation methods such as DMS, as efficiency tends
to decline below this threshold (Ait-Khowa et al | 2021). As in most hard-rock gninding circuts,
hydrocyclones are used to recirculate the coarser matenial and aclueve a consistent product particle
size. The basic principle of separation in hydrocyclones uses centrifugal sedimentation, meaning
the suspended particles are subjected to centrifugal acceleration, which causes heavier or coarser
particles to move outward toward the cyclone wall while lighter or finer particles stay near the
center of the flow.

Unlike centrifuges or screens, hydrocyclones have no moving parts, and the necessary vortex
motion 1s performed by the fluid itself The separation occurs due to differences in both particle
size and density. Larger and denser particles experience greater centrifugal force and migrate to
the outer wall, exiting through the underflow, while finer or less dense particles remamn in the
central vortex and are carried to the overflow (Svarovsky, 2001). The obtained concentrate (sink
fraction) 1s often subjected to magnetic separation, primanly to remove Fe-bearing nunerals that
may report to the sinks. In contrast, the dense media (such as ferrosilicon) 1s usually recovered
separately by screening and rinsing the cyclone products and then thickened or dewatered before
bemg recirculated back to the DMS circuit. This distinction 1s important to ensure efficient media
recovery and to maintain concentrate quality before flotation.

DMS 1s based on density differences of the muinerals in the ore and are an example of mechanical
separation. Unlike DMS, flotation 1s considered a physico-chemical separation method, as 1t relies
on the use of chemical reagents to modify the surface properties of particles. As stated before,
flotation has been the most commonly reported separation method for spodumene ore. Generally,
the surface of spodumene tends to have a negative zeta potential in solution when pH >3 (Wills &
Finch, 2016d). Cationic collectors used in direct spodumene flotation requuire pH values above 3
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for physical adsorption to occur. However, in most cases they are applied in reverse flotation at pH
values below 3, where amines are used to float gangue minerals such as quartz, mica, and feldspar,
while spodumene remains in the sink product. More commonly, direct spodumene flotation 1s
achieved using anmionic collectors, such as sodium oleate, due to the presence of positively charged
sites on the spodumene surface. These sites, primanly exposed Al** 1ons, can facilitate the chemical
adsorption of amonic collectors. Furthermore, the addition of Ca*" ions have been shown to
enhance spodumene recovery by reducing its surface charge, thereby promoting the mteraction
with aniomie collectors (Cook et al, 2023; Filippov et al., 2019).

As noted, other reagents, in addition to the collector, can be used depending on the chenucal
charactenistics of the ore and the flotation conditions. Commonly used activators in spodumene
flotation are metal ions, such as Mg”* and Ca®* which are used to modify the surface properties to
be more favorable for the collector to adsorb onto the surface. Additionally, some reagents, such
as NaOH or HCI, are used as pH regulators to affect the pH and thus the zeta potential of the
spodumene's surface (Filippov et al, 2019; Wang & Fu-Shun, 2007). In general, a typical
spodumene froth flotation circuit can be consist of roughers, cleaners and recleaners: rougher
concentrate advances to cleaning, intermediate tails are discarded, and the recleaner concentrate 15
thickened and filtered as the final product. An example of such a layout 15 described by (Welham,
2019b).

In industnial processes which uses DMS as a pre-separation step, a magnefic separation process
step 1s usually present after the flotation. The flotation reject 1s discharged mto a tailings
management facihity while the spodumene concentrate 1s filtered and sent to a refinery for a second
transformation. A general and simplified flowsheet for Li beneficiation, showing all the umnit
processes described earlier 1s presented in Figure 2.9
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Figure 2 9 General flowsheet of lithinm beneficiation circuit (Modified from Tadesse et al | 2019).

The extraction process of spodumene 1s based on several umit processes and related equipment.
Nowadays, the increase in digitalization makes it easier and to achieve more precise to control and
monitor the behavior of the process. A wide range of processing instruments, such as sensors
(pressure, temperature, flow rate, density and viscosity), control devices (control valves, frequency
converters), analyzing devices (pH, gas, moisture), safety alarms (pressure, gas detectors), and
confrol systems (programmable logic controller (PLC), distributed control system (DCS)) play a
vital role on the quality of the concentrate (McMillan, 1999). In spodumene exfraction, many of
these items are used. Atmospheric pressure and temperature do not have a major effect on DMS.
In this regard, DMS circuit process control can be said to be fairly sumple, although several
vaniables sfill have to be controlled (Kawatra, 2019).
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2.2.2 Characteristics sought in concentrates

Theoretically, the maximum L1-O content of spodumene 1s 8.03%, calculated from its molar mass

as follows:
M(spodumene) = M(Li) + M(AI) + 2M(Si) + 6M(0)

= w!fl.“.%'il-li + 2&3.'31‘82i +2- ZB.w[IIBI.’ii +6- 11!5.{]{]i = 18&&.(]".—?‘i
mol mol mol mol mol

And thus, spodumene has a % of L0 as follows:

oo 1 g .1, 8
110 (%) = ML) +3M(0) 694150516008 100 — 2076
M(spodumene) 186.09 £+

As noted above, the theoretical grade represents the maximum achievable value. In practice, the
Li20 grade achieved 1s always lower. According to the lhiterature, spodumene concentrates meant
for battery use generally aim for L1-O values above 6.0 % and Fe:0s below 1.0 % (Opoku et al ,
2025). In contrast, technical-grade concentrates, used i ceramics, glass, and other industrial
applications, typically require even ligher L1:0 (e.g_, > 7 %) and significantly lower Fe:0s (e.g,
<0.25 %) to meet purty specifications. Higher L1>0 % i the concentrate are more desirable, as
the number of impurities and gangue minerals 1s targeted to be as low as possible. Potential reasons
why this theoretical 8.03% Li120 1s impossible to reach are for example the inclusion of quartz and
other minerals as studied by Sousa et al | (2019). Meanwhile, (Ralph et al | 2025) demonstrated
that post-ore alteration of spodumene produces muscovite, cookeite and quartz as secondary
phases, which degrade spodumene grade and impair lithium recovery. Both of these phenomena
are relevant in the context of characterizing the PBM’s CV5 deposit. There are also always
deleterious elements within the spodumene lattice such as Fe* replacing Al**, Na™ replacing Li",
so that the 8.03% L12O can never be reached, even for pure spodumene (Charoy et al., 2001).
Moreover, lugher concentrations typically come at the expense of recovery, since achieving these
high grades usually means rejecting significant quantifies of mixed or even pure spodumene
particles. Therefore an economic tradeoff between recovery and grade 1s typical, like in most other

muneral separation processes. Some of the munerals commonly found with spodumene are
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presented m Table 2.1, showing how most of them have a lower density, compared to spodumene’s
(3.2 gfem?).

Table 2.1: Minerals in spodumene ores and their properties (Wells et al | 2022).

_ _ Density Melting
Mineral name Chemical formula Color _ Issues
(g/cm’) [point ("C)f
Fractures during rapid heating
Quartz Si0, 2 65 White/ 1610 sts but no real inferaction
1 .
orey een quariz and spodumene
formation.
IMe]ting leads to the formation
. Gray, of clinker, an undesirable
Micas ] ] 1100- ]
EAL(Si; A0 (0H); 2825 Silver, 1200 material that tends to coat the
(Muscovite) white interior surfaces of the calcine
roaster.
Melting leads to the formation
of clinker, an undesirable
Feldspar _ White, | 1060- _
NaAlSis0g, 2.62 G 1200 material that tends to coat the
; A
(albite) v interior surfaces of the calcine
roaster.
Melting leads to the formation
Fel 1060 of clinker, an undesirable
) _ KAISi:0g 256 material that tends to coat the
(microcline) Gray 1200 | _
interior surfaces of the calcine
roaster.
) Hematite forms "vein-like"
Reddish,

Hematite Fe:0s 53 1565 ptructures and consolidates into
oray, Black ) o
orains within the spodumene.

As can also be seen m Table 2.1, some minerals present alongside spodumene can affect the high-
temperature calcination process in varnous ways. Feldspars (albite and microcline) and muscovite
melt at relatively low temperatures (1000-1200°C), leading to clinker formation, which coats



26

furnace surfaces and disrupts processing efficiency. Quartz, despite its high melting point
(1610°C), fractures due to thermal stress but does not chemically interact with spodumene.
Hematite, with a melting point of 1565°C, tends to consolidate and form ven-like structures in
spodumene grains, which can affect downstream processing (Wells et al | 2022).

2.3 GRAVIMETRIC SEPARATION AND SPODUMENE

Gravimetric separation 1s a method that ufilizes density contrasts of the different particles to
separate materials from each other. Gravimetric separation can be applied if the difference in
density between ore and gangue minerals 1s big enough Spodumene beneficiation 1s one of these
processes where gravimetric separation can be applied. This chapter takes a closer look at different
gravimetric separation methods and discusses their mam charactenistics.

The most significant factor in gravimetric separation, as indicated by the name, 1s the specific
gravity of the particle. Earth's gravitational field pulls the particle downward according to Newton's
second law: G = mg, where G 15 the gravitational force, m 1s the mass of the particle, and g 1s the
gravitational acceleration constant. The density of a particle 15 defined as p = %, where p 1s
density, m 1s the mass of a particle and ¥ 1s the volume of a particle. Combiming these equations
shows that gravitational force G depends on the density (p) and volume (¥) of the particle, smce
G = pVg. The greater the force influencing a particle due to 1ts hugher density, the easier it becomes
to separate it from other particles that are subnutted to a lower gravitational force.

As explained above, the density of a particle as well as its volume influence its path mn a
gravitational separation process. The preater a volume the particle has, the stronger the force
generated. However, i terms of gravimetric separation, another significant factor 1s the shape For
example, in shaking table separation, flat-shaped particles (like micas) won’t be able to roll easily
across the table surface in the water film with such particles sticking to the deck and travelling
down to the concentrate discharge (Wills et al_, 2016).

2.3.1 Separation by heavy liquids

Heavy hiqud separation (HLS), sometimes referred to as dense flmds or solutions, 1s a well-known
method for separating or concentrating particles based on their density differences. In essence, a
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particle’s density 1s the ratio of a particle’s mass to its volume and if that ratio 1s lower than the
density of the (heavy) liqud, the particle will float and remain at the surface of the liquud. Despite
the simple and convenient nature of this method, the toxicity and price of heavy liquds does not
allow them to be used for industnal scale separation. Rather, dense-media separation (DMS), in
which a water-fine particle mixture 1s used as heavy media 1s the common method used effect
separation based on a media’s density. However, since HLS 1s still often used at laboratory scale
to predict the outcome of DMS (whach will be discussed in detail 1 section 2.3 .2), this subsection
will provide an overview of HLS testing.

Over time, several reagents have been used for HLS test work. Some of the heavy liquds (HL)
possess a high toxicity and thus the usage of these products 1s limted or requires extreme care
during handhng. Typical HLs are bromoform, methylene iodide, clerici solution, and
tetrabromoethane (Hauff & Airey, 1980).

However, the so-called “first generation” organic heavy liquds listed above have mncreasingly been
replaced with other “second generation™ substances which are less toxic, and more stable and thus
the usage and handling of these chenmucals are much easier. These include sodium polytungstate
(SPT), lithum metatungstate (LMT) and lithium heteropolytungstate (LST) (LST Heavy Liqud
for Float SinkSeparations, n.d.).

Sodmm polytungstate (SPT) (Nas(H2W12040)) 15 a nontoxic solid that 1s water soluble and thus can
be mixed with pure water to generate a heavy liquud. The density of this reagent can vary widely
from 1 g/cm’ to a saturated solution at 3.10 g/fem®. Due to the large spectrum of densities and
nontoxicity of the reagent, SPT can be used to separate effectively particles in regular laboratory
conditions, even without the use of a fume hood, which 15 a great advantage compared to “first-
generation” heavy liquds. Other advantages of SPT are its noncorrosive nature, stability over a
large pH range (2-14), ease of dilution and easily adjustable density, and the possibility of recycling
and reusing the reagent. Disadvantages, on the other hand, mnclude its lugh viscosity leading to
longer settling time (Skipp & Brownfield, 1993).

Two other popular heavy liquuds that share similar features and are used in the density separation
process are lithum metatungstate (LMT) LisOH2W12040 and lithrum heteropolytungstate (LST).
Both of these reagents are produced by establishing an aqueous solution of tungstate salt. Aqueous
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LMT can reach a density of approximately 3.5 g/em’ (Duyvesteyn et al., 1994) whereas LST can
achieve density of 3.3 g/cm’ (Mounteney, 2011). Both LST and LMT are non-toxic clear liquids,
and they can be used without a fume hood. However, the benefit of LST over inorganic heavy
liquuds, such as SPT, 1s its thermal stability which enables it to be heated and thus regain the original
density. Hence, quick and easy recycling is possible. Other key benefits of LST compared to SPT
mclude 1ts considerably lower viscosity, befter solubility mn water, and significantly lower cost,
making it a practical and widely used reagent for HLS testing (Mounteney, 2011).

The typical procedure for heavy liquud separation 1s illustrated in Figure 2.10. Firstly, a separatory
funnel 1s partially filled with heavy liqmd (HL), after which the sample 1s mtroduced and the
remaining HL 1s added. Thus sequence minmimizes the formation of air bubbles and ensures that all
particles start settling from the same pomt (Chomnkrathok et al , 2024). A typical ratio between the
sample and HL 1s 1:5, meaming that 50 g of sample requires 250 g of HL.. The setthing time varies
depending on particle size, mineral density, and the ratio of heavy to light minerals present
(Mounteney, 2011).

Figure 2 10 Simplified HLS test method. 1) HL. is added into separating funnel followed by the sample and lastly the
remaining HI. 2) Particle dispersion, 3) Separation of minerals. 4) Recovered mineral concentrate and filtration
Courtesy of the British Geological Survey © UERI [2011] (Mounteney, 2011).
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Another important factor which affects the separation efficiency 1s the mineral liberation. Given a
certain HL. density between that of two munerals, well liberated munerals will separate more
accurately and faster than particles at low hberation stage, owing to the elevated difference in
density. Figure 2.11 depicts the impact of muneral liberation on HLS testing. It hughlights how
mcomplete liberation will cause some of the dense minerals to report to the float, and some of the
lighter nunerals to sink.

There 15 no umiversal settling tume applicable in all cases, but tests usually take less than 30 minutes
(Mounteney, 2011). The separation can be considered complete once a clear division between the
light and heavy fractions becomes apparent. After the separation 1s deemed complete, the sink and
float fractions are recovered, using a slotted spoon or by sequentially emptying the contamner via
the bottom, and the samples are rninsed and washed to remove excess HL. Prior to recycling the
HL, 1t 15 usually pumped through a filter paper to remove all contaminants (Mounteney, 2011).
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Figure 2 11 The effect of liberation on lithium recovery in HLS test. 1) poor liberation and low recovery. 2) high
liberation and high recovery.
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2.3.2 Dense medium separation (DMS) and link with HL results

As previously stated, HLS is not used at industrial scale. Rather, dense medium separation (DMS)
15 the common industrial scale pretreatment process used for separation of minerals based on a
media’s density, including for pegmatite ores. Since DMS works best if the spodumene 1s well
liberated at big grain size fractions, this process 1s typically not used in cases where adequate
liberation 1s only reached below 1 mm_ If the processed materal 1s already fine and DMS cannot
be applied, the flotation only flowsheet can be presented also without this step as presented in
Sahoo et al. (2024). There can be one or more prefreatment steps, meaning one or more DMS
circuits operating in series (fwo-stage DMS). This way the cut points of dense media can be
adjusted differently for each step, which enables more accurate separation and higher separation
performance (Tadesse et al_, 2019).

As explained earlier, spodumene beneficiation 15 a multi-step process that typically combines
DMS, magnetic separation, de-sliming, and flotation, with DMS often serving as a pre-separation
step before flotation, depending on the deposit’s mineralogy (Gibson et al , 2021). A typical DMS
circuit 1s presented with details in Figure 2.12. As observed mn Figure 2.12, water 1s recycled within
the process, primarily through wash screens, reducing freshwater consumption and wastewater
production. Additionally, a magnetic separator 1s used exclusively for the recovery of dense media

particles, such as ferrosilicon, ensuring its recirculation and mimmizing losses.

Typically, ferrosilicon (FeS1) or magnetite, 1s mixed with water to create a slurry with a specific
density. Magnetite suspensions have range from 4.5 g/cm’ to 5.4 g/em’ and ferrosilicon can have
densities of up to 6.7 g/em’ (Napier-Munn, 2018). These different dense medias can also be mixed
together m order to find the optimum cut point. These two media also have the key advantage of
bemg ferromagnetic, which makes 1t possible to recover the dense media after the DMS by using
a magnetic separator. The dense media 1s recovered after DMS by magnetic separation, which 1s
applied once the mineral particles have been screened out. One drawback of suspended media 1s
that they cannot be used for static separation, since the fine particles would tend to settle, affecting
the density and the separation. This explains why HLs remain the main approach used in small-
scale laboratory tests.
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Figure 2.12 Typical DMS circuit (Wills & Finch, 2016).
The DMS process 1s based on specific gravity (S.G.) differences between the ore and gangue
particles. In a DMS circuit, dense media of a known S.G. 1s mixed with water to produce the
medium to be used for separating valuable metals and gangue. This S.G. cut pomt 1s a fundamental
factor for separation efficiency and needs to be determined accurately for the target mineral In the
case of spodumene (p = 3.15 g/cm’), separation from the main gangue minerals such as feldspars
(p~2.6 g/lcm®), micas (p ~ 2.9 g/em’), and quartz (p ~2.65 g/cm’) is relatively easy due to adequate
differences in S.G for HLS/DMS context. However, the ore liberation plays a wvital role in
separation efficiency with a low value reducing separation efficiency (Gibson et al_, 2021). In dense
medium separation, flat-shaped particles can take significantly longer to settle compared to round-
shaped particles. In an even more complicated scenano, if the mineral liberation of a flat-shaped
particle 1s incomplete and denser material accumulates on one side, the particle may behave like a
spear, resulting in a much faster settling time than a round particle. Also, the age of dense media
can have an effect on the separation performance, owing to the mechanical wear (for example FeSi1)
particles, which lead to reductions m effective density. Additionally, FeSi can oxidize (corrode)
over time, forming iron oxyhydroxide phases, which may dissolve into the medium and alter its
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chemical composition and density. Prolonged use can also result in the adsorption of hematite onto
FeS1 surfaces, affecting its magnetic properties and complicating its recovery (Waanders & Mans,
2003).

Based on Gibson et al. (2021), who conducted DMS tests on lithium-beaning pegmatite dykes from
the Hidden Lake deposit (N.W.T., Canada), the DMS circuit reduced the mass sent to flotation by
about 50 %, thereby lowering energy consumption and costs. Importantly, the circuit also produced
a concentrate, and was not solely used as a pre-concentration step. The study further highlighted
that DMS performance 1s highly sensitive to changes i the media S.G. For example, an
mterpolated decrease from 2.7 g/ecm?® to 2.6 g/em?®, based on HLS results, was predicted to increase
the flotation feed mass by 44 %. Therefore, from an economical point of view, the use of DMS as
a pre-separation step can decrease the flotation costs, but from an operational point of view, DMS
15 said to be sensitive fo variations in media S.G. (Gibson et al | 2021).

On the industrial scale, DMS 1s often conducted using hydrocyclones or as they are often referred
to m this very context, dense media cyclones (DMC). The early days of DMC date back to the late
1930°s in the Netherlands where it was discovered more or less by accident. The local coal
company Dutch State Mines (DSM) noticed that a hydrocyclone used to process loess (a clay
material) for a dense medium bath m coal cleanming had become blocked. During the cleanup, it
was observed that the vortex finder was filled with clean coal, suggesting that the clean coal was
bemg concentrated in the cyclone overflow (Figure 2.13) (Napier-Munn, 2018). The development
started and continued, despite the German occupation of the Netherlands, and a patent was applied
for 1n the muddle of the Second World War mn 1942 (Napier-Munn, 2018).

There are different types of DMCs on the market. The most common 1s a standard hydrocyclone
placed in a more horizontal angled position because this orentation optimizes the tangential feed
flow, allows efficient separation of sinks and floats, and provides a compact and practical layout
for plant operation and maintenance. The operating principle 1s the same as that of hydrocyclones
used in grinding applications: the high-pressure feed pipe 1s directed tangentially along the mner
surface of the cyclone. Smmilar to a nifle barrel, the flow follows a spiral path, with dense material
moving toward the outer edge of the cyclone and exiting at the bottom. Meanwhile, the lighter
particles remam within the center of the flmd vortex and being less dense than the flmd, 1s
discharged through the wider upper end of the cyclone (Figure 2.13) (Ambros, 2023).
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Figure 2_13 Dense medium cyclone (Ambros, 2023).

Another type of separator i1s the two-stage equal-density DMC (Figure 2.14). The operating
principle of thus type of cyclone 1s similar to the traditional DMC, but instead of having only two
outlet streams, it has three products (concentrate, middling and reject). This type of cyclone 1s
suitable for separating the finer particles and 15 often used in the coal industry. As in the two-
product cyclone, the slurry 1s fed tangentially under high pressure, creating a spiral motion mside.
This generates strong centrifugal forces that separate the particles based on their densities. Owing
to the geometry inside the cyclone, the materials experience different forces withun different
portions, which results i three distinct density-based separation zones, heavy fraction,
mtermediate fraction and light fraction (Wang et al., 2017).
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Figure 2.14 Principle of two-stage equal-density dense medium cyclone (Wang et al., 2017).

Like other process equipments, the DMCs also have range of sizes for their use. The sizing of the
DMC 1s a case-specific matter and requires a knowledge of the process in question, as the processed
material as well as the planned feed rate will influence the size of the required cyclone. Baruya
(2012) reports a few real-life cases where different sizes of cyclones have been installed and used
for coal production. In Australia, the biggest cyclones have a diameter as wide as 2 m, a capacity
of processing 500 t'h, whereas in South Africa the smallest cyclone diameters can be between 1
and 10 mm (Baruya, 2012).

DMS circuits are largely controlled by the dense medium whose density dictates the cut-point.
Thus, choosing the right type of media 1s extremely important for the effectiveness of the process.
As stated above, even a small change in the media’s S.G. can cause a large reduction i the prade
of the concentrate. Dense media 1s typically divided into two categories: chemical media and
suspended media. The suspended media, where very fine particles (45 to 150 pm) are used (Sahoo
et al | 2024; Shi, 2016) can also include finer sizes as reported by Waanders & Mans (2003).

While both HLS and DMS rely on density differences between particles, HL.S in laboratory
conditions can achieve near-perfect separations due to ample seftling fime. In contrast, DMS 1n
confinuous industrial processes i1s mherently less efficient due to practical constramnts such as
limited residence time, the presence of near-density particles, and process factors like particle size,
feed rate, vessel design, and medium viscosity. These limitations often lead to musclassification of
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particles close to the separating density. HLS 1s therefore preferred for laboratory testing, where
1deal conditions allow for benchmarking and process optimization (Wills & Finch, 2016).

In terms of media and scalability, HLS uses heavy hiquds and 1s suitable for lab-scale applications
due to the precision and control it offers. DMS, on the other hand, employs suspended sohids (e.g.,
magnetite or ferrosilicon) and 1s more practical for large-scale operations. Although heavy liquids
can be costly and sometimes toxic, low-toxicity alternatives have been developed in recent years
(Figure 16) (Chenucal Consulting, 2024).

As mentioned earlier, the mineral liberation of a particle plays a vital role in separation processes.
In a perfect world, the ore particles would be completely liberated. Unfortunately, this 1s never the
case in real life applications. In the more common scenario, most of the nunerals are adequately
liberated to achieve high recovery and grade, while some remaimn as nuxed particles. This
phenomenon i1s called partial liberation. The partial liberation degree depends on many factors,
such as the processed mineral (hardness, grain size, etc.) and what kind of preprocesses (number
of crushing stages, used grinding media etc.) are used. For a given matenal or sample, the finer the
particles are ground, the higher the liberation. Economucs typically drive the compromise between
grninding energy expenditure and liberation, to select the best target particle size to achieve the best

outcome.

However, excessive gninding can produce problematic amounts of fine particles when targeting
high liberation degrees. Instead of improving the separation performance in DMS, grinding can
have the opposite effect and decrease efficiency. Ultrafine particles are referred to as shimes, with
different studies using different threshold sizes to quantify certain particles as slimes (typically
below 20 pm, often below 5 pm). Shimes can cause difficulties in separation owing to the increase
m the viscosity of the slurry, which reduces differences in particle settling speeds and, in turn, the
sharpness of a separation. The shmes can be removed from the process in a desliming step by using
hydrocyclones. In some applications, hydraulic classifiers can give a better outcome since the high
shear forces occurning in hydrocyclones tend to cause problems through further degradation of
friable munerals (Wills et al_, 2016).

A partition curve 15 a fundamental tool for assessing separation efficiency m density-based
processes such as DMS. It plots the recovery of particles as a function of their density, allowing
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the estimation of performance and comparison between different separators (Wills & Finch, 2016).
In an 1deal case (green line in Figure 2.15), all particles with a density lower than the separating
density report to the float fraction, while denser particles report to the sink fraction without
musplacement. However, in real-life scenarios, separation 1s not perfect, leading to an error area
between the real and i1deal separation lines (red and green lines in Figure 2.15). The sharpness of
separation, quantified by the slope of the partition curve, directly correlates with separation
efficiency. For reference, a perfect separation, such as that obtained using HLS, would result in a
vertical line drawn at the S.G. of the heavy liquud.

In spodumene beneficiation using DMS, partition curves help optimize the separation density by
evaluating the misplacement of spodumene and gangue minerals. Since spodumene (p = 3.2 g/cm?)
15 relatively close in density to some gangue minerals like feldspar and quartz (p =~ 2.65 g/em?),
achieving sharp separation 1s more challenging compared to high-density contrasts such as gold (p
=~ 193 g/em?®). Nevertheless, the density difference 1s still sufficient for spodumene to be
beneficiated using DMS. A well-defined partition curve with a steep slope ensures that spodumene
recovery 1s maximized while gangue misplacement i1s mummuzed, ultimately improving the
efficiency of the beneficiation process.
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Figure 215 Partition or Tromp curve (Wills et al | 2016).
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2.3.3 Centrifugal separation (Knelson type) and other proposed gravimetric

methods

DMS 1s not the only available gravimetric method for ore concentrating. Depending on the density
of the particle, the shape of the particle and the liberation, other gravimetric separation methods
can be applied.

One well-known gravimetric separation method 1s the Knelson separator which uses a centrifugal
force to form a flmdized bed and separate heavy nunerals from light ones. Up to 60 times the force
of gravity (60 g) affects the particles, with the heavier particles becoming trapped in riffles (a series
of nings located in the machine) while the lighter particles are flushed out (see Figure 2.16). The
Knelson Separator 15 typically used with material containing only a small portion (around 0.05%
by weight) of dense particles, making it 1deal for gold processing (Wills et al., 2016). Higher
amounts of heavy nunerals would tend to overfill the nffles, reducing heavy particle recovery.

Feed slurry ; section
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Figure 216 Knelson concentrator cutaway; and action inside the riffle (Courtesy FLSmidth) (Wills et al | 2016) .

In terms of operation, the feed shurry 1s introduced continuously into the concentrate cone through
a stationary feed tube. Once inside, the slurry moves to the bottom of the cone, where centrifugal
force pushes 1t outward and up along the cone wall. Flmdization water 1s injected towards the center
of the cone through multiple small holes. This water helps create a concentrating bed by filling the
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rings to their capacity while preventing the bed from beconung too compact, an action termed as
flmdization. The amount of flmdization water 1s carefully controlled to ensure the bed 1s properly
flmdized, which 1s monitored by observing the bed expansion, pressure drop across the bed, and
process parameters such as water flow rate and particle movement (Kunu & Levenspiel, 1991).
High-specific gravity particles are trapped and held within the cone, while flmdization allows
denser particles to replace lighter ones that were previously caught in the niffles. Periodically, when
the nffles have filled up, the collected material 1s flushed out of the cone into the concentrate
launder (Wills et al , 2016). Despite the energy efficiency and effective separability of Kneslon
concentrator, in the field of spodumene beneficiation 1t 1s still quite rarely used likely due to
madequate density difference between spodumene and gangue (Sahoo et al., 2024).

Another centrifugal separator 1s the Falcon concentrator, whose basic operating principle 1s the
same as in the Knelson, but with the man difference being the centrifugal force, which can reach
200 —300g for the Falcon (Kundu et al | 2023; Sepro Mmeral Systems Corp, n.d.). Thus, the Falcon
can operate with finer particles. On the other hand, in spodumene production, the particle size can
be fairly large if the liberation allows it. Thus, the Falcon 1s rarely used as a primary separator for
spodumene, but some testwork has been done on the fine particle size fraction as reported by Kundu
etal (2023) and showed that although Falcon concentrator 1s capable of producing high centrifugal
forces (up to 300 g) and 15 well suited for fine particles, 1ts performance in spodumene beneficiation
was limited. The study demonstrated that the Falcon yielded only 1.40% Li1:0 in the concentrate
from a 1.10% Li-O feed, due to the low concentration criterion (CC = 1.33) between spodumene
and associated silicate gangue minerals. This indicates that the density difference was not sufficient
for effective separation at fine particle sizes, reaffirming that Falcon concentrators are not optimal
for primary spodumene separation, although they may be useful for recovering lithtum from finer
fractions in multi-stage processes.

Jiggng 1s another gravity-based separation method where particles are sorted based on differences
m their density, size, and shape, utilizing the effect of gravitational forces (Kundu et al , 2023). A
Jig, as seen mn Figure 2.17, 1s essentially an open tank filled with water, featuring a horizontal jig
screen at the top which supports the jig bed. At the bottom, there 1s a spigot or hutch compartment
for removing heavier particles. The jig bed 1s made up of a layer of coarse, dense particles (called
ragging) placed on the jig screen, where the slurry 1s introduced. As the feed flows across the
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ragging, separation occurs within the jig bed. Particles with higher specific gravity pass through
the ragging, penetrate the screen, and are removed as the heavy product, whale lighter particles are
carried away by the cross-flow to form the light product. Key factors mfluencing this process
mclude the type, density, size, and shape of the ragging matenal Jigging relies on a pulsating
motion to enhance the natural settling of particles, causing denser nunerals to stratify at the bottom
while lighter ones nise to the top. This stratification 1s further aided by the continuous flow of hutch
water, which increases the upward water velocity and reduces the downward flow, improving the
separation process (Wills et al | 2016). Some laboratory applications for j1ig machines in spodumene
concentration have been reported by Kundu et al. (2023). Their study found that nuneral jigging
provided promismg results, ennching spodumene content up to 3.42% Li=0, although HLS was
found to be more efficient.
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2.4 OVERVIEW OF WORK ON LI GEOMETALLURGY IN HARD ROCK

Geometallurgy has become a more and more important field of study during the 21st century. One
defimtion for geometallurgy has defined it as “a scienfific discipline m which geological data,
mimng data, and processing data are co-analysed to generate useful information and knowledge to
optinuze resource profitability (David, 2019). This definition 1s one possible way to compress a
concept as broad as geometallurgy into a single sentence. However, the concept of geometallurgy
has changed its meaning and name many times throughout the history of mumng, and it wall
mevitably evolve further as time passes.

2.4.1 Brief description of geometallurgy

While the origins of geometallurgy date back to the 1500s with the early stages of nmuneral
exploration, 1t did not formally emerge as a word and as a distinct discipline until the late 20th
century (Glacialle, 2017). As many other globally recogmzed concepts, geometallurgy has a
variance in its meaning depending on who uses the word i which context. Over the tume it has
become a broad term, which can be used to describe many sorts of geological measurements and
relating them to metallurgical outcomes.

The true meaning of the concept “geometallurgy™ 1s not simply geology and metallurgy as the name
may imply, but also embraces the mining. The “geo™ in geometallurgy refers to the fact that the
ore comes from the pround while the “metallurgy™ part refers to all different ways to treat the ore
to obtain a revenue stream for the mining company (Dawvid, 2019). Geometallurgy requires co-
operation and teamwork between different disciplines and a common understanding about all
aspects of the project (David, 2019).

Geometallurgy identifies, quantifies, and models ore varability, trymg to forecast, optimize
operations, and muninuze unexpected challenges. By integrating geological, mineralogical, and
metallurgical data into an orebody block model, it can support more efficient resource management
and more sustainable mining by providing accurate ore characterization data to key stakeholders
(Becker et al_, 2016; Glacialle, 2017).
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Characterizing ore muneralogy across mullions of tonnes without statistically averaging its
variability 1s complex, requuring fast, reliable, and cost-effective measurement techmques for large
sample volumes (Becker et al , 2016). The demand for geometallurgy has grown due to declining
ore grades, increased mineral complexity, volatile commodity prices, and stricter environmental
regulations (Glacialle, 2017).

Geometallurgical methods integrate geological and metallurgical data to develop accurate three-
dimensional orebody models, allowing for precise predictions of processing performance and
reducing techmical and operational risks. By tailoring processing methods to ore characternistics,
this approach enhances production management, improves scheduling flexibihity, and mimmizes
both environmental impact and unexpected production challenges, ultimately supporting the
sustamability and economic viability of miming operations (Butcher et al., 2023; Domuny et al ,
2018; Frenzel et al_, 2023).

Dominy et al. (2018) proposes a framework for a strategic geometallurgical model. It consists of 4
stages: dnlling, testwork, data management and modelling. At the first stage, geometallurgy can
be applied for example in core logging, core imaging or down-hole measurements. These actions
result in geotechnical and geophysical mformation, as well as first knowledge of rock type and
possible alteration. The testwork stage produces more detailed information about for instance
mineralogy (metal/mineral deportment), physical charastenistics (comminution ability, hardness)
and recovery (flotability, leachability, gravimetric separation performance). The third stage covers
data management where a database 15 created out of the obtained data. The data validation 1s also
a critical step and performed in tlus stage. The fourth and last stage 1s modelling. Here the created
databases are combined to form models. Different model types include geological modelling,
geostatistical modelling and domam analysis. These models can mnclude information about geology
(grade), specific gravity, throughput, recovery and deleterious elements. Depending on the nature
of a model, they can be used for numerous purposes, such as financial planmng and nune

scheduling (Domuny et al_, 2018).

The value of geometallurgy arises from more informed resource-to-reserve conversion, followed
by improved understanding of orebody knowledge, and finally to more adaptable mine plans and
ultimately increasing the project's net present value (NPV) (Domuny et al., 2018). The required
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teamwork between different disciplines can also yield non-tangible dividends since different
parties are working together and sharing knowledge for common success (Donuny et al., 2018).

2.4.2 Relevant studies on lithium involving geometallurgy

Several studies have explored the application of geometallurgical methods i hithum ore
processing, particularly in hard rock deposits such as spodumene-bearing pegmatites. These studies
mainly focus on mineralogical charactenization, ore vanability, and optimization of beneficiation
techmiques.

A study on the Greenbushes pegmatite deposit (Australia) utilized drill core matenials and
hyperspectral data to analyze the nuneralogical evolution of spodumene-rich zones (Wells et al |
2022). TIMA muneral mapping identified textural changes, spodumene liberation, and elemental
variations across ore zones. The study found that spodumene occurs mainly as coarse, elongated
grains or smaller irregularly shaped crystals. The efficiency of spodumene liberation 1s influenced
by the degree of mtergrowth with quartz and the extent of its alteration. A key observation was the
transition from spodumene-rich to sodium-rich albite zones at depths exceeding 120 m, which
affects beneficiation performance These insights help refine recovery strategies by aligning
muneralogical characteristics with processing techmques (Wells et al | 2022).

An assessment of spodumene deposits in Mt Cattlin, Bald Hill, Greenbushes, and Pilgangoora (all
m Austrahia) mvestigated spodumene liberation and its impact on beneficiation. The study
demonstrated that spodumene recovery rates exceeding 90% are possible due to its coarse nature
m quartz-feldspar matrices. However, partial alteration and spodumene-quartz mtergrowths reduce
separation efficiency, requiring finer grinding or altemative sorting methods. The findings
emphasize the importance of characterizing spodumene textures to optimuze flotation and density
separation processes (Wells et al | 2022).

A study by Wells et al. (2022) on the thermal behavior of spodumene-bearing pegmatites examined
calcmation and sulfate roasting effects on lithium recovery. It was observed that mica
encapsulation, diffusion constramts, and mcomplete phase transformations linit extraction
efficiency. The study lughlighted that spodumene a- to B-phase conversion occurs between 1050
and 1100°C, and that excessive iron or manganese oxidation can impede roasting efficiency (Wells
et al , 2022). These findings are relevant for refimng thermal treatment parameters to improve
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spodumene processing, but more importantly i highlhighting which minerals should be rejected or

even avolded by careful choice of mined zones.

Guural (2018) explored geometallurgical methods for lithum pegmatite deposits, focusing on the
Keliber Lithium Project in Finland. The study used image analysis, scanming electron microscopy
(SEM), and machine learning to classify spodumene ores into twelve textural categories based on
macroscopic and microscopic features. A machine learning model (Random Forest) was applied to
predict metallurgical performance n flotation based on these textures, improving lithium grade
estimation through automated image segmentation.

A study by Koch (2019), mvestigated vanous techmques for lithrum ore characterization
Automated drill core scanming using machine learning and 1mage analysis was applied to classify
muneral textures and estimate modal mineralogy from dnll core samples, improving orebody
modeling. Additionally, the study includes the use of different nuneral texture classification
methods to increase the accuracy of muneral liberation assessments. The research also discusses
different ore types based on mineral composition, grain size distribution, and processing behavior,
leading to improved predictions for grinding and flotation efficiency. The study also presents a
method where mineralogical, geophysical, and chemucal assay data are combined using automated
dnll core imaging and machine learming to build a geometallurgical model that predicts lithium
recovery based on ore texture and grain size distribution. A process simulation tool (HSC Sim) was
also used to optimize flotation and leaching processes, demonstrating how predictive modeling can
support spodumene processing strategies. Table 2.2 summanzes the key aspects of the studies
reviewed, mcluding the analytical methods used, the properties assessed, and the predicted
metallurgical outcomes.



Table 2.2 Summary of the key aspects of the studies reviewed.

Analytical Properties assessed | Metallurgical Source
methods used outcome predicted

SEM, hyperspectral Mineral texture, Lithmm deportment, Wells et al. (2022)
maging, TIMA spodumene liberation, orebody variability,

mineral mapping elemental composition flotation efficiency

SEM, wvisual Grain size, mineral Mineral processing Guiral (2018)
assessment, machine texture classification behavior, spodumene

leamning flotation recovery

Automated core Ore texture, modal Orebody modeling, EKoch et al. {2019)
sCcanning, image mineralogy, grain size mineral liberation,

analysis, machine distnibution processing optimization

leamning
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2.5 ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING
APPLICATIONS IN MINING

Despite the fact that it 1s discussed 1n media almost every day, the ease of falling into a pitfall while
mterpreting and defining what 1s artificial intellipence (AI) can be deceptive. One could use a
simple and concise definmifion for AI such as “an intelligent machine or device capable of
performung tasks and solving problems autonomously”. However, upon closer examunation, the
defimtion 1s not a straightforward task to complete after all and requires a deeper understanding of
humamity and answers to questions like “What 1s intellipence?” or “How can one measure
mtelligence?” (Ertel, 2024). The purpose of this chapter 1s not to provide a defimtion of AI but
rather to explore basic concepts and functions of different Al related applications particularly those
relevant to the context of modem-day miming and muneral processing.

2.5.1 Image processing

An image can be defined as a two-dimensional function, f{x,)), where x and y are spatial
coordinates, and the amplitude of function f at any pair of coordinates (x,y) 1s called the intensity
or gray level of the image at that point (Gonzalez & Woods, 2018). Digital image processing refers
to the mampulation of digital images using a computer. A digital image consists of a finite number
of indrvidual elements, each with a specific location and value. These elements are known as
picture elements, image elements, from which the words pels and pixels onginate. Among these
terms, pixel 1s the most commonly used to refer to the individual components of a digital image
(Gonzalez & Woods, 2018).

It 15 hard to distingmish between image processing and other related disciplines, such as image
analysis and computer vision. Thus, there 1s no general agreement between authors in terms of
where the image processing stops and becomes something else. In some cases, image processing
15 defined as a discipline where both the mput data and output of a process are images but even this
15 not a comprehensive definition and may limit and become a more artificial boundary than the
whole truth (Gonzalez & Woods, 2018). Another mentality regarding the image processing
defimtion 15 less restrictive and goes as follows: “An image 15 being processed as soon as

mformation begins to be extracted from 1t.” (Maron, 1991).



46

Regardless of the exact definition of image processing, images are typically processed due to the
need to improve some quality of the images 1 order to get more or better information out of it.
Marion (1991) presents a simple list of things that can be seen as reasons to do image processing.

e The quality of an image may need improvement, either subjectively, to enhance 1ts
visual appeal, or objectively, by increasmg confrast, sharpening details, clanfyng
spectific areas or shapes, or reducing noise and interference that can hinder information
clarity.

e Enhancing image quality can also mmvolve restoring a bad image to its “ideal” state. This
mcludes comrecting geometric or photometric issues from camera, mimnuzing
fluctuations caused by atmospheric turbulence, and reducing blurnness from camera
shake Such restoration techmques often ufilize various linear and non-linear filters,
mcluding inverse filters.

e In some cases, the goal 1s to detect specific shapes, contours, or textures while
disregarding other image details. This process, known as detection, 15 a fundamental
problem in signal theory, where the challenge 1s to extract a known signal from a
background of noise.

* Image processmg involves managing large data volumes, where compression optimizes
transmission, storage, and equipment use wiile preserving storage quality. This field
covers coding, data compression, and 1mage approximation.

e Image processing enables machines to analyze and interpret images, forming the basis
of machme vision and of the application of AI to such tasks. It mvolves extracting
shapes, contours, and textures, segmenting images, and recognizing patterns to support
decision-making mn robotics and automation.

Naser1 & Rezae1 Nasab (2023) utilized image processing to automate mineral identification in thin
sections. By analyzing color and texture features from images captured under polarized and
ordinary light, they applied segmentation and classification techmques. Their machine learming
based model aclieved 99.25% accuracy, demonstrating that image processing enhances mineral
segmentation, reduces manual effort and improves precision mn geological studies. Another study
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showed a usage of image processmg application m mineral processing plant where 1t was used to
monitor froth flotation, using a segmentation method to measure the bubble size and froth stability
(Ouanan & Abdelwahed, 2019).

2.5.2 Superpixel segmentation

Segmentation 1s one among many image processing methods. Segmentation divides the original
mmage into smaller images, called sub-regions or sub-objects from which the relevant information
15 extracted. The accuracy of the segmentation plays a key role mn the final success or failure of the
further image analysis (Scott & McCann, 2005).

Image segmentation techniques often rely on discontinuity and similanty. A discontimuty usually
represents an abrupt change 1n intensity, an edge for example. Similarity, on the other hand, can be
seen as a region or area whose properties and characteristics are the same based on a predetermined
set of criteria (Scott & McCann, 2005). One of the promising methods of segmentation 15 called

superpixel segmentation (L1 & Chen, 2015).

The principle behind superpixel segmentation relies on a method where the standard pixel grid of
any image 1s replaced by a collection or group of pixels into pnmitive regions and areas which are
more perceptually meaningful i1f comparing with individual pixels. The overall objectives of this
approach are to reduce the computational load and improve the performance of segmentation
algorithms by mumimizing the wrrelevant details (Gonzalez & Woods, 2018). The following
examples of superpixel segmentation charactenistics were originally presented by Gonzalez &
Woods (2018). One important aspect for feature extraction 1s how detailed the processed image 1s.
In superpixel segmentation, the main factor that influences the number of details 1s the number of
superpixels. The first example in Figure 2.18a) represents an image of size 1756 x 1790 (3 143
240) pixels including various levels of information and details. Figure 2.18b) illustrates the same
mage represented by 3000 superpixels and their boundanes (the boundaries are shown for
reference, they are not part of the data), and Figure 2.18c) 1s the superpixel image without
boundaries.

One mught argue that the level of detail in the superpixel image 1s sufficient to fransmit the same
mformation as the original. However, the superpixel version consists of only 3000 basic umits,
compared to 3 143 240 m the original Whether this representation 1s “adequate™ depends on the
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specific application. If the goal 1s to describe the image at a general level of detail, then 1t 1s
sufficient. However, if the objective 1s to detect fine imperfections at the pixel level, then it 15

clearly inadequate.

One key requirement for any superpixel representation 1s boundary adherence, meamng that the
edges between regions of interest must be preserved in the superpixel image This is clearly
demonstrated mm Figure 2.18c) where the boundaries remaimn well-defined. For mnstance, observe
how distinct the edges are between the background wall and the table.

Figure 2.18 a) Image of size 1756 x 1790 (3 143 240) pixels. b) The image consists of 3000 superpixels, with the
boundaries between them (in white) overlaid on the superpixel image for reference — the boundaries are not part of
the actual data. c) Superpixel image
As another example, we present the results of brutally reducing the number of superpixels to 1000,
500, 250 and 25. As shown in Figure 2.19, this reduction leads to a significant loss of detail
compared to Figure 2. 18a). However, the last two images still retain most of the essential details
of the origmal image. One noticeable difference 1s that the spruce tree and the snowman can only
be seen i the last two images, whereas the recognition of these two details becomes almost
mmpossible in the first two images. The first image 15 useless i terms of recognizing the object in
the image, since 1t 1s impossible to tell 1f there 1s a coffee cup or not. Despite this loss of fine details,
the boundaries between the main regions and the overall structure of the image remain mtact as
can be seen from the first image where the boundary between background and the cup 1s well

defined.
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Figure 2 19 Top row: Results of using 25, 250, 500 and 1000 superpixels in the representations of Figure 2 18a). As
before, the boundaries between superpixels are overlaid on the image for reference. Bottom row: Superpixel images.
Related studies by Latif et al. (2022) and Maifre et al. (2019) explored the use of superpixel
segmentation m miming applications. Maitre et al. (2019) applied this method to mineral grain
identification from optical microscopy images of sand. They found that superpixel segmentation
mproved gramn 1solation and classification accuracy when combined with traditional machine
learning models. However, convolutional neural networks (CNNs) underperformed due to feature
extraction challenges and dataset alignment 1ssues. Theiwr findings highlighted the importance of
high-quality segmentation for rehable automated mineral analysis.

Latif et al (2022) extended this approach by mtegrating deep learning models, such as ResNet,
achieving a validation accuracy of 90.5%, outperforming conventional machine learning methods
like AlexNet and GoogleNet. Their study demonstrated that deep learning benefits significantly
from precise segmentation, though preprocessing remains crucial for maintaining accuracy. Both
studies reinforce the value of superpixel segmentation m mineral grain classification, showing its
potential to enhance automated analysis while also emphasizing the need for further refinements
m dataset alignment and segmentation quality.
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2.5.3 Machine learning

Machine learming (ML) 15 one of the most widely used and trending AT technologies in the modem
day world (Suyal & Goyal, 2022). For example, a routine everyday action, such as a Google search,
utilizes machine learming even if the user might not know this. Google takes the data based on
user’s search and by using machine learming, it shows personalized advertisement and search
results accordingly (Mahesh, 2020; Suyal & Goyal, 2022). The same principle 1s applied when
searching from YouTube for instance.

In a nutshell, ML 1s a small part of artificial intelligence. The principle of an ML system (Figure
2.20) 1s simple: the algorithm requires input data to learn from and ultimately produces an output.
In ML, a computer program 1s traimned using mput data, and it then produces output data based on
that mput (Suyal & Goyal, 2022). However, machine learning 1s not just a computer or algorithm
but can also be considered as a field of study that focuses on developing algorithms and statistical
models that enable computers to carry out specific tasks without direct programming (Mahesh,
2020).

ML model training

Labeled training data

-— Machine

b F "

| @.; learning
: | models

Unknown test data

Correct prediction

af o) a < fa
x|l /I X

Prediction of the model

\Hn

Successfull model

Figure 2 20 A basic principle of ML algorithm

Machine learning has a wide spectrum of applications and places where it can be used. Typical
uses of ML are data miming, image processing, predictive analysis (Mahesh, 2020). ML 1s a more
and more common tool in the modem-day miming industry where 1t 1s used for countless purposes.
Its applications range from modelling the mineral grade of a given deposit (Kaplan & Topal, 2020)
to different applications of mapping of muneral prospectivity (Leite & de Souza Filho, 2009;
Rodriguez-Galiano et al , 2015), geological mapping (Cracknell & Reading, 2014; Harvey &
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Fotopoulos, 2016), identifying geochemical anomalies (Zuo, 2017; Zuo & Xiong, 2018), drill-core
mapping (Acosta et al, 2020; Contreras et al |, 2019), mineral grain recognition (Latif et al | 2022;
Maitre et al , 2019) and segmenting nuneral phases in 3-ray microcomputed tomography data
(Chauhan et al , 2016; Wang et al , 2015).

Despite the large variety of machine learming applications, there 1s not just one ML algorithm, but
different applications require differently built algorithms to achieve the best outcome. As a generic
concept, ML 1s well-known among various applications, but when diving under the surface, the
diversity of different ML structures and methods are revealed. Figure 2 21 represents different
types of ML algorithms and gives some examples of each type. The subcategories are presented in
order of prevalence, with the most common types on the left and the least common types on the

right (Mahesh, 2020).
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Figure 2 21 Different machine learning algorithms (modified from Mahesh, 2020).

M Naive Bayes

One widely used sub-category of ML 1s deep learning (DL), which differs from traditional machine
learning 1n 1ts ability to automatically extract complex patterns from raw data using deep neural
networks. Unlike ML, which often requires manual feature selection, DL learns hierarchical
representations, making 1t particularly effective for processing high-dimensional data such as
mmages, text, and speech (Jamesch et al | 2021).
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2.5.4 Supervised learning

As stated earlier, supervised learming 1s the most common and essential techmque in the field of
machine learning. The name refers to the i1dea of a “supervisor” who instructs the learming system
what labels to attach to the traiming examples (Cunmingham et al., 2008). A crifical feature of
supervised learning 1s the availability of annotated tramning data, where labels are typically assigned
mto particular classes in identification and classification problems. These algonthms generate
models from the traming data, which can then be used to classify other unlabeled data by learning
a mapping between input and output vanables (Cunmngham et al | 2008; Mahesh, 2020). In this
study, supervised learming was selected because the classification of drll core images into
muneralogical classes (spodumene, gangue, marker, and undetermined) requires labeled datasets
denived from expert geological annotations. The chosen models (CART, k-NN, and Random
Forest) are well suited to this task as they are relatively simple, computationally efficient, and
require less traiming fime than more complex deep learming architectures, making them practical
for iterative experimentation and validation. Moreover, these algorithms can effectively handle
heterogeneous features extracted from RGB images, such as superpixel color, texture, and shape
descriptors, while also providing interpretable results that are valuable in geometallurgical
applications. This approach 1s consistent with the methodology of Maitre et al. (2019), who applied
similar supervised learning models 1n a comparable mineral classification task.

Supervised machine learning models are those who need external assistance or aid to work
properly. Figure 2 22 demonstrates this need since the mput data 1s divided into two categories:
tramning data and test data. As 1s typical of supervised learning, the traiming data 1s labeled. This
means that a human has analyzed the data and categonized it into different classes based on 1its
features. Therefore, the training data can be considered perfectly or absolutely correctly classified

(Mahesh_ 2020).
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Figure 2.22 Supervised learning workflow (modified from Mahesh. 2020 ).
Test data m turn can or cannot be labeled depending on the phase of model implementation. In the
early phase, where supervised learning models are being created, the test data also requires labels.
This way, the performance of the model can be assessed, for example by using typical metrics such
as overall accuracy and recall However, after the learning of the model 15 finished and the adequate
accuracy 1s obtained, the labeling of the test data 1s not necessary anymore. In a real application,
the model predicts results for new, unlabeled inputs, and these results may be left without manual
verification unless there 1s a specific need to check and update the model with new, correct answers

(Mahesh_ 2020).

2.5.5 K-Nearest Neighbour (k-NN)

The k-Nearest Neighbour (k-NN) 1s a simple supervised machine learning algorithm (Halder et al |
2024; Mahesh, 2020) which 1s also considered as an instance-based learming model (Aha et al |
1991; Halder et al , 2024; Mahesh, 2020). It 1s typically seen as a subcategory of supervised
learning since labeled tramning data 1s required. There are also other Nearest Neighbour methods
besides just k-NN, but k-NN 1s most used and well known of these methods (Halder et al_, 2024).

The popularity of Nearest Neighbour classification 1s based on the simplicity and adaptability of
the model The classes are classified based on the class of their nearest neighbour. Typically,
classification takes into account more than just one neighbour and thus the name 1s presented as a
k-Nearest Neighbours, where k stands for the number of neighbours which are used for
classification (Cunmingham et al_, 2008).
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The k-NN method 1s sometimes called a memory-based classification since it requires traiming data
at mun time, 1 e. data needs to be in memory at run time. Because induction 1s delayed to run-time,
it 1s considered a lazy learning technique. Other names for this method are example-based or case-
based classification, since the classification 1s directly based on the tramming examples
(Cunningham et al., 2008).

The operating principle of Nearest Neighbour methods are based on the likelyhood of stnmlarity. It
assumes that similar data points tend to be located close to each other in space. Therefore, the
prediction for a new data instance 1s made based on its proxinmuty to existing instances in the traming
set (Halder et al |, 2024). Figure 223 presents a simple, two-class problem m a two-dimensional
feature space — an example of the basic principle of the k-NN model. Figure 2 23 shows feature
classes O and X as well as q; and q; which are data pomts (features) to be classified. The first step
15 to decide the number of k (number of nearest neighbours) which are used to classify new mput
data. After that, the distances between the 3 neighbours are calculated, since in the example in
Figure 2 23, the k was chosen as 3. Distances between mput data (q; and q;) and their nearest
neighbours are shown as black lines. The case of classifying q; 1s clear, all of the 3 nearest
neighbours belong to a class of O, meaming the qi will be classified as an O as well. Classification
of qz, however, 1s more complicated. Two nearest neighbours for q2 are members of class 3{
whereas one neighbour belongs to a class of O. In this case, the classification 1s not as
straighforward as earlier, but the class 1s chosen by voting between neighbours. Results can be
resolved by simple majonity voting or by some other voting methods, such as distance-weighted
voting where the distance between q2 and the neighbour 1s weighted based on how close they are
each others. Also, the distance from the “Decision surface” has an impact on classification, since
the closer the mnput data 1s to the surface, the more confusing the classification will be for the
algorithm (Cunningham et al., 2008; Halder et al_, 2024).
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Figure 2 23 A simple example of k-nearest neighbour classification using 3 neighbours. (Modified from Cunningham
et al . 2008).

As discussed earlier, the k-NN method 1s very simple and easy to implement into applications, only
the value of k and the distance metrics, such as Euclidean distance (the most common one),
Manhattan distance or Minkowsk: distance needs to be decided. Despite the advantages of this
method, there are also some limiting factors which may not make it smtable for all purposes. For
mstance, the selection of optimal value of k might be challenging in some cases. Computational
efficiency and hugh dimensional data may make the algonthm extremely slow in the case of large
amounts of mput data. Also, since k-NN 1s based on the nearest neighbors, 1t 1s sensitive to noise
and outliers in the data (Halder et al_, 2024).

Maitre et al. (2019) investigated the use of computer vision and machine learning for the automated
recognition of nuneral grains from optical microscope images. Their study proposed an alternative
approach using segmentation techmques, feature extraction, and supervised machine learning
algonithms, mcluding k-Nearest Neighbors. The k-NN method, being a non-parametric and
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mstance-based learning algonithm, was assessed for 1ts effectiveness mn classifying mineral grams
based on extracted features. While k-NN demonstrated reasonable classification performance, it
had limitations in handhing large datasets efficiently due to its reliance on distance calculations for
each new classification. The study concluded that machine learning can effectively identify
nmunerals in particulate materials, offering a faster and more cost-effective alternative to traditional
methods (Maitre et al_| 2019).

2.5.6 Random Forest (RF)

The Random Forest (RF) algorithm was first proposed by Breiman (2001). Later this algorithm
became extremely successful as a general-purpose classification method but also a powerful tool
m regression problems (Biau & Scornet, 2016). This method, which integrates multiple randomly
generated decision trees and combines thewr predictions through averaging, has demonstrated
outstanding performance in scenarios where the number of vanables sigmificantly exceeds the
number of observations. In addition, RF 1s adequately versatile to be used in large-scale problems.

In the same way as k-NN, RF 1s part of the supervised learming fanuly and thus 1t requires labeled
training data for the best performance. The success of RF traces 1ts roots to the ability of the method
to handle a wide range of prediction problems by only adjusting a few parameters. Furthermore,
the advantages of this method include a generally recognized high overall accuracy, even in cases
where the number of high-dimensional features exceeds the number of samples (tramming data)
(Biau & Scomet, 2016).

As the name implies, a random forest 1s an ensemble of decision trees. Decision trees, on the other
hand, are different mutually independent classifiers which classify subsets of data presented to
them (Parmar et al | 2018; Song et al , 2015). Labeled tramming sets are first randonuzed by using
so called “bagging™ method (Bootstrap Aggregating). The basic principle of this approach 1s to
randomly divide the onginal traiming data into subsets. In these subsets, the order of the data 1s
random, meamng there can be multiple 1dentical samples, while some samples from the original
data may not be present at all. Each of these randomly different subsets 1s then used to tram their
own classifier (decision tree). In a RF model, only a random subset of features 1s used for splitting
the nodes (points where data 1s divided into different branches) of each tree, rather than all features.
This increases the diversity of the model and reduces the correlation between the trees. After each
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decision tree has reached a conclusion, the final classification result 1s obtained by voting among
the trees. Typically, classification tasks use a so-called majority vote, where the most abundant
class wins. However, in the case of regression problems, the voting result 1s usually deternuned by
averaging the different outcomes from each tree (Cunningham et al, 2008; Parmar et al., 2018;
Song et al, 2015). Figure 2.24 illustrates the typical structure of the workflow of the Random

Forest classifier.
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Figure 2 24 The structure of the Random Forest classifier (Modified from Song et al | 2015).

The popularity of RF 15 most likely due to its high efficiency in terms of processing power.
Additionally, the randomuization in the Random Forest algorithm greatly improves the classifier’s
performance. Since each decision free 1s constructed quickly, the process of building the entire
forest can be parallelized, leading to a sigmificant improvement in classification speed (Song et al ,
2015). However, despite the advantages of this model, 1t has its linutations. Firstly, RF 1s quute
strict m terms of nput data. It 1s bult to work on tabular data, so other types of input, such as
mmages, audio, and text, can be challenging. Secondly, RF struggles with categorical vaniables that
have a large number of umique values (hugh-cardinality categorical variables). When there are too
many unique categories, the model may overfit or require excessive computation to find
meaningful patterns. Thirdly, RF 1s less effective when dealing with imbalanced datasets, where
one category 1s much rarer than others. In such cases, the model tends to favor the majonty class,
leading to poor prediction accuracy for rare cases (Zhu, 2020).
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Hood et al. (2018) apphied Random Forest for geochemical classification as a way to link altered
rocks to their original protoliths. Traditional methods struggle with large datasets, so the study used
k-means clustering for grouping protolith samples and RF classification to identify altered samples.
RF proved effective, as it handles mgh-dimensional data, captures vanable interactions, and
provides confidence levels. The method offered a faster and more objective alternative to
traditional geostatistical approaches, though 1ts success depends on high-quality traimning data and
expert validation (Hood et al , 2018).

2.5.7 Classification and regression trees (CART)

Classification and regression trees (CART) 1s a supervised machine learming algorithm which 1s
not as widely used or well known as the two other algorithms presented earlier. The maimn principle
15 based on binary decision tree structure which 1s bmlt from traming data mn a recursive way
(Maitre et al_, 2019). The advantages of this algorithm are the fact that it does not need adjustable
parameters or settings to work. The mnput data can also be numerical values as well as categonical
attributes of the dataset (Maitre et al_, 2019).

The algorithm’s ability to reach a final conclusion (final decision tree) 1s achieved by following
two steps: (1) the construction of the maximum tree and (2) the choice of the right-sized tree
(reduction of the maximum tree). In a nutshell, the procedure follows the old rule of divide and
conquer, which is used to construct the classification tree (Maitre et al | 2019).

As said before, CART analysis uses binary recursive partitioning, meaning each decision tree node
splits mto two child nodes. Thus process repeats recursively, further dividing the data. “Partitioning’
refers to segmenting the dataset into distinct groups. Lewns (2000) onginally applied this approach
m a different context, but the same classification principle can be adapted to mineral processing.
Here, a decision tree model 1s used to classify spodumene particles in a DMS process based on
particle size and density, ensuring efficient separation of valuable minerals from gangue.

In the given example (Figure 2.25), a classification tree 1s bult for spodumene sample
classification. The root node (Node 1) contains the feed sample, and first splits based on particle
size. As shown in Figure 2 25, feed with a particle size < 0.5 mm 1s placed in terminal Node -1 and
sent directly to flotation. The remaiming feed moves to Node 2, where the next criterion 1s particle
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density. Particles with a density < 2 85 g/em® go to termiunal Node -2 and are sent to tailings, while
those with a density > 2 85 g/em® go to termunal Node -3 and end up in the concentrate.

No Yes

Class = Feed
article = 0.5m

Ncr;e -1
Class = mo
Flotation ‘
Mode —_3 MNode -2
Class = Class = Tailings
Concentrate

Figure 2 25 The classification and regression tree which results from analysis of the spodumene classification
(Modified from Lewis. 2000 ).

Node 2
Class = DMS
n< 2,85 g/lem’

Figure 2. 26 below visually 1llustrates the CART approach. The root node, which includes feed, 1s
split into two. In the first figure on the left, a horizontal line 1s drawn at a particle size of 0.5 mm.
The feed below this line 1s placed in the first termuinal node (Node -1) and sent straightly to flotation
circuit. The remaming feed material 1s further divided by another line (in the second figure on right)
at a particle density of 2.85 g/cm’. Those on the left of this line are discharged to tailings, while
those on the night are considered as a concentrate. It 1s important to note that this second split only
applies to the second parent node (Node 2). While this partitioning 1s easy to visualize with two
predictor variables, it becomes difficult or impossible when dealing with five, ten, or more
predictors (Lewis, 2000).
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Figure 2 26 A visual illusiration of the CART approach (Modified from Lewis, 2000).

In addition to the previous text, other advantages of CART are the ability to handle missing data
effectively. Instead of excluding cases with nussing predictor varniables, CART uses surrogate
vanables that provide similar information, ensuning that all data points contribute to the analysis
and predictions remain reliable. Secondly, the CART analysis 1s an efficient machine learming
method that requires nunimal mput from the analyst compared to other multivanate models, which
often demand extensive adjustments and mterpretation (Lewis, 2000). Despite these advantages,
the algorithm has also some disadvantages, such as 1t 1s not widely recogmized, and traditional
statisticians may be resistant to adopting 1t, partly due to skepticism about tree-based methods
based on past shortconungs (Lewis, 2000).

Research by Ordofiez-Calderon et al. (2018) applied the CART model to predict alteration facies
m the Rosemont Cu-Mo-Ag skam deposit using geochemical data. A dataset of 882 dnll core
samples was used to tramn various machine learning models, including CART, to classify alteration
types. The CART model helped segment the dataset by recursively splitting 1t mnto decision nodes
based on geochemical vanables. The results showed that CART provided a clear, interpretable tree
structure that helped wisualize the classification process. The model successfully identified
alteration facies, enabling improved geological modeling compared to traditional visual core
logging methods (Ordofiez-Calderon & Geleich, 2018).
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CHAPTER 3 MATERIALS AND METHODS

In this study, a combination of existing data from Patriot Battery Metals (PBM), experimental work
by SGS and the author, and data analysis techmques 1s used to investigate the link between drill
core data and HLS test recovery. The methodology includes experimental test work conducted in
a laboratory environment as well as numerical modelling and the use of machine learning

The first part of this study 1s based on drill core logging data obtained from geologists at PBM to
predict the HLS response. The dnll core matenial originates from the CV5 spodumene-bearing
pegmatite deposit mn the Shaakichmiwaanaan (formerly known as Corvette) Property, Quebec,
Canada. The dataset includes a comprehensive charactenization of 11 dnll cores (Table 3.1), which
were analyzed through multiple techmques. The characterization involved wisual geological
assessment, measured geotechnical parameters, chemical analysis using ICP-MS, and
muneralogical analysis via XRD (the latter two being conducted after crushung and grinding of core
sections). A detailled sample charactenzation i1s presented mm a confidential test work report
(Aghanurian & Imeson, 2023). Additionally, the company conducted size-by-size basis HLS tests
on 16 composite samples (PBM’s test work), from the CV5 deposit in an external laboratory, and
the HLS Li recovery to sink tests were performed on material crushed to a Pjgp of 9.5 mm. A

detailed discussion of these results 1s provided in the following sections.
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Table 3.1 The 11 drill core samples from CV5 deposit.

Composite No. Drll Hole ID Interval (m) LixO (%)

Comp 1 Ccv22-017 9.75 1.4
Comp 2 Ccv22-019 10 1.16
Comp 3 CV22-025 10 1.14
Comp 4 CV22-035 10.05 1.33
Comp 5 CV22-038 10 1.68
Comp 6 CV22-040 10 0.67
Comp 7 CV22-042 10.05 1.57
Comp 8 CV22-048 934 1.35
Comp 9 CV22-052 10 204
Comp 10 CV22-054 10 1.2
Comp 11 Cv22-070 10 273

Another part of the dnll core logging process at PBM’s facilities 1s capturing images of each logged
dnll core. These images can later be used if specific details need to be reviewed. There are two
types of images taken: dry images and wet images. Depending on the nunerals in question,
moistenung the drill core surface can improve their visibility. Both wet and dry images are taken
after the geologist has logged the cores, and thus, these images also contamn notes and marks (with
colored grease pencils) on the core surfaces. In this study, only wet images are used due to better
visibility of mineral grans. An example of these images 1s shown 1 Figure 2 5. These images were
taken with an optical camera in a chamber with constant lighting conditions, producing RGB
mmages with a resolution of 4149 x 2780 pixels, weighing 3.9 MB each.

For HLS testing in the course of this thesis, the reagent used was LST heavy liqud, which 1s a
homogenous lithium heteropolytungstates solution with a baseline (1itial) density of 2.855 g/em3.
This reagent has a low toxicity, 1s yellowish clear in color and 1s easily diluted with water (LST
Heavy Liqud SDS, 2016). It 1s also said to be easy to use at room temperature if the desired
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de(Viklund & Aquilina, 2018)/cm3 (Viklund & Aqulina, 2018). HLS tests by SGS were conducted
using methylene 10dide diluted with acetone on 11 composite samples representing the variability
of the CV'5 deposit.

3.1 DATA COMPILATION AND STANDARDIZATION

The aim of a geometallurgical model 1s to establish a link between the ore charactenistics and the
nmuneral processing results. For example, defining the link between grain size and nuneral liberation
or mineralogy and crushability. In order to determune these parameters during drill core description
for an entire deposit, a fast, cheap and easy geometallurgical tests need to be developped 1n order
to define domains within the deposit that have distinct characteristics. In our particular case, the
objective 1s to analyze the dnill core logging data more thoroughly and identify correlations with
HLS test recovery. The standard approach often includes the creation of a numernical model, that
helps determine the dependencies in question.

The given dataset for the 11 composite samples consists of 11 core intersections, each contaiming
approximately 10 meters of core from different depths. These core intersections are within
pegmatite dykes that have been visually characterized by geologists in a systematic way. Core 1s
usually sampled at approximately 1-meter intervals for chemucal and XRD analysis. PBM
geologists follow a standardized method for loggmng to nunminuze discrepancies between
mdividuals. A way they do this 1s by providing semu-quantitative classification ranges for certain
geological features, such as grain size (<2 mm, 2-7 mm, >7 mm) or inclusions in spodumene
(<25%, 25-50%, >50%). Other parameters, such as RQD (Rock Quality Designation) and fracture
frequency, are quantitative and therefore should not vary between geologists (see section 2.1.2).

As part of standard practice in this study, data standardization 1s applied for each parameter prior
to analysis. In addition, certain characteristics such as spodumene alteration mtensity are recorded
as estimated ranges rather than fixed values. For example, alteration intensity may be given as 5—
20%, meaning the actual mtensity likely falls within that interval. Considering the highly vanable
grain size and texture in the pegmatite dykes, evaluation of some of these parameters can be quite
challengmg. Weighted average values for the core intersections used to create the composite
samples were calculated in order to compare with HLS test results.
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The construction of the database began by averaging the available vanables, such as “Spodumene
alteration intensity” simply by taking the average of the class. For imnstance, if the value was 5-20%,
the average would be 12.5%. Next, all the data from the drll core intersection 1s weighted averaged
since the length of each sample 1s not always 1 meter in length. The formula for weighted average
(WA) calculation 1s presented as follows:

_ SUMPRODUCT (length of core, variable)

WA
SUM(length of core)

(3.1)

In a nutshell, equation 3.1 calculates the weighted average of the "vanable", where each "length of
core" serves as the weight for 1ts corresponding "vanable" value. This approach ensures that the
confribution of each "variable" value to the average 1s proportional to its associated core length.

While analyzing data obtained from geologists, 1t 15 noteworthy that all the variables should not be
handled the same way due to the different number of factors affecting each vanable. For mnstance,
m terms of calculating the weighted average based on the length of the core, the variable “RQD",
which 1s an indication of the hardness of the rock, has only one affecting factor: the length of the
core. However, that 1s not the case for every vaniable, and thus, for example, 1 order to calculate
a comparable weighted average for spodumene percent dependent parameters such as “Spodumene
Alteration Intensity”, “Spodumene Inclusion %" and “spodumene grain size”, the length of the
core and the percentage of spodumene need to be taken into account. In other words, the core length
for each sample vaned, as did the percentage of spodumene. Therefore, these multifactorial
variables need to be standardized to ensure comparability with other variables. Consequently, the
standardization method for these vanables 1s as follows for the ‘Spodumene Alteration Intensity’

sample:

Y.(Spd Alteration intensity - Length of the core - % of spodumene)

Stantardization = 32
antardization Y.(length of the core - % of spodumene) (32)

Equation 3.2 calculates the standardized value of spodumene percent dependent parameters, where
each value 15 weighted by both the core length and the spodumene percentage. This method ensures
that the standardization accounts for vanations in both core length and spodumene concentration,

providing a more representative measure.
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3.2 EXTERNAL HLS TEST WORK DATA

Additional characterization test work was conducted on behalf of PBM 1n an external laboratory
for 16 samples (different from the mentioned 11 cores composite samples) from the CV5 deposit.
The external laboratory provided a report contaiming data of performed HLS tests and the XRD
mfo. The goal was to use these data to get a better understanding of spodumene liberation and how
the lithium 15 distributed between different size fractions as well as validate the performance of the
prediction models. Table 3.2 summarizes the origin of each sample, the operator responsible for
the HLS testing, and the heavy liquid used.

Table 3.2 Sample origin, test operator, and heavy liquid used in HLS testing for each composite sample.

Sample ID Sample source  Test conducted by Heavy hquid used
Comp 1 CVv22-017 S5GS Methylene 1odide
Comp 2 CV22-019 S5GS Methylene 1odide
Comp 3 CV22-025 S5GS Methylene 1odide
Comp 4 CV22-035 S5GS Methylene 1odide
Comp 5 CV22-038 S5GS Methylene 1odide
Comp 6 CV22-040 SGS Methylene 1odide
Comp 7 CV22-042 SGS Methylene 1odide
Comp 8 CV22-048 SGS Methylene 1odide
Comp 9 CV22-052 S5GS Methylene 1odide
Comp 10 CV22-054 S5GS Methylene 1odide
Comp 11 CV22-070 S5GS Methylene 1odide

CV23-160A
CV23-161
PEM-Comp001 CV23-172 S5GS Methylene 1odide
CV23-176
CV23-190
PEM-Comp002, LG CV23-182 S5GS Methylene 1odide
PEM-Copm003, HG CV23-184 SGS / Author Methylene 1odide / LST

Onginally, PBM’s test work was conducted on 16 different composite samples (PBM-Comp001
to PBM-Comp016), where “PBM” stands for Patriot Battery Metals. However, smce samples
PBM-Comp004 to PBM-Comp016 are variability samples and are beyond the scope of this thesis,
they are not discussed in this study. Samples PBM-Comp001 to PBM-Comp003 were sieved mnto
five different size fractions using sieve sizes of 9. 5mm, 6 3mm, 33 mm, 1.7 mm, and 0.6 mm.
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Additionally, as can be seen in Table 3.2, sample PBM-Comp(002 represents low-grade pegmatite,
whereas PBM-Comp003 1s high-prade material, and PBM-Comp001 1s a composite sample
representing the average of the two.

For each of the size fractions mentioned above, HLS tests were conducted using a heavy liqud
(methylene 10dide, diluted with acetone) at eight different specific gravities (S.G.), starting from
an S.G. of 3.0 g/em’, and processing the collected float (light) fraction progressively, decreasing
by 0.5 S.G. units at a time until an S.G. of 2.65 g/cm’. This approach separates minerals into both
size and density fractions.

3.3 LABORATORY TEST WORK

The laboratory test work conducted can be divided roughly mnto two categories. The main focus
was on the HLS testing and related preparation work, mostly crushing, and sieving. The other part
of the laboratory phase was the sample characterization using SEM analysis and optical
microscopy, as well as a centrifugation test to evaluate the applicability of this method for treating
fine (-0.63mm) particles. The goals of these tests were to provide more information on spodumene
liberation, the crushability of spodumene compared to quartz and other gangue minerals and also
to quantify how Li 15 distributed between size and density fractions after crushing.

3.3.1 Sample preparation

The material used for HLS testing was stage-crushed to a Pioo of 12.7 mm top size as explained
earlier (see the matenials description in CHAPTER 3). From the 1 kg ligh-grade sample (PBM-
Composite003), a sub-sample was taken based on visual mineral abundance and manually sorted
using tweezers. The sorting was based on visual color differences between the munerals. To
enhance this contrast, the sample was first nnsed i water, which removed dust and surface
mmpurities, making the spodumene appear whiter and the quartz grayer. This color difference 1s
clearly visible mn Figure 3.1, where the whater particles at the bottom are most ikely spodumene
(also some feldspars can be present), the dark gray particles on top are gangue (mostly quartz, but
also some black tourmaline and muscovite), and the niddle layer contains unliberated mixed
grains, where the color varies from white to gray.



67

LIBERATED MIXTURE
'_f
SPODUMENE
Fi

o

Figure 3.1 Color difference between grains (Pyy of 12 Tmm). White grains on the left are spodumene and dark gray

particles are quartz. Between, are the unliberated mixture parficles.
The goal of this approach was to divide the sub-sample into four distinct groups based on these
visual observations and conduct HLS testing on a size-by-size basis i order to better understand
nmuneral liberation. The four groups are: liberated spodumene (LS, >75% spodumene), liberated
quartz (LQ, >75% gangue), mixed grams with a domunant spodumene component (mixed
spodumene, MS, 40-75% spodumene), and nuxed gramns with a domunant quartz component
(mixed quartz, MQ, 40-75% gangue). This manual pre-classification allowed the creation of an
artificial sample set to investigate how spodumene 1s liberated and at which density fraction 1t tends
to be found. Furthermore, this approach helped assess the effect of muneral liberation on the
outcome of HLS testing. Lastly, the approach allows a qualitative assessment of the differences in
breakage and liberation charactenistics for different nuneral classes. It should be emphasized that
precise mineral identification was not essential at this stage, as the purpose was to examine general
liberation behavior and its relationship to density separation, rather than to quantify exact
spodumene content.

As the manual sorting went further, the grains were classified into four groups as shown in Table

3.3. The spodumene and quartz/gangue groups have fairly different colors whereas a slight general
difference in color i1s present among the muxture samples (with large spodumene or quartz
component).



Table 3.3 The result of mamual grain (-12.7mm +10mm) sorting from the high grade composite sample (PBM-
comp(03). Table shows the name, abreviation used in the text, graphical illustration and the real life image.

Liberated Spodumene Mixed spodumene

LS MS

DN
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After the manual sorting was done, the grains (1nifially Pioo of 12.7mm) were crushed to a top size
of 9. 5mm, typical of HLS test work performed for PBM’s project. A laboratory-scale cone crusher
with a feed hopper was used (Metso Minerals, Marcy GY-Roll Crusher) (Figure 3.2). The crusher
15 also attached to a dust extraction system, which nutigates the released dust in the air.

Figure 3.2 Metso Minerals Marcy cone crusher.

The crushed product falls into a product tray located under the mantle. Before starting the crushing
process, the closed side setting, which determines the top size (the largest grain size that can pass
through the crusher), 1s adjusted, after removing the bolts next to the feed hopper. Turning the
metal disc clockwise decreases the closed side setting, whereas turning 1t counterclockwise
mcreases it. This machine does not have any indicator which would tell the closed side setting, but
the adjustment 15 based on visual assessment of the gap. Thus, some extra rock samples were used,
as a test, to determune the night closed side setting.

After the crusher was adjusted, each of the four samples, weighting roughly 100g, were placed into
the feed hopper separately (four crushing mins were performed). Between each run, the crusher was
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cleaned by using compressed air to remove fine particles from the mantle, in order to recover the
material as well as possible. This also mitigates the cross contamination between samples.

A common standard practice in the field of crushing and particle size analysis 1s to model crushing
behavior based on sieving results. One objective of this testing was to assess how spodumene and
quartz break relative to each other and to select the most suitable model for predicting particle size
distributions. One of the most commonly used models 1s the Gates—Gaudin—Schuhmann (GGS)
method (Wills & Finch, 2016), which can be mathematically presented as follows:

14

X
P = 100- (E) 3.3

where,
P = Cumulative passing
X = Particle size
K = Top size (theoretical)
a = Distribution coefficient

Another method called Rosm-Rammler-Sperling (RRS) (Alderliesten, 2013; Wills & Finch, 2016)
15 also widely used in presenting the results of sieve analysis, which in this research were done
after the HLS test work. This method has shown to obey the following relationship:

P=1- e‘(xiu)" 3.4
where, p = Cumulative passing
X = Particle size
X = Particle size at which 63.2% of the matenial passes
through the sieve.

n = Spread parameter of the distribution
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One objective behind HLS testing in the laboratory 1s to gain an understanding of spodumene
liberation in each variety of sample. These size-by-size HLS tests provide insights into the impact
of particle size and, therefore, deliver information on nuneral liberation, which n turn indicates the
optimal top size to which the ore should be crushed. Figure 3 3 illustrates the main idea behind the
size-by-size HLS tests. The goal 1s to find an optimal particle size for maximum liberation without
losing recovery due to excessively fine production, since the finest fractions bypass DMS.

_ Liberation
Particle size 1 7 <:. G O O Low HLS recovery
Particle size 2 — ) » o @ High HLS recovery
Particle size 3 — I * O . Low HLS recovery

Figure 3.3 Determination of optimal particle size for HLS tests.

3.3.2 HLS Testing

Heavy liquud separation (HLS) tests were conducted using three different heavy hiqud (HL, LST
in this case) densities (3.0 g/em’, 2.85 g/em® and 2.7 g/em?®), to evaluate the distribution of
spodumene between size-density fractions, which should relate to their liberation. The HL used
had an initial density of 2 85 g/cm® and was used as-is for one of the tests. Different densities were
prepared and measured before each separation test using a small (10 ml) volumetric flask and a
scale to determine the exact density each time, following the formula p=m/V. The density of the
HL was adjusted by diluting the oniginal HL. by adding 8.8 ml of water mnto a 100 ml of HL,
resulting in a HL at density of 2.70 g/em’. This value was calculated by using equation 3.5:

_Pfinal — Pinitial

Pwater — Pfinal (35)

Viiluted = Vinitial



where

¥

V dituted

Pwater

12

Total volume of diluted HL.

Imitial HL. volume before dilution
Desired final HL density after dilution
Imitial density of the HL before dilution

Density of water

The higher HL density of 3.0 g/cm’ was obtained by heating the HL to evaporate water. However,
evaporating the water was notably more difficult to execute due to the saturation factor of LST HL.
As mdicated in Figure 3 4, the saturation curve shows a maximum density that can be reached at
certain temperatures. In other words, the density of 3.0 g/cm’ can be obtained if working above
30°C. Laboratory conditions were not suitable for handling HL at density of 3.0 g/cm’ and thus

special arrangements were required.

(

O <Lq=ZmO

MAXIMUM DENSITY OF LST LIQUID vs TEMPERA TURE
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Figure 3 4 Saturation curve of LST heavy liquid indicating the temperature and density at that point (Central

Chemical Consulting, 2024).
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Firstly, 100 ml of HL. was measured mnto a 150 ml beaker and placed in a drying oven set to a
temperature of 60°C. Another method previously used for heating the HL. involved a hot plate, but
based on previous experiences, handling the reagent on a hot plate 1s much more demanding since
the heat comes from under the beaker, causing uneven heating, with the bottom of the beaker being
hotter than the surface. In contrast, in the oven, heat 1s distnibuted evenly from all directions around
the beaker, resulting in a more consistent overall heat transfer. This way, the impact on density
caused by crystallization was mitigated even though the required time was much longer.

The workflow of these HLS tests was as shown in Figure 3.5. Each of the four sample types was
crushed and roughly 50 g of each sample was used for the tests. This relatively small sample size
was chosen due to linited sample availability and to conserve HL., of which only a small amount
was available. Therefore, the smallest available beaker that could accommodate the perforated
recovery scoop was used to ensure the HL surface level remaimed high enough for effective
separation, while mimimizing HI. consumption. Specifically, this setup allowed the HL level to be
sufficiently high for the sink fraction to settle and the float fraction to be wisible, facilitating
recovery using a plastic scoop. Firstly, the samples were introduced to HL at a density of 3.0 g/ecm®
while mamtaining temperature. After 10 nunutes, the sink fraction was collected. Then the float
fraction was used as a feed for the 2 85 g/cm® density test. Smmlarly, the next float fraction was
used as a feed in the last HLS test at a density of 2.7 g/cm?®. Finally, all fractions of each sample (4
samples x 3 sinks and 1 float) were sent to the sieving phase.
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Figure 3.5 Workflow of HLS tests.

In the oven, the HL reached the target densify after approximately 4.5-5 hours, and then the HL.S
test work could be started. However, due to the saturation factor mentioned earhier, the tests had to
be conducted quickly and partially inside the oven to mitigate crystallization and to obtain results
that were as representative as possible. The heated beaker was taken from the oven, and both the
sample and the heated HL. were added to the beaker. After quickly mixing the HL and the sample,
the beaker was placed back into the oven, where the actual separation occurred.

The density of the HL. was monitored during the tests and adjusted as required after each test. A 10
ml volumetric flask was kept in the oven to ensure it was at the same temperature as the HL. and to
mufigate crystallization. The 60°C HL was pipetted into the volumetric flask inside the oven until
the surface reached the meniscus. Then the mass of the flask was measured, and the density was
calculated using formula:
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(3.6)

<I|3

P:

Where p 1s density 1n g/ml, m 1s the mass of HL. in grams and ¥V 1s the volume of the HL in ml
Density control plays an important role in HL.S, especially if the tests are done inside the oven,
where the evaporation of water 1s accelerated. Additionally, at lower densities, the density can
change due to the moisture in the samples. The float fractions were not fully drnied between tests at
different densities, and thus, any remaimning water could have diluted the HL 1f not momtored.

After roughly 10 nunutes of separation, two phases were visible, and the process was considered
complete, as shown in Figure 3 6. The fractions were recovered using a plastic scoop stramner and
then placed in their respective sample plates. These plates were filled with water to prevent the HL.
remaining on the surface of the particles from crystallizing. The same method was applied to the
scoop strainer and other tools, which were placed under water when not in use. After the separation,
all the tools, as well as the sink and float fractions, were nnsed with a sufficient amount of water
to remove any remaiming HL., thus preventing crystallization.

Figure 3.6 Completed HLS test showing a clear separation of particles into sink and float fractions.

The next step was to determune the particle size distribution for these samples by sieving in order
to see their crushability. The size fractions used were the same as PBM’s HLS tests to be able to
compare results more easily. Thus, the used sieve sizes were 9.5 mm, 6.3 mm, 3.3 mm, 1.7 mm,
and 0.63 mm.
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The sample was placed mside of the top size sieve and the sieve set (the other sieve sizes being
below) 1s put in the Ro-tap sieve shaker. The sieving time can influence the outcome, and mn this
test, the time was set to be 5 minutes due to relatively small sample amount and the coarse nature
of the samples. After the time 1s finished, the sieves were lifted out and one by one, each sieve was
overturned on the piece of paper and brushed to remove all particles from the sieve. After each
overturn, the material was weighted and the mass written down. The total mass of the sample as
well as the mass of each fraction was later used for crushing curve figures (see chapter 4). Next,
each sieve fraction was pulvenized using a planetary ball null (Pulverisette 5) with iron ball media.
The rotation speed was set to 200 rpm and the nulling time to 3 minutes. After pulvenzation, all
samples were prepared and sent for external lithium analysis using ICP.

In order to get an 1dea of what minerals could be present in the samples, the common procedure 1s
to measure them by XRD. However, m this research a comprehensive XRD study of all samples
weas not possible due to the low sample amount (less than 10 g are needed for XRD) and limited
budget. One way to confirm if the estimation of minerals are plausible 1s the overall particle density.
For example, if a particle falls into a density range of 2.85 — 3.0 g/cm’, meaning the particle needs
to have an overall density within these limits. So for instance, 1f particle has an overall density of
2.92 g/em’, it cannot be 100% spodumene and thus is not fully liberated either. The overall density
can be calculated using the density data of each mineral (Ralph et al | 2025) and equation 3.7 as

follows:

Z(menm‘a! ' m%mingralj

3.7
E m%sumpie

Overall density =

The 1dea of performing an HLS test on the fine particles was raised during the project. The typical
1ssue with HLS 1s that if the particle size 15 too fine, for example -630um, the separation is not
possible, or 1t 1s extremely slow. Also, the surface tension increases with the finer material. This 1s
also part of the reason why fine fractions are typically screened and removed before DMS processes
to be sent to a flotation circuit or discarded (see Chapter 2_3). However, the use of centrifugation
m order to separate spodumene from gangue in the finer particles was tested as a possible solution.

The centrifugation 15 a very sumple procedure. A 50 ml test tube was filled with fresh LST HL (p
=2 85 g/cm’) followed by the fine material The test tube was placed in a centrifuge and the settings
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were adjusted (4000 rpm and 3 nunutes). Only one density was selected, as the purpose was to
assess whether extra fine particles (-630pm) could be separated effectively. Traditional beaker-
scale HLS testing was not successful, as the settling time required for fine particles was much
longer than the 10 nunutes typically used for HLS tests with coarser fractions. After centrifugation,
the sink and float fractions were collected and washed with water to remove any remaiming heavy
liqmud. The entire sample was then dried. Both fractions were examuned under an optical
microscope to visually assess the separation performance.

3.4 MACHINE LEARNING

The other part of this study involves the use of machine learming for mineral grain identification
and size estimation. This part of the work was conducted using a MacBook Pro (14-inch, 2021)
equipped with an Apple M1 Pro clup and 16 GB of memory, running macOS Sonoma 14.7 4 and
MATLAB (Version 242 0.2863752, R2024b). MATLAB was chosen as the coding language due
to the author’s valid license and previous experience with the software. In addition, standard
toolboxes for image processing and machine learning were used, including the Computer Vision
Toolbox (Version 24.2, R2024b), Deep Learming Toolbox (Version 24.2, R2024b), Statistics and
Machine Learning Toolbox (Version 24.2, R2024b), and Image Processing Toolbox (Version 24 .2,
R2024b). An online AT tool, specifically a generative artificial intelligence chatbot (ChatGPT by
OpenAl), was also utilized during the coding process. It was used to support the development by
providing code structure suggestions, explaiming specific programmung functions, and assisting in
troubleshooting when encountering errors in MATLAB.

The MATLAB code 1s more than 1500 lines long, consisting of 13 different steps. The code 1s
available m GitHub (https-/'github.com/LaitinenTeme/Drill-core-image-analysis-tool). These 13 steps

can be divided roughly into 3 groups: 1) image processing, 2) machine learning and classification,
and 3) nuneral gramn segmentation and grain size estimation. Human intervention 1s only required
during the imitial image processing phase. Each of these steps 1s built for different purposes and
they collectively form a comprehensive workflow for analyzing dnill core images.


https://github.com/LaitinenTeme/Drill-core-image-analysis-tool
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3.4.1 Image processing

The beginming of the code (steps 1-5) covers the method of image processing. The objectives of
these steps are, firstly, to prepare the raw test images for further analysis, and secondly, to segment
these images into smaller umits called superpixels, which are later used for classification and grain
reconstruction. In this context, fraiming images refer to those images that are manually labeled by
a human expert and used to tramn the classification models, while test images are unseen images
that are used to evaluate the performance of the tramned models.

Step 1 mvolves loading and selecting the test images that are to be analyzed. The user 15 asked to
choose either all available images or a subset of them from a specified folder. These selected images
will form the basis for all subsequent processing and analysis. The filenames and paths of the
selected 1mages are stored i a specific variable for later use in steps such as segmentation and
classification. This step ensures that only relevant and correctly formatted mput images are
accepted for further processes.

In step 2, the raw training and test images are loaded and preprocessed to improve the quality of
the image and make them suitable for segmentation and further analysis. The key parts of this step
mclude noise reduction, contrast enhancement, and improving the image’s resolution. These
operations are executed through a sequence of image processing functions, including filtering,
sharpening, and the use of a pre-trained VDSR (Very Deep Super-Resolution) neural network
(MATLAB’s Deep Learning Toolbox). The image quality plays an important role m image
processing and thus many different techmques are used to make the image quality as high as
possible. For example, uneven lighting can make 1t hard to distingmish minerals like spodumene
and quartz, which look similar in color.

After the enhancement, each image 1s segmented into a set of superpixels using the SLIC (Simple
Linear Iterative Clustering) algorithm (Achanta et al, 2010). The SLIC algorithm works by
clustering together neighboring pixels that share similar color (typically RGB values) and spatial
proximity, forming compact and visually coherent regions known as superpixels, which reduce the
complexity of the image and makes it easier to classify and study individual nuneral gramns in the
mage. This segmentation 1s set to use 750 superpixels for large images and 300 for smaller images,
respectively. These numbers define the approximate number of superpixels the image will be
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divided into, depending on its size. Based on visual assessment of the results, a compactness value
of 20 was used, which controls the shape of the superpixels. A higher compactness results in more
square-like superpixels, while a lower value allows them to better follow the natural edges and
structures 1 the image. However, using very low compactness values (e_g_, 1) can sigmficantly
mcrease the computational time and lead to wrregular superpixel shapes, which may not always be
desirable. Therefore, a value of 20 was chosen as a balance between shape adaptability and
processing efficiency. As a result of this step, a set of data structures containing the segmented
superpixel labels, boundary images, and binary masks for each input image 1s created, which are
then used in further steps.

In step 3, a visual representation of the superpixel segmentation 1s created for a single core sample
mmage. The resulting superpixel boundaries are overlaid on the original image to show how the
segments align with geological features. This visualization allows the user to inspect whether the
number of superpixels and the compactness setting are appropriate, and to validate that the
segments correspond to meamngful structures within the image_ Figure 3.7 illustrates the outcome

of step 3.

RN —— =y __:_{E; e

Figure 3.7 A wvisual representation of superpixel segmentation carmed out in step 3.

In step 4, the training and test images are processed into individual groups of superpixels and saved
as separate image files for future use. Each image 1s segmented usmng the same SLIC superpixel
algorithm as in step 2, and the resulting superpixels are saved individually into dedicated folders.
In addition to the image files, metadata such as the label matrix, boundary map, and centroid
coordinates of each superpixel are saved for later use in the grain merging step. Each superpixel 1s
extracted as a cropped image patch with the background masked out, allowing for cleaner traming
data and better visualization. The purpose of this step 1s to produce the actual data instances that
will be used mn the classification phase and to prepare coordinate information that will support later
spatial operations such as grain merging_
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In step 5, visual features are extracted from the previously segmented superpixel images. These
features mclude color statistics (mean and vanance of RGB channels) and basic texture descriptors
(mean intensity and standard dewviation of grayscale values). The traiming images are manually
classified using a classification tool (presented later with details) into four predefined categones:
spodumene, gangue, marker, and undetermined. Spodumene and gangue represent the primary
muneralogical components of interest. Marker mncludes traces of grease pencil markings made by

geologists, while Undetermined covers shadows or unclear pixels that cannot be confidently
classified.

For each tramming superpixel, the corresponding label 1s assigned using the folder structure. The
user 1s prompted to choose whether to use manually labeled or machine-generated test data. If
manually labeled test data 1s used, the corresponding class labels are available and mncluded. If the
machine-generated superpixels are used instead, the test data remains unlabeled and 1s only used
for prediction. All feature vectors are normalized to ensure consistent scaling, which 1s important
for most classification algorithms. As a result of this step, two datasets are produced: a labeled
training set and a test set, both consisting of extracted and normalized feature vectors ready to be
used in model traimning and evaluation in the next steps.

The classification tool, mentioned earlier, 1s an mteractive system separate from the main code,
designed to label superpixels in dnll core images. It forms a crucial part of the tramning data
preparation workflow, enabling human experts, such as geologists, to assign correct nineralogical
classes to segmented superpixels. Figure 3.8 presents the outcome after the classification where

superpixels are placed into different classes (spodumene, gangue, marker and undetermined).

Figure 3 8§ Result of classification. Superpixels from classes spodumene, gangue, marker and undetermined.
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The primary advantage of the classification tool approach 1s that images can be used directly
without requirmg preliminary mampulation, such as cropping or other preprocessing methods.
Additionally, 1t allows the use of already existing drill core imagery, eliminating the need for extra
work by geologists, such as scanning sawed or polished core or creating ideal photographic
conditions. In contrast to earlier studies that rely on such idealized imaging (e g., Gural, 2018;
Koch et al , 2019.), the method used in this study enables direct analysis from exusting dnll core
box photos, offering a practical and cost-effective approach readily applicable in industry. This
tool 1s used as follows: original drill core images (Figure 2.5), showing both the cores and their
wooden boxes, are introduced mto the system. Relevant regions contamming drill cores are
mteractively selected by the user through a graphical user interface implemented in MATLAB (see
Figure 3.9). After choosing between traming and test datasets, the user selects an image file for
analysis. The selected drill core image 1s then displayed, and the user draws rectangular regions of
mterest (ROIs) directly onto the image by clicking and dragging. Each ROI corresponds to an
mdividual drill core segment, which 1s processed separately.

While this manual selection approach offers flexibility, such as focusing on specific depth mntervals,
it 15 acknowledged that the process can be fime-consuming when all core boxes are of interest.
Although automated detection of drill cores could be implemented to reduce user mnput, this
functionality was not developed 1n this study, as the focus was on validating the overall workflow.
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Figure 3 9 Graphical user interface where ROIs can be selected mdicating the actual drill cores.

After drawing each rectangle, the user confirms the selection by pressing the SPACE key, enabling
the defimition of multiple ROI per image. The drawing procedure continues until all relevant drill
core regions have been marked, at which point the user finalizes the selection process by pressing
the ESC key. These user-defined rectangles serve as imtial bounding boxes for subsequent
processing, which includes mask refinement and segmentation. Figure 3.10 shows a dnll core
region and selected ROI. However, the rectangular selection typically does not cover the entire
dnll core segment accurately, because the cores in the images are often not perfectly horizontal,
making precise rectangle drawing challenging. Additionally, ROI selection 1s subjective and
depends on the user’s precision. Therefore, each ROI undergoes iterative expansion gmided by
color-based thresholding crniteria to accurately delineate drill core segments from background
elements, such as wooden core boxes or dark void areas. After, these pre-segmented dnll core
mmages are saved either in a traming images or test images folder depending on the type of image.
It 15 worth mentioning that this core detection and segmentation can be done automatically using a
wide spectrum of segmentation algonithms or classification models (Kirillov et al |, 2023), but in
this research, the main focus was not on creating the best possible segmentation code. Therefore,
this simpler and less coding required approach was selected.
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Figure 3.10 An example of the iterative segmentation method enabling more accureate drill core segmentation.
The classification process continues, and the user 1s prompted to choose whether to classify traiming
or test images. Each image 15 first preprocessed using noise reduction, contrast enhancement, and
resolution upscale usmg a pre-trained VDSR network (see step 2 above), after which the image 1s
segmented into a number of superpixels using the SLIC algorithm, simlar to step 2. The actual
number of superpixels may vary depending on the size and resolution of each input image. Once
segmentation 1s complete, the tool enters an interactive labeling mode (see Figure 3.11). Superpixel
boundaries are overlaid on the onginal image, and the user can click on superpixels to select them
and assign them to a class by pressing the space bar and entering a numeric category (1-—4)
representing the predefined mineral classes: spodumene, gangue, marker, and undetermined.
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Figure 3.11 Classification tool for superpixel manual labelling.

The selected superpixels are colored according to their class for visual confirmation (see Figure
3.11), and the user can repeat this process for all relevant segments in the image After
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classification, the tool exftracts the pixel coordinates of each labeled superpixel, stores the
segmented 1mage crops in class-specific folders, and saves the corresponding metadata (class and
centroid). This tool ensures that accurate labeled traiming data 1s available for supervised machine
learning models and also supports validating model performance with manually classified test

mmages.
3.4.2 Machine learning and classification

The second phase of the code (steps 6 - 9) 1s associated to machine learming classification of the
superpixels. Here, the superpixels obtained from previous steps are fed to the machine as a traiming
data set, and the machine tries to learn to sort them based on the features of each superpixel. Then,
a new test data set 1s mtroduced, and the machine will classify these test superpixels based on what
1t has learned.

In step 6, the feature data extracted in the previous steps 1s post-processed and saved for later use
m model traming and evaluation. This step ensures that all tramming and testing features are
normalized and stored in a standardized format. First, the code defines the save directories for both
training and test features based on whether the test data 1s manually classified by user, or generated
automatically by the machine. The code checks that the feature matrices and class labels from Step
5 are not empty. If either set 1s missing, the process stops and notifies the user of the nussing data.
The actual post-processing 1s performed in a helper function, which normalizes each feature value
to a [0, 1] range. This normalization 1s essential for many machine learning algorithms to perform
optimally, as 1t ensures that all features contribute equally regardless of their original scale.

In step 7, the classification models (k-NN, CART and Random Forest selected based on the work
of Maitre et al (2019)) are evaluated using cross-validation to assess their ability to distinguish
between different mineral classes based on extracted superpixel features. Specifically, a 5-fold
cross-validation approach 1s used, where the traiming data 1s divided into five equal subsets. In each
iteration, four subsets (80%) are used for fraiming and the remaiming one subset (20%) 1s used for
vahidation. This process 1s repeated five fimes so that each subset serves once as the validation set.
This provides a robust estimate of each model’s performance without requiring a separate holdout
set. The mean classification accuracy and its standard dewviation across all five iterations are
calculated to assess the model’s generalization capability and stability.
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Step 8 focuses on loading and preparing the extracted features for machine learning. The goal 1s to
collect all relevant data from traiming and test folders and convert each superpixel image into a
fixed-length numerical vector. The frammng data 1s always manually labeled (using the
classification tool) and organized into folders based on classes. The test data can come either from
manual classification or machine-generated results, depending on the user’s choice made m step 5.
Based on this, the code selects the correct folder and loads the images.

In step 9, the previously extracted features are used to train the final versions of the machine
learning models and to classify superpixel images from the test set. The tramning 1s performed using
the feature vectors and their corresponding class labels obtamed from the tramning data. Before
traming, class weights are calculated to balance the dataset in case some classes are
underrepresented. Depending on the model type, the code checks whether weighted traiming 1s
supported and adjusts accordingly. After tramming, each model 1s used to predict the class of every
test superpixel. The predicted class labels are then stored and used to generate new segmented
mmages where each superpixel 1s assigned to its predicted class. These classified superpixels are
saved into model-specific folders, orgamzed by predicted class, for further use. In a nutshell, this
step applies the trained models to unseen data and turns numerical features into meaningful
predictions, enabling further analysis and wvisualization of muneral compositions in drill core

mmages.
3.4.3 Mineral grain segmentation and size estimation

The final phase (steps 10 — 13) of the workflow focuses on the spatial merging of classified
superpixels into larger coherent structures referred to as mineral grains. In step 10, the previously
classified superpixel images are grouped together based on their associated test image Each
superpixel 15 matched with its centroid coordinates, which were saved n earlier steps. For each test
mage, neighboring superpixels belonging to the same class are grouped together. As a result,
merged grain regions are created that better represent actual muneral gramns mn the original
geological sample. Each resulting grain 1s reconstructed as an image by combiming the pixel regions
of the contributing superpixels (Figure 3.12). These merged “supersuperpixels” allows further
analysis and estimation of the size of the nuneral grain.
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Figure 3.12 Final outcome of superpixel merging.

In step 11 the goal 15 to visualize and save overlay images that highlight specific mineral classes
(e_g_, spodumene) detected by the tramned classification model across all test images This step
provides an mtwmtive verification, allowing the user to visually inspect the classification results and
assess the model’s accuracy and performance. Initially, the user defines a target mineral class of
mterest (such as spodumene or gangue) and selects directories contaiming the test images and their
corresponding superpixel classification data. For each test image, the orginal image and its
associated superpixel classification data (labels and cordinate information) are loaded. Using these
predicted labels, a binary mask 1s generated that identifies all superpixels classified as belonging
to the selected target class. This mask 1s then overlaid onto the orginal image, highlighted in red
with adjustable transparency, to clearly visualize the spatial distribution and coverage of the
identified mineralogical class within the drill core (

Figure 3.13). The resulting overlay images are displayed individually and saved in a dedicated
visualization folder.

Figure 313 Overlay mask highlighting areas classified as spodumene (in red) and the corresponding extracted grains
Step 12 1s bult only for getting performance statistics of each model in order to get an
understanding how well the prediction works. This step takes manually labelled test data and
calculates the percentages of cormrectly classified superpixels out of all superpixels after the model
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prediction. The idea here 1s that since the models are tramned using the same traiming dataset, the
performance of the models should remain the same iwrrespective of the test data used. So, by using
labelled test data, the accuracy can be determuned since the correct class of each superpixel 1s
known. Then, the known test data can be replaced with unlabeled new test data (real core images
segmented by the machine) and the code performs the classification as usual. Importantly, both
labelled and unlabeled test data must be different from the tramming data in order to get reliable
estimation of the performance. Performance results are presented in Chapter 4 with details.

The final part (step 13) of the code mtegrates all previous steps, providing a direct connection
between the original dnll core images and the actual mineral grain sizes. This step calculates the
grain size from the classified superpixels, linking image analysis results to real-world geological
charactenistics. To achieve this, grain size 1s calculated using six different metrics, represented in
Figure 3.14 which illustrates the key size and shape metrics used to characterize each grain. These
mclude: (1) the equivalent area disc diameter (deq), defined as the diameter of a circle with the same
area as the gramn; (2) the maximum nscribed circle diameter (di,.), representing the largest circle
fully contamned within the gran boundaries; and (3) the maximum Feret diameter (dpmax), which 1s
the longest distance between any two points on the grain’s outer boundary. In addition, (4) the
munimum Feret diameter (dFmin) describes the shortest distance measured across the grain using
parallel lines, while (5) the mumimum circumscribed circle diameter (d.;,) 1s the diameter of the
smallest circle that completely encloses the gram. The gramn’s overall shape 1s further approximated
by (6) the short (sen) and (7) the long (len) axes of the equuivalent-moment ellipse, which represents
an ellipse having the same distribution of mass as the grain. Finally, (8) the width (Wrec) and (9) the
height (hy..) of the minimum enclosing rectangle describes the smallest rectangle, aligned to the
grain’s orientation, that fully contains the grain. Each metric contributes unique information about
grain dimensions and morphology (Back et al | 2025). Each metric provides information about
grain dimensions and shape. Results, such as grain size and size distribution, for each classification
model and each nuneral class are summarized and saved into an Excel file for further analysis.
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Figure 3.14 Grain size was measured using different methods. including: (A) equivalent area diameter. (B) minimum
and maximum Feret diameters. (C) largest inscribed and smallest circumscribed circle diameters, (D) short and long
axes of an ellipse, and (E) width and height of the smallest enclosing rectangle. Taken from Back ef al. (2025).
An alternative approach would be to calculate the average grain size of all classified mineral grains,
not just spodumene. While this was not done in the present study, the same method could be applied
using existing data for other mineral classes. This would allow estimation of the overall gramn size

of the drill core, which could then be compared to HLS recovery to assess possible correlations.
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CHAPTER 4 RESULTS AND DISCUSSION

In this chapter, the results of the analysis and experiments are presented, beginming with the
outcome of the imitial HLS recovery model, followed by a review of external HLS tests (PBM test
work), the author’s own HLS experiment, and finally the results of the machine learning algorithm
and grain size estimation. The raw data of these results can be found to a large extent from
appendices but can also be provided upon request by contacting the author or supervisor Prof. Marc
Legault.

4.1 OVERALL RECOVERY PREDICTION MODEL

As presented in CHAPTER 3, the HLS test recovery prediction models were created based on
logging data from the 11 drill cores of the composite samples and lithmum recovery results by SGS
(APPENDICES

APPENDIX A, Table A 1). Two types of models were developed: the first incorporated all
available data, mcluding wisual assessments by geologists and techmicians, mineralogical
mformation by DRX, and chemical analyses. Some of this information 1s only available several
weeks to months after drilling, meaning such models would be useful for long-term prediction of
processing performance 1.e. geometallurgy. The second type of data (Table A 2) relies solely on
visual logging information, excluding the more time-consuming and costly laboratory analyses.
This second type, while it may not be as accurate given the reduced amount of information 1t uses,
has the advantage of using data which 1s available up to a few days after core 15 available, meaming
it can be used to facilitate decision making during the exploration phase of a project.

After all vanables had been averaged and standardized for each set of core sections making up the
composite samples, the data was log-normalized mimimize the effect of excessively large values.
Here, “standardized” refers to adjusting the values (e.g_, number of fractures, alteration mtensity,
etc ) relative to the total core length, making them comparable across samples of different lengths.
The first interpretation of the dataset was carried out by creating a correlation matrix in Excel. A
correlation matrix 1s not a comprehensive or definitive analytical tool, but it can provide a first
mmpression and a general idea for model development By examming the highest and lowest
correlation values between HLS Li recovery to the smk fraction (%) and the different variables, a
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preliminary selection of swmitable mput vanables was made for the numerical model. Table 4.1
presents the variables which have the strongest correlation to HL'S Li recovery based on correlation
matrix. As seen from the table, spodumene grain size has the strongest correlation followed by the
Li prade. This result 1s in agreement with the theoretical expectation that bigger grains, which are
found in higher grade sections, should be more readily liberated and hence, provide higher
recoveries (Wills & Finch, 2016a).

Table 4.1 Variables that show a strong linear correlation with HLS Li recovery based on the correlation matrix. Both
positively and negatively correlated variables are listed, with data derived from logging records, ICP analyses, and
other variables that show a strong relationship

Correlation
Correlation sign Vanable Ut Source coefficient
R)

Positive % Spd grains >7mm % Logging data 843 %
Positive L1% 1n feed % | ICP and WRA 66.2 %
Positive Spodumene (wt %) wt % XRD 615%
Positive Ta content Ppm ICP 48.2%
Negative Spd grains <2mm % Logging data | -85.1%
Negative Spd grams 2-7 mm % Logging data | -80.1 %
Negative Spd Inclusion Abundance | % Loggmng data | -67.3%
Negative K content % ICP -46.1 %

There are many approaches to creating an empirical model. In this study, the selected approach
was the so-called step-by-step (also known as stepwise) method, where each parameter 15 tested
and selected based on the response of the model after calibration. This way, the most significant
variable can be 1dentified and placed first n the equation, helping to reduce the total number of
variables. The creation of the model 1s essentially a balance between achieving sufficient accuracy
and liniting model complexity. Equation 4.1 illustrates the basic structure of the first-order
empirical model:
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where b; values are constants to be evaluated and x; values represent the different variables from
the dnll core logging data. The three common ways to have a first impression of the model’s
performance are to mimnize the squared error between the model and the actual L1 recovery, and
to compute the coefficient of deternunation (R?), which should be as close to 1 as possible. In
addition, a real statistical sigmificance of each vanable can be assessed using statistical indicators
such as the p-value, which shows the likelihood of observing the given effect if the null hypothesis
(Ho) 1s true. In general, when a term has a p-value below 0.05, it 1s considered statistically
sigmficant, with a low probability that the variable’s influence 15 due to chance.

Although the first model performed very well thanks to the use of comprehensive data, including
muneralogical and chemucal analyses, such an approach may be less practical during early
exploration stages, where rapid and cost-efficient assessments are preferred. The aim was to create
a fast and simple prediction model based merely on visual assessment. In this respect, the second
model, despite being less accurate, better serves the purpose of quickly and easily assessing overall
dnll core charactenistics, such as spodumene grain size, abundance, and texture, and using these
observations to predict the processability of the matenial.

The first stage of the modeling process mvolved identifying which wvamables contribute
meaningfully to the accuracy of the model. Ultimately, it 1s necessary to deternune the point at
which including additional variables no longer significantly improves the model. Only statistically
sigmificant variables should be included in the final model (Montgomery, 2017), although some
were added here for demonstration purposes. As shown in Table 4.2, after six vanables, the R?
value still increases, but only marginally compared to the mitial nise seen with the first three
vaniables, indicating that the effect of adding more than three varables i1s negligible. Thus,
optimizing the model by including only the statistically sigmificant varables plays an important
role m this study.
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Table 4.2 Performance of the two regression models as a fanction of added variables. Variables are added
cummlatively in the order listed, and each row shows the model’s performance after including one more variable.
Saftistically significant variables are shown in bold. Raw data available in Appendix A Tables A1 and A2

Model 1 - All data

Variable p-value  Number of vanables Sum of squared error R’
% Spd grains >7mm 0.0001 1 245% 71.78 %
Ni ppm 0.0025 2 183 % 78.84 %
W ppm 0.0043 3 0.78 % 9099 %
Co ppm 0.0146 4 0.44 % 9493 %
Th ppm 0.0673 3 0.21 % 97.57 %
Spodumene % (ICP) 0.20375 6 0.13 % 9846 %

Model 2 - Logging data only

Variable p-value Number of variables Sum of squared error R’
% Spd grains >7mm 0.000994 1 245% 71.78 %
Spd Alteration Intensity 0.39339 2 0.95 % 89.04 %
Average Natural Fractures 0.60511 3 0.49 % 9430 %
Average Fracture Frequency 0.71695 4 047 % 94 58 %
Average ISRM Rock Strength ~ 0.15942 3 0.42 % 9515 %
Average RQD 0.79132 6 0.39 % 9548 %
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As a result of manual step-by-step vanable selection, multiple variables were identified as
statistically sigmificant and retained in the final model. The most significant factor was the
proportion of coarse spodumene prains (Spd>7mm), which showed the strongest positive
correlation with lithium recovery, reflecting the importance of grain liberation in the HLS process.
In addition, several geochemical vanables, such as mickel (N1), tungsten (W), and cobalt (Co)
concentrations, also contributed significantly to the model. While their individual effects are
smaller than that of gramn size, they enhance the model’s predictive power and help capture
compositional variations in the samples. The whole equation 4.2 15 represented as follows:

Lirec% = —5.6 + 3.2 - logyp(Spd = 7mm) + 0.3 - log1o(Ni) — 0.3 - logyp (W) — 0.3 - logyp(Co) 4.2

The sign of each constant in equation 4.1 indicates the direction of the dependency between each
variable and lithtum recovery. The proportion of spodumene grains larger than 7 mm (Spd > 7 mm)
shows the strongest positive correlation with HL.S Li recovery. Other varables included in the
model, nickel (N1), tungsten (W), and cobalt (Co), concentrations, also contnibuted statistically,
although their relationship to lithium recovery i HL'S testing remains dubious. In addition, the low
amount of these elements (average < 0.8 ppm for Co, and < 10 ppm for Ni) suggests that these
relationships are fortuitous. One reason for elements to be significant can be random coincidence
since there was only a few data points (11 samples) and a large number (120) of vanables.

These geochenmucal indicators may be caused by broader differences in the samples, but their effects
are less infuitively linked to processability and thus require more test work. The fact that L1 grade
was not mcorporated in the final model 15 explained by 1ts strong co-dependency with grain size.
As shown 1 Figure 4.13 grain size and grade are strongly correlated. Hence, adding one term to
the model means that the other term can no longer improve the model significantly.

When statistical test and p-value was first applied to Model 2 using normalized data based on the
core length, two vanables stand out: the proportion of coarse spodumene grains (Spd > 7mm) and
lithrom grade (Li1%) were both found to be statistically sigmficant predictors (p-value < 0.05),
consistent with Table 4.1. However, these two are so called codependent vaniables, meaning they
are related to each other and thus they both cannot be included mto the model, since they don’t
bring any more value as one of them will bring alone. Since the aim of this work 1s to identify low-
cost, easily obtamable predictors, “Spd > 7mm” was chosen as 1t 1s based on visual assessment,
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whereas lithrum grade requures laboratory analysis and falls outside the scope of this project. After
stepwise analysis, stmilar to Model 1, the only statistically sigmificant vanable 1s the spodumene
grain size having p-value of 0.00099444 clearly stating the significance of the vaniable. Overall,
equation 4.3 confirms that grain size 1s the most rehiable and consistent visual indicator for
predicting HLS L1 recovery

Lirec % = —4.5 4+ 2.96 - log,((Spd = 7mm) 43

Using the aforementioned models (Equations 4.1 and 4.2), their prediction performance was
compared agamst the actual hithium recovery values, as illustrated in Figure 4.1. Overall, both
models follow the actual recovery trends fairly well. Model 1, which consists of multiple vanables
mcluding laboratory data, demonstrates much higher accuracy, with relative errors consistently
below 5% 1n each sample, even for the most challenging samples, such as 1 and 10. This confirms
the supenor fit of Model 1, which 1s expected since all mineralogical and chenucal data was used.

Model 2, which relies merely on the percentage of coarse spodumene grains (Spd > 7 mm), shows
higher relative errors. Notably, in samples 6 and 8, the relative error exceeds 10%, which likely
results from their much finer spodumene grain sizes, known to have a direct negative impact on
HLS lithmum recovery. Still, the average relative error across all 11 samples remains below 5%,
mdicating that even a single-varniable model can yield a reasonable prediction when the selected
feature 1s highly sigmificant.

Interestingly, the same samples, mn general, which show larger errors in Model 2 also present
challenges in Model 1. This suggests that the discrepancies may not stem solely from the lack of
laboratory data but potentially from inconsistencies in the visual grain size assessment itself. Since
spodumene grain size 1s used in both models and 1s the most influential vanable, any inaccuracy in
its estimation, such as subjective vanation between logging geologists, could affect the prediction
accuracy. Additionally, a portion of the error might be attributed to uncertainties in HL.S recovery
measurements, which depend on accurate weight measurements and L1 grade determinations.
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Figure 4 1 Difference between actual Li recovery and two different models using only statistically significant
variables.

Figure 4.2 compares the predicted lithium recovery values of both models to the actual HLS L1
recovery. Model 1 (eq. 4.1), which uses all available data including laboratory analyses, shows an
excellent relationship (R? = 0.976), mmdicating high predictive accuracy. Model 2, based solely on
the proportion of coarse spodumene prains (Spd > 7 mm), achieves a lower but still meanmgful
correlation (R?=0.718). While less precise, Model 2 highlights the potential of using simple
logging data for recovery prediction at the exploration stage.

Interestingly, when applying data from the PBM test work (three different samples: composite, LG
and HG)!, which come from a different location within the same CV5 deposit than the other 11
variability samples, the performance of these models can still be validated. As shown i Figure 4.2,
red squares represent the validation points of model 1, whereas yellow triangles represent those of
model 2. When including these data points, the R? value for model 1 1s 81.42% and for model 2,
62.11%. Although these values are slightly lower than those reported earlier, they are stll
sigmificantly high indicating a strong correlation even when using data from a different part of the

! These three samples come from the Zeppelin testwork program (19005-02A) as mentioned in the NI 43-101 submitted
to SEDAR+ by Patriot Battery Metals on August 28% 2025,
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deposit. One note 15 that the second set of data appears to be consistently below the 1:1 line,
mdicating a slight but systematic oversestimation of the Li recovery when using the initial model.
This may reflect shightly different liberation and HLS behaviour from this group of samples.
Overall however, these results tend to validate that the vanables used in each model remain
sigmificant for predicting HLS test recovery.
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Figure 4 2 Comelation between model predictions (using only significant variables) and the actual HLS Li recovery

{%). Blue and orange circles represent the individual data points used fo build Model 1 (all data) and Model 2 (only

logging data), respectively. Yellow triangles and red squares indicate independent validation points from PBM test
work.
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4.2 RESULTS OF EXTERNAL SIZE-BY-SIZE HLS TEST WORK

A total of 16 composite samples of vanable grades were submutted by Patriot Battery Metals to
SGS Lakefield m 2022 for an HLS test program, called Patriot Battery Metals (PBM) test work,
aimed at evaluating how geological variation within the deposit affects metallurgical performance.
The test program included sample preparation, mineralogical analysis, HLS testing, and dry
magnetic separation. Ifs main goal was to provide a preliminary understanding of the lithrum
beneficiation variability of samples collected from the CV5 Pegmatite at the Shaakichiuwaanaan
Property (Aghaninan & Imeson, 2023). Table 4.3 illustrates size-by-size lithium distribution by
S.G. obtained from these HLS tests. As an example, the last column of the first row in Table 4.3
mdicates that, for PBEM-Comp001 at particle size 0.6 to 1.7 mm and using a HL. at S.G. of 3.0 g/cm?,
78.2% of the lithium content 1s recovered m the sk fraction. Moving left from the last column,
the same principle applies for each size fraction and for each sample. Lastly, 1.35% of the lithium
content ended up 1n the float fraction while using HI. at an S.G. of 2.65 g/cm?®. Table 4.3 shows
samples PBM-Comp001 to PBM-Comp003, where PBM-Comp(001 1s a composite sample made
from both low- and high-grade material, and PBM-Comp002 and PBM-Comp(03 represent low-

grade and high-grade samples, respectively.

Imitial spodumene grain sizes of these three samples were evaluated from the dnll cores by
geologists at PBM using the aforementioned classification system (see section 3.1). The table also
presents the average proportion of spodumene gramns falling mto each size category (<2 mm, 2—
7 mm, >7 mm), as visually estimated from drill core inspection. It can be observed that a greater
proportion of the high-grade matenal consists of coarse spodumene grains larger than 7 mm winle
the low-grade material has a more balanced distribution, with a notable portion also falling into the
2—7 mm range. The composite sample lies between these two. This trend supports the general
correlation that higher-grade matenal tends to contain coarser spodumene grains, showmg the
connection between grade and gramn size.



Low-grade Composite

High-grade

o8

Table 4.3 Lithinm distribution by SG for composite, low-grade, and high-grade samples. The table also includes the esiimated average proportions (%) of
spodumene grains falling into each size category (<2, 2—7, =7 mm), as visually assessed by PBM geologists from drill core samples.

Spodumene distribution by e .
Top Bottom N Recovery to each 5.G. cut point

Test work ID Size Size

(mm) (mm)

PEM-Comp001 1.7 0.6 1.35 % 0.72 % 2.29% 279 % 3% 229 % 3.50 % 78.82%

PEM-Comp001 33 1.7 1.63 % 1.30 % 304 % 284 % 337% 3.60 % 1190 % T1.51%
0.70 5.01 0416

PEM-Comp001 63 33 2.27% 1.77 % 5.80 % 430 % 6.11 % 355 % 16.14 % 58.06 %

PEM-Comp001 95 63 1.12 % 227 % 7.06 % 554 % 533 % 6.30 % 18.49% 5390%

PEM-Comp002 1.7 0.6 258 % 1.64 % 6.91 % 303 % 247 % 3.06 % 3.04 % 1226 %

PEM-Comp002 33 1.7 4.02% 3.61% 538 % 464 % 6.05 % 375 % 10.28 % 60.26 %
1.40 0.68 38.64

PEM-Comp002 63 33 3.74% 3.95 % 082% 7.09 % 824 % 0.56 % 1123 % 4237 %

PEM-Comp002 95 63 4.76 % 7.61 % 12.05% 10.37 % 8.70 % 0.48 % 1143 % 3561 %

PEM-Comp003 1.7 0.6 0.90 % 0.93 % 241 % 221 % 1.41 % 230 % 6.29 % 8355%

PEM-Comp003 33 1.7 1.09 %a 1.62 % 397% 270 % 1.89 % 373 % 3.27% T6.73 %
0.00 0.09 2091

PEM-Comp003 63 33 1.11 % 227 % 6.08 % 362% 368 % 441 % 077 % 69.06 %

PEM-Comp003 95 63 1.65 %a 281 % 6.17 % 438 % 5.20% 6.04 % 1057 % 63.19 %
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Careful consideration of the data in Table 4.3 shows that as the particle size class increases, the
percentage of lithum in the sink fraction at an HL of 3.0 g/em® tends to decrease. This 1s an
expected observation since the liberation of lithrum 1s likely to be improved for smaller particles,
and thus more hithium particles should be recovered in the sink fraction. Figure 2.11, presented
earlier, illustrates this phenomenon. Thus, the lithrum distribution shows that when using a HL at
a density of 3.0 g/fem?®, most of the lithium ends up in the sink fraction, although the percentage of
lithrom 1n this sink fraction decreases as particle size mcreases. Figure 4.3 clearly shows the
decreasing recovery trend on each sample when the particle size 1s increasing.
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Figure 4 3 The effect of grain size on HLS recovery. X-axis refers to average particle size since samples were sieved
mto 4 size classes. PBM-Comp001 is a composite sample (green) made from both low (red)- and high-grade
{orange) material, and PBM-Comp002 and PBM-Comp003 represent low-grade and high-grade samples,
respectively.

As an example, Figure 4.3 also shows that high-pgrade sample processing results in 83% of the
lithtum reporting to the sink fraction at HL. of 3.0 g/em?®, wiile low-grade samples result only mn
72%, an 11% decrease. As samples are compared for the same particle size fractions, one can infer
that the higher grade sample 1s associated to the coarser spodumene grains which are easier to
liberate. This 1s also 1 agreement with the physical reality of liberation in the literature (Wills &
Finch_ 2016).



100

Thus, 1t appears likely that the particle size required to aclieve optimal recovery without over
crushing the sample can be different for high- and low-grade materials. This can be reworded the
following way: higher-grade material requires less crushing while low-grade samples need to be
crushed finer in order to achieve the same lithium recovery in the sink fraction. This important
observation not only warrants the use of caution when picking a crushing size but could even go
against the usual practice of blending low- and high-grade matenals, which 15 conducted in an
effort to stabilize feed grades. Rather, processing these materials separately and using different
crusher settings may lead to improved recovenies through reductions in over and under crushing.

Furthermore, as stated before, high-grade matenal typically contamns larger spodumene grains,
which can already be identified at the core logging stage through wvisual inspection or even image
analysis based on RGB-images. This provides an early indication of how much crushing may be
needed. However, estimating liberation at such coarse sizes presents challenges, as techniques like
SEM-based automated mineralogy only assess small surfaces at a time, making 1t difficult to obtain
a statistically sigmficant number of grains. An alternative method worth considering 1s micro-XRF,
which can analyse much larger surfaces (up to 10 cm x 10 cm) on certamn mstruments if a large
polished section 1s prepared. Additionally, Al/S1ratios can be used to distingmish spodumene from
other silicates that contain Na or K. Tlis can result in either over- or underestimating liberation
depending on the sample subset analyzed. Therefore, complementary laboratory HLS testing 1s
crucial to provide a more comprehensive understanding of spodumene liberation and the extent of
attached gangue munerals across different density fractions. Such data would help evaluate how
different crushing strategies influence liberation and recovery, help with decisions on optimal
crusher settings, and support the development of material separation strategies. This further
highlights why 1t 1s important to combine core logging, image analysis, and laboratory testing, as
done in this study.
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4.3 LABORATORY TEST WORK RESULTS

The laboratory test work in this study included sample preparation and HLS testing, as described
m Chapter 3. The purpose of this testing was to better understand spodumene liberation and
evaluate the crushability of spodumene relative to quartz and other gangue minerals. Additionally,
the tests aimed to identify how lithium i1s distributed across different size fractions after crushing.
This section presents the results of the crushing tests as well as the imtial HL.S outcomes conducted
m the laboratory.

4.3.1 Crushing

As explaned earlier (3.3.1), the four sample groups (Table 3_3) studied are: 1) liberated spodumene
(LS) with nearly 100% spodumene content, 2) liberated quartz (LQ) with low spodumene content,
3) muxed spodumene (MS) contaimng a domunant (visually ~75%) portion of spodumene and 4)
mixed quartz (MQ) contamning a dominant (visually =75%) portion of quartz. These samples were
manually sorted from the PBM-comp003 material, (99.67% of the grains >7mm) based on visual
muneral estimate. The samples were all first crushed to a top size of 9.5 mm (see Figure 3.5) to
prepare them for HLS testing. Prior to HL'S, sieve analysis was performed on each sample to assess
breakage behavior through particle size distribution.

Figure 4.4 provides valuable information about how different samples respond to the crushing
process. For the same crusher setting resulting n 100% passing 9.5mm, lhiberated spodumene
sample, represented by purple squares, shows the lowest percentage passing at all size ranges,
meaning it remains coarser compared to the other samples. This mndicates that samples rich in
spodumene may be more resistant to crushing or, at least, produce relatively coarser fragments
compared to other minerals (Cunmingham,  2025). Comparatively, liberated quartz, marked by
green triangles, has a slightly higher percentage passing than liberated spodumene, meaning it
breaks more easily or is already smaller in the beginning before crushing.
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Particle size distribution of all samples
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Figure 4 4 Particle size distribution of all samples.

The muxture contaming domunant quartz grams (MQ), represented by blue circles, shows the
highest percentage passing at all size fractions, meaning it 1s the most fragpmented matenial after
crushing. The presence of large quartz grans might have influenced fracture patterns, allowmng
easier breakage. Meanwhile, the nixture containing dominant spodumene grams (MS), shown by
orange diamonds, follows a distribution similar to the MQ muxture but remams shightly coarser.
This suggests that spodumene’s presence mn the mixture may contribute to a higher resistance to
breakage compared to mixed quartz sample.

The fact that the liberated spodumene (LS) showed the coarsest particles after crushing may seem
surprising since spodumene 1s actually “softer”, with a lower Bond Work Index (BWT) than quartz
(11.3 vs. 22.3 kWh/t) (Kohitlhetse et al., 2023; Mama, 2023), This is consistent with the Mohs
hardness scale, which indicates that quartz 1s shghtly harder than spodumene The liberated
spodumene sample formed coarser particles with fewer fines compared to liberated quartz. This
difference 1s not explained by hardness alone, as spodumene and quartz have sinular Mohs
hardness (6.5-7), but rather by cleavage: spodumene tends to break along cleavage planes,
producing longer fragments that may shde through the crusher if oriented favorably. These particles
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would, however, not necessarily be screened down as easily. Quartz, on the other hand, 1s more
bnttle and lacks cleavage, so it may shatter into more regular particles (Acke et al | 2023). This
highlights that factors beyond hardness, such as cleavages but also alteration and inclusion%, may
play a sigmficant role in the breakage behavior of these nunerals.

The resulting size distributions were modelled using G-G-S and R-R. modes as described in chapter
3. Both models were developed by adjusting the parameters to mumimize the sum of least-squares
between the oniginal measured data (cumulative passing percentages) and the modeled data. The
model performances are shown i Figure 4.5 for LS, LQ, MS and MQ. Overall, the Gates-Gaudin-
Schuhmann model provided a slightly better fit across all sample types, particularly for LS, as
mdicated by the higher R? values.
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Figure 4.5 Modelling crushability (orange diamonds) of liberated spodumene (A), liberated quartz (B), mixed spodumene (C) and mixed quartz (D) samples by using GGS
(black line) and RRS (dotted line) methods.

100%

10%

Cumulative passing (%)

1%

100%

10%

Cumulative passing (%)

1%

104

B) Liberated quartz (G-G-S and R-R)

100 1000 10000
Particle size (pm)
D) Mixed quartz (G-G-S and R-R)
100 1000 10000
Particle size (pm)



105

While the basic GGS model relies on a maximum particle size, m this study, a modified
approach was used to improve model accuracy, applying a cap above which the cumulative passing
value 1s 100%. This modification ensures that the calculated cumulative passing percentage does
not exceed 100%. While this approach provides a more accurate fit, it introduces certain himitations
m mterpreting model parameters. For instance, when using the Solver in Excel to mimminmze the
sum of squared errors between the GGS model and the onginal data points, the model suggests an
optimal K value of 7 407 58 pm, despite the actual top size being 10 000 pm. However, using the
ongmal equation at the same particle resulted in unrealistic values exceeding 158% cumulative
passing. This discrepancy highlights a trade-off where the modified GGS approach improves fitting
accuracy but compronuses the physical meaning of the parameter.

The RRS model employs loganthmic transformations to fit particle size distributions. While
widely used for general assessments, it has known himitations, particularly in predicting fine
fractions, as mentioned by Wills & Finch (2016). Consequently, although the RRS model performs
reasonably well for coarser fractions, its accuracy 1s highly reduced for finer grain sizes.

The size distribution parameters of the four samples analyzed using the Gates-Gaudin-Schuhmann
(GGS) and Rosin-Rammler-Sperling (RRS) models are summanzed in Table 4 4. The models'
parameters quantify the differences in particle size distribution. Parameters a and n illustrate the
width of the distnbution meaning the spread of particle size. High values indicate narrower
distributions and fewer fine particles produced, whereas low values mean wider distnbution and
more fine particles. The K-value (GGS), on the other hand, stands for the top size, meaning the
higher the value, the coarser the material Finally, the X, indicates the particle size at which 63 2%
of the material passes through the sieve. Again, lmgher Xp values mean coarser material and vice
versa. Table 4 4 represents these parameters on each sample.
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Table 4 4 Parameters used in Gates-Gandin-Schuhmann and Rosin-Rammler-Sperling models o present the crushing

behavior of the ore.
GGS RRS
a K n Xo
Liberated quartz 1.39 6980.05 217 4680.30
Liberated spodumene 1.53 7407.58 225 524277
Mixed quartz 1.24 6882.16 2.00 4378.04
Mixed spodumene 1.20 7327.76 1.88 4656.44

Interestingly, the muxed samples demonstrate lower a and n values, indicating broader size
distributions with a higher proportion of fines. Among these, the sample with mixed spodumene
grains (with small quartz inclusions) exhibits the lowest & and » values. The mixed quartz grans
also show a broad distribution but retain slightly coarser particles compared to mixed spodumene.
These findings imply that predicting the breakage behavior of mixed samples may be more
complex than just considering the behavior of the minerals present but likely mvolves mteraction
between the species present. Among the tested models, the GGS model provided a notably better
fit across all particle size ranges, especially for fine particles, making 1t more swtable for predicting

fines generation.

Overall, while both models provide valuable mnsights, the GGS model outperforms the RRS model
m representing the full particle size distnbution of the spodumene sample. The primary purpose of
applying these general models (GGS and RRS) was to validate the reliability of the experimental
particle size data obtained m this study. By demonstrating that the generated data aligns well with
well-established and commonly known models, it provides additional confidence mn the quality and
consistency of the breakage and size distribution results. This fit confirms that the breakage
behavior of spodumene in this test work follows typical mineral processing trends, supporting the
robustness of the experimental approach. Consequently, the use of these models serves as an
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additional layer of verification that the findings are credible and applicable within the broader
context of mineral processing research.

4.3.2 HLS Test Work

The traditional HLS tests (as explaned in section 3.3 2), conducted using a beaker setup, produced
three sink fractions (> 3.0, > 2.85 and > 2.7 g/cm’) and one float fraction (< 2.7 g/cm®) for each
sample. These fractions were further sieved into five different particle size classes (9.5-6.3,6.3 -
33,33-1.7,1.7-0.63 and <0.63 mm) with measured mass recoveries and calculated weight %
for each size fraction. In addition, based on the ICP chenustry results of these tests, and more
specifically the L1 assays, the percentage of spodumene was calculated by simply dividing the I.1%
by 0.0373 (assuming the spodumene contains its theoretical value 3.37% of hithium and that all
lithrum 15 in spodumene). The percentage of non-spodumene nunerals was then obtained by
subtracting the calculated spodumene% from 100% representing the amount of non-spodumene
material  All these values are presented in Table 4.5.

The spodumene distribution (%) was calculated to determune how the total recovered spodumene
was distributed among the various HLS products. The calculation was based on the spodumene
content (wt%) of each individual fraction, divided by the total recovered spodumene across all
fractions in the HLS test. Similarly, the non-spodumene distribution was calculated using the
percentage of non-spodumene instead of spodumene. Some of the samples did not have a minimal
amount of mass, and thus ICP analyses were not possible, explaimng why some samples have no
spodumene values in Table 4.5
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Table 4.5 Outcome of HLS test work on liberated spodumene (1.S), liberated quartz (L)), mixed spodumene grains with a dominant spodumene component (MS)
and mixed quartz grains with a dominant gangue component (MQ).

HL SG Weightg Weight %  Li% Spd%  Nom-spd % P4 di’f;:;ib“ﬁ““ di;lj:;]“u':i':i o

LS Sink -9.5 +6.3mm 3.00 1.32 14.0 2.70 72.39 27.61 70.88 9.27
LS Sink -9.5 +6.3mm 2385 0.78 8.3 1.10 29 49 70.51 28 88 2367
LS Sink -9.5 +6.3mm 2.70 227 240

LS Float -9.5 +6.3mm 2.70 5.08 538 0.01 0.24 99.76 0.24 3349
LS Feed -0.5 +6.3mm 9.45 100.0 0.47 12.67 §7.33 12.41 20.32
LS Sink 6.3 +3 3mm 3.00 1.59 6.4 2.60 69.71 30.29 55.13 11.07
LS Sink -6.3 +3.3mm 2385 402 16.3 1.50 40.21 59.8 31.81 21385
LS Sink -6.3 +3.3mm 2.70 458 18.5 0.59 15.82 84.18 12.51 30.77
LS Float -6.3 +3.3mm 2.70 14.54 588 0.03 0.70 9930 0.55 36.30
LS Feed -6.3 +3.3mm 24.73 100.0 0.54 14.36 $5.64 11.36 31.31
LS Sink 3.3 +1.7mm 3.00 0.59 8.3 230 61.66 38.34 60.32 12.87
LS Sink -3.3 +1.7mm 2385 117 16.4 1.50 40.21 59.79 39.34 20.08
LS Sink -3.3 +1.7mm 2.70 131 18.4

LS Float -3.3 +1.7mm 2.70 405 56.9 0.01 035 99.65 0.34 3347
LS Feed -3.3 +1.7mm 7.12 100.0 0.44 12.67 §7.33 12.39 20.33
LS Sink -1.7 +0.63mm 3.00 03 122 210 56.30 43.70 98.96 12.74
LS Sink -1.7 +0.63mm 2385 0.44 18.0

LS Sink -1.7 +0.63mm 2.70 03 12.2

LSFloat-1.7+0.63mm | -2.70 141 57.6 0.02 0.59 99 41 1.04 28.97
LS Feed -1.7 +0.63mm 245 100.0 0.27 7.23 02.77 12.71 27.04
Total LS Feed 43.75 0.49 13.20 $6.80 0.28 0.25
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Table 4.5 Outcome of HLS test work on liberated spodumene (LS), liberated quartz (LQ). mixed spodumene grains with a dominant spodumene
component (MS) and mixed quartz grains with a donmnant gangue component (MQ) (continued).

HL 5G

Weight ¢

Weight %o

Li %

Spd %

Non-spd %

Spd distribution

Non-spd distribution
%%

MS Smk -9.5 +6.3mm 3.00 0.25 22 210 56.30 43.70 61.22 14.19
MS Smk -9.5 +6.3mm 285 4.6 398 1.30 3485 65.15 3790 2115
MS Smk -9.5 +6.3mm 270 2.69 233

MS Float -9.5 +6.3mm -2.70 4.02 3438 0.03 0.80 99.20 0.87 32.20
MS Feed -9.5 +6.3mm 11.56 100.0 0.57 15.37 84.63 16.71 27.47
MS Smk -6.3 +3 3mm 3.00 36 128 2.60 69.71 3029 62.85 10.48
MS Smk -6.3 +3 3mm 285 4.75 16.8 1.50 4021 398 36.26 20.68
MS Smk -6.3 +3 3mm 270 7.33 260

MS Float -6.3 +3.3mm -2.70 12.55 445 0.04 0.99 99.01 0.89 34.25
MS Feed -6.3 +3.3mm 28.23 100.0 0.60 16.10 83.90 14.51 29.02
MS Smk -3.3 +1.7mm 3.00 1.26 108 240 6434 35.66 64.27 11.89
MS Smk -3.3 +1.7mm 285 242 208 1.30 3485 65.15 34.82 21.72
MS Smk -3.3 +1.7mm 270 2.64 227

MS Float -3.3 +1.7mm -2.70 5.31 457 0.03 091 99.09 091 33.04
MS Feed -3.3 +1.7mm 11.63 100.0 0.55 12.67 87.33 12.66 29.12
MS Sk -1.7 +0.63mm 3.00 0.71 136 220 5898 41.02 66.07 13.20
MS Sk -1.7 +0.63mm 285 1.11 212 1.10 25949 7051 33.03 22.69
MS Sk -1.7 +0.63mm 270 1.31 250

MS Float -1.7 +0.63mm -2.70 21 402 0.03 0.80 99.20 0.90 31.92
MS Feed -1.7 +0.63mm 5.23 100.0 0.54 14.59 8541 16.34 27.49
Total MS Feed 56.65 0.58 15.51 84.40 0.26 0.25
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Table 4.5 Outcome of HLS test work on liberated spodumene (LS), liberated quartz (LQ). mixed spodumene grains with a dominant spodumene
component (MS) and mixed quartz grains with a donmnant gangue component (MQ) (continued).

]3{1_: Weight g Weight % Li% Spd% Non-spd %  Spd distribution % dm‘: i"h“;ilzi %

MQ Sink -9.5 +6_3mm 3.00 0 0.0

MQ Sink -9.5 +6.3mm 285 0.5 112

MQ Sink -9.5 +6.3mm 2.70 12 269

MQ Float -9.5 +6.3mm 2.70 2.76 619 001 025 99.75 100.00 2495
MQ Feed 9.5 +6.3mm 4.46 1000 001  0.15 90.85 61.88 24.98
MQ Sink 6.3 +3 3mm 3.00 14 44 250  67.02 3298 56.34 11.73
MQ Sink -6.3 +3 3mm 285 5.06 16.1 160  42.90 57.1 36.06 2032
MQ Sink -6.3 +3 3mm 2.70 7.46 237 030 804 91.96 6.76 32.72
MQ Float -6.3 +3.3mm 2.70 17.6 55.8 004 099 99.01 0.83 35.23
MQ Feed -6.3 +3.3mm 31.52 100.0 046 1232 87.68 10.36 31.20
MQ Sink 3.3 +1_7mm 3.00 0.86 6.7 240 6434 35.66 58 11 12.33
MQ Sink -3.3 +1_7mm 285 1.86 14.6 140 3753 62.47 33.90 21.59
MQ Sink -3.3 +1_7mm 2.70 247 193 030 804 91.96 7.26 31.79
MQ Float -3.3 +1.7mm 2.70 7.59 59.4 003 080 99.20 0.73 3429
MQ Feed -3.3 +1.7mm 12.78 100.0 044  12.67 87.33 11.44 30.19
MQ Sink -1.7 +0.63mm | 3.00 052 109

MQ Sink -1.7+0.63mm | 2.85 0.57 12.0

MQ Sink -1.7+0.63mm | 2.70 1.17 246

MQ Float -1.7 +0.63mm | -2.70 25 52.5 002 056 99.44 100.00 24.89
MQ Feed -1.7 +0.63mm 4.76 1000 001  0.30 99.70 52.52 24.96
Total MQ Feed 53.52 038 10.12 80.88 0.40 0.24




Table 4.5 Outcome of HLS test work on liberated spodumene (LS), liberated quartz (LQ). mixed spodumene grains with a dominant spodumene
component (MS) and mixed quartz grains with a donmnant gangue component (MQ) (continued).

HL 5G

Weight ¢

Weight %o

Li %o

Spd %

Non-spd %

Spd distribution %

Non-spd
distribution %

111

LQ Sk -9.5 +6.3mm 3.00 041 3.6 3.30 8847 11.53 95.65 375
LQ Sk -9.5 +6.3mm 285 0 0.0

LQ Sk -9.5 +6.3mm 270 2.84 388

LQ Float -9.5 +6.3mm -2.70 4.07 35.6 0.15 4.02 9598 435 il
LQ Feed -9.5 +6.3mm 7.32 100.0 0.27 7.19 02.81 7.78 30.18
LQ Sk -6.3 +3 3mm 3.00 1.54 5.1 1.10 25949 7051 3899 21.74
LQ Sk -6.3 +3 3mm 285 217 72 1.30 3485 65.1 46.08 20.08
LQ Sk -6.3 +3 3mm 270 6.18 204 0.36 9.65 90.35 12.76 27.85
LQ Float -6.3 +3 3mm -2.70 2038 67.3 0.06 1.64 98.36 216 3032
LQ Feed -6.3 +3.3mm 30.27 100.0 0.26 7.07 02.93 0.35 28.65
LQ Sk -3.3 +1.7mm 3.00 0.75 6.8 0.91 2440 75.60 53.65 2132
LQ Sk -3.3 +1.7mm 285 0.69 6.3 0.75 2011 79.89 4425 2253
LQ Sk -3.3 +1.7mm 270 1.27 11.6

LQ Float -3.3 +1.7mm -2.70 8.24 753 0.04 0.94 99.06 206 2794
LQ Feed -3.3 +1.7mm 10.95 100.0 0.14 12.67 87.33 27.88 24.63
LQ Sink -1.7 +0.63mm 3.00 03 69

LQ Sink -1.7 +0.63mm 285 0.55 12.6 0.68 1823 81.77 94 58 2148
LQ Sink -1.7 +0.63mm 270 0.61 14.0

LQ Float -1.7 +0.63mm -2.70 29 66.5 0.04 1.05 9895 542 2599
LQ Feed -1.7 +0.63mm 4.36 100.0 0.11 3.00 07.00 15.54 25.48
Total LQ Feed 52.90 0.23 6.04 03.96 0.20 0.25
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Table 4.5 provides mformation about the HLS tests and overall L1 grades in each size and density
fraction. When looking at the L1 grade at each four samples, it can be seen that surpnisingly the
highest L1 feed grade 1s seen for MS (0.58%) sample mnstead of LS (0.49%), which would have
been more probable. The second highest L1% 1s in LS followed by MQ (0.38%) and lastly LQ
(0.23%). Thus observation mdicates firstly, that all of the samples contain lithium and secondly,
that the MS sample contains more Li than LS even if the goal of the grain picking was opposite.
This lughlights the difficulty of visually distingmishing the spodumene grains from other gangue
nmunerals and indicates that this goal was not quite achieved.

Another pont that can be made by looking at the data from Table 4.5 1s that the L1 grades of the
< 2.7 g/em’® density fractions are very low (between 0.01% and 0.15%) and represent less than 1%
of the Li contamed for the LS and MS samples in all size fractions. This indicates that lithium 15
almost never present as small inclusions in light minerals or as substitution m light minerals. Thus,
it can be concluded that the light fraction represents mostly gangue matenial without sigmificant Li-
bearing phase. In the denser fractions (>3 g/cm?), the spodumene grade typically ranges between
50% and 70%, which suggests that other minerals are still attached to the spodumene. Additionally,
suspiciously high Fe values were observed, suggesting that the iron grinding media and excessively
long grinding time mentioned in section 3.3.2 have likely caused contanunation. A substantial
portion of the remamming impurity, however, 1s likely due to attached silicates, such as quartz,
emphasizing that liberation 1s not yet complete in these samples.

Based on the data from Table 4.5, two types of graphs can be created. The first one, called mass
distribution, represents how the mass of each sample 1s distrnbuted among the different size and
density classes. The second way to plot the data 1s to create 3D bar charts where the L1 distribution
%, particle size classes and different density fractions are shown indicating how the spodumene
and therefore lithium 1s distributed within the different size and density classes.

Figure 4.6 presents the first type of these graphs for the four different samples, highlighting the
mass distribution of the entire sample across various particle size classes and HLS specific gravity
products. The X-axis displays the SG cut points (3.00, 2.85, 2.70, and <2.70 g/cm’), while the
color-coded bars represent different particle size frachions (+6.3 mm, +3.3 mm, +1.7 mm, +0.63
mm, and <0.63 mm). The Y-axis shows the proportion of total sample mass recovered m each SG
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fraction. This visualization allows the assessment of how the overall sample mass 1s distnbuted
across density fractions and particle sizes.

In Figure 4.6A, the bimodality of the finest size class (red bar) 1s clearly seen, with liftle mass
content in the density classes between 2.7 and 3.0 g/em’, indicating higher liberation in this class.
The red bar has the highest “peaks™ at density class of 3 and -2.7 g/fem’. This observation is
consistent with the expectation that the finest class should have the best liberation, with liberated
spodumene (p=3 2 g/cm?), reporting in the sink at 3.0 g/cm® and the -2.7 g/cm’ containing mostly
liberated gangue. This bimodality appears reduced for coarser fractions, in agreement with a
reduced liberation. A sinular trend of mncreased bimodality (reduced amounts in the nuddle density
fractions) 1s noticeable 1 the mixed spodumene sample (Figure 4.6C), lending more credit to the

above observation.

Figure 4 6B, on the other hand, does not show obvious signs of increased bimodality for finer
fractions, possibly due to the fact that the sample 1s mostly composed of gangue (quartz), with
small amounts of spodumene and heavy minerals. The small amount of heavy minerals presents
limits the ability to notice changes and may also indicate that the grams of spodumene are smaller
and may not be significantly more liberated in the size classes charactenized here. A simmlar
behavior can be seen in Figure 4 6D where the mixed quartz (MQ) sample, which has a igh portion
of gangue minerals (mainly quartz), 1s presented. In this graph most of the mass 1s shifted (the
highest bars) towards the right side of the graph. However, muddle classes as well as the density
class of 3.0 g/lem’ contain more mass compared to the LQ sample, indicating that this sample
contamns a liftle bit more heavier particles which are likely to be spodumene. The reason why a
clear bimodal pattern 1s not visible can be simply due to the lack of spodumene in the sample since
this sample 1s supposed to contain only a small portion of spodumene. This 1s in agreement with
the feed grades shown in Table 4.5.
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Figure 4.6 Mass distribution (%) of the samples across different S G. fractions (3.00, 2.85, 2.70, and <2 70 g/cm®) and particle size classes. Each
color represents a distinct size fraction, and the height of each bar indicates the proportion of the total sample mass recovered in the
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Mass by density/size fraction data, however, remams limited in its ability to explam the
relationships. Hence, 1n addition to weight % analysis, Table 4.5 includes data of spodumene and
non-spodumene distributions. These columns provide more detailed information about how the
spodumene 1s distributed among the different density fractions and particle size classes. Figure
4 7A 1llustrates this data for the liberated spodumene (LS) sample. A clear split 15 seen where the
highest bars are located on the left side of the graph regardless of particle size class, meaning almost
all the Li has sunk into the sink fraction when using HL densities 2.85 g/cm’ or higher, in agreement
with results from section 4.2. Another observation from this graph 1s that a decreasing trend 1s seen
m each particle size class when the density 1s decreasing. This indicates that the less dense the
heavy liquud used, the less likely 1t 1s for Li to report to the sink fraction, which 1s consistent if
mcomplete liberation of the material 1s at stake and increases as size decreases. Furthermore, when
looking at the weight % data (Figure 4. 6A) for this same sample, a small mass can also be seen in
the middle-density fractions, with slightly more mass present in the 2.85 g/cm® density fraction
than in the 2.7 g/em’ fraction. This could indicate that Li may also be present in the intermediate
fractions.

Figure 4.7C presents the same data, but for the nuxed spodumene (MS) sample. In this case, the
main observation compared to Figure 4.7A 1s that the bars in each size class are more evenly
distributed. This 15 consistent with the expected lower level of liberation of the sample, with this
mixed spodumene sample contaming more particles where quartz 1s attached to spodumene,
compared to the liberated spodumene (LS) sample. Also, barely any effect of size class 1s
noticeable m this sample, which indicates that the liberation pattern may differ from that of the LS

sample.

This same difference in vanation can also be seen in Figure 4. 7B and Figure 4.7C, which present
liberated quartz (LQ) and mixed quartz (MQ) samples respectively. Despite some lack of data
points, among all four samples, the decrease of L1% seems to be following a more or less linear
trend when shifting towards the low-density fractions. Table 4.6 shows R? values of this linear
trend, between Li distribution % and different HI. density fractions. In almost each size class, the
correlation 1s over 90%, indicating a quasi-linear relation exists between density class and L1
distribution.
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Figure 4.7 3D graph where different density fractions and particle size classes are plotted against Li distribution. A) liberated spodumene, B) liberated quartz,

C) mixed spodumene and D) mixed quartz.
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Table 4.6 Correlation between Li distribution % and density fraction for each particle size class.

Sample Particle size (mm) R’
+6.3 91.33%
Liberated +33 98.08%
spodumene +1.7 99.97%
+0.63 -
+6.3 99 64%
Mixed +33 98.83%
spodumene +1.7 97.78%
+0.63 96.13%
+6.3 -
. +33 94 86%
Mixed quartz +1.7 95.02%
+0.63 -
+6.3 -
Liberated +33 T8.84%
quartz +1.7 9743%
+0.63 -

Using thus aforementioned observation, the linear relationship could be used to predict the portion
of L1 whach reports to certam density classes. This information would enable better understanding
prediction of DMS recovery. This means that if the correlation between Li distribution percent and
density fraction 15 known, it becomes possible to estimate how much of the lithium content of
particles in certain density class will report to the sink or float fraction during DMS processing.
For example, 1f a particle 1s classified mto a specific density class, one could predict that a certain
proportion will end up in the sink fraction while the remainder will report to the float.

With more refinement in the grain size estimated from core samples and better understanding of
the hink with hiberation, DMS performance may be predictable from drill core data without the need
for extensive laboratory testing. As discussed earlier (section 4.1), the most significant variable
mfluencing HLS Li recovery 15 the spodumene grain size interpreted from dnill cores. This opens
pronmusing opportumities for automation by applying machine learning and image analysis
techmiques as it would be possible to objectively and more consistently evaluate grain size directly
from drill core images. Such a system could sigmficantly enhance geometallurgical modelling by
providing fast, reproducible, and operator-independent estimates of spodumene liberation and
expected DMS performance
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Another interesting observation which can be made, after calculating a theoretical spodumene
weight percentage, 1s the companson between the actual spodumene content determined by
chemucal assay (ICP) and the maximum spodumene content that could theoretically exist in a given
density fraction. This theoretical spodumene percentage was calculated based on the assumption
that the particles in each density fraction consist of only spodumene and gangue (other minerals)
and that these two components mix proportionally to achieve the average density.

Specifically, using the known densities of pure spodumene and gangue (assumed to be 3.2 g/cm?
and 2.65 g/cm?® respectively), it 15 possible to calculate the proportion of spodumene, and gangue
required to reach the average density of a given fraction (for example, 2.925 g/em?® for the 2 85—
3.0 g/cm?® fraction). This 1s done by solving a mass balance equation where the weighted sum of
the component densities equals the average density of the fraction:

Prraction = X -~ Pspa + [1 - x) " PGangue 44

where pgaction 15 the measured average density of the density fraction, pspa and pcangue are the
assumed densities of spodumene (3.2 g/em®) and gangue (2.65 g/cm?), and x 1s the proportion of
spodumene. Solving for x gives the theoretical spodumene percentage in that fraction.

The resulting theoretical spodumene percentage thus represents the theoretical maimum
spodumene grade achievable 1if the particles in that density class were made up of only 3.2 g/em?®
spodumene and 2 65 g/cm?® gangue. Lastly, dividing the ICP assessed spodumene content (spd%o)
by this theoretical spodumene fraction (theoretical spd%), a “relative” spodumene content (relative
spd%) 1s obtained. This value gives an ndication of how close the spodumene content of the sample
15 to the maximum spodumene concentration possible in that density fraction, thereby reflecting
the degree of spodumene purity or the extent to which the particles are composed of spodumene
attached to gangue material vs. other nunerals of this density. In other words, by comparing this
theoretical maximum to the ICP-determuned spodumene content, 1t can be seen if the class 1s made
up of spodumene grains with gangue minerals attached to them or respectively, whether high-S G.
gangue minerals (such as tourmaline and gamnet) are present. Table 4.7 presents both the ICP
calculated spodumene percentages, the calculated theoretical maximum and the relative spd%
value for each particle size and density fraction.
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Table 4.7 Comparison between spodumene percentage determined by chemical assay (ICP) and the theoretical (calculated) maxinmm spodumene content for
each density fraction and particle size class.

3.0 glem’ = 2 85g/cm’ = 2. 7glem’ = 2 7glem’ =
84 46% spd max 54.70% spd max 26.21% spd.max 5.44% spd max
Size Spd%  Relative | Spd%  Relative | Spd% Relative | Spd%  Relative

Sample (mm) | (ICP) spd% | (ICP) spd% | (ICP) spd% | (ICP)  spd%
+63 | 7239 | 8570 | 2949 | 5391 - - 024 | 444

Liberated +33 | 6971 | 8253 | 4021 | 7352 | 1582 | 6035 070 | 1281
spodumene +17 | 6166 | 7301 | 4021 | 7352 - ; 0.35 6.41
+063 | 5630 | 6666 - _ _ ; 059 | 1084

+63 | s630 | 6666 | 3485 | 6372 - - 080 | 1478

Mixed +33 | 6971 | 8253 | 4021 | 7352 - ; 099 | 1823
spodumene +17 | 6434 | 7618 | 3485 | 6372 - ; 091 | 16.76
+063 | 5898 | 6983 | 2949 | 5391 - ; 080 | 1478

+63 - - - - - - 0.25 458

Mixedquartz | 33 | 6702 | 7936 | 4290 | 7842 | 804 | 3069 099 | 1823
+17 | 6434 | 7618 | 3753 | 6862 | 804 | 3069 080 | 1478

+0.63 - - - _ _ ; 056 | 1035

+630 | 8847 | 10475 - - - - 402 | 7392

Liberated quartz | T330 | 2949 | 3492 | 3485 | 6372 | 965 | 3682 164 | 3006
+170 | 2440 | 2889 | 2011 | 3676 - ; 094 | 1725

+0.63 - - 1823 | 3333 _ ; 105 | 1922
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For the mixed spodumene (MS) sample (+6.3 mm) in the 2 85-3.0 g/cm® density fraction from
Table 4.7, the ICP chemistry indicates that the actual spodumene content in this fraction 1s 34.85%,
while the theoretical maximum spodumene content (assuming particles are composed solely of
spodumene and attached gangue minerals with an average density of 2.925 g/cm?®) 1s 54.7%. This
suggests that 64% (34.85%/54.7%) of the particles are composed spodumene attached to light
gangue, while 36% by mass 1s made up of mixtures of or pure high S.G. munerals. This supports
the interpretation that most of the material 1s spodumene which 1s not fully liberated but that a

munor amount of other dense minerals may be present.

One factor mcreasing the confidence in these results 1s that all measured ICP values fall below their
respective theoretical maximum spodumene percentages, as expected. Only one value (LQ, +3.0
g/fem’, +63mm) slightly exceeded its theoretical maximum, which is likely due to random
vaniability or analytical uncertamnty. This confirms that the theoretical calculations provide
reasonable upper boundaries and that the ICP-based methodology produces results within logical
linits, without overestimation of spodumene content.

Furthermore, in Table 4.7, relative spd % values, for the +3 g/cm® and +2_ 85 g/cm® fractions, tend
to go down with size. This means that coarse sizes contain larger proportions of attached
(unliberated spodumene), whereas finer sizes contain more other «heavy» minerals. Agamn, this 1s
consistent with improved liberation at finer sizes and also supports the “selective” nature of
spodumene lhiberation (Cunningham, 2025). Also, the relative spd% are rarely above 70-80%,
which either means that there are always some 20-30% of other heavy minerals present, even in
the +0.63mm fraction, of that the lithram was underestimated in some samples, or that using the
average SG of the fraction 2.925 g/cm’ in one instance is not quite accurate.

An optical microscopy was used for visual observations of the particles mn order to compare the
visual nature of the particles to chemical data. As seen from Figure 4.8, spodumene, the most
abundant mineral, appears light gray and 1s characterized, at least in the Shaakichiuwaanaan
deposit, by black tourmaline inclusions (Zhang et al | 2008). In the grain on the left side of the
mmage, the black inclusions tend to be onented, which 1s another feature suggesting that they are
mostly aligned with the cleavage planes of spodumene. Some whate albite and quartz mixture can
also be seen, particularly on the rnight side of the image. This image agamn shows how visual
estimation of nunerals from microscopy images 1s difficult, even for large gramns. Moreover,



121

surface examination of these large prains does not show what 1s on the other side of the grain nor
whether some mineral inclusions lie inside the particle.

Figure 4 8§ Optical microscopy image on the mixed spodumene sample (+6.3mm_ 2 85g/cm3). Spodumene (spd),
muscovite (Mus), tourmaline (Tur), albite (Alb), and quartz (Qz) are marked in the image.

Lastly, 1n an effort to improve the completeness of the data in terms of size fractions, exploratory
centrifugation testing was attempted on the -630 pm fraction in a HL with a density of 2. 85 g/cm’.
The visual outcome of the centrifuge test 1s shown in Figure 4.9, where sink (dark color) and float
(light color) are clearly shown. This observation shows that 1t 1s possible to separate spodumene
from the gangue by using HL i the centrifuge. This approach may facilitate bulk HL testing where
the presence of excessive amounts of fine particles can complicate the procedure due to incomplete

separation.
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Figure 4.9 After centrifugation of fines, two clearly separated phases were present.

As Figure 4.10 shows, the separation appeared successful, since the color of the sink fraction 1s
more gray/light greenish with some dark/black particles, which could point to spodumene and
tourmaline, respectively. On the other hand, the float fraction 1s clearly whiter, indicating the
presence of feldspar and quartz. The actual chemical composition of the sink and float fractions,
shown in Table 4 8, reveals that the % L1 1s almost 30 times higher in the sink fraction than in the
float fraction, confirming that separation by centrifugation worked well decreased the separation
time compared to traditional HL'S test for fine particles. The low amount of lithtum in the float
fraction also indicates a very high degree of liberation in this fraction. While current DMS methods
do not allow for separation in these particle size classes, this analysis reveals that the degree of
liberation will not be an impediment, should developments in fine DMS methods or other means
allow for their recovery.
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Figure 4 10 Sink (left) and float (right) fraction of fine particle (-0.6mm) centrifugation under the optical
microscopy. 1 cm in the image represents 5000 pm in reality.

Table 4.8 Chemical assay results of fine fraction (-0.6mm) centrifugation testwork

Fraction Mass % Li (%)
Float 44 4 0.049
Sink 556 14

In summary, the laboratory HLS tests provide valuable insight into spodumene liberation, which
has been 1dentified as the key factor controlling lithum recovery in gravity separation. The test
results lighlight that effective separation is directly linked to achieving sufficient spodumene
liberation, as reflected by the strong correlation between pramn size, density fractions, and Li
recovery. Furthermore, as discussed in the previous sections (see section 4.2), high-prade matenal
tends to deliver better recovery because 1t typically requires less crushing to achieve the necessary
liberation. This 1s attributed to the fact that high-grade matenal often contains larger inifial
spodumene grain sizes, which can already be observed at the core logging stage (see Table 4.3).
However, the current grain size estimation method lacks sufficient resolution, making accurate
grain size determunation difficult. Nonetheless, since 94%, 88% and 99% of the grains in the
samples PBM-comp001, PBM-comp002 and PBM-comp(003, respectively, are larger than 7 mm,
these observations strongly suggest that spodumene grain size, visible during core logging, 1s a
critical parameter for predicting hthium recovery. Although geological logging remaimns a
subjective method, the results show it performs adequately in predicting recovery potential. This
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supports the need for grain size estimation methods including those in the next section which utilize
mage analysis and machine learming to create more objective and consistent evaluations of
spodumene grain size directly from core image, 1 order to support better recovery predictions.

4.4 MACHINE LEARNING AND IMAGE PROCESSING

A machine learming algorithm was applied to estimate spodumene grain size based on RGB 1mages
of the 11 composite samples from PBM’s Shaakichiuwaanaan deposit. This section presents and
discusses these results. Most importantly, the estimation of spodumene grain size and evaluation
of the model’s performance are covered and the new correlation coefficients and R? values of the
new models are compared to the previous models based solely on the geologists’ estimations
(section 4.1).

The performance of each ML classification model 1s presented as a confusion matrix m Figure
4.11, where Y-axes refer to manually labeled classes by PhD student in geology (true class) while
the X-axes show the predicted classes by machine (predicted class). In the diagonal, the confusion
matrices show the percentages of superpixels which the machine has classified correctly. A color
code was implemented for clanity, meaning that the darker blue on the diagonal, the more accurate
the classification process has been. Other, non-diagonal, elements (orange/brownish color)
represent incorrectly identified superpixels. The percentage on each square indicates the total
percentage of superpixels classified into each predicted class, relative to the total number of true
samples in that row. High non-diagonal values indicate confusion between classes, whereas higher
diagonal values (blue) reflect accurate predictions.

The different M. models can be compared based on the confusion matrices shown in Figure 4.11.
All three models CART (A), Random Forest (B), and k-NN (C) demonstrate relatively high
accuracy in identifymg the “Undetermined™ class, containing mostly dark shadow and edge areas,
with over 90% correct classification. Thus 1s likely due to the high number of labelled training data
and the obvious features differing clearly from other classes. Notable differences arise in the
classification of spodumene superpixels however. The Random Forest model achieves the highest
accuracy for spodumene (51.6%), shightly outperforming CART (43.5%) and k-NN (50.2%).
Despite this, all models exhibit sipmificant confusion between spodumene and gangue, as indicated
by high non-diagonal values (e.g., 46.2% of spodumene was misclassified as gangue m Random
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Forest). The confusion between the gangue and spodumene classes 1s likely due to the sinularity
of their extracted features. Additionally, the traming data labeling process may have mtroduced
some bias: the focus was pnimarily on identifying spodumene, and any superpixel that was not
spodumene was automatically labeled as gangue. This resulted in a broad and heterogeneous range
of superpixels being assigned to the gangue class, making 1t more difficult for the model to learn
distinct and consistent characteristics for gangue. This suggests that while Random Forest performs
slightly better overall, the overlapping visual or textural features between spodumene and gangue
remain a challenge for accurate classification. Additionally, marker class identification 1s relatively
weak across all models, with high musclassification rates, particularly into spodumene. This
behavior can be explamned simply by the lack of training data making the classification challenging_

Despite the confusion between spodumene and gangue, the MATLAB-based code performs as
mtended, demonstrating that fully automated, machine learning—based superpixel classification 1s
technically feasible. However, as previously stated, the pnmary objective of this study 1s not to
develop a finalized machine learming tool. The results presented here are based on a manually
labeled dataset, where classification was performed by human interpretation rather than an
automated algorithm. This approach aligns with the proof-of-concept nature of the work, aiming
to evaluate the potential and limitations of such a system. The findings of this thesis serve as a
foundation for future development, where the focus can shift toward building a more automated
and robust machine learming framework.
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Figure 411 Confusion matrices for each ML model Y-axes represents the actual True Classes determined by geologiests whereas X-axes shows the predicted
classes by the ML algorithm  A) CART, B) Random Forest and C) k-NN.
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Dafferent grain size metrics were obtamed, as explained in Chapter 3.4.3, from spodumene grains
identified by a geology PhD student Neila Seray. The average grain sizes (eight metrics) for each
of the 11 composite samples are presented in Table 4.9. The table also includes the origmal 11
recovery % from HLS testing and the percentage of spodumene grains larger than 7 mm (%Spd
grains > 7 mm), as estimated by geologists at PBM. In addition, a volume-weighted average
equivalent diameter (deq) 1s shown to better illustrate the distrbution of different grain sizes.
Lastly, the P80 value indicates the particle size below which 80% of the sample’s mass 1s contained.

As shown 1n Table 4.9, samples with a higher percentage of coarse (>7 mm) spodumene grains,
such as Composites 1,4, 9, and 11, also exhibit higher recovery rates, due to the fact that coarser
particles settle much faster than fines because ternunal setthing velocity increases strongly with
particle size (for small particles this follows Stokes’ law). Faster seftling lets the density contrast
confrol the separation and gives a sharper split, so misplacement drops. Fines increase slurry
viscosity, stay m suspension longer, and are easily carned mnto the wrong product. Therefore, coarse
spodumene grains are typically recovered more efficiently in DMS/HLS than fine ones. Therefore,
composites 6 and 10, which have both lower %Spd grains > 7 mm and smaller average grain size
values across multiple metrics (e.g., deq, dins, and dFmax), demonstrate lower recovery. This
remforces the previously mentioned relationship between gramn coarseness and separation
performance. In addition, each grain’s equivalent diameter (d.) can be multiplied by its respective
grain volume, and the total divided by the sum of all volumes, to weight the contributions and
ensure that larger pramns, which represent a larger mass have a greater influence on the final average
than if grains are simply weighted on a unit-basis. As can be expected, these weighted deq and Pso
values follow a similar pattern_
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Table 4.9 Mean grain size metrics and comresponding HLS recovery by interval group.

Metric Compl Comp? Comp3 Comp4 Comp5 Comp6é Comp7 Comp8 Comp? Compl0 Compll
HLS Li Recovery (%) 92.20 82.70 90.10 8660 9140 61.00 8050 8550 92.50 79.00 92.20
% spd gramns >=Tmm 100,00 9744 9690 10000 10000 Bl100 91.11 8639 100.00 94.00 100.00
%L1 (ICP) 0.61 0.57 046 0.59 0.78 0.26 0.75 0.70 0.89 0.47 1.21
Mean deq (mm) 39.80 34.27 21.00 19.00 28.00 16.53 3400 20.00 15.00 41.00 3590
Mean dins (mm}) 2932 25.08 2954 2863 3144 1392 2592 2912 3395 2045 2884
Mean dFmax (mm}) 13332 87.31 2104 2082 2266 3075 2293 17.18 2691 16.09 114 83
Mean Area (mm?) 1559.67 127341 5945 7317 7397 25652 5465 6553 79.16 41.81 147335
Mean lell (mm) 14538 9095 82696 846.14 99152 2846 701.89 380137 120268 363.55 124 85
Mean sell (mm) 4211 37.10 5819 7561 7652 2186 5482 66.02 8223 4121 37.46
Mean wrec (mm) 126.26 79.89 3436 3221 3337 2400 3021 30.46 37.56 2445 106.72
Mean hrec (mm) 3795 34.47 5003 6662 6654 2125 4634 6019 7098 35.26 35.18
Weighted deg* 60.36 65.38 3349 3032 3200 26.71 2987 3049 3547 2361 78.87
Pao 57.02 47.62 4779 5411 5637 2252 4973 4542 5834 26.19 54.16

* Weighted d, 1s calculated by weighting each grain’s equuvalent diameter (d.;) by its volume, ensuring that larger grains have a
proportionally greater influence on the average.



129

To better understand the data shown in Table 49, Table 4.10 presents the R? and correlation
coefficient values between the various metrics and the HLS Li recovery for each composite, both
with and without applying a logarithnuie scale. This table provides valuable gmidance for selecting
the most smitable metrics for gramn size estimation and L1 HLS recovery prediction. As seen in
Table 4.10, the highest R? value (75%) 1s obtained using the average height of the bounding
rectangle (hi.) in relation to HL.S Li recovery. The second strongest relationship (R? = 72%) 1s
achieved using the average equivalent area diameter (de;). When applying a loganthmic scale
(logip), the R? values increase significantly, and the prediction ability of d.; exceeds that of h..
with the strongest observed relationship (80%) to HLS Li recovery.

Table 4.10 R* values between grain size metrics and HLS Li recovery, with and without logarithmic transformation.

Metric R2 R?logyy
Mean dg (mm) 0.72 0.80
Mean dis (mm) 0.55 0.61
Mean drmsx (mm) 0.50 0.68
Mean Area (mm?) 0.59 0.75
Mean L (mm) 0.48 0.68
Mean se1 (mm) 0.69 0.75
Mean Wie (mm) 0.49 0.68
Mean hrc (mm) 0.75 0.78
Weighted deg 0.53 0.60
Py 0.62 0.70

One of the main advantages of using machine-based grain size detection 1s that it enables access to
grain size distribution, adding a whole new dimension to the characterization of dnill cores and the
extracted data. While average grain size analysis provides a single numencal value, grain size
distributions offer a more comprehensive view, revealing the distribution of gramn sizes. This 1s
especially important because a sample composed of a single large grain and many small grans can
have the same average praimn size as a sample with uniform nud-size grains, but very different
separation performance. Since processing depends on mass, the use of cumulative volume fraction
helps capture how grain mass 1s actually distributed within the sample.

Figure 412 presents the gran size distribution curves for composite samples, based on the
equivalent-area diameter (deq) of individual grains. These cumulative curves reveal not only the



130

average grain size but also the full internal vanability of each sample. This type of data 1s currently
unattamable through visual geological logging, where grain size 15 estimated visually and typically
reported as a single value or a few approximate ranges. Machine-based analysis enables the
extraction of full distrnibutions, allowing more robust comparisons between samples. For example,
composites 2 and 11 exhibit a broader grain size range and higher maximum diameters, while
composites 6 and 10 remain consistently finer across all percentiles. This highlights the potential
of using grain size distribution instead of a single average, especially when correlating mineral
charactenistics to process behavior such as HL.S L1 recovery.
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Figure 4.12 Spodumene grain size distribution curves for composite samples.
In Table 4.11, the grain size distribution values (D1p, Dso, and Dgg) are presented for the vanous
composite samples. The Dsp refers to the grain size at which 50% of the sample’s mass 1s smaller,
while the same principle applies to Dio and Deo for the 10% and 90% thresholds, respectively.
Notably, samples of composites 6 and 10 exhibit the lowest HLS Li recoveries, 61% and 79%,
respectively, and at the same time have the smallest Dy values: 13.34 mm and 17.97 mm. This
observation supports the hypothesis that finer grain sizes are associated with reduced recovery
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efficiency, possibly due to insufficient liberation or challenges i separation. In addition, the ratio
between Dgy and Dyp and the spodumene % estimation based on the computer image analysis
(discussed with more details later in Figure 4.15) 1s presented in the table.

Table 4.11 Grain size distribution and image analysis estimated spodumene concentration for 11 composite samples.

HLS Li Image
Sample | Recovery Dio(mm) Dsp(mm) Doy (mm) Do/ Dig (mm) Actual a.n_aljrms
Spd % estimated
(%) spd %
Compl 9220 42 .54 5975 73.44 1.73 17 2543
Comp? 82.70 35.06 70.03 78.09 223 14 2057
Comp3 90.10 26.30 4271 62.74 239 14 11.09
Comp4 86.60 26.12 50.64 67.53 2.59 17 11.09
Comp5 91.40 31.25 5398 74.43 238 21 19.00
Comp6 61.00 13.34 2593 37.49 281 8 278
Comp7 80.50 2984 4584 66.40 222 20 10.03
Comp8 85.50 25.56 4731 56.04 2.19 17 1287
Comp¥ 92.50 3493 58.10 71.68 205 25 1851
Compl0 79.00 1797 26.76 32.19 1.79 15 7.29
Compll 9220 61.60 98.55 98.55 1.60 34 3506

Using the data obtained from the geologist team at PBM (percentage of spodumene grains >7 mm),
the current spodumene grain size estimation procedure results i an R? of 71.05% 1n relation to the
HLS Li recovery when applying a linear model, and 71.78% when using a logarithmic trendline,
the latter being shown i Figure 4 13A). As a result of the third sub-objective (see chapter 1.2), a
new grain size estimation was provided by using RGB images and machine learning. Figure 4.13B)
shows the correlation between the new estimated size of spodumene grains (dey) and the HLS 11
recovery. The R? value is increased to 79.72% when using machine-based grain size estimation,
meaning the use of machine learning can provide results which are more closely relatable to
processing performance. Both trendlines were selected to be logarthmic, which reflects the
existence of a plateau i.e. even 1f the pran size increases indefinitely, the HLS Li recovery cannot
exceed 100%. In addition, 1t 1s worth testing these new image-based vanables in order to evaluate
their power of prediction in models 1 and 2. All these variables were logie-normalized prior to
model fitting In model 1, adding new machine-derived variables like Dgg or Dso/D1o did not change
performance or significance. In model 2, “Computer estimated spd%” yielded a hugher R? (77.88%)
than “Spodumene grains > 7 mm” (71.78%). Both machine-derived vanables, image-based grain
size and estimated spodumene percentage, resulted in higher R* values than wvisual gramn size
assessment, highlighting the benefits of automated 1mage analysis over traditional logging.
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Figure 4.14 shows a fitted grain size distrnbution curve of a spodumene-rich composite sample,
modeled using two commonly applied functions in muneral processing: the Gates-Gaudin-
Schuhmann (GGS) and the Rosin-Rammler-Sperling (RR.S) distributions (see chapter 3.3.1). These
theoretical models are compared against the actual cummlative volume data obtained from image
analysis. Both models demonstrate a good fit, particularly in the mud-range grain sizes, with the
RRS model aligmng more closely at the finer end whereas GGS performs better at the coarse end.
Although these models are traditionally used for estimating grain size distributions of crushed
matenial, thewr application here serves primarily to validate the reliability and consistency of the
mmage-derived grain size data. The fact that the machine-based grain size distribution follows these
classical models reasonably well adds credibility to the approach, as it indicates that the data
behaves 1n a way that 1s consistent with established patterns in mineral processing. This improves
confidence in the image analysis method and supports its integration into process simulation and
design. While these models are useful for simplifying complex grain size distributions, they may
miss small vanations or multiple grain size peaks. Hence, using them together with the full
measured data remains important to ensure clarity and accuracy in muneral characterization.
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Figure 4 14 Grain size distribution fitted with Gates-Gandin-Schuhmann and Rosin-Rammler-Sperling models,
compared to actual cummlative volume data of a liberatede spodumene-rich drill core interval (composite 10).
Another capability sought by such an image processing approach 1s to estimate the spodumene
percentage of each dnll core mterval based on images. Since the software detects spodumene
superpixels within each core mterval, using either manual labeling or potentially machine-based
labeling in the future, the corresponding area (and volume) can then be calculated. The software
calculates also the area of the whole drill core image, using pixels as a unit. Since the focus 1s on
the ratio between the area of spodumene and the area of the whole dnll core, the units n question
are not important as long as they are the same Then this ratio can easily be converted into
percentages which represent the “coverage %™ of spodumene 1 each dnll core. The geologists at
PBM use the same approach but conduct it manually, relying on the human eye and brain, which
provide a first impression of the spodumene grade (spodumene %) i each particular drill core
mterval After, half of the core 1s sent to the laboratory where 1t undergoes more detailed analysis,
such as XRD and ICP analysis, resulting in an accurate evaluation of the spodumene content.
Lastly, the comparison between the estimation by geologists and the measured spodumene % can
be made. According to the core logging data provided by the company, the geologists® visual
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estimation of spodumene percentage yielded R? values of 33.3% with ICP results and 36.7%, with
XRD results, respectively.

Figure 4.15 below illustrates the improvement to the accuracy and representativeness which the
use of machine learning enables. Orange diamonds represent the spodumene % estimated by
geologists whereas the blue diamonds refer to the same estimation done by machine learming
supported image analysis. The new approach provides almost double the R? value, reaching almost
63%. Specifically,

Figure 4.15 shows how the new method appears less prone to error in high grade samples, which
could also be explained by the added difficulty of visually differentiating and averaging spodumene
content at such high grades. However, neither approach goes through the origin, showing that both
may be prone to underestimation of low spodumene grades (<10%). It also seems that visual
estimation overestimates the amount of spodumene in the dnll core. In addition, such a figure
1deally should produce a 1:1 line as shown in red in Figure 4.15. The trend line of computer image
analysis (dotted line) follows the red line with a same slope, just a little off set whereas the visual
assessment (full hine) has a different slope and does not fit as micely. This observation supports the
fact that the computer image analysis outperformed the visual assessment.

Overall, the ML approach enables more accurate spodumene grade estimation than the current
method provides. The upside of the machine-based estimation 1s not only better accuracy but also
the possibility to get information on other minerals than spodumene, as the same procedure can be
applied for gangue nunerals in case some of them are of interest. In addition, if the machine learming
algorithm can be fully automated, the assistance for geologists can result in real time savings.
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Figure 4.15 Comparison between visual and computer-estimated spodumene contents and actual ICP-measured
values using Li20 content.

The strong potential in using 1mage analysis and Al applications can improve the objectivity of
core logging As mentioned earlier, the current logging protocol at PBM classifies grain sizes into
<2 mm, 2-7 mm, and >7 mm categones. Image analysis produced an average spodumene grain
size (average deq) of approxumately 30 mm, whach 1s sigmificantly larger than 7 mm breaking point
used. Even though this value appears high it should be noted that the apparent grain size 1s
constrained by the size of the core and the orentation of the elongated spodumene crystals within
it, as these factors can lead to an underestimation or overestimation of true gramn dimensions.
According to Wills & Finch (2016), to achieve a high level of liberation (around 75%), the sample
should be crushed so that the resulting particle size 1s about one-tenth of the oniginal grain size.
Considering this and the average grain size obtained from image analysis, the product size after
crushing should be approximately 3 mm to achieve roughly 75% liberation. However, such an
mtensive size reduction can be problematic in DMS process where the goal 15 to have as large
particles as possible to avoid losing the recovery of Li to fines. Specifically, crushing the material
to 1/10% of the original grain size is likely to produce too much fine material which will not be
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gomg to the DMS process but to tailings or, in the best of cases, to a flotation circuit. Keeping this
m mind, the more optimal crush size 1s likely to be more than 3 mm value stated above. This may
explain the choice for PBM to target a crush size of 9. 5mm which corresponds to a 0.316 particle
to gram size ratio (assuming grain size around 30mm). This would mean roughly 40% fraction of
liberated minerals. Therefore, as in many cases, the selected crush size 1s a compromise between
liberation and recovery.

This aligns with the observations from Section 4.3.2, where the liberation of the high-grade
spodumene sample (PBM test work) was studied using size by size HLS testing. Although the
material was not exactly the same as that used in image analysis, the results provide a good
mdication and confirmation that the theoretical methodology works. Assuming that the original
grain size of the PBM samples was sumilar to that obtained from image analysis, the 75% liberation
rate was aclieved m the +1.7-3.3 mm particle size class. As discussed in Section 4.3 .2, liberation
m that class was not complete but was likely at the 75% level. Even in the finer class (+0.63-1.7
mm), liberation was not 100%, although 1t was clearly higher than in the coarser class.
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CHAPTER S CONCLUSION

This study set out to explore how geological data, particularly visual spodumene grain size
estimations, can be mtegrated into a geometallurgical framework to improve the prediction of
spodumene gravity separation performance. The main objective was to enhance the understanding
of how mineralogical and geological characteristics influence HLS spodumene recovery, using
cost-effective and accessible data sources. To support this, dnill core logging data was compared
with HLS test results to establish correlations and a predictive model.

Laboratory HLS test work provided validation for these observations. The tests suggest that
spodumene liberation 1s the key factor for lithum recovery in gravity separation. A strong
correlation was observed between grain size, density fraction, and L1 recovery, hughlighting the
mmpact that liberation has on separation performance. The results showed that high-grade matenal,
typically contaimming larger spodumene grains, achieves better recovery because it requires less
crushing to reach the desired liberation level. This supports the conclusion that spodumene grain
size, visible even at the core logging stage, 1s the most significant parameter affecting L1 recovery.

In addition, since spodumene grain size has such a strong influence on lithium recovery, the study
also mvestigated how 1mage analysis could improve the consistency and objectivity of visual core
logging. Although a fully automated 1mage analysis method was not implemented, the developed
workflow demonstrated that optical image-based methods can produce rehable gramn size
distribution data without destructive testing or intensive laboratory work.

This research demonstrates that spodumene grain size, particularly the mean equivalent diameter
(dey), 15 a strong predictor of spodumene recovery in HLS tests. Notably, the ML model achieved
an R? value of 79.72% for the correlation between machine-estimated d.; and HLS spodumene
recovery at an SG of 2.85 g/cm’, compared to 71.78% for the geologists’ visual estimates. These
findings show that grain sizes, which are in the cm range for spodumene samples investigated, can
be measured from images and used to estimate how easily the ore can be processed, especially
when muneral liberation plays a key role in separation efficiency.

In addition to single-value grain size estimates, this study introduced the use of gramn size
distribution curves derived from the RGB images. These distributions provide a more detailed



139

picture of the internal heterogeneity within each sample and were found to follow established
particle size models such as Gates-Gaudin-Schuhmann and Rosin-Rammler-Sperling. This opens
possibilities for using image-based grain size distributions m other process modeling contexts.
Furthermore, the possibility of estimating spodumene percentages based on the relative superpixel
area offers another layer of interpretability. When compared to visual estimates, the machine-based
spodumene percentage prediction achueved a correlation coefficient of 79 2% and an R? of 62.65%,
almost doubling those performance indicators compared to manual logging. These findings create
a foundation for future tools that could help geologists make more consistent and data-based
mterpretations across larger datasets.
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5.1 RECOMMENDATIONS

The results of thus research support several practical recommendations for future work and

application. The main recommendations are as follows:

1)

2)

3)

4)

5)

Maximize image resolution: The quality of feature extraction and machine learning model
training 1s highly dependent on image resolution.

Optimize hghting conditions: Ensure even, diffused lighting with appropriate angles to
mimmize shadows and reflections, especially on wet core surfaces.

Use closed photographic systems: Enclosed systems (e.g., like those by Kore Geosystems
Inc) can improve image consistency and quality.

Capture images before logging: Photographing cores before adding annotations or tags
could produce cleaner data for machine learming

Consider switching to Python: Converting the code to Python would allow use of advanced
tools like Meta AI's Segment Anything Model for better sepmentation.
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5.2 FUTURE WORK

This research has proved the concept of applying machine learming in a geometallurgical
framework and has shown an improvement in accuracy and reproducibility when compared to
visual estimation by humans However, automatization and optimmzation of this methodology
should be done in the future to realize the full potential of this approach. The future focus should
be on developing autonomous drill core grain detection and segmentation to replace the current
manual process of selecting regions of nterest (ROI) from the core images. Moreover, optinuzing
the traiming data collection and its use for traimng the ML models. Also, the code for superpixel
prediction using CART, k-NN and RF needs to be optimized m order to achieve the best possible

outcome.

As stated above, the best possible outcome may not be achievable using traditional machine
learning models such as CART, k-NN, and Random Forest. Instead, the use of deep learming
methods may be more sutable for this type of classification task For instance, Convolutional
Neural Network (CNN) could potentially yield better results, as it 1s capable of learning and
recogmzing complex patterns in image data more effectively than conventional models (Latif et
al . 2022).

In order to fully integrate this methodology into an industrial-scale operation, where economic
feasibility and profitability play an increasingly important role, a direct hink between HLS
performance and actual DMS outcomes should also be established. This likely would result from
a detailed liberation study involving several samples, crushed at different sizes, in order to establish
the breakage patterns and their vanations. Once such relationships are established and the code 1s
further developed to enable full automation, 1t may be valuable to test whether the algonthm can
also be applied to crushed samples 1.e. to see if gramn size and liberation can be estimated from
photos of crushed samples. Although such an approach may require the use of other detection
methods such as LIBS or Raman spectroscopy (Laitinen et al | 2024) to confirm whether a grain 1s
spodumene or not, if successful, it could be implemented directly on a conveyor belt, where images
of the crushed material are captured in real time. This setup could serve as an early-stage prediction
tool for spodumene recovery, offering rapid and non-destructive feedback on ore quality during

processing.
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APPENDICES
APPENDIX A HLS Li Recovery data both models 1 and 2.

Table A 1 HLS LI Recovery data for Model 1 (all data).

157

SGS Sample ID Actual L1 Spd NiFmal WFmal CoFinal ThFinal Spodumene ?M{Gdel 1, Error
recovery (%o) >7mm pPpm Ppm pPpm Ppm % using all data

Composite 1 92% 1 2.00 0.94 0.59 -0.39 0.65 35.26 90% 0.04%
Composite 2 83% 1 1.99 1.04 0.84 -0.29 0.24 15.00 83% 0.00%
Composite 3 90% 1 1.99 0.84 0.50 -0.50 0.36 936 89% 0.01%
Composite 4 87% 1 2.00 0.95 0.73 -0.30 0.24 12.58 86% 0.01%
Composite 5 91% 1 2.00 0.65 0.44 -0.56 0.47 22.80 92% 0.00%
Composite 6 61% 1 191 0.61 0.32 -0.46 0.57 11.20 61% 0.00%
Composite 7 81% 1 1.96 0.86 0.62 -0.56 0.35 11.44 82% 0.01%
Composite 8 86% 1 1.94 1.33 033 -0.26 0.64 1461 84% 0.01%
Composite 9 93% 1 2.00 1.10 0.55 -0.45 0.84 2194 94% 0.02%
Composite 10 79% 1 1.97 1.09 0.60 -0.21 0.48 12,51 80% 0.01%
Composite 11 92% 1 2.00 1.12 0.56 -0.10 0.16 27.80 93% 0.01%

bo b1 b2 bs b4 bs bs Sum 0.13%

-5.07 2.85 0.31 -0.28 -0.33 -0.14 0.07




Table A 2 HLS LI Recovery data for Model 2 (only logging data).
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SGS Sample Actual L1 Spd_ Average Average Average A;eé;ge Model 2

D IECOVery Spd =Tmm Mmraqm Natural Fracture ISEM Rock (Sum> 10 qn.lj,r Error
(%) Intenstty Fractures Frequency Strength cm) logging data
Composite 1 92% 1.00 2.00 1.19 -0.70 0.00 0.60 047 90% 0.04%
Composite 2 83% 1.00 1.99 0382 0.51 0.04 0.60 0.46 85% 0.06%
Composite 3 90% 1.00 1.99 0.16 036 -0.14 0.70 047 88% 0.05%
Composite 4 87% 1.00 2.00 1.00 0.73 026 0.60 047 85% 0.02%
Composite 5 91% 1.00 2.00 0.70 0.00 0.00 0.60 048 90% 0.02%
Composite 6 61% 1.00 191 0.68 036 -0.22 0.70 048 61% 0.00%
Composite 7 81% 1.00 196 035 0.65 0.08 0.60 0.46 79% 0.02%
Composite 8 86% 1.00 1.94 -0.58 -0.35 -0.65 0.48 048 85% 0.01%
Composite 9 93% 1.00 2.00 0.65 -0.22 -0.52 0.70 0.46 93% 0.01%
Composite 10 79% 1.00 1.97 0.70 0.00 0.00 0.60 047 82% 0.11%
Composite 11 92% 1.00 2.00 0.00 0.00 0.00 0.60 047 95% 0.06%
b0 bl b2 b3 b4 b5 b6 Sum 0.39%
-4.51 297 -0.06 -0.03 -0.05 -0.13 -0.84




APPENDIX B Raw data of particle size distribution (first grinding test)

Table B.1 Raw data of particle size distribution for liberated spoduemene sample.

Liberated Spodumene

Total mass (g) Massofcup (g) Mesh(um) Cumulative Grams (g)

104.71

6.61

10000

9500

6300

3300

1700

630

-630

0

1.44

21.16

71.51

8648

9291

9791

Table B.2 Raw data of parficle size distribution for mixed spoduemene sample.

Mixed Spodumene

Total mass (g) Massofcup(g) Mesh(um) Cumulative Grams (g)

105.01

6.95

10000

9500

6300

3300

1700

630

-630

0

0

159

61.6

81.01

90.7

98.09

159
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Table B.3 Raw data of parficle size distribution for mixed quartz sample.

Mixed Quartz

Total mass (g) Mass of cup (g) Mesh (um) c at(g)e
105.07 6.63 10000 0
9500 0

6300 0.87

3300 5972

1700 813

630 90.7

-630 0828

Table B 4 Raw data of parficle size distribution for liberated quartz sample.

Liberated Quartz

Total mass (g) Massofcup(g) Mesh(um) Cumulative Grams (g)

10311 6.77 10000 0
9500 0.99
6300 1244
3300 63.71
1700 8228
630 9036

-630 96.34




APPENDIX C Sieve data after hls tests (raw data, sieve fractions are in grams)

Table C.1 Sieve data after HLS tests (raw data, sieve fractions are in grams)

161

. . Sieve sizes (mm)
Sample Fraction Density (g/fcm3) Mass g (sample + bag) Mass bag (g) 950 630 335 170 063 1063
Sink 3.00 15.22 1.24 14 457 537 193 0.62 0.09
Liberated Sink 285 7.63 1.22 0 0.5 494 0.8 0.18 0.01
Spodumene Sink 270 2.66 1.25 0 0 101 031 006 0.03
Float 270 26.73 1.24 0 508 1454 405 141 039
Sink 3.00 11.06 1.22 0 109 442 272 128 0.31
Mixed Sink 285 11.22 1.23 1.69 097 511 1.72 052 0.04
Spodumene Sink 270 191 1.23 0 0 041 015 013 0.02
Float 270 2558 1.25 0 402 1255 531 21 047
Sink 3.00 6.52 1.23 0 0 343 123 049 01
i Sink 285 8.77 1.22 0 0 539 173 036 0.05
Mixed quartz .
Sink 270 377 1.22 0 0 1.66 0.6 023 0.02
Float 270 32.16 1.26 0 276 176 7.59 25 039
Sink 3.00 591 1.23 0 151 192 063 053 0.04
Liberated Sink 2 85 731 1.27 0 178 276 11 04 007
Quartz Sink 270 413 1.25 0 023 216 034 012 0.02
Float 270 37.89 1.27 0 407 2038 824 29 097
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APPENDIX D ICP chemistry results for all samples.

Table D.1 ICP chenustry results of liberated spodumene sample. Concentrations are in pg/g.

Name of the sample Li Ag Al -] Bi Ca Cd Ce Co Cr Cz Cu

Centrifuze_float 0.63mm| 490 |<05[45000[ 21 [ 14| 58 | 8 [990 Joos[059|258 | 67 | 420 | 20 [0.16 o3¢ 0.02 |20000| 35 |02 [=03| 2.1 |0.02 | 0.04 I8000| 0.26 .00S
Centrifuge. sinkt -0.63mnd14000[=0.5[92000 163 34 | 40 | 35 |s000[0.74]6.41] 36 |2100{ 1200 155 |2.44[0.42] 013 [s6000 | 92 |279| 1 | 11 [022]022]76003.02 p.05S

IS ek 3.0 <0.5mm  [23000[=05]99000 31 | 2 |31 | 13 | 250 [0.08|0.49| 32 (1400| 350 | 152 |0.22 p.0s1J0.006[58000 | 95 |0.17] 0.6 | 3.1 [0.0260.07 | 600 |0.25 [0.29
IS sigk 3.0 <63mm  |27000|=05[100000) 51 | 3 | 28 f-o0.09] 260 |0.05|0.14[ 41 | 180 | 1500 | 22 ﬂ.DlED.Uﬂﬂ.mE 38000 | 120 |0.02] 0.6 | 0.4 [0.0020.08 | 930 |0.075p.004

26000)= 0.5 1000000 41 | 11 | 2.8 |012 | 370 |011]|016) 23 | 56 | 1800 | 20 |0.018Q0.0040.0:06]37000 | 130 |0.024| 0.6 | 04 |0.002| 0.11 | 1300 (0.082P.004

L5 _sink_3.0 +3.35mm
1S sigk 3.0 +17mm  [23000[=0.5[96000 [ 35 | 24 | 48 | 0.1 1000[0.26[1.15 43 |2500| 2200 | 188 [0.19 .052}0.022|92000 | 110 |021] 15 | 0.7 [0.024|0.16 |1800 | 0.62 p.008

1S sink 3.0 <0.63mm 21000 =0.5|93000 ) 36 | 15 | 2.9 | 0.55 |8700|045]3.84] 14 | 610 | 1300 | 88 |2.39)034)0071[120000) 97 |239| 16 | 22 |0.18|0.19|1700|1.67 |02

L5 _sink_2.85_+9 Smm
1S sigk 285 +63mm |11000[=05[93000( 9 |120| 17 066700 [ 02 |08 |89 |420 [ 430 | 59 |0.13p.053|0.03 [s0000( 83 |012| 1 | 13 |0.018|0.24 P000O| 0.45 [0.16

S ek 285 +3.35mm [15000]=05]|77000 | 13 | 64 | 16 |0.87 [1500[0.19|031| 1.4 | 36 [25000| 12 |0.28 p.o42fo.016[19000 | 90 |027|<0.3| 2.8 [0.022]0.14 [9000|0.13 p.00g]
[ 5 sigk 285 +1 7mm |13000|=0.5]86000 | 16 | 91 | 20 | 02 |1700]028|1.02| 9.6 | 610 | 1300 | 61 |0.76] 0.1 |0.033|76000 | 89 [0.74] 12 | 1.7 [0.057|0.21 f12000{ 0.49 p.0gs|

L5 _smk_2.85 +).63mm

LS sink 2.7 +9 5mm
LS sink 2.7 +63mm
IS smk 27 +335mm | 3900 |=05|55000) 13 |110] 11 ( 26 | 980 |0.14|0.69 ] 6.7 | 340 | 740 | 54 |[0.15 0041003951000 79 |0.17] 0.7 | 0.9 |0.016(0.34 [15000) 0.34 p.065
LS sink 2.7 +1 Tmm
L5 smk 2.7 +)63imm

LS float 2.7 +9 5mm
LS _float 2.7 +6.3mm 90 |=05|81000) 12 (13 | 86 | 9 |1100016) 1.1 |19 68 | 380 | 15 |047pO7TH 002 |15000] 44 |067|=03( 42 |0.037|0.02 PT000 0.43 p.O0S|

IS float 2.7 +3.35mm | 260 |=0.5]|71000 11 | 39 | 24 | 3.2 |1000]0.06|037|092| 35 | 540 | 7.6 |0.19|0.02]0.016] 7400 | 42 [022|=03| 1.4 |0.012|0.03 B1000{0.16 p.00K
L5 float 2.7 +1.7mm | 130 |=05]68000 14 | 19 | 35 | 22 | 920 |oos|oa4| 11 | 26 | 590 | 17 |o026 p.os7jo.ois[1s000| 39 | 03 |<03| 2.1 |0.024|0.02 psooo| 0.2 |o.03
LS float 2.7 +0.63mm | 220 [=0-5[68000[24 | 14 | 49 | 1.8 |1000[0.08|0.78] 25 |1500{ 440 | 137 | 02 po3gfo.016[37000 40 |026] 05 | 2.8 |0.02]0.04 p500o| 039 [0.01




Table D.2 ICP chemustry results of liberated spodumene sample. Concentrations are i pg/g (continued).
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Mame of the sample Ta Tb Te T1 TI
Centnifuge float -0 63mm| 240 |45 | 67 | 029 | 120 | 6 | 0.11 | =001 |=005) 035 |44|=01)| 016 | 9 | & |264)0047] 01 | 49| 17 |00l6]|307 (84| 05 JOO41)33 [ 11
Centrifuge_sinkt -0.63mmg 3100|120 315 | 3.3 |3500] 8 | 0.78 |=001|=005) 3 10 |=01] 213 | 50| 13 | 640 | 0.69 | 0.1 |360] 7.5 |0.067|966| 29| 758 | 0.46 |280( 51
LS sink 3.0 +9 Smm 16001120 |33.8] 0.21 |3500] 2 |0.063 [=001 |=005] 035 |11 |=01] 0.11 | 16 |069 | 65 |0057|=0.1] 34 |05 | 002 |1.84 )21 | 074 |00 | 110 11
LS:siJ:lk:S.ﬂ:+6.3mm 1200|8539 |0054] 210 | 2 0018 |=001|=005] 4 15|=01)0018)14] 1 |164|0012|=01]26 | 1.5 |0.008|043|13 |0.043]|0012]20( 1
L S sink 3.0 +3.35mm 1000|2968 |006 | 17 | 2| 002 |=001)=005] 5 12]=01)0018)23] 5 |124|0012]=01] 26 | 1.3 | 0.00 037 (13 |0.047] 001 | 29 |D98
LS_siJ:lk_S.ﬂ_+1.'?mm 20000170 74 | 046 |[4700) 2 | 0.14 |=001|=005] 3 10 |=01) 017 | 39| 12 |225]| 006 |=01] 70 | 1.6 |0.018|053 | 30| 0.67 |0052]| 50 | 4
L S sink 3.0 +0.6%mm 16000 31 | 117 ] 16 | 870 | 5 | 048 |=001|=005] 3 |23 |=01] 18 |43 ) 11 |437]| 071 |=01] 53 | 15 |0053|249 32| 773|028 |82 | 8
LS smk 285 +9 5mm
F S cink 285 +63mm |2000| 17 |95 | 034 | 470 |3 ] 01 [=001| 005 | 0.82 |36|=01| 0.1 |64]| 6 (256|0034]=01] 66| 11 [0.016/1.31 (23| 048 |0.052]230| &
LS_siJ:lk_lES—+3.35nxm 140001 2 |215| 016 | 11 |3 | 004 |=001)|=005] 2 |59]|=01] 019 |33] 27 |206|0081]|=01] 42|93 |0016]|191|84] 045 |0046] 47 | 10
L5 sink 285 +] Tmm 14000 21 |142]| 048 | 580 | 4 | 013 |=001|=005] 2 |43|=01] 049 |51 34 |282] 021 |=01] 48 | 11 |0024|086)25] 13 |01l |170( &
LS smk 285 +063mm
LS smk 2.7 +% 5mm
LS smk 2.7 +6.3mm
L5 sink 27 +3.35mm 860 | 15 261 03 | 410 | 5 |O083 |=00L|=005] 2 |35|=01]014 |82] 79 |208]|0049]| 0.1 |52 )15 |0016|198(17| 0.14 | 0055|180 4
LS smk 2.7 +1.Tmm
LS smk 2.7 +0.63mm
LS float 2.7 +9 5mm
LS float 77 +6.3mm 190 |41 1347|053 | 100 | 7] 014 |=000|=005]=003|54|=01]| 049 |=6] 9 [|562] 016 |=01]|74] 26 | 002 |543 (51| 1.55 |0071| &0 | 23
L5 float 27 +3 35mm 220 |19 371|018 | 43 | 8 |0046 |=001 |=005] 004 |56]=01] 017 |=6] 15 |549|0062|=01]53 ) 30 0012|4823 | 04 |0024|92( &
LS float 27 +1 Tmm 170 |16 461|023 | 11 | 9 |0069 =001 |=005] 011 |&61]=01) 023 |=6] 13 |746|0087|=01]75] 38 | 0.02 |435(47]| 0.6]1 |OO37| 30| &

oo 660 | 100 |11.6| 0.33 |2800) 8 |0082 |=001 |=005] 01 |67|=01] 02 | 7| 10 |209|0072|=01]23 | 24 |0018|351 15| 052 | 005 | 63 [ 13

L5 _float 2.7 +0.63mm
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Table D.3 ICP chenustry results of mixed spodumene sample. Concentrations are mn pg/g (continued).

Name of the sample i Az Ba Be Bi Ca Cd Ce Co Cr (s ¥ Eu Fe Ga Gd Ge Hf Ho In

MS_sickt 3.0_+9 Smm
MS_sink_3.0_+6.3mm 21000 |=0.5| 95000 |se]11| 9.6 [0.95] 410 |o.03]032|4.4| 110 |1500] 61 |0.044 | 0.018 |0.008 | 62000 |130|0.078 | 1 [0.7|0.008 |0.15] 3300 | 017 | C.008

. 26000 |=05( 99000 |25]6 ) 32 |0.14|1100 (017|028 1.8 44 |1500)22 | 044 | 0.04 (0.006]25000 |120| 05 (04|0.6] 0.03 |0.13) 1400 | 012 | 0004
S zink 3.0 +3.35mm

MS,_sick_3.0_+1 7mm 24000 |=05| SB000 |35]5 | 2.8 | 2.5 |25000.71|0.52|3.3( 130 |2000] 26 | 0.43 |0.066 |0.008 | 30000 |120| 03% |0.5|0.3]0.034|0.11| 1600 | 022 | 0.012

NS simk 3.0 <+0.63mm 22000 =05 100000 |45]1 8 | 4 |26 |3600|0.75]1.3%|33 (3100|1400]149| 0.77 | 0.1 |0.022)63000|110| 053 |1.1|0.4|0.061 |0.13] 1700 | 0.7 | 0.012

S ok 285 +9.5mm 28000 |<0.5| 91000 [13]5 | 3.8 |0.74] 540 [0.08|0.15|27|1300|1700|124|0.045 |0.013 |0.003 | 46000 |105 |0.028 [0.8(2.5{0.004 |0.14 4000 |0.066| < 0.001
S_sizk_2.85+6 3mm 13000 |<0.5| 95000 |21|19| 7.2 |0.97|1800 |0.44[1.43|5.9| 160 |1300| 63 | 1.22 | 0.15 | 0.03 | 88000 |110| 1.36 |1.8|0.6]0.091 [0.21] 4000 | 0.63 | 0.032
S._sizk_2.85_+3.35 15000 < 0.5| 54000 |26|20|1600| 1.6 {1500 |0.38| 0.2 [2.2| 75 |2500| 18 | 0.17 |0.028 [0.008 | 21000 | 82 | 0.18 |0.7|0.8]0.016 [0.12] 5200 |0.091| 0.006
S sink 285 +1 Tmm 13000 |<0.5| 78000 |39|38| 330 | 13 |2700 |0.34|0.93|4.3| 150 |3700| 33 | 0.53 | 0.1 [0.024|38000]99 | 05 |1 [1.1|0.048] 02 |11000 | 0.43 | 0.016

S sink 285 +063mm 11000 |=05( 60000 |15)23) 180 | 3.4 | 770 |021|032|11 | 520 |5600] %2 | 023 |0.046 |0.012 | 86000 |50 ( 02 (1.8(1.3) 0.02 |0.33] 14000 | 0.16 | 0.008

S_sink 2.7 +9.5mm
S_sink_2.7_+6.3mm
S_sink 2.7 +3.35mm
S_sink 2.7 +1.7mm
5_sink_2.7_+0.63mm

5_float 2.7 +9 5mm

S Boct 27 +6.3umn 300 |=05| 61000 |10|12| 220 | 59 | 770 |o.06|0.47|2.4| 120 | 480 | 20 | 0.14 |0.022| 0.01 | 19000 | 44 | 0.18 |0.91.8|0.012 |0.04|20000 | 025 | 0.016
S float 2.7 +3.35mm 370 |=05| 55000 [9.6{10| 59 | 12 |1200]02 |o49|12| 42 | 360 |11 | 0.25 |0.044|0.016]10000 |43 | 0.29 |0.5|4.3]0.022 |0.04|16000 | 022 | 0.008
S float 2.7 +1 Tmm 340 |=05| 57000 |7.8| 9 | 110 |124] 840 Jo.12|o57|1.4| 31 | 270 |12 | 022 | 0.03 |0.014]18000 36 | 0.28 |0.6|2.3|0.018 |0.02| 14000 | 025 | 0.006

S float 2.7 +0.63mm 300 |=035| 46000 |12|00( 27 | 15 | 820 |0.15|052] 17| 210 | 220 | 83 | 0.17 |0.034 0,012 29000 | 35 | 0.17 |0.7|4.8|0.018 |0.03 | 11000 | 0.25 | 0.016




Table D 4 ICP chenustry results of mixed spodumene sample. Concentrations are mn pg/g (continued).
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Mame of the sample Mn Mo Nb Tb Te Th T1 Tm
S_sinkt 3.0 +9 Smm
S _sink 3.0 _+63mm 1500 |63 | 57| 015 | 36 | 10042 (=001 =005 2 |73]=01] 006 |31|8 (1920024 ]|=01]60 |6 |0014 (0526|0085 |0022]9%3] 2
S _sink 3.0 +3.35mm 1200128 | 41 | 015 | 16 |2 | 0042 [ =001 | =005 3 |95]=01] 028 |31|5(|201) 015 |=01)28 |2 |0012 (05811 067 (0028] 24 |0.79
S _sink 3.0 +1.Tmm 1500 | 6.5 |19.5] 0.21 | 130 | 2 | 0062 [ =0.01 | =005 3 11|=01] 03 |25(4| 57 | 012 |=01] 35 (2.6) 0022 | 09 |14| 0.86 |0.091 | 51 | 083
S _sink 3.0 +0.63mm 2100 |130(132| 056 (3600 ]3| 017 | =001 | =005 3 11|=01| 067 |33 (7 (446 025 |=01]51 (2 |0028 )18 (24| 258 | 011 |110] &
5 _sink 285 +9 5mm 1600 | 103 | 8.5 | 0.068 | 2900 | 2 | 0.019 [ =0.01 | =005 64|=01|0018|36(4 (218 |0.008|=01]36 |52]0002 (064 (17] 01 |0013]97] 10
S _sink 285 +63mm 2100 |84 |222| 074 | 61 021 | =001 |=005 63]=01] 0594 |50(22|679| 038 |=0.1)290|6.7|0.036 (3.86|35] 3.07 | 0.11 |820] 3
S _sink 285 +335mm 1100 |43 |539] 01 T7T | 5| 0026 | =001 | =005 1 |78]=01] 012 |31 (8 (119 | 0051 |=0.1]30 (53)0.012 209 (9.6] 04% (003270 3
5 _sink 285 +] Tmm 1200192 426 039 | 200 | 6] 011 (=001 =005 2 13|=01] 042 |46 (11| 117 | 0.14 |=0.1] 58 [9.7)0.032 |509 (15| 102 | 0.13 |100] 4
S _sink 285 +0.63mm 2500 24 [418] 017 | 630 | 6 |0.046 | =0.01 | =005 2 |63|=01] 012 |76 7130 | 0062 |=01]86 |15|0016 (24 (28] 036 |0.052]120] 5
S sink 2.7 +9 5mm
S sink 2.7 +63mm
S sink 2.7 +3.35mm
S sink 2.7 +1.Tmm
S sink 2.7 +0.63mm
5 float 27 +% Smm
S float 27 _+63mm 230 |52 382 02 | 130 | 6|0059 (=001 |=005]=003 (48]=01| 013 |9 (8 (529(0050 |=01]14 (20)0012 ) 12 (61| 035 |DO22]1%) 7
5 float 27 +3.35mm 320 124|647 | 025 | 46 |7 |0066 (=001 |=005] 017 (57]=01| 023 |8 (7|108 (0082 )|=01]13 (16)0.018 |672(42| 057 | 005 | 18] 17
S float 27 +1.Tmm 260 121 (427|027 | 13 |25]0075 (=001 |=005] 007 [11]=01) 023 |=6(7 (5019|0073 |=01]%1(11)0.016 |695(7.3) 047 | 004 |17 11
5 _float 2.7 +0.63mm 500 |68 |351] 023 | 1900 | 8 | 0067 | =001 |=005| 0.04 (46]=01] 014 |7 |6|395(0052]|=01]1% |95]0.014 |237|11| 043 | 004 | 21| 23
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Table D.5 ICP chenustry results of mixed quartz sample. Concentrations are i pg/g (continued).

Name of the sample i Al As Ba Be Bi Ca Cd Ce

. 25000|=05|97000] 50 | 2 | 35 | 1.8 | 370 |003 (023 |28 | 38 |1300] 18 |0O.062 |0.016|0.004 [30000] 120 |0.066]| 0.6 | 1.6 (0006|012 | 1700 | 0.12 | 0.004
MO sink 3.0 +3.35mm

MQ sink 3.0 +1 Tmm 24000)=05|97000) 39 | 7 | 3.6 |0.23| 450 |0.04 |038]5.1 | 200 |1400] 43 |0.068 (0.022)0.008 |46000) 110 |0078) 1 |08 (0008|013 | 1600 | 02 (0004

MO sink 3.0 +0.63mm

Q sink 285 +9 Smom

Q) sink 285 +63mm
Q sink_2.85 +3.35mm| 15000]= 0.5 |83000] 14 |23 | 14 | 8.6 | 660 [0.11 |0.26|2.5| 100 | 860 | 23 | 0.1 (0.018| 0.01 23000110 012 | 0.7 |1.1|0.01 |0.21 | 2800 | 0.13 | 0.004

Q sink_2 85 +1 Tmm 140000 =035 |76000] 13 |28 | 17 | 14 |3900|0.68 |1.34|2.7| 5% |1000| 35 | 1.66 | 0.17 |0.028 |36000| 95 | 1.66 | 0.7 |44 | 011 |0.26 |10000] 054 | 0.016

Q sink 2 85 +).63mm)

Q) sink 2.7 +9 5mm

Q) sink 2.7 +6.3mm
Q sink 2.7 +3.35mm 3000 |=05)30000] 17 |16 | 810 | 20 | 640 |00%|022) 5 | 220 | 910 | 67 | 0.2 [0.035|0.008 41000 62 |021 ] 1 9 |0.018| 02 |14000]0.087( 001

Q sink 27 +1 7mm 3000 |=05|23000) 12 | & |1600| 97 | 330 |0.18|0.17|6.1 | 130 | 670 | 82 | 032 | 0.1 | 0.01 [86000] 45 | 01 | 2.1 |87 |0.044)0.13 | 5400 |0.079 | 0.034

Q) sink 2.7 +0.63mm

Q) float_ 2.7 +9 5mm
Q float 2.7 +63mm 93 |=05|2%000(92 ] 3 [ 1.7 | 13 | 310 (003 (068 |43 | 180 | 77 | 44 | 011 |0.024|0.011 |39000] 16 | 013 | 06 | 1 (0.011)0.02] 3600 | 0.24 |=0.001

Q float 2.7 +3.35mm | 370 [=05[39000] 7 |20 | 12 |97 | 550 |0.09|023 (12| 43 [220 | 13 | 012 [0.027|0.013 |14000] 24 | 0.18 | 0.3 [4.6 |0.013[0.03 [12000 0.1 |<0.001
Q float 2.7 +1.7mm | 300 [=05[37000|8.7| 9 | 50 |56 | 600 |0.08|0.29 9.9 [2000( 150 | 49 | 0.15 [0.025|0.007 |18000] 22 | 024 |<0.3 |43 |0.013[0.02 7800 [ 0.13 |<0.001

Q float 2.7 +0.63mm | 210 |<05[32000{79) 9 | 61 | 2.6 | 450 |0.06|0.74 | 4.6 | 160 | 120 | 52 | 0:22 |0.041|0.009 |41000 17 | 023 | 08 |3.5 |0.018]0.02] 6500 | 0.33 | 0.001




Mame of the sample

Q_sink_3.0_+9 Smm
Q_sink_3.0_+6.3mm

Table D.6 ICP chenustry results of mixed quartz sample. Concentrations are in pg/g (continued).

Mn

Mo

Nb

Nd

Mi

Fo Pr
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Q_sink_3.0_+3.35mm |1200|52| 6.7 |o.098 | 97 | 2| 0.03 |=001|<005| 1 |10 |=01|0.046 (27| 1 |161|0022|=01| 56 | 3 |oo12|442|12 |o0ss|0.016] 73 | 4
Q sink_3.0_+1.7mm [1200| 10 | 9.1 | 0.17 | 200 | 4 |0.064 |<=001|<005| 3 |10 |=01|0.068 (22| 3 |489|0026|=01| 37 | 2 |oo12|219|20| 012 |0.024] 160 ] 2
Q_sink_3.0_+0.63mm
Q_sink_2.85_+9_ 5mm
Q_sink_2.85_+6.3mm
Q_sink_2.85_+335mm|1100|4.8 [40.1] 01 | 93 |3| 0.03 |=001|<005| 1 [55|=01|0099 (51| 8 |70.3|0.034|=01| 61 | 8.4 | 001 |242|10|011 |002] 93 | 4
Q_sink_2.85 +1.7mm (1800|4.1| 128 | 064 | 25 | 7| 0.8 |<001|<005| 2 |68 |=01| 094 [58| 14 |288 | 049 [=01| 61 | 10 | 003 |296|16| 349 | 013 |150] 15
Q_sink_2.85_+0.63mm)|
Q_sink_2.7_+9 5mm
Q_sink_2.7_+6.3mm
Q_sink_2.7_+3.35mm (1200| 11 |74.2] 0.12 | 250 | 7 |0.033 |<0.01|<0.05| 0.68 {89 [=0.1] 013 (49| 8 | 109 |0.059 [<0.1| 90 | 15 o014 |615| 15| 05 |0.049] 240 | 42
Q sink 27 +1.7mm |2000|8.7 |165|0.075 | 57 |6 |0.028 |=001|<005| 1 | 7 |=01|0067 (26| 3 | 23 |0056 |01 66 | 5.5 | 0.03 |219 |31 | 1.16 | 0.5 | 150 | 43
Q_sink_2.7_+0.63mm
Q_float_2.7_+9 Smm
Q float 2.7 +6.3mm | 330 |7.9|315] 045 | 170 | 3 |0.099 |=0.01|<0.05| 0.06 |76 [=0.1| 014 |=6] 2 | 32 |0024|=01| 13 | 3.5 [0006| 109 | 16 | 044 |0.037] 15 | 6
Q_float 2.7 +3.35mm | 200 |1.7|50.1] 013 | 98 | 6 |0.034 |<001|<0.05| 028 | 6 |=01]| 0.4 |=6| 10 |77.6|0.044 |=01| 9 | 11 |owo6| 57 (72| 031 {0028] 15 | 22
Q float 2.7 +1.7mm | 360 | 39 |67.7| 0.15 |1100| 6 J0.038 | 0.01 |=005| 011 |57|<01| 018 |=6| 4 | 80 |o056|=01] 10 | 7.1 [0.006|942|71] 038 (0032 15 | 22
Q_float_2.7_+0.63mm | 380 | 8.9 |28.6] 031 | 190 | 5 |0.086 |<0.01|<0.05| 0.06 {47 |=01] 023 |=6| 5 |452|0054| 01 | 11 | 58 |0006|455|16 | 076 |0.056] 27 | 19




Table D.7 ICP chemustry results of liberated quartz sample. Concentrations are in pg/g (continued).

i

Ca

Cd

Ce

Co

Cr

Cs
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Name of the sample

LOQ sink 3.0 +9 5mm

LQ float 2.7 +).63mm

[Q sink 3.0 +63mm 33000]=05]96000] 51 | & | 3.5 | 0.1 | 250 |0.05 0,059 4.8 | 190 (1500 32 |0.017 |0.012 |0.004 [43000( 105 |0.008 [ 0.6 |05 |0.002)|0.08 | 1000 |0.028 |=0.001

LQ sink 3.0 +335mm 11000)= 0.5 |87000] 24 | & | 47 | 2.1 | 940 |0.05)0.14 | 6.3 | 240 | 370 | 40 | 0.07 |0.012 |0.008 [ 70000 130 | 0.11 | 1.1 |06 |0.006 )| 0.09 | 1100 |0.054 |= 0.001

1.Q sick 3.0 +1 7mm Q100 |=0.5|84000] 14 | 2 | 51 [ 20 |2800|053 05663 ) 93 | 510 | 69 | 038 (0058|0019 |4000( 123 | 044 [ 1.4 | 1 0029|011 2000 | 021 |=0.001

LQ sink 3.0 +0.63mm

L sink 285 +9 5mm

L sink 285 +63mm

1.Q sik 285 +3.35mm 13000] 2.1 |90000] 50 |160) 22 (2380)1300 0160031 1.7 35 (2000] 23 | 0.18 |0.026|0.037|24000( 143 | 023 | 05 |22 |0.014 | 0.47 |31000] 0.13 |=0.001

[0 sink 285 +1 Tmm T500 | 0.5 |91000] 86 |270| 140 | 582 |2200|0.26 | 1.06 | 15 | 1300 (2800 | 80 | 025 |0.054 |0.077|34000( 165 | 041 [ 0.7 | 15 |0.025) 2 |33000] 047 |=0.001

LQ sink 285 +0.63mm 6800 | 1.8 |71000] 91 | 49 | 209 [1845)1000 |0.14 | 0.54 | 8.7 370 (2700 8% | 03 |0.059|0.026]|75000( 123 | 035 [ 1.5 | 3.1 |0.028 | 0.66 |30000] 024 |=0.001

L sink 2.7 +9 5mm

L sink 2.7 +63mm

[0 sink 2.7 +335mm 3600 |= 0570000 87 200 42 | 86 |6200|0.17| 65 |52 29 (270035 | 037|015 | 02 |23000( 91 | 098 [ 0.5 | 2.7 |0.058 | 0.41 |29000] 288 |=0.001

LQ sink 2.7 +1 Tmm

L sink 2.7 +0.63mm

LQ float 2.7 _+9 Smm

1.Q float 2.7 +6.3mm 1500 |=05[38000]193 | 5 | 26 | 34 | 270 |0.04]0.11 | 3.1 | 260 | 310 | 28 |0.034 |0.013 |0.004 | 28000 | 40 |0.046| 0.5 | 3.5 |0.003 (014 | 7500 |0.052 |= 0.001

L0 float 2.7 +335mm 610 |=05)200000 16 |11 | 98 | 27 | 770 |0.09|1.04 | 12 | 890 | 310 | 51 | 039 |0.059|0.026|21000| 15 | 0.5 | 04 | 2.3 |0.033 [0.04 | 4400 | 042 |= 0.001

L0 float 2.7 +1 Tmm 350 |=05)21000085 ] 6 | 48 | 86 | 950 |O.05)1.14 | 21| 40 | 150 | 15 | 034 |0.043] 0.03 |24000| 13 | 053 | 04 | 1.9 |0.022 (002 | 2800 | 0.44 |= 0.001
390 |=05)210000 10 | 8 | 53 | 46 | 810 |0.09 |08 |41 ] 130 | 120 | 29 | 025 |0.046] 0.02 |39000| 13 | 037 | 0.7 | 2.6 |0.021 (0.03 | 2900 | 032 |=0.001
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Table D.8 ICP chemustry results of liberated quartz sample. Concentrations are in pg/g (continued).

MNameofthe sample Mn Mo Nb

L.Q_sink_3.0_+9.5mm
L.Q sink_3.0 +63mm [1500(9.1 | 23 |0.029| 180 |1 |0.006 [<001)=005| 2 |21 [=o01]ooig|17| 2 [13.1]0002 f=0.a] 22 |097]0.002 |0.63 | 20 |0.047 |0.008| 78 | 2
L.Q sink_3.0_+3.35mm [2300(9.9 | 44 | 0.09 | 240 |3 | 0.02 [c0.01)=0.05| 094 |71 [=0.1]onss |24 | 7 [169] 0.02 |=0.1] 590 [0.77| 0002|536 18 | 0.17 |0.013 |1700] 3
L.Q sink 3.0 +1.7mm [2300(62| 71| 03 | 39 |4 |o077|<0m)=005| 1 |63|=01]034 |24| 3 | 5 |01l [=01]s610] 1.4 | 0.01 |3.42|27 ] 0.78 |0.064 |1600| 3
L.Q sink_3.0_+0.63mm

L.Q sink_2 85_+9.5mm
L.Q sink_2 85_+6.3mm
L.Q sink_285_+3.35mm{2000(21 |678]| 016 | 13 | 5| 0.04 [c0o1)=005| 3 |so |01 |oa6 |11a| 7 [154 oosi| 21 |190] 29 |0.004|748|96] 036 |0.034| 330 7
L.Q sink_285_+1.7mm |3100( 56 | 188 | 0.42 |1600| 6 | 0.13 |=001)=005| 4 |27 |=01] 039 |379| 7 |1277|0.087| 06 | 310 | 43 | 001 |132| 12| 05 |0.085|470 | 32
L.Q sink_285_+0.63mm{2300( 15 | 273 | 028 | 340 |9 | 0.08 |<001)=005| 3 |63 |01 | 027 |155| 6 |957 0093 | 1.5 | 280 29 | 0.01 |526(33 | 06 |0.064] 340 | 12

L.Q sink_27 +9 5mm
L.Q sink_27 +6.3mm
L.Q sink 27 +3.35mm [1200(14 | 93 | 31 | 20 |10] 0.79 |=001)=005| 4 |19 [=0a1] 111 f100| 81 |144 | 012 | 02 |1100] 33 |0032|126| 25 | 104 | 015 | 170 | 48
L.Q sink_27 +1.7mm
L.Q sink_2.7 +0.63mm

L.Q_float 2.7_+9 Smm
L.Q float 2.7 +6.3mm | 590 56| 96 [0.079 | 110
1.0 float 2.7 +3.35mm | 540 | 45 |43.9| 048 [1300
L0 float 27 +1.7Tmm | 280 (29| 78 | 051 | 18
L.Q float 2.7_+0.63mm | 400 (7.3 [132] 039 | 150

0.021 |= 001 |=0.05| 044 |81 [=0.1]0.038 | 36
013 |=001|=005( 0.28 |88 |(=01] 036 | &
014 |=001]=005( 0.11 |93 |=0.1] 046 |=6
011 |=001)=005( 011 | 7 [=01] 033 | &

130 | 001 JO1 | 43 | 7.1 |0004]592)| 14011 |0016) 71 | 17
FL5] 011 |=01) 37 | 35 | 001 | 414 (74| 131 |0056] 25 | 14

g 01 J=01] 28 | 23 |0008|3.36| 11 | 076 |0.044] 35 | 11
2380078 [=01) 22 |25 | 001 |3536| 16| 076 | 005 | 39 | 14
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