

Mise en garde

La bibliothèque du Cégep de l'Abitibi-Témiscamingue et de l'Université du Québec en Abitibi-Témiscamingue (UQAT) a obtenu l'autorisation de l'auteur de ce document afin de diffuser, dans un but non lucratif, une copie de son œuvre dans <u>Depositum</u>, site d'archives numériques, gratuit et accessible à tous. L'auteur conserve néanmoins ses droits de propriété intellectuelle, dont son droit d'auteur, sur cette œuvre.

Warning

The library of the Cégep de l'Abitibi-Témiscamingue and the Université du Québec en Abitibi-Témiscamingue (UQAT) obtained the permission of the author to use a copy of this document for nonprofit purposes in order to put it in the open archives <u>Depositum</u>, which is free and accessible to all. The author retains ownership of the copyright on this document.

POLYTECHNIQUE MONTRÉAL

affiliée à l'Université de Montréal

et

l'Université du Québec en Abitibi-Témiscamingue

Traitement des contaminants azotés dans les effluents miniers

GRIMAULT ARNAUD

Département des génies civil, géologique et des mines

Mémoire présenté en vue de l'obtention du diplôme de *Maîtrise ès sciences appliquées*Génie Minéral

Août 2025

POLYTECHNIQUE MONTRÉAL

affiliée à l'Université de Montréal

et

l'Université du Québec en Abitibi-Témiscamingue

Ce mémoire intitulé:

Traitement des contaminants azotés dans les effluents miniers

présenté par Arnaud GRIMAULT

en vue de l'obtention du diplôme de *Maîtrise ès sciences appliquées* a été dûment accepté par le jury d'examen constitué de :

Lucie COUDERT, présidente

Carmen M. NECULITA, membre et directrice de recherche

Thomas GENTY, membre et codirecteur de recherche

Éric ROSA, membre et codirecteur de recherche

Dominique CLAVEAU-MALLET, membre externe

REMERCIEMENTS

Je tiens à exprimer ma profonde gratitude envers ma directrice, Carmen Neculita, ainsi que mes co-directeurs, Éric Rosa et Thomas Genty, pour leur encadrement, leurs précieux conseils et leur patience tout au long de ce projet. Leur expertise et leur disponibilité ont été d'une aide précieuse pour surmonter les défis rencontrés et mener cette recherche à terme.

Je remercie également l'Unité de Recherche et de Service en Technologie Minérale (URSTM) et le Centre Technologique des Résidus Industriels (CTRI), où les expérimentations ont été réalisées. L'accès à leurs infrastructures et le soutien technique fourni ont joué un rôle essentiel dans la réussite de ce projet. Je suis particulièrement reconnaissant envers leur personnel pour leur engagement et leur précieuse assistance. Un grand merci également à l'équipe Environnement de la mine Meadowbank, dont la collaboration et le soutien logistique ont permis la mise en œuvre de plusieurs aspects clés de cette étude.

Je souhaite aussi adresser mes plus sincères remerciements à ma conjointe, Mathilde, pour son soutien inébranlable tout au long de cette aventure. Par son encouragement constant et son implication dans les tâches du quotidien, elle m'a permis de me consacrer pleinement à ce travail. Sa patience et sa compréhension ont été d'un immense soutien.

Enfin, une pensée particulière pour Loki et Aiko, mes fidèles petits compagnons félins, dont la présence réconfortante et les moments de malice ont apporté une touche bienvenue de légèreté aux longues heures de rédaction. Je remercie également toutes les personnes qui, de près ou de loin, ont contribué à l'avancement de ce projet par leurs échanges, leur aide ou leur soutien.

RÉSUMÉ

Bien que l'industrie minière joue un rôle essentiel dans l'économie canadienne, elle génère des effluents souvent fortement concentrés en contaminants azotés tels que le thiocyanate (SCN⁻), l'azote ammoniacal (N-NH₃), les nitrites (NO₂⁻) et les nitrates (NO₃⁻). Ces polluants, principalement issus de l'utilisation d'explosifs au nitrate d'ammonium et de la cyanuration, présentent des risques écotoxicologiques importants. Leur traitement est d'autant plus complexe que la forte concentration en solides totaux dissouts des effluents miniers limite l'efficacité des méthodes conventionnelles, notamment les procédés membranaires, souvent sujets au colmatage.

Ce mémoire propose une évaluation comparative de trois stratégies de traitement des contaminants azotés présents dans des effluents miniers à forte concentration en SDT (solides totaux dissouts) : l'ozonation à microbulles (approche active), le réacteur biologique à lit mobile MBBR (Moving Bed Biofilm Reactor, une approche biologique) et la promotion de l'atténuation naturelle (approche semi-passive).

L'ozonation à microbulles a permis une oxydation rapide et très efficace du SCN⁻ et du N-NH₃, avec plus de 99 % d'oxydation en 1,5 à 2,5 heures de temps de résidence hydraulique (TRH) selon la charge initiale en contaminants. Par exemple, un effluent contenant 100 mg/L de N-NH₃ a été complètement traité en deux heures. Un probable effet catalytique des ions chlorure, par formation de (per)chlorate, est mentionné dans la littérature. Les résultats n'ont pas confirmé la formation de ces éléments, invalidant cette hypothèse. La consommation moyenne d'ozone variait entre 10 et 25 g-O₃ par g de N-NH₃ traité, avec une efficacité améliorée pour des concentrations initiales élevées. Toutefois, le procédé a entraîné une accumulation importante de nitrates, dépassant parfois 1 g/L, pouvant nécessiter une étape de dénitrification complémentaire.

Les vitesses maximales d'enlèvement surfacique, à température ambiante (≈ 22 °C), ont atteint 3,3 g-N/m²/jour pour le SCN⁻ dans le premier réacteur et 1,7 g-N/m²/jour pour les NO₃⁻ dans l'étape de dénitrification. Des accumulations ponctuelles de nitrites ou d'azote ammoniacal ont alors pu survenir. L'usage du saccharose, du fait des doses élevées requises, figure parmi les causes majeures possibles. Cela souligne l'importance du choix de la source de carbone organique et du contrôle du rapport C:N. Les tests écotoxicologiques ont confirmé que l'effluent traité n'était

généralement pas toxique, à l'exception de deux cas isolés, probablement liés à une demande chimique en oxygène (DCO) excessive ou à un pic de nitrites.

L'approche semi-passive par atténuation naturelle, testée en chambre de culture et en conditions réelles, a permis une réduction modérée mais constante des contaminants, notamment du N-NH₃, à condition que l'alcalinité initiale soit suffisante (≈ 80 mg-CaCO₃/L). L'assimilation biologique par les microalgues a été identifiée comme mécanisme principal, comme le confirment les analyses isotopiques (δ^{15} N, δ^{18} O) et les dénombrements biologiques. Toutefois, lors des phases de mortalité de la biomasse, une remobilisation des contaminants a été observée, représentant jusqu'à 30 % du N-NH₃ précédemment éliminé, dans des essais menés à 4 °C sur cinq mois. Ce phénomène peut être efficacement atténué grâce à la récupération de la biomasse par coagulation-floculation. Les coagulants métalliques (sulfate ferrique, PAC) associés à un polymère ionique, ainsi qu'un polymère naturel (chitosane), ont permis une récupération de plus de 90 % de la biomasse en suspension.

Ces résultats soulignent que chaque méthode de traitement présente des avantages et des limites spécifiques, selon les caractéristiques de l'effluent, sa charge polluante et les contraintes opérationnelles. L'ozonation convient particulièrement aux effluents fortement chargés nécessitant un traitement rapide, le MBBR assure des performances durables en conditions maîtrisées, et l'atténuation naturelle représente une option économique intéressante pour des sites isolés ou en fermeture. Le mémoire conclut en proposant un ensemble de critères décisionnels pour guider le choix de la stratégie de traitement des contaminants azotés dans les eaux minières.

ABSTRACT

Although the mining industry plays a vital role in the Canadian economy, it generates effluents often highly concentrated with nitrogen-based contaminants such as thiocyanate (SCN⁻), ammonia nitrogen (N-NH₃), nitrites (NO₂⁻), and nitrates (NO₃⁻). These pollutants, primarily resulting from the use of ammonium nitrate explosives and cyanidation processes, pose significant ecotoxicological risks. Their treatment is particularly challenging due to the high total dissolved solids (TDS) content in mining effluents, which limits the effectiveness of conventional methods, especially membrane processes, which are prone to fouling.

This thesis presents a comparative evaluation of three treatment strategies for nitrogen contaminants in mining effluents with high TDS concentrations: microbubble ozonation (an active approach), the Moving Bed Biofilm Reactor (MBBR, a biological approach), and the promotion of natural attenuation (a semi-passive approach).

Microbubble ozonation enabled rapid and highly efficient oxidation of SCN⁻ and N-NH₃, with more than 99% oxidation achieved within 1.5 to 2.5 hours of hydraulic retention time (HRT), depending on the initial contaminant load. For instance, an effluent containing 100 mg/L of N-NH₃ was fully treated within two hours. A possible catalytic effect of chloride ions, via the formation of (per)chlorates, has been reported in the literature. However, the results did not confirm the formation of such compounds, thus invalidating this hypothesis. Average ozone consumption ranged from 10 to 25 g-O₃ per g of N-NH₃ treated, with improved efficiency at higher initial concentrations. Nevertheless, the process led to significant accumulation of nitrates, sometimes exceeding 1 g/L, potentially requiring a complementary denitrification step.

The MBBR system achieved at least 80% nitrogen removal over a nine-month period. Maximum surface removal rates at ambient temperature (≈ 22 °C) reached 3.3 g-N/m²/day for SCN⁻ in the first reactor and 1.7 g-N/m²/day for NO₃⁻ in the denitrification step. Occasional accumulations of nitrites or ammonia nitrogen were observed, potentially linked to the use of sucrose and the high dosage it required. This highlights the importance of selecting an appropriate organic carbon source and carefully controlling the C:N ratio. Ecotoxicological tests confirmed that the treated effluent was generally non-toxic, except for two isolated cases, likely due to excessive chemical oxygen demand (COD) or nitrite spikes.

The semi-passive natural attenuation approach, tested both in growth chambers and under real conditions, allowed for moderate but consistent reduction of contaminants, particularly N-NH₃, provided that initial alkalinity was sufficient (≈ 80 mg-CaCO₃/L). Biological assimilation by microalgae was identified as the main mechanism, as confirmed by isotopic analyses (δ^{15} N, δ^{18} O) and biological counts. However, during biomass die-off phases, remobilization of contaminants was observed, accounting for up to 30% of the previously eliminated N-NH₃, in tests conducted at 4 °C over five months. This phenomenon can be effectively mitigated through biomass recovery via coagulation-flocculation. Metallic coagulants (ferric sulfate, PAC) combined with an ionic polymer, as well as a natural polymer (chitosan), enabled recovery of over 90% of the suspended biomass.

These results highlight that each treatment method presents specific advantages and limitations depending on effluent characteristics, pollutant loads, and operational constraints. Ozonation is particularly suited for highly loaded effluents requiring rapid treatment; the MBBR offers sustained performance under controlled conditions; and natural attenuation represents a cost-effective option for remote or decommissioning sites. The thesis concludes with a proposed set of decision-making criteria to guide the selection of appropriate nitrogen contaminant treatment strategies for mining waters.

TABLE DES MATIÈRES

REMERCIE	EMENTS	Ш
RÉSUMÉ]	[V
ABSTRACT	Γ	VI
LISTE DES	TABLEAUX	ΧI
LISTE DES	FIGURESX	III
LISTE DES	SIGLES ET ABRÉVIATIONSX	V
LISTE DES	ANNEXES XV	′II
CHAPITRE	1 INTRODUCTION	. 1
1.1 Co	ontexte	1
1.2 OI	bjectifs	3
1.3 Co	ontenu du mémoire et principale contribution	3
CHAPITRE	2 REVUE DE LITTÉRATURE	. 5
2.1 Or	rigines des contaminants azotés dans les eaux minières	6
2.2 As	spects législatifs	6
2.3 Tr	raitement des contaminants azotés dans les eaux minières	8
2.3.1	Traitement actif	11
2.3.2	Ozonation à microbulles	12
2.3.3	Traitement biologique	14
2.3.4	Inhibiteurs biologiques dans les effluents miniers	19
2.3.5	Contacteurs biologiques rotatifs (RBC)	22
2.3.6	Réacteurs biologiques à lit fluidisé (MBBR)	24
2.3.7	Traitement (semi-)passif	28
2.3.8	Réhabilitation du site minier Colomac	30

3.9 Autres études	2.3.9
Utilisation des données isotopiques pour la détermination des origines et du devenir des	2.4
aminants azotés33	contami
Synthèse des connaissances	2.5
ITRE 3 MATÉRIEL ET MÉTHODES44	CHAPITR
Prétraitement – Coagulation-floculation des métaux dissouts	3.1
Pilotes d'essais	3.2
2.1 Essais d'ozonation à microbulles	3.2.1
2.2 Essais de nitrification-dénitrification active MBBR	3.2.2
2.3 Promotion de l'atténuation naturelle	3.2.3
Effluents testés	3.3
3.1 Ozonation à microbulles	3.3.1
3.2 MBBR54	3.3.2
3.3 Promotion de l'atténuation naturelle55	3.3.3
Suivi des conditions opératoires56	3.4
Évolution de la spéciation de l'azote57	3.5
Efficacité du traitement58	3.6
Identification des processus biochimiques impliqués59	3.7
Essais de dégradation de la biomasse60	3.8
Récupération de la biomasse par coagulation-floculation	
	CHAPITR
Essais de traitement par ozonation à microbulles61	4.1
•	4.1.1
,	4.1.2
•	
1.3 Etticacité du pilote d'étude	4.1.3

4.1.4	Évaluation des consommations en réactifs
4.2 Essa	ais de traitement biologique actif MBBR
4.2.1	Prétraitement par coagulation-floculation
4.2.2	Suivi des conditions opératoires
4.2.3	Évolution de la spéciation de l'azote au sein du pilote d'étude69
4.2.4	Toxicité des effluents produits
4.2.5	Efficacité du pilote d'étude
4.2.6	Évaluation des consommations en réactifs
4.2.7	Identificiation des processus biochimiques impliqués au cours du traitement MBBR 78
4.3 Essa	ais de traitement par promotion de l'atténuation naturelle79
4.3.1	Essai préliminaire en chambre de culture
4.3.2	Suivi des conditions opératoires des essais in-situ
4.3.3	Évolution de la spéciation de l'azote
4.3.4	Identification et dénombrement des souches d'algues et de bactéries86
4.3.5	Efficacité du traitement semi-passif
4.3.6	Évaluation des consommations en réactifs
4.3.7 passif	Identification des processus biochimique impliqué au cours du traitement semi-87
4.3.8	Essais de dégradation des algues
4.3.9	Essais de récupération des algues par coagulation-floculation93
CHAPITRE 5	SYNTHÈSE95
CHAPITRE 6	CONCLUSION ET RECOMMANDATIONS
RÉFÉRENCE	S
ANNEXES	

LISTE DES TABLEAUX

Tableau 2.1: Concentrations en contaminants des effluents miniers maximales admissibles pour
rejet en milieu naturel (Gouvernement du Québec, 2025; Gouvernement du Canada, 2025) 7
Tableau 2.2 : LC50 des contaminants azotés sur <i>Daphnia magna</i>
Tableau 2.3 : Avantages et limites des principales méthodes de traitement des contaminants azotés
présents dans des effluents miniers en contexte nordique
Tableau 2.4 : Principaux agents chimiques utilisés comme oxydant pour le traitement des effluents
Tableau 2.5 : Principaux inhibiteurs biologiques pouvant se trouver dans les eaux minières21
Tableau 2.6 : Récapitulatif des principaux processus biochimiques du cycle de N et de leurs effets
sur la composition isotopique des contaminants résiduels
Tableau 2.7 : Paramètres importants dans le choix d'une méthode de traitement des contaminants
azotés dans les effluents miniers41
Tableau 3.1 : Description des différents réacteurs composant la filière MBBR étudiée
Tableau 3.2 : Essais de promotion de l'atténuation naturelle réalisés
Tableau 3.3 : Effluents synthétiques S et réels E utilisés lors des essais d'ozonation
Tableau 3.4 : Masses de sels ajoutés lors de la préparation (15 L) des effluents synthétiques utilisés
lors des essais d'ozonation à microbulles
Tableau 3.5 : Effluents réels utilisés lors des essais de nitrification-dénitrification au sein de la filière MBBR
Tableau 3.6 : Effluents réels utilisés lors des essais de traitement par promotion de l'atténuation
naturelle55
Tableau 3.7 : Liste des principaux paramètres physico-chimiques suivis lors des essais réalisés 56
Tableau 3.8 : Méthodes de détermination des concentrations en contaminants azotés au cours des essais
Tableau 3.9 : Protocole de récupération des algues par coagulation-floculation

Tableau 4.1 : Principaux métaux inhibiteurs présents dans les différents prélèvements (P1 à P5) de
l'effluent E1 et après prétraitement par coagulation-floculation
Tableau 4.2 : Spéciation de l'azote des effluents en sortie de traitement au sein de la filière MBBR
74
Tableau 4.3 : Résultats des essais de toxicité (en unité de toxicité TU) sur les daphnies et truites de
l'effluent traité
Tableau 4.4 : Suivi des consommations en réactifs (en g/g-N traité) lors des essais de traitement au
sein de la filière MBBR
Tableau 4.5 : Évolution des concentrations en contaminants azotés au cours des essais en chambre
de culture
Tableau 4.6 : Évolutions des masses de contaminants impliqués dans les essais de promotion de
l'atténuation naturelle
Tableau 4.7 : résultats des essais de récupération de la biomasse
Tableau 5.1 : Synthèse des différents résultats obtenus pour les trois méthodes de traitement testées

LISTE DES FIGURES

Figure 3.1 : Schéma conceptuel des différents essais menés et des objectifs attenants au cours du projet de Maitrise
Figure 3.2 : Déroulement des essais de coagulation-floculation des métaux en amont du traitement biologique
Figure 3.3 : Photographie du pilote d'ozonation à microbulles
Figure 3.4 : Schéma simplifié du pilote d'ozonation à microbulles (d'après Ryskie et al., 2023)47
Figure 3.5 : Photographie du pilote d'essais de nitrification-dénitrification MBBR
Figure 3.6 : Schéma simplifié du pilote d'essais MBBR
Figure 3.7 : Photographie des essais de promotion de l'atténuation naturelle en chambre de culture
Figure 3.8 : Photographie des essais de promotion de l'atténuation naturelle réalisés sur un site minier
Figure 4.1 : Évolution du pH au cours des essais d'ozonation à microbulles
Figure 4.2 : Évolution du POR au cours des essais d'ozonation à microbulles
Figure 4.3 : Évolution des concentrations en SCN ⁻ lors des essais d'ozonation à microbulles 63
Figure 4.4 : Évolution des concentrations en N-NH3 lors des essais d'ozonation à microbulles . 64
Figure 4.5 : Évolution des concentrations en NO ₃ - lors des essais d'ozonation à microbulles 65
Figure 4.6 : Évolution temporelle de l'efficacité de traitement par ozonation à microbulles 66
Figure 4.7 : Évolution de la vitesse d'oxydation de SCN ⁻ et N-NH ₃ au cours de l'ozonation à microbulles
Figure 4.8 : Évolution de la consommation en O ₃ (en mg-O ₃ /mg-N) au cours des essais d'ozonation à microbulles
Figure 4.9 : Évolution des concentrations en SCN ⁻ dans les différents réacteurs MBBR au cours des essais de nitrification-dénitrification
Figure 4.10 : Évolution des concentrations en N-NH ₃ dans les différents réacteurs MBBR71

Figure 4.11 : Évolution des concentrations en NO ₂ dans les différents réacteurs MBBR72
Figure 4.12 : Évolution des concentrations en NO ₃ dans les différents réacteurs MBBR73
Figure 4.13 : Évolution du TRH et du SARR au sein du réacteur R1 de la filière MBBR75
Figure 4.14 : Évolution du TRH et du SARR au sein du réacteur R2 de la filière MBBR76
Figure 4.15 : Évolution du TRH et du SARR au sein du réacteur R3 de la filière MBBR76
Figure 4.16 : Évolution de δ^{15} N-NH ₃ et de δ^{15} N-MOP au cours des essais de traitement MBBR79
Figure 4.17 : Évolution de la turbidité au cours des essais de promotion de l'atténuation naturelle sur l'effluent minier réel E5
Figure 4.18 : Évolution de la turbidité au cours des essais de promotion de l'atténuation naturelle sur l'effluent minier réel E4
Figure 4.19 : Évolution de δ ¹⁵ N-NH ₃ et δ ¹⁵ N-MOP au cours des essais A7 à A9 de promotion de l'atténuation naturelle
Figure 4.20 : Évolutions de δ^{15} N-NO ₃ ⁻ et δ^{18} O-NO ₃ ⁻ au cours des essais A7 à A9 de promotion de l'atténuation naturelle
Figure 4.21 : Évolution de δ ¹⁵ N de N-NH ₃ et de la biomasse lors des essais A1 à A3 de promotion de l'atténuation naturelle
Figure 5.1 : Photographie d'un média du réacteur R4 montrant une stratification des populations biologiques
Figure 5.2 : Principaux avantages et inconvénients des méthodes testées pour le traitement des contaminants azotés

LISTE DES SIGLES ET ABRÉVIATIONS

Anammox: Anaerobic Ammonium Oxidation

ANFO: Ammonium Nitrate Fuel Oil

BAO: Bactéries ammonium oxydantes

BNO: Bactéries nitrite oxydantes

CCME: Conseil canadien des ministres de l'environnement

D019: Directive 019

DCO: Demande chimique en oxygène

DNRA: Dissimilative Nitrate Reduction to Ammonium

EC50 : Concentration entrainant une immobilisation ou des retards de développement chez 50 %

des individus d'une population biologique

ENA: Promotion de l'atténuation naturelle (Enhanced Natural Attenuation)

EPS: Substance polymère extracellulaire

FBR: Réacteur à lit fluidisé (Fluidized Bed Reactor)

IC50 : Concentration entrainant une inhibition de 50 % d'un processus biologique

IFAS: Film fixe intégré et boues activées (Integrated Fixed-film Activated Sludge)

LC50 : Concentration létale pour 50 % des individus d'une population biologique

LQE : Loi sur la Qualité de l'Environnement

MAP: Phosphate monoammonique

MBBR: Moving Bed Biological Reactor

MES: Matières en suspension

NAP: Nitrate réductase périplasmique

NAR: Nitrate réductase respiratoire

OD : Oxygène dissout

OI: Osmose inverse

POA: Procédés d'oxydation avancée

POR: Potentiel d'oxydoréduction

RBC: Rotating Biological Contactor

REMMD : Règlement sur les effluents des mines de métaux et des mines de diamants

SDT: Solides dissouts totaux

TRH: Temps de résidence hydraulique

TU: Unité de toxicité

UTEI : Usine de traitement des eaux industrielles

UTFE: Usine de traitement final des eaux

VSMOW: Vienna Standard Mean Ocean Water

LISTE DES ANNEXES

ANNEXE A	Protocole suivi lors des essais d'ozonation à microbulles	122
ANNEXE B	Protocole suivi lors des essais de nitrification-dénitrification MBBR	126
ANNEXE C	Protocole suivi lors des essais de promotion de l'atténuation naturelle	131
ANNEXE D	Protocole suivi pour la précipitation des métaux	135
ANNEXE E	Données des suivis des essais d'ozonation à microbulles	138
ANNEXE F	Données des suivis des essais de nitrification-dénitrification MBBR	140
ANNEXE G	Données des suivis des essais de promotion de l'atténuation naturelle	262

CHAPITRE 1 INTRODUCTION

1.1 Contexte

De nombreux contaminants azotés peuvent être présents au sein des eaux minières. Outre la cyanuration, un procédé massivement utilisé au sein de l'industrie minière aurifère, l'utilisation courante d'explosifs de type ANFO (Ammonium Nitrate Fuel Oil) ou en émulsion est aussi source de contaminations. Celles-ci peuvent alors avoir des effets délétères sur les milieux naturels récepteurs. Cela s'explique, d'une part, par leur toxicité, tout particulièrement NO2 et NH3 (de l'ordre du mg/L) et dans une moindre mesure SCN- et CNO- (quelques dizaines de mg/L). Ces contaminants peuvent participer à l'eutrophisation des milieux récepteurs et doivent donc être traités. Les efforts réalisés par l'industrie minière afin de recirculer au maximum ces eaux sont sources, d'une part, de l'augmentation des concentrations en composés azotés, mais aussi d'une augmentation des SDT (solides dissouts totaux) des effluents. Cela suscite un réel enjeu quant au choix de la méthode de traitement la plus adaptée à mettre en œuvre. De nombreuses technologies de traitement de la pollution azotée existent. Celles-ci peuvent être classées selon la nature des processus impliqués, qu'ils soient physiques, chimiques ou biologiques, mais aussi selon le niveau de consommation en réactifs et énergie. Bien que la sorption, sur charbon actif par exemple, soit l'une des moins énergivore, elle ne peut être envisagée pour le traitement de fortes charges en contaminants. Les techniques membranaires sont limitées par les colmatages récurrents observés lors du traitement d'effluents salins. La problématique de gestion des saumures potentiellement générées renforce encore plus le choix de se tourner vers d'autres alternatives.

L'ozonation à microbulles est l'une d'elles et fournit de très bons résultats, y compris pour des SDT élevés. Certains éléments constitutifs sont même suspectés de pouvoir avoir un effet catalytique sur l'oxydation des composés azotés lors de l'ozonation. L'approche active biologique, du fait de ses consommations limitées, en réactifs et en énergie, est source d'un vif intérêt. Bien que les procédés biologiques puissent être fortement inhibés par de fortes salinités, les technologies permettant le développement des bactéries sous forme de biofilm, et tout particulièrement la technologie MBBR (Moving Bed Biological Reactor), répondent particulièrement bien au traitement de tels effluents, y compris miniers. Ces derniers s'avèrent aussi plus résilients face à des températures froides que des procédés biologiques plus classiques tels que les boues activées. L'approche biologique de nitrification-dénitrification a ainsi été employée avec succès à de

nombreuses reprises, à l'échelle du pilote de laboratoire comme industrielle. Celle-ci permet un réel enlèvement de la contamination azotée, le N₂ (un gaz inerte et non dangereux) étant le produit terminal du traitement. Enfin, le souhait actuel de restreindre l'empreinte écologique des procédés de traitement ouvre la porte au développement des procédés (semi) passifs. La promotion de l'atténuation naturelle, au cours de laquelle une croissance biologique (algues et bactéries) peut induire une immobilisation des contaminants, s'avère donc particulièrement intéressante.

Cependant, malgré la diversité des technologies disponibles, plusieurs enjeux techniques, environnementaux et opérationnels restent insuffisamment documentés et compliquent le choix d'une solution adaptée aux effluents miniers à forte salinité. D'une part, peu d'études comparent de manière systématique l'efficacité relative de différentes filières de traitement des contaminants azotés en conditions réelles, particulièrement en présence de fortes concentrations en sels dissous, en métaux et à basse température, conditions typiques de nombreux sites miniers canadiens. D'autre part, certaines hypothèses avancées dans la littérature, telles que le potentiel effet catalytique de certains ions (comme Cl⁻) sur l'ozonation, n'ont pas encore été rigoureusement testées expérimentalement. L'influence de la qualité du carbone organique ajouté (comme le saccharose) sur la performance de la dénitrification en environnement salin reste encore mal comprise, tout comme les phénomènes de remobilisation des contaminants après assimilation biologique dans les procédés semi-passifs.

En outre, les contraintes d'exploitation propres aux sites nordiques, telles que l'isolement logistique, des températures extrêmes, ou la variabilité des charges à traiter, imposent de privilégier des procédés résilients, économes en énergie et limités en besoins de maintenance. Pourtant, les critères permettant d'orienter rationnellement le choix entre une approche biologique active ou (semi) passive demeurent peu explicités dans la littérature technique.

Ce manque de données comparatives en conditions contrôlées et de lignes directrices opérationnelles rend difficile l'optimisation des procédés de traitement des contaminants azotés dans les effluents miniers. C'est dans ce contexte que s'inscrit la présente étude, qui vise à combler ces lacunes en évaluant, à l'aide d'essais pilotes, l'efficacité, les mécanismes, les limites et les besoins en réactifs de trois filières prometteuses pour le traitement de l'azote dans des effluents miniers salins : l'ozonation à microbulles, le procédé biologique MBBR, et la promotion de l'atténuation naturelle.

1.2 Objectifs

Le présent mémoire a pour objectif général d'évaluer comparativement l'efficacité de trois méthodes de traitement des contaminants azotés présents dans les effluents miniers salins. Les méthodes étudiées incluent l'ozonation à microbulles (approche active), le traitement biologique MBBR (Moving Bed Biofilm Reactor), et la promotion de l'atténuation naturelle (approche semi-passive).

Trois objectifs spécifiques ont été définis :

- 1. Caractériser les performances de chacune des méthodes en termes d'efficacité de traitement des contaminants azotés, de robustesse opérationnelle des procédés et de production de sous-produits indésirables.
- 2. Analyser les contraintes techniques et opérationnelles associées à chaque méthode, notamment les besoins en réactifs (ozone, carbone organique), les conditions opératoires optimales (temps de résidence, pH, température) et la sensibilité à la salinité ou à la présence de métaux et métalloïdes.
- 3. Identifier les mécanismes biochimiques mis en jeu dans les procédés biologiques, par l'utilisation de données isotopiques (δ^{15} N et δ^{18} O), afin de mieux comprendre les voies de transformation de l'azote.

1.3 Contenu du mémoire et principale contribution

Ce mémoire de maîtrise est divisé en cinq chapitres. Le premier chapitre présente le contexte autour du présent projet, les objectifs visés, ainsi que l'organisation du mémoire. Le deuxième chapitre est destiné à renseigner, sous forme de revue de littérature, les sources des différents contaminants azotés, ainsi que les objectifs de traitement à atteindre. Le cheminement ayant mené à l'identification des méthodes de traitement d'intérêt y est, de plus, exposé. Une attention particulière est portée aux trois méthodes définies d'intérêt. Le chapitre 3 est consacré à la présentation du matériel et des méthodes utilisés lors des différentes phases d'essais. Les pilotes utilisés ainsi que les suivis analytiques réalisés y sont présentés. Le chapitre 4 est destiné à la présentation des différents résultats obtenus lors des essais effectués, chaque méthode de traitement faisant l'objet d'un sous-chapitre dédié. Ceux-ci seront exposés afin de mettre en avant les capacités de traitement, mais aussi les consommations en réactifs engendrées. La comparaison de

ces derniers résultats doit permettre de définir des conditions préférentielles (ex. : chimie initiale de l'effluent, charge à traiter) pour chacune des méthodes de traitement étudiées. Cela est l'objet du chapitre 5, dédié à la discussion des résultats obtenus. Cette discussion devrait permettre de répondre à l'objectif général initial du projet, et donc fournir une identification d'un ensemble de critères d'intérêt quant au choix des meilleures pratiques applicables pour le traitement des contaminants azotés dans les eaux minières salines. Enfin, le dernier chapitre, présentant les divers conclusions et recommandations du présent projet, a pour objectif de dresser la liste des objectifs généraux et spécifiques de l'étude atteints et propose des pistes d'études potentielles pour de futurs travaux.

CHAPITRE 2 REVUE DE LITTÉRATURE

L'exploitation des sites miniers peut impacter l'environnement, du fait de l'importance des volumes de rejets liquides et solides qui y sont générés. Dans le cas de l'exploitation de gisement aurifère, l'utilisation d'explosifs de type ANFO, la plus fréquente (environ 80%) dans l'industrie minière, ou en émulsion (de l'ordre de 10 à 15 %) (Bailey et al., 2013), et la cyanuration du minerai qui y ont lieu sont des sources majeures d'azote ammoniacal (N-NH₃) et de contaminants azotés (NO₂-, NO₃-, CN-, SCN-, CNO-) (Koren et al., 2000 ; Zaitsev et al., 2008). Outre une éventuelle toxicité, ceux-ci peuvent être des sources d'eutrophisation, d'acidification ou d'anoxie des milieux récepteurs (Bailey et al., 2013) et sont donc soumis à des normes environnementales de rejets rendant nécessaire leur traitement (Gouvernement du Québec, 2025; Gouvernement du Canada, 2025).

Afin d'atteindre un enlèvement suffisant pour répondre à ces objectifs légaux, différentes alternatives de traitement s'offrent aux industriels du secteur minier (Jermakka et al., 2015). Cette revue de littérature se propose donc de présenter un ensemble, non exhaustif, des méthodes couramment utilisées. Les technologies membranaires, bien que permettant une haute efficacité de traitement, sont limitées par le colmatage récurent des membranes lors du traitement d'effluents hautement salins, tels que le sont généralement les effluents miniers. De plus, leur coût énergétique est élevé (Jermakka et al., 2015). L'alternative chimique, hautement efficiente, est limitée par la dangerosité de certains réactifs (Cl2 ou ferrates par exemples). Elle peut aussi être source d'une éventuelle toxicité ainsi que d'une augmentation de la salinité pouvant affecter la qualité de l'effluent produit (Jermakka et al., 2015). L'approvisionnement peut, de plus, s'avérer particulièrement ardu, notamment pour les sites nordiques plus isolés. L'alternative que représente l'ozonation peut alors s'avérer intéressante, lors d'une diffusion en microbulles en particulier. Outre sa haute efficacité, certains contaminants constitutifs des SDT, tels que le Br⁻ et le Cl⁻, des effluents miniers pourraient avoir un effet catalytique sur l'oxydation des contaminants azotés lors de l'ozonation à microbulles (Khuntia et al., 2013; Ryskie, 2017).

La voie biologique représente une autre alternative. Bien que les procédés biologiques puissent être fortement inhibés par la salinité (Bassin et al., 2012 ; Navada et al., 2021), les technologies permettant le développement biologique sous forme de biofilm, et en particulier les MBBR,

s'avèrent particulièrement résilientes (Hoang et al., 2014 ; Kwofie et al., 2021 ; Villemur et al., 2015). Ces procédés jouissent de coûts en réactifs et énergie plus modérés.

La recherche actuelle de modération des consommations en réactifs et en énergie des procédés de traitement des effluents est aussi à l'origine du regain d'intérêt pour les procédés semi-passifs tels que la promotion de l'atténuation naturelle. La diversité des algues et des bactéries, ainsi que leur capacité à se développer dans des milieux divers, en font alors une option intéressante.

2.1 Origines des contaminants azotés dans les eaux minières

Les effluents miniers contiennent une grande variété de contaminants azotés, issus de sources diverses. Par exemple, les SCN⁻ peuvent provenir de la réaction entre les ions CN⁻, utilisés lors de la cyanuration dans les mines d'or et d'argent, et le soufre naturellement présent dans les gisements (Koren et al., 2000 ; Zaitsev et al., 2008). Cette réaction est favorisée par la faible sélectivité des CN⁻. Le N-NH₃ peut alors se former comme sous-produit de la dégradation du cyanure. Une autre source de N-NH₃ au sein des eaux minières est l'utilisation d'explosifs contenant du nitrate d'ammonium. Ceux-ci sont largement utilisés dans les opérations minières à ciel ouvert et souterraines en raison de leur grande efficacité et de leur coût relativement faible. Les explosifs de type ANFO représentent environ 80% des besoins en explosifs dans l'industrie minière (Bailey et al., 2013). La contamination en N-NH₃ peut aussi être exacerbée par la dégradation de biomasse (Chapman et al., 2007). Au cours de celle-ci, l'ammonification mène à la minéralisation de l'azote organique et donc à la formation de N-NH₃.

2.2 Aspects législatifs

L'activité minière au Québec est principalement encadrée par un corpus législatif provincial (Gouvernement du Québec, 2025 - Directive 019) et fédéral (Gouvernement du Canada, 2025 - Règlement sur les mines de métaux et les mines de diamants, REMMD), imposant à l'industriel des critères en termes de qualité physico-chimique des eaux de rejets (Tableau 2.1) ou de toxicité des effluents.

La Directive 019 émet un certain nombre de recommandations, en termes de concentrations en métaux et métalloïdes ou en matières en suspension notamment. Bien que celle-ci n'ait pas valeurs de loi au même titre qu'un règlement, elle est massivement utilisée pour la définition des objectifs de traitement définis au sein des certificats d'autorisation d'exploiter en vertu de la Loi sur la

qualité de l'environnement (LQE). Le REMMD (Gouvernement du Canada, 2025) ajoute à la liste des contaminants ciblés l'azote ammoniacal sous forme non-ionisé NH₃, celui-ci ne devant pas dépasser 1 mg-N/L (0,5 mg-N/L pour la moyenne mensuelle). Cela correspond à une évolution législative récente (2021).

Tableau 2.1 : Concentrations en contaminants des effluents miniers maximales admissibles pour rejet en milieu naturel (Gouvernement du Québec, 2025; Gouvernement du Canada, 2025)

Éléments	Concentration moyenne mensuelle		Concentration maximale instantanée		
	D019	REMMD	D019	REMMD	
Arsenic extractible	0,2 mg/L	0,10 mg/L	0,4 mg/L	0,20 mg/L	
Cuivre extractible	0,3 mg/L	0,10 mg/L	0,6 mg/L	0,20 mg/L	
Fer extractible	3 mg/L		6 mg/L		
Nickel extractible	0,5 mg/L	0,25 mg/L	1 mg/L	0,50 mg/L	
Plomb extractible	0,2 mg/L	0,08 mg/L	0,4 mg/L	0,16 mg/L	
Zinc extractible	0,5 mg/L	0,40 mg/L	1 mg/L	0,80 mg/L	
Cyanures totaux	1 mg/L	0,50 mg/L	2 mg/L	1,00 mg/L	
Hydrocarbures (C10-C50)	-	-	2 mg/L	-	
Matières en suspension	15 mg/L	15 mg/L	30 mg/L	30 mg/L	
Radium 226	-	0,37 Bq/L	-	1,11 Bq/L	
Ammoniac non ionisé	-	0,5 mg/L sous forme d'azote (N)	-	1 mg/L sous forme d'azote (N)	

Les différents sites miniers peuvent être soumis à des objectifs de traitement plus stricts définis au sein de l'autorisation d'exploiter. Dans le cas de l'exploitation de zone particulièrement sensible à l'eutrophisation par exemple, une attention particulière peut être portée sur les différentes formes présentes des trois éléments nutritifs que sont le carbone, le phosphore, mais aussi les composés azotés, y compris les nitrates très peu toxiques. Outre ces critères chimiques, l'effluent doit répondre positivement à des tests écotoxicologiques.

Bien que ne faisant pas l'objet de critère de rejet, la présence de certains contaminants, tels que NO₂-, CNO⁻ et SCN⁻ par exemples, peut être à l'origine de toxicité aigüe ou sublétale et donc empêcher le rejet de l'effluent en milieu naturel. La toxicité d'un contaminant peut être estimée par la détermination de la concentration pour laquelle 50% d'une population donnée subit une mortalité (LC50) ou un retard de développement ou l'immobilisation des individus (EC50). L'apparition des

effets néfastes est dépendante du temps d'exposition. La législation en vigueur impose des essais de 48h pour *Daphnia magna* et de 96h pour la truite arc-en-ciel pour un rejet en eaux douces. Cette première présente une sensibilité particulièrement importante à la présence de contaminant et peut s'avérer être à l'origine de non-conformité, notamment en cas de présence des contaminants azotés tels que NH₃, et dans une moindre mesure NO₂-, SCN- et CNO-, pour lesquels les LC50 sont de l'ordre de seulement quelques mg/L (Tableau 2.2).

LC50 (mg/L) Contaminant Durée du test (h) References 1,98 USEPA, 2013 NH₃ (non ionisé) 24 NO_3 2047 48 CCME, 2012 NO_2 23 48 Eytcheson et al., 2018 48 Dauchy et al., 1980 CNO-18 48 57,4 SCN-Gould et al., 2012 0,63-32 96

Tableau 2.2 : LC50 des contaminants azotés sur Daphnia magna

La toxicité de N-NH₃ est principalement liée à la présence de sa forme non protonée NH₃. Celle-ci dépend du pH et de la température principalement (USEPA, 2013) :

Équation 2.1 :
$$[NH_3] = [N - NH_3] \cdot \frac{1}{1 + 10^{(pK_a(T) - pH)}}$$

La constante d'acidité du couple NH₃/NH₄⁺ dépend, elle-même, de la température et peut être déterminée par :

Équation 2.2 :
$$pK_a(T) = 0.09018 + \frac{2729.92}{T}$$
, où T est la température exprimée en K.

Le risque de toxicité de N-NH₃ se trouve alors particulièrement important pour des effluents ayant un pH proche ou supérieur au pK_a du couple NH₃/NH₄⁺ (environ 9,25 à 25 °C) ou pour des températures élevées.

2.3 Traitement des contaminants azotés dans les eaux minières

Les différentes technologies existantes (Tableau 2.3) pour l'enlèvement des contaminants azotés peuvent être classées selon la nature du processus responsable du traitement, qu'il soit physique, chimique ou biologique (Jermakka et al., 2015). Les techniques membranaires, comme l'osmose inverse, offrent une excellente qualité d'effluent, mais elles présentent des limites opérationnelles

importantes dans un contexte minier. Elles sont notamment sujettes à des colmatages fréquents, accentués la présence de matières dissoutes dans les effluents miniers (Jermakka et al., 2015; Papirio, 2012), et génèrent des saumures concentrées dont la gestion est coûteuse et contraignante (Hoang et al., 2014). L'oxydation chimique, qu'elle soit réalisée par ajout d'oxydants puissants (comme les ferrates par exemple) ou par des procédés électrochimiques, constitue une alternative. Cette méthode peut atteindre un traitement important des contaminants azotés, y compris le N-NH₃, souvent difficile à oxyder, mais elles nécessitent des consommations élevées en réactifs et/ou en énergie (Gonzalez-Merchan et al., 2016; Marcotte, 2020). Ce besoin en intrants rend leur mise en œuvre particulièrement complexe dans des contextes isolés, comme les mines nordiques, où l'approvisionnement en produits chimiques peut être limité ou saisonnier (Ryskie, 2017).

À l'inverse, les traitements biologiques, bien qu'actifs et nécessitant un suivi opérationnel, se distinguent par leur coût d'exploitation plus modéré et leur impact environnemental réduit. Ils reposent principalement sur les processus de nitrification et de dénitrification, avec une efficacité prouvée même dans des effluents complexes, à condition que les conditions environnementales (température, pH, salinité) soient adéquatement contrôlées (Hoang et al., 2014; Villemur et al., 2015; Navada et al., 2021). Le développement de biofilms, notamment via les réacteurs MBBR, améliore la résilience de ces procédés face aux inhibiteurs potentiellement présents dans les effluents miniers (Papirio, 2012). Cela est aussi le cas pour les faibles températures (Young et al., 2016). Enfin, une approche plus passive, comme la promotion de l'atténuation naturelle, s'avère particulièrement intéressante pour les sites à faibles charges ou en phase de fermeture (Chapman et al., 2007). Cette méthode repose sur la croissance contrôlée d'algues et de bactéries capables d'assimiler l'azote, tout en minimisant les besoins en réactifs et en supervision (Li et al., 2022). Malgré des cinétiques plus lentes, elle présente une solution économique et durable lorsque les contraintes opérationnelles sont majeures.

Tableau 2.3 : Avantages et limites des principales méthodes de traitement des contaminants azotés présents dans des effluents miniers en contexte nordique

Méthode de traitement	Avantage(s)	Limite(s)	Référence(s)
Traitements membranaires	Très efficaces (> 95 %)	Colmatage récurrent pour des effluents fortement minéralisés Gestion de la saumure générée Consommation en énergie	Jermakka et al., 2015
Oxydation chimique (chloration alcaline ou ferrates)	Très efficace Nécessite un faible TRH Peu influencé par de faibles températures	Difficultés d'approvisionnement en réactifs pour les sites nordiques Réactifs résiduels ou sous- produits d'oxydation potentiellement toxiques	Jermakka et al., 2015 Gonzalez-Merchan et al., 2016
Ozonation à microbulles	Très efficace Nécessite un faible TRH N'induit pas d'augmentation des matières dissoutes	Sous-produits d'oxydation (nanoparticules métalliques) potentiellement toxiques Coûts de traitement élevés	Khuntia et al., 2013 Ryskie, 2017 Marcotte, 2020
Boues activées (traitement biologique avec biomasse en suspension)	Coûts de traitement modérés Impacts environnementaux faibles du fait d'une consommation modérée en réactifs	Sensible à la présence d'inhibiteurs (salinité, métaux, faibles températures) ou à des variations de charges à traiter Recirculation nécessaire des boues Phase de démarrage et d'acclimatation de la biomasse	Bassin et al., 2012 Navada et al., 2021
MBBR, RBC	Coûts de traitement modérés Impacts environnementaux faibles du fait d'une consommation modérée en réactifs Moins sensible à la présence d'inhibiteurs que les boues activées	Maitrise stricte des conditions opératoires nécessaires Nécessite l'ajout d'un système de chauffage pour le maintien des populations bactériennes	Hoang et al., 2014 Navada et al., 2021 Papirio, 2012 Villemur et al., 2015 Young et al., 2016
Promotion de l'atténuation naturelle	Très peu de réactifs nécessaires Faible besoin en supervision Très économique	Faible cinétique de traitement (applicable pour de faibles charges ou pour des sites en cours de fermeture)	Chapman et al., 2007 Li et al., 2022 Marcotte et al., 2023

2.3.1 Traitement actif

Les opportunités actives de traitement sont nombreuses. Celles-ci peuvent s'avérer particulièrement intéressante pour le traitement de fortes charges, que ce soit par les concentrations en contaminants ou de débits à traiter. Comme exposé précédemment, les techniques membranaires ne semblent pas en mesure de fournir une réponse viable dans le cadre du traitement des effluents miniers salins. L'oxydation par des oxydants chimiques (Tableau 2.4) tels que le peroxyde H_2O_2 ($E^0 = 1,78$ V) ou l'hypochlorite HClO ($E^0 = 1,49$ V) est assez commune, notamment dans le cadre de l'oxydation des cyanures.

Tableau 2.4 : Principaux agents chimiques utilisés comme oxydant pour le traitement des effluents

Oxydant	Réactions		Références
Cl ₂ gazeux	$Cl_2 + 2 e^- \leftrightarrow 2 Cl^-$	1,36	Zaviska et al., 2009
ClO-	$ClO^- + H_2O + 2 e^- \leftrightarrow Cl^- + 2 OH^-$	0,84	Zaviska et al., 2009
HClO	$HCIO + H^+ + 2 e^- \leftrightarrow CI^- + H_2O$	1,49	Zaviska et al., 2009
ClO ₂ dissout	$ClO_2 + e^- \leftrightarrow ClO_2^-$	1,27	Muruganandham et al., 2014
ClO ₄ -	$ClO_4^- + 8 H^+ + 8 e^- \leftrightarrow Cl^- + 4 H_2O$	1,39	Zaviska et al., 2009
O_3	$O_3 + 2 H^+ + 2 e^- \leftrightarrow O_2 + 2 H_2O$	2,07	Muruganandham et al., 2014
O ₂ dissout	$O_2 + 4 H^+ + 4 e^- \leftrightarrow 2 H_2O$	1,23	Muruganandham et al., 2014
H ₂ O ₂	$H_2O_2 + 2 H^+ + 2 e^- \leftrightarrow 2 H_2O$	1,78	Muruganandham et al., 2014
[FeO ₄] ²⁻	$FeO_4^{2-} + 8 H^+ + 3 e^- \leftrightarrow Fe^{3+} + 7 H_2O$	2,20	
(ferrates)	$FeO_4^{2-} + 8 H_2O + 3 e^- \leftrightarrow Fe(OH)_3 + 8 H_2O$	0,70	Gonzalez-Merchan et al., 2016

Le N-NH₃ est, en revanche, plus réfractaire et nécessite l'utilisation d'agent oxydant plus puissant (Jermakka et al., 2015 ; Gonzalez-Merchan et al., 2016). Un intérêt particulier émerge en ce sens pour de nouveaux oxydants, tels que les ferrates (E⁰ = 2,20 V) (Gonzalez-Merchan et al., 2016). Ces procédés sont généralement plus rapides et moins sensibles aux variations de pH, de température ou à la présence d'autres contaminants toxiques pouvant inhiber les processus biologiques (Jermakka et al., 2015). Leur production et/ou leur manipulation peut en revanche s'avérer problématique et ne sont donc pas nécessairement adéquats au traitement des effluents miniers.

2.3.2 Ozonation à microbulles

Les méthodes traditionnelles de traitement de l'ammoniac, telles que la nitrification biologique, présentent des limites, notamment en termes d'efficacité et d'applicabilité à des chimies d'eau variées (Jermakka et al., 2015). Par conséquent, les procédés d'oxydation avancés (POA), en particulier l'ozonation, ont attiré l'attention pour leur potentiel de dégradation de N-NH3 dans les eaux minières. Utilisé comme oxydant, O₃ peut mener à la formation de diverses espèces réactives capables de dégrader N-NH₃ (Khuntia et al., 2013; Ryskie, 2017). L'ozone est facilement généré à partir de dioxygène (O₂) et est connu comme étant un bon oxydant pour la dégradation de divers composés présents dans les eaux minières contaminées (Takahashi et al., 2012). Malgré les limitations potentielles liées à une diffusion insuffisante de l'ozone, causée par des bulles de taille excessive, l'utilisation de diffuseurs générant des microbulles (< 50 µm) améliore significativement l'efficacité du procédé (Khuntia et al., 2013; Ryskie et al., 2020). La technologie des microbulles améliore alors le transfert de masse de l'ozone dans l'eau, ce qui permet d'améliorer la cinétique de la réaction et d'accroître l'efficacité de l'oxydation (Ryskie et al., 2020). Pour une quantité d'ozone dissous similaire, la diffusion par microbulles permet un enlèvement environ 1,3 fois plus rapide que pour une diffusion plus grossière (Takahashi et al., 2012). Cela s'explique par l'augmentation de la surface d'interface gaz-liquide et la diminution de la vitesse d'ascension des bulles d'ozone lors de la microdiffusion (Ryskie, 2017; Marcotte, 2020; Khuntia et al., 2013).

Afin d'être optimale, l'ozonation peut en revanche nécessiter un ajustement du pH de l'effluent aux alentours de 9 (Ryskie, 2017; Khuntia et al., 2013), permettant ainsi la formation d'hydroxyles fortement oxydants. Dans ces conditions, une dégradation de plus de 95 % des SCN-, CNO- et N-NH3, sous forme de NO3-, est obtenu avec un temps de résidence hydraulique (TRH) de l'ordre de l'heure. Une oxydation de 100 mg/L de N-NH3 en 2 heures a ainsi été trouvée (Khuntia et al., 2013). Des effets inhibiteurs liés à la présence de SCN- et CNO- (Ryskie, 2017; Marcotte, 2020) sur l'oxydation de N-NH3, ainsi que de la température (Marcotte, 2020) sur les performances de traitement ont aussi été constatés. Les températures élevées augmentent généralement les taux de réaction en raison d'une activité moléculaire accrue ; cependant, elles peuvent également entraîner une décomposition accélérée et une plus faible solubilité de l'ozone (Marcotte, 2020). Une plage de température optimale (20-30 °C) est alors souvent recommandée pour une oxydation efficace de N-NH3 par ozonation (Ryskie, 2017; Marcotte, 2020). Divers autres paramètres peuvent influer sur les performances d'ozonation. L'inhibition de l'ozonation en présence de concentrations

élevées en CO₃²⁻ a ainsi été documentée (Khunthia et al., 2013). Cela est particulièrement vrai à un pH proche de la neutralité. À l'inverse, un effet catalytique est observé en présence de Br (> 75 mg/L). Cela est confirmé par les essais réalisés par Ryskie (2017), bien qu'une concentration plus élevée (500 mg/L) en Br⁻ ait été nécessaire afin d'obtenir un effet catalytique significatif. Un effet similaire est suspecté en présence de Cl⁻. Ainsi, bien que Khuntia et al. (2013) n'aient pas observé de différences de cinétique entre l'ozonation de solutions de sulfate et de chlorure d'ammonium, l'étude de Marcotte (2020) a mis en évidence un traitement plus rapide pour l'effluent le plus salin riche en Cl⁻. Cette différence a été attribuée à la forte concentration en Cl⁻, susceptible d'avoir entraîné la formation de (per)chlorates, des oxydants puissants, pouvant avoir catalysé l'oxydation des contaminants azotés. Cela accroît l'intérêt que suscite une telle méthode de traitement qui pourrait ainsi tirer profit de la forte salinité des effluents miniers. De telles conditions peuvent rendre le traitement biologique inopérant. Dans ces cas, l'ozonation par microbulles constitue une alternative crédible, bien que plus coûteuse. À capacité équivalente (200 m³/h), le CAPEX estimé est d'environ 15 M CAN\$ pour l'ozonation, contre 3 M CAN\$ pour un MBBR (Marcotte, 2020). Cette évaluation du procédé biologique n'intègre cependant pas le chauffage de l'effluent, indispensable en climat froid pour maintenir les communautés bactériennes. En l'intégrant, un CAPEX allant du simple au double peut être observé entre les MBBR et l'ozonation à microbulles (Marcotte, 2020). En conséquence, l'ozonation reste en général moins compétitive que le MBBR pour de forts débits ou des charges élevées. D'autres critères peuvent toutefois pencher en faveur de l'ozonation : délais de mise en service, résilience du procédé, besoins en main-d'œuvre et en réactifs. Côté OPEX, on estime à 1,31 CAN\$/m³ pour une unité de 100 m³/h et 5,81 CAN\$/m³ pour 5 m³/h. La main-d'œuvre pèse particulièrement sur les petites installations. L'électricité dédiée à la production d'O₃ et les réactifs d'ajustement du pH représentent respectivement ~0,47 et ~0,34 CAN\$/m³ (Marcotte, 2020). Ces chiffres reflètent un contexte canadien où l'électricité est peu coûteuse. Des sites alimentés par groupes électrogènes subiraient alors un OPEX sensiblement plus élevé.

L'ozonation catalytique, pouvant permettre une diminution de la consommation en 0₃ et donc de l'OPEX, constitue l'une des principales voies de développement actuelles des procédés d'ozonation (Cao et al., 2024; An et al., 2025). Selon An et al. (2025), celle-ci s'avère particulièrement adaptée au traitement des effluents contaminés par N-NH₃, en raison de son efficacité, de sa rapidité et de sa compatibilité avec des matrices complexes (salinité élevée, métaux

dissous, pH extrême). Ce procédé repose sur la décomposition de l'ozone (O3) en radicaux hydroxyles (OH) et superoxydes (O2-) à la surface de catalyseurs solides, souvent à base d'oxydes métalliques, tels que TiO₂ par exemple, capables de transformer N-NH₃ en N₂ gazeux de manière sélective (Marcotte, 2020; Cao et al., 2024). Dans une étude récente, Cao et al. (2024) ont démontré qu'un catalyseur nanostructuré Co/Mg(OH)₂ permettait d'atteindre un rendement d'enlèvement de 97,6 % de N-NH3 avec une sélectivité vers N2 de 92,3 % en 40 minutes, et ce, sans perte d'efficacité après plusieurs cycles. De leur côté, An et al. (2025) ont évalué un système combinant ozonation catalytique hétérogène et irradiation UV, atteignant une efficacité de 96,6 % de diminution d'azote ammoniacal, contre 73,4 % avec l'ozone seul, tout en améliorant la minéralisation des composés organiques (réduction du carbone organique total COT de 20 % supplémentaire). Ces résultats diffèrent de ceux obtenus par Ryskie (2017), pour lesquels le couplage d'une irradiation UV à l'ozonation à microbulles n'apportait pas de gain en efficacité comparativement à l'ozonation seule. Une défaillance des lampes UV est cependant suspectée dans cette dernière étude. Dans l'ensemble, l'ozonation catalytique permet non seulement d'accélérer le traitement, mais aussi de réduire la consommation de réactifs chimiques, tout en limitant la formation de sous-produits potentiellement toxiques (Cao et al., 2024; An et al., 2025). Ces caractéristiques en font une option durable, modulable et particulièrement pertinente pour le traitement des eaux minières complexes, en phase avec les exigences réglementaires et environnementales croissantes de l'industrie.

2.3.3 Traitement biologique

Les SCN⁻ et CNO⁻ peuvent aussi être dégradés biologiquement (Équation 2.6), notamment par des bactéries de type *Thiobacilles* (Potivichayanon et al., 2017; Villemur et al., 2015). Si certaines d'entre elles peuvent assimiler ces contaminants, la plupart les utilisent comme donneurs d'électrons. Les accepteurs d'électrons sont alors généralement l'O₂, ou le NO₃⁻ dans le cas de *Thiobacillus denitrificans*, ce qui peut alors conduire à une dénitrification partielle de l'effluent ou à une légère accumulation de NO₂⁻ (Katayama et al., 1992). Les SCN⁻ sont d'abord hydrolysés en CNO⁻ (Équation 2.3), ces derniers étant finalement hydrolysés pour former N-NH₃ (Équation 2.4). Le NH₃ peut inhiber la dégradation des SCN⁻ et la nitrification dans un bioprocédé (Villemur et al., 2015). Outre N-NH₃, la dégradation des SCN⁻ est aussi source de SO₄²⁻, par oxydation du soufre (Équation 2.5).

Équation 2.3 : $SCN^- + H_2O \rightarrow H_2S + CNO^-$

Équation 2.4 : $CNO^{-} + 2 H_{2}O + H^{+} \rightarrow HCO_{3}^{-} + NH_{4}^{+}$

Équation 2.5 : $H_2S + 2 O_2 \rightarrow SO_4^{2-} + 2 H^+$

La réaction globale de la biodégradation est alors donnée par l'équation suivante :

Équation 2.6 :
$$SCN^- + 3 H_2O + 2 O_2 \rightarrow HCO_3^- + NH_4^+ + SO_4^{2-} + H^+$$

De nombreuses souches microbiologiques sont capables de dégrader les thiocyanates. La majorité d'entre elles sont de type autotrophe chimiolitotrophe et tirent le carbone nécessaire à leur développement par assimilation du CO2 dissous et leur énergie de l'oxydation de composants minéraux tels que NH₃, H₂S ou encore Fe²⁺ (Tanabène, 2016 ; Villemur et al., 2015). Certaines, dont *Acidithiobacillus thiosparus*, anciennement connue sous le nom de *Acidithiobacillus thiocyanooxidans*, peuvent répondre à leurs besoins en carbone et en azote par assimilation des SCN⁻ (Happold et al., 1954) et ainsi oxyder ces derniers, même pour une contamination élevée jusqu'à une concentration de 50 mM, soit environ 3 g/L de SCN⁻ (Youatt, 1954). Bien qu'autotrophes, les thiobacilles ont un taux de croissance élevé, proche de celui généralement observé pour les populations hétérotrophes (Bougie, 2011). Cette importante formation de biomasse peut notamment être à l'origine de certains désagréments, tels que les problèmes mécaniques (bris d'essieu) lors de l'étape de traitement des SCN⁻ de l'UTFE (Unité de traitement final des eaux) à la mine LaRonde (Bougie, 2011).

À la suite de la dégradation des SCN⁻, une étape de nitrification peut alors être avoir lieu. Celle-ci est un processus biochimique dans lequel l'azote ammoniacal va être successivement oxydé en NO₂⁻ (nitritation, Équation 2.7), puis en NO₃⁻ (nitratation, Équation 2.8) en conditions aérobiques et constitue le moyen le plus économique d'éliminer N-NH₃ (Tchobanoglous et al., 2003 ; Hoang et al., 2014; Ahmed et al., 2019). Les populations bactériennes majoritairement responsables de la nitrification sont autotrophes et sont du genre *Nitrosomonas*, *Nitrosococcus* ou *Nitrospira* pour la nitritation, et du genre *Nitrobacter* pour la nitratation (Zaitsev et al., 2008). Celles-ci sont autotrophes. Une alcalinité suffisante est alors nécessaire à leur développement. Cette dernière permet aussi le maintien du pH et de contrer l'acidification du milieu lors de la nitrification. À cette fin, une consommation de 7,14 g-CaCO₃/L par g-N/L à nitrifier est attendue (Hoang et al., 2014).

Équation 2.7: $NH_4^+ + 1.5 O_2 \rightarrow NO_2^- + H_2O + 2 H^+$

Équation 2.8 : $NO_2^- + 0.5 O_2 \rightarrow NO_3^-$

La nitrification peut être fortement inhibée par de faibles températures (inférieures à 10 °C), et même s'avérer nulle à 6 °C ou moins (Tchobanoglous et al., 2003). Une efficacité de la nitrification doublée pour une augmentation de 10 °C (Tchobanoglous et al., 2003) a ainsi été observée, ce qui est relativement cohérent avec une diminution d'environ 80 % du taux d'oxydation biologique de N-NH₃ observée lors du passage de 20 à 1 °C (Hoang et al., 2014 ; Ahmed et al., 2019). Cela est dû aux effets de la température sur les cinétiques de développement des bactéries, presque 15 fois plus faible à 5 °C qu'à 30 °C (Ahmed et al., 2019). La loi d'Arrhenius peut être utilisée afin de prédire le taux de croissance bactérien μ₂ (Équation 2.9), et donc l'enlèvement de N-NH₃ k₂ (Équation 2.10) à une température T₂ comparativement à un état initial (T₁, k₁, μ₁) connu (Tchobanoglous et al., 2003) :

Équation 2.9 :
$$\mu_2 = \mu_1 \cdot \theta^{T_2 - T_1}$$

Équation 2.10 :
$$k_2 = k_1 \cdot \theta^{T_2 - T_1}$$

Cela correspond à une cinétique d'ordre 0, ce qui a été fréquemment observée pour des concentrations en N-NH₃ supérieures à quelques mg/L (USEPA, 2013). Le coefficient θ a été déterminé par différentes études et est compris entre 1,03 et 1,15 (Aravinthan et al., 1998; Delatolla et al., 2009; Hwang et Oleszkiewicz, 2007; Salvetti et al., 2006). Celui-ci dépend notamment des conditions au sein du réacteur, de la balance des nutriments (Salvetti et al., 2006), du développement sous forme de biofilm (Aravinthan et al., 1998), ou par le temps laissé pour l'acclimatation des bactéries aux faibles températures (Hwang et Oleszkiewicz, 2007; Delatolla et al., 2009).

Le pH au sein du réacteur est un autre paramètre d'influence. La nitrification est optimale pour des pH compris entre 7 et 8, les pH préférentiels de *Nitrosomonas* et *Nitrobacter* variant respectivement de 7,9 à 8,2 et de 7,2 à 7,6 (Alleman et al., 1984). L'alcalinité doit, de plus, permettre de contrer l'acidification liée à la nitrification afin de permettre le maintien de conditions optimales. L'évolution du pH a également un effet sur les couples acidobasiques HNO₂/NO₂⁻ et NH₄⁺/NH₃, HNO₂ et NH₃ pouvant être inhibiteurs (Anthonisen et al., 1976). Une inhibition de l'oxydation du N-NH₃ a ainsi été observée à des concentrations de NH₃ libre supérieures à 10 mg/L, tandis que l'oxydation des NO₂⁻ était inhibée dès 0,1 mg/L (Anthonisen et al., 1976). Les populations responsables de l'oxydation de ce dernier étant plus sensibles à la concentration en NH₃ libre, une accumulation de NO₂⁻ peut alors avoir lieu.

Bien opérées, ces différentes étapes permettent alors une oxydation totale des contaminants azotés. Puisque les permis d'exploitation pouvant imposer des critères de rejet relatifs aux NO₃⁻, une étape subséquente à la nitrification peut être nécessaire. La dénitrification, processus biochimique anaérobique qui utilise les NO₃⁻ comme accepteurs pour les électrons fournis par la dégradation du carbone organique, menant alors à une désoxygénation des NO₃⁻, peut permettre de répondre à ces objectifs. Celle-ci peut être décomposée en différentes étapes successives (équations 2.11 à 2.14) :

Équation 2.11 : $NO_3^- + 2 H^+ + 2 e^- \rightarrow NO_2^- + H_2O$

Équation 2.12 : $NO_2^- + 2 H^+ + e^- \rightarrow NO + H_2O$

Équation 2.13 : $2 \text{ NO} + 2 \text{ H}^+ + 2 \text{ e}^- \rightarrow \text{N}_2\text{O} + \text{H}_2\text{O}$

Équation 2.14 : $N_2O + 2 H^+ + 2 e^- \rightarrow N_2 + H_2O$

Le processus complet peut s'exprimer sous forme d'une réaction d'oxydo-réduction équilibrée, par laquelle NO₃⁻ est entièrement réduit sous forme d'azote gazeux N₂ (Équation 2.15).

Équation 2.15 :
$$2 \text{ NO}_3^- + 10 \text{ e}^- + 12 \text{ H}^+ \rightarrow \text{N}_2 + 6 \text{ H}_2\text{O}$$

La dénitrification peut, elle aussi, être inhibée par des températures inférieures à 5°C (Tchobanoglous et al., 2003), principalement du fait d'un déclin de l'activité des populations bactériennes permettant la dégradation du carbone organique et l'assimilation de celui-ci par les populations dénitrifiantes hétérotrophes, nécessaires à leur développement. Les sources de carbone peuvent être classées selon leur qualité, permettant ainsi d'évaluer leur capacité à soutenir le développement microbiologique. Cet indice est déterminé par le nombre de dégradations enzymatiques successives nécessaires pour rendre le carbone disponible pour les populations microbiologiques, un nombre d'étapes important définissant alors une mauvaise qualité du carbone. La qualité diminue généralement avec la masse moléculaire du substrat, les sources plus complexes étant plus difficilement assimilables, un déficit en carbone organique pouvant rendre la dénitrification incomplète (De Filippis et al., 2013). Un excès de carbone organique peut toutefois être source d'inhibition de la dénitrification au profit du DNRA (Dissimilative Nitrate Reduction to Ammonium) (van der Berg et al., 2015) et ainsi provoquer une accumulation de N-NH3 au sein du système de traitement. Le choix de la source de carbone est donc très important et peut avoir un impact sur les performances d'un processus de dénitrification. La disponibilité, le coût et la facilité de transport et de stockage peuvent être des critères décisifs dans ce choix, en particulier pour les sites miniers du Nord, éloignés des principales chaînes d'approvisionnement. L'utilisation du saccharose, bien que beaucoup moins documentée que des sources plus conventionnelles comme le méthanol, l'éthanol ou les acétates, semble donc intéressante. Elle peut, cependant, légèrement favoriser la DNRA ou provoquer une accumulation temporaire de NO₂- (De Filippis et al., 2013; Phung et al, 2014). La quantité de carbone organique nécessaire dépend de nombreux paramètres, tels que la nature du composé contenant le carbone, la température, le TRH et le type de développement (en suspension ou en biofilm) de la biomasse. Celle-ci, exprimée en g-DCO/g-N, est généralement comprise entre 2,5 et 6 (Zaitsev et al., 2008, Papirio, 2012).

Afin de s'affranchir des besoins en source de carbone organique afin de soutenir la dénitrification, la mise en place d'un traitement de dénitrification autotrophe peut s'avérer intéressante. Celle-ci peut avoir lieu via le procédé Anammox. Celui-ci est un processus bactérien au cours duquel le N-NH₃ est oxydé par les NO₂⁻ pour former une molécule d'azote gazeux (Équation 2.16) :

Equation 2.16:
$$NH_4^+ + NO_2^- \rightarrow N_2 + 2 H_2O$$

La faisabilité du traitement par le procédé Anammox a été prouvée à l'échelle du laboratoire (Vazquez-Padin et al., 2009; Shaw et al., 2020) et permet d'éviter l'accumulation du N-NH3 dans les effluents de mines d'or. Cependant, celui-ci nécessite un contrôle strict des conditions opératoires, dont la température. Ainsi, bien que les populations Anammox puissent supporter des températures faibles, jusqu'à -1°C (Vazquez-Padin et al., 2009), les conditions optimales se situent plutôt aux alentours de 37°C, l'activité dénitrifiante étant diminuée pour des températures inférieures. Une autre problématique liée à cette approche est le manque de prédictibilité du traitement pour des températures inférieures à 20°C (Vazquez-Padin et al., 2009). Le design de l'unité de traitement s'avère alors complexe. La faisabilité de ce traitement dès 12°C par l'ajout d'étapes préalables de pré-nitrification de l'effluent et par l'acclimatation progressive des microorganismes aux faibles températures au sein d'un effluent synthétique a été démontré (Vazquez-Padin et al., 2009). Cette dernière étude définit d'ailleurs la combinaison de la nitrification partielle et de l'approche Anammox comme étant idéale pour l'enlèvement du N-NH3 sans ajout de sources de carbone organique. Elle peut de plus permettre de s'affranchir de toutes accumulation de NO2 et NO₃- (Shaw et al., 2020). Cependant, afin d'être pleinement efficace, le contrôle de la prénitrification, et donc des populations biologiques responsables, est nécessaire (Vazquez-Padin et al., 2009). Celui-ci répond au besoin d'inhibition du développement des BNO (bactéries nitrite oxydantes) au profit des BAO (bactéries ammonium oxydantes) afin d'obtenir l'oxydation de N-NH₃ préférentiellement sous forme de NO₂- et non de NO₃-. La balance adéquate entre ces populations peut aussi être obtenue lors du traitement d'effluents ayant une faible teneur en OD. En effet, les BAO ayant plus d'affinité à l'oxygène que les BNO (Shaw et al., 2020), le développement de ces dernières sera plus fortement impacté par de faibles teneurs en oxygène. Une autre option consiste en une augmentation de la concentration en NH₃ libre en élevant le pH, les BAO ayant une meilleure résistance aux fortes concentrations que les BNO (Anthonisen et al., 1976). Du fait de la complexité de l'approche Annamox et de sa faible résilience aux basses températures, celle-ci ne s'avère pas optimale pour le traitement des eaux minières en conditions nordiques, notamment au Canada.

Un processus biologique de nitrification-dénitrification se termine généralement par un traitement de polissage impliquant une réaération de l'effluent. Dans un processus où la nitrification et le traitement de la matière organique se produisent de manière concomitante, les micro-organismes hétérotrophes à croissance rapide, qui consomment du carbone organique, sont en concurrence avec les micro-organismes autotrophes à croissance lente, ce qui entraîne une diminution de la nitrification (Hoang et al., 2014; Schopf et al., 2018). En raison des différences de taux de croissance, un biofilm stratifié se développe avec des bactéries hétérotrophes habitant les couches superficielles. Cela pose un problème pour les nitrifiants, qui seront alors plus affectés par la limitation de la diffusion de l'oxygène (Schopf et al., 2018). Cette compétition s'avère moins défavorable aux bactéries nitrifiantes à basse température (Hoang et al., 2014).

2.3.4 Inhibiteurs biologiques dans les effluents miniers

Divers inhibiteurs biologiques peuvent être présents dans les eaux minières (Tableau 2.5). La forte salinité généralement observée pour les effluents miniers peut avoir un effet majeur sur l'activité biologique. Elle est notamment issue de l'utilisation de sels de déglaçage et de l'ajout de produits chimiques lors du traitement du minerai ou des effluents. Une concentration importante de ces sels dissous peut être une source d'inhibition et affecter les performances des unités de traitement biologique des eaux usées, pour des salinités supérieures à 10 ‰ (Bassin et al., 2012; Navada et al., 2021). Cela s'explique notamment par l'impact de la salinité sur certains paramètres de l'effluent tels que sa densité ou la pression osmotique (van Dam et al., 2014). Cela est particulièrement vrai en présence de Cl⁻. L'inhibition se fait ressentir dès quelques mg/L de Cl⁻ et

s'accentue fortement au-delà de 6 mg/L (≈ 10 mg-NaCl/L) pour devenir quasi-complète au-dessus de 30 g/L, même après acclimatation (Bassin et al., 2012). À l'inverse, le SO₄²- présente un pouvoir inhibiteur nettement moindre : des effets significatifs apparaissent surtout au-delà d'environ 10 g·L⁻¹ de SO₄²-, touchant d'abord les NOB (Bassin et al., 2012). La faisabilité de la nitrification-dénitrification d'effluents salins a tout de même été démontrée, notamment lors de l'utilisation d'un inoculum prélevé sur les sédiments de bassin dans lequel les micro-organismes ont su développer une tolérance du fait de modifications physiologiques ou du développement préférentiel de taxons halotolérants (Grommen et al., 2005). L'acclimatation par stress osmotique provoqué par une élévation graduelle de la salinité est une autre alternative afin de diminuer l'inhibition chronique (Andrade-Linares et al., 2016; Navada et Vadstein, 2022) ou de répondre à une problématique de pics réguliers de la salinité (Navada et Vadstein, 2022), menant à des inhibitions ponctuelles. Ainsi, une filière biologique de traitement par nitrification-dénitrification peut permettre de répondre aux besoins en enlèvement des contaminants azotés malgré les différentes inhibitions pouvant altérer le développement bactérien, et ainsi produire un effluent de qualité suffisante pour son rejet en milieu naturel.

La présence de fortes concentrations de N-NH₃ peut être une autre source d'inhibition de la nitrification. À la suite d'un tel épisode d'inhibition, quelques semaines peuvent être nécessaires pour un retour à la normale après le rétablissement de conditions favorables (Villemur et al., 2015). Le développement des BNO, responsables de la nitratation, peut être tout particulièrement limitée à des concentrations en NH₃ libre supérieures à 1 mg/L (Anthonisen et al., 1976). Les BAO, à l'origine de la nitritation, sont moins sensibles, leur activité étant inhibée à partir de quelques dizaines de mg/L (Anthonisen et al., 1976). La différence de résilience de ces deux populations à la présence de NH₃ peut conduire à une accumulation de NO₂- lors de la nitrification (Anthonisen et al., 1976). Bien que cela puisse être souhaité dans le cadre d'un procédé Annamox, l'accumulation de NO₂-, notamment sous sa forme HNO₂, peut alors être une source d'inhibition supplémentaire de la nitrification autotrophe (Anthonisen et al., 1976; Villemur et al., 2015).

La présence de métaux ou de métalloïdes peut aussi avoir un impact sur le développement bactérien. Ainsi, alors que de faibles concentrations stimulent la croissance, des concentrations plus élevées peuvent affecter la dégradation des contaminants et ainsi rendre l'unité de traitement inopérante (Stasinakis et al., 2003). Le nickel, le chrome et le cuivre sont admis comme étant des inhibiteurs potentiels majeurs, des concentrations de 0,25 mg/L pour Ni et Cr et de 0,10 mg/L pour

Cu pouvant inhiber la nitrification (Skinner et Walker, 1961), notamment du fait de la lyse cellulaire, de la perturbation des processus enzymatiques ou de modification structurelle de l'ADN (Sterritt et Lester, 1980). La valeur de l'IC50 du cuivre, concentration pour laquelle une inhibition de 50% est observable, est comprise entre 0,08 et 40 mg/L (Skinner et Walker, 1961; Sterritt et Lester, 1980; Çeçen et al., 2010). Les différences notables entre ces valeurs peuvent s'expliquer par la diversité des conditions: pH, concentrations en azote total et en matière en suspension, ou encore la présence de substances pouvant mener à la formation de complexes (Çeçen et al., 2010; Sterritt et Lester, 1980), ainsi que par la diversité des méthodes de détermination de l'inhibition. La spéciation doit aussi être prise en compte. Celle-ci exerce une influence majeure sur la mobilité et la biodisponibilité des métaux, et donc leurs toxicités. Dans le cas de Cu par exemple, la forme ionique, et dans une moindre mesure certains complexes, provoquent une inhibition plus importante (Çeçen et al., 2010).

Tableau 2.5 : Principaux inhibiteurs biologiques pouvant se trouver dans les eaux minières

Éléments	Population(s) biologique(s)	Limite(s) admissible(s)	Remarque(s)	Référence(s)	
Cr	Nitrifiantes (BNO et BAO)	0,25 mg/L	-	Skinner et Walker, 1961	
Cu	Nitrifiantes (BNO et BAO)	IC50 comprise entre 0,08 et 40 mg/L	Inhibition fortement dépendante de la spéciation du Cu (particulièrement élevée pour la forme ionique Cu ²⁺)	Skinner et Walker, 1961; Sterritt et Lester, 1980; Çeçen et al., 2010	
NH ₃	BNO	1 mg-NH ₃ /L	[NH ₃] dépendant de	Anthonisen et al.,	
(non ionisé)	BAO	$\approx 10 \text{ mg-NH}_3/L$	T et pH	1976	
Ni	Nitrifiantes (BNO et BAO)	0,25 mg/L	-	Skinner et Walker, 1961	
NO ₂ -	Nitrifiantes (BNO et BAO)	≈ 2 mg-N/L	Inhibition particulièrement marquée en cas de présence de HNO ₂ (à pH acide)	Anthonisen et al., 1976	
SDT	Nitrifiantes (BNO et BAO)	< 10 ‰	Peut-être limité par utilisation de biomasse préacclimatée	Bassin et al., 2012; Navada et al., 2021; Andrade-Linares et al., 2016; Navada et Vadstein, 2022	

Le développement des populations bactériennes sous forme de biofilm peut permettre de limiter l'influence de ces différents agents inhibiteurs. Ainsi, bien que Harrison et al. (2004) n'aient pas constaté de différences de concentrations inhibitrices entre des cultures en suspension et une culture fixe mono-espèce, plusieurs études tendent à démontrer la résilience apportée par le biofilm, permettant, par exemple, de lever l'inhibition liée à une concentration de 25 mg Cu/L (Çeçen et al., 2010). Le gain en résilience peut s'avérer particulièrement important, l'inhibition pouvant être 600 fois plus faible pour les RBC que pour une culture libre (Teitzel et Parsek, 2003). La technologie MBBR permet, elle aussi, une meilleure résistance à des environnementales défavorables telles que des variations de températures (Young et al., 2016) ou la toxicité d'inhibiteurs, y compris le cuivre (Hoang et al., 2014). Cela peut s'expliquer par la barrière structurelle formée par le biofilm sous forme de substances polymères extracellulaires réduisant l'accès des toxines aux cellules au cœur du biofilm. La proximité entre les micro-organismes au sein du biofilm favorise le transfert de gènes bénéfiques entre les bactéries (Hoang et al., 2014; Young et al., 2016) et contribue, ainsi, aux bonnes performances des procédés à biofilm. Des réacteurs à lit mouvant (Rotating Biological Contactor RBC, MBBR, etc.) ont été développés et permettent une importante surface de biofilm, rendant possible de plus faibles TRH et donc la diminution de la taille des installations. Ces technologies présentent généralement une meilleure résilience à des phases de démarrage / arrêt ou à l'exposition des populations du biofilm à des stress (augmentation soudaine de facteurs inhibiteurs). De plus, elles présentent un très bon maintien de leurs propriétés hydrauliques, l'excès de biomasse y étant lessivé et ne créant alors pas d'accumulation pouvant générer un colmatage, comme cela peut avoir lieu dans les réacteurs à lit fixe. Ainsi, bien que les coûts inhérents (le garnissage, ainsi que sa mise en mouvement par sur-aération ou par agitation mécanique notamment) soient plus importants que pour d'autres technologies de bioréacteur, les RBC et MBBR sont l'objet de nombreuses applications industrielles.

2.3.5 Contacteurs biologiques rotatifs (RBC)

Les RBC font l'objet de nombreuses applications industrielles, notamment dans le cadre du traitement d'effluents domestiques en Europe et en Amérique du Nord (Mba et al., 1999). Les 4 à 12 segments reliés par un axe horizontal (Mba et al., 1999) les composant sont simultanément exposés à l'air et aux eaux contaminées. La rotation des biodisques, généralement entre 1 et 10 RPM, peut avoir lieu grâce à un moteur ou par brassage avec de l'air comprimé (Patwardhan,

2003). Cela permet la formation d'une couche mince d'effluent à la surface du biofilm et ainsi d'optimiser les échanges entre celui-ci, l'atmosphère et les populations bactériennes. La principale force des RBC réside dans leur haute surface de contact et de la formation de biofilm qui y a lieu, permettant d'accommoder des charges en contaminants élevées, contrairement à des technologies telles que les boues activées (Mba et al., 1999; Patwardhan, 2003). Ils présentent, de plus, des coûts en énergie inférieurs à ces dernières (Mba et al., 1999; Patwardhan, 2003). Les RBC font donc l'objet de nombreuses applications industrielles, y compris pour le traitement des SCN- et de N-NH3 dans les effluents miniers (Bougie, 2011). Ils sont, en revanche, sources de problèmes de bris, notamment liés à la corrosion du moyeu. Celle-ci a lieu du fait de l'oxydation par l'effluent ou par l'activité biologique. La réparation nécessite, alors, le changement complet des biodisques et entraîne donc des coûts élevés (Mba et al., 1999). L'usure étant amplifiée par la masse de biofilm déposée sur les disques, il est primordial de maintenir celui-ci le plus fin possible, notamment par augmentation de la vitesse de rotation (Mba et al., 1999), cette dernière étant cependant source d'une augmentation des coûts énergétiques.

Le complexe minier LaRonde, situé à Preissac en Abitibi, dans le nord-ouest du Québec (Bougie, 2011), est doté d'une capacité de traitement, notamment par cyanuration, de 7000 tonnes de minerai par jour. Le site dispose de diverses installations de traitement de ses effluents contaminés, dont l'usine de traitement des eaux (UTE), permettant principalement le traitement des CN-. Le site s'est, de plus, doté de 2 lignes de 4 RBC en 2004 afin de répondre au besoin d'enlèvement des contaminants azotés et des thiocyanates notamment. La capacité de traitement a ultérieurement été augmentée par l'ajout de 2 nouvelles filières, portant le total à 16 biodisques installés (4 filières de 4 biodisques), représentant une surface de traitement d'un peu moins de 5 millions de pieds carré, au sein de l'UTFE. La mise en rotation des biodisques, d'un diamètre de 12 m, et immergés à 80 % au sein de cuves en béton pouvant contenir chacune 200 000 L d'effluent, est assurée par l'envoi d'air comprimé au sein des diffuseurs, à une vitesse comprise entre 1 et 1,5 RPM. Les premiers réacteurs de chacune des filières sont dédiés à l'hydrolyse des SCN-, les suivants étant conçus pour la nitrification. Les eaux des différentes filières sont alors collectées et subissent une décantation afin de limiter la quantité de matières en suspension (MES), principalement composées de biomasse morte, cette dernière étant acheminée vers le parc à résidus. Bien que le traitement ait montré sa capacité à produire un effluent non-toxique, les performances de celui-ci sont entachées par des problèmes récurrents de bris, notamment au sein des premiers réacteurs de chaque filière qui subissent la plus forte croissance de la biomasse (Bougie, 2011). Ces casses, causant non seulement des coûts élevés de réparation, mais aussi l'arrêt temporaire des filières, et donc une perte de capacité de traitement, ont incité à la substitution progressive de certains des RBC par des réacteurs de type MBBR.

2.3.6 Réacteurs biologiques à lit fluidisé (MBBR)

Les réacteurs à lits fluidisés MBBR ont été développés en Suède au début des années 1990 afin de répondre aux limites des différents systèmes alors disponibles (Ødegaard, 2006). L'utilisation de médias plastiques, fabriqués en polyéthylène notamment, et entrainés au sein du réacteur par l'aération ou par agitation mécanique permet une utilisation optimale du volume de celui-ci (Ødegaard, 2006). Les médias présentent, de plus, de nombreuses stries. Cela permet d'augmenter considérablement la surface disponible pour l'établissement du biofilm. De nombreux garnissages commerciaux ont ainsi une surface spécifique allant de 500 à 1200 m²/m³ (Ødegaard, 2006). Du fait de l'érosion occasionnée par le choc entre les médias, la colonisation du support par le biofilm se fait principalement sur les parois internes, entrainant alors une perte de près de 30% de la surface du support colonisable (Pastorelli et al., 1997). De plus, la diffusion des contaminants à travers le biofilm ne se faisant sur une épaisseur que d'environ 100 µm, le maintien d'un biofilm fin est primordial (Ødegaard, 2006). Celui-ci se fait grâce aux turbulences au sein du réacteur permettant le lessivage de la biomasse excédentaire. L'accumulation de cette dernière au sein des réacteurs, associée à sa dégradation, peut mener à l'apparition de zones anoxiques, y compris pour des réacteurs aérés, et limiter leur efficacité (Ødegaard, 2006). Le dimensionnement du système d'aération doit alors faire l'objet d'une attention particulière et permettre à la fois l'oxygénation de l'eau contaminée et une bonne mise en mouvement du garnissage (Ødegaard, 2006). L'aération des réacteurs contribue fortement aux besoins énergétiques des MBBR, pouvant représenter 70% de la consommation totale (Wang et al., 2019; Tchobanoglous et al., 2003). Au cours du fonctionnement d'une unité MBBR, différents problèmes impactant les performances peuvent survenir, tels que le colmatage des installations, une agitation non-homogène ou une mauvaise circulation des médias (Wang et al., 2019). Une autre source de perte de performance est l'entartrage des médias, notamment pour les effluents ayant une forte charge en calcium ou en N-NH₃ (Wang et al., 2019). La précipitation de l'effluent, fréquemment sous forme de struvite, d'hématite, d'hydroxyapatite ou de maghemite (Wang et al., 2019), a lieu en cas de sursaturation minérale et dépend principalement du pH et des concentrations en ions. Le dépôt de minéraux sur les médias diminue leur surface spécifique, limitant alors la surface colonisable et donc le transfert de masse entre l'effluent et le biofilm. L'augmentation de la masse des médias peut, de plus, mener à une augmentation de l'aération nécessaire à la fluidisation du garnissage, voire au dépôt des médias au fond des réacteurs (Ødegaard, 2006).

Contrairement aux procédés de croissance en suspension plus conventionnels, les procédés à lit fluidisé, et plus particulièrement les MBBR, ont démontré leur capacité à atteindre et à maintenir la nitrification à basse température et sont donc prometteurs pour le traitement de N-NH3 dans les effluents des mines d'or (Hoang et al., 2014 ; Ahmed et al., 2019 ; Young et al., 2016). La capacité des réacteurs MBBR à s'adapter et à se rétablir rapidement après les pics de température suggère que les nitrifiants ne sont ni perdus ni lysés, mais plutôt maintenus dans le biofilm, ce qui laisse supposer que les bactéries nitrifiantes existent à un niveau d'activité plus faible à des températures plus basses (Hoang et al., 2014). De nombreux modèles dérivés de la loi d'Arrhenius permettent d'estimer l'impact d'un changement de température sur l'activité biologique. Bien qu'un facteur θ d'environ 1,08 soit couramment utilisé pour la nitrification, il s'est avéré surestimé pour les MBBR, pour lesquels une étude à 10 et 4 °C a donné une valeur de 1,049 (Ahmed et al., 2019).

Lors d'épisodes d'inhibition, liés à des changements brusques de température par exemple, le traitement MBBR peut être source de modestes pics de nitrites, ceux-ci étant fortement atténués après une courte période d'acclimatation (Young et al., 2016). Cela peut être notamment dû à une diminution temporaire de l'abondance relative de Nitrosospira, plus sensible à la température que Nitrosomonas (Hoang et al., 2014). Outre la température, les MBBR présentent une résilience particulièrement intéressante à d'autres inhibiteurs. Par rapport aux systèmes de traitement par croissance en suspension, les systèmes à biofilms tels que les MBBR se sont révélés plus résistants aux conditions environnementales défavorables telles que les fluctuations de température, les basses températures (Young et al., 2016; Hoang et al., 2014), et la toxicité chimique, notamment l'inhibition du cuivre (Schopf et al., 2018). Les biofilms constituent une barrière structurelle sous la forme d'une substance polymère extracellulaire (EPS) qui limite la pénétration des toxines dans les cellules profondément enfouies (Schopf et al., 2018). Cette étude a évalué l'effet de la présence de Cu sur les performances de traitement d'une unité MBBR de nitrification. Il a été constaté qu'une concentration inférieure à 0,6 mg/L n'avait aucun effet sur l'oxydation biologique de N-NH₃, mais pouvait conduire à une accumulation de NO₂ lorsqu'elle était supérieure à 0,3 mg/L (Schopf et al., 2018). Par conséquent, pour les concentrations de cuivre typiques des effluents des mines d'or nord-

américaines, la technologie MBBR peut fournir une nitrification suffisante, même pour de fortes contaminations en N-NH₃ (Schopf et al., 2018). Il a également été démontré que les processus de croissance de biofilms permettent d'atteindre des objectifs de traitement similaires à ceux des systèmes de croissance en suspension, tout en nécessitant une empreinte carbone et écologique plus faible (Ødegaard, 2006), en raison de l'augmentation de la densité cellulaire dans le réacteur (Schopf et al., 2018). Les MBBR apparaissent alors comme une alternative de choix. La nitrification d'effluents miniers dans des réacteurs MBBR fait l'objet de différentes études. Villemur et al. (2015), par exemple, étudient la dégradation des SCN et la nitrification dans une série de 4 réacteurs MBBR avec un TRH compris entre 10 et 40 h, le premier réacteur étant aéré ou non. A l'exception des phases de démarrage et d'augmentation du débit d'alimentation, le SCNétait complètement oxydé à la sortie du 2ème réacteur et le N-NH₃ à la sortie du 4ème réacteur. Un traitement maximal de 2,3 g-N/m²/j a alors été obtenu à température ambiante (de l'ordre de 20°C), ce qui est cohérent avec les valeurs communément admises, de l'ordre de 2 g-N/m²/j, pour un réacteur nitrifiant MBBR (Ødegaard, 2006). Ce résultat est également similaire à celui obtenu par Hoang et al. (2014) dans les mêmes conditions de températures, bien qu'un TRH plus faible (1,5 h) ait été appliqué pour cette seconde étude. Ceci confirme le potentiel des MBBR à fournir une nitrification efficace à faible TRH, et donc dans des réacteurs plus petits. L'étude de Villemur et al. (2015) a également mis en évidence le gain potentiel en efficacité représenté par la recirculation de l'effluent nitrifié dans un 1er réacteur anaérobie. L'enlèvement supplémentaire de l'azote a lieu principalement par dénitrification, les SCN⁻ pouvant jouer le rôle de donneur d'électrons (Villemur et al., 2015; Tanabène, 2016).

La dénitrification des eaux minières, en particulier dans les réacteurs MBBR, est beaucoup moins bien documentée. Dans l'étude de Zaitsev et al. (2008), plus de 95% de traitement de NO₃⁻ est obtenu à 5 °C en ajoutant du méthanol à un taux de 3 kg-méthanol/kg-N-NO₃⁻ au sein d'un procédé MBBR. Une dénitrification instable (30-70 % des nitrates) est observée au cours des 6 premiers mois, probablement due à une croissance lente des bactéries dénitrifiantes méthylotrophes à 5 °C. Le taux de dénitrification atteint, de 4,1 g N-NO₃⁻/m²/j, est significativement plus élevé que les taux de dénitrification rapportés pour les réacteurs à bactéries en suspension alimentés avec du méthanol ou de l'éthanol, plus généralement de l'ordre de 1 à 2 g N-NO₃⁻/m²/j à 5 °C (Hem et al., 1994). Papirio (2012) a utilisé de l'éthanol avec un rapport stœchiométrique éthanol/nitrate de 0,42 (mol/mol) sous un TRH de 9 h dans un procédé de type FBR (Fluidized Bed Reactor). Les

efficacités de traitement étaient alors en moyenne d'environ 65 et 75 % à 7-8 et 22 °C, respectivement. Ces différentes études ont permis de confirmer la valeur des procédés permettant une croissance sous forme de biofilm, tel que les MBBR, pour la nitrification-dénitrification des effluents miniers, même à basse température.

Outre la mine LaRonde, les réacteurs MBBR sont aussi utilisés pour le traitement des effluents sur le site Éléonore (Vincent et al., 2016). Celui-ci, mis en fonction en 2014 en Baie-James (QC), a connu des épisodes de toxicité des effluents sur les daphnies et truites en 2015, malgré une unité existante dédiée à la précipitation des métaux et l'oxydation des cyanures. Les fortes concentrations en N-NH₃ et CNO⁻ peuvent en être les origines. Le site s'est alors pourvu d'une unité de traitement biologique des SCN- et N-NH₃, l'UTEI (Usine de traitement des eaux industrielles). Une étude à l'échelle pilote a permis de poser les bases de son dimensionnement. Elle a notamment permis de valider l'efficacité d'une filière de traitement composée de 4 réacteurs MBBR en série. Le premier est alors dédié à la dégradation aérobique des SCN⁻, le second à la nitrification et le troisième à la dénitrification. Le dernier réacteur permet, quant à lui, l'oxydation de l'excès de carbone organique de la dénitrification. Cette configuration a permis la production d'un effluent non-toxique, même pour de faibles températures. À l'échelle industrielle, un système de chauffage de l'effluent a tout de même été ajouté. Celui-ci permet un développement plus rapide du biofilm pendant le démarrage, un meilleur rétablissement de la biomasse à la suite d'un épisode de mortalité, ou encore d'accommoder des pics de contaminants en période hivernale. Du fait de la faible toxicité des nitrates et de l'absence d'une concentration limite de rejet, l'étape de dénitrification a été retirée. L'UTEI est entrée en fonctionnement en 2017. Celle-ci a une capacité de traitement à 8 °C de 147 kg-N/j sous formes de cyanures et dérivés (CN-, CNO-, SCN-) et de 462 kg-N/j sous forme de N-NH₃. Bien que l'unité ait été dimensionnée pour un fonctionnement à 8 °C (maintenue au cours du premier hiver), une diminution du chauffage a été décidée afin de limiter les coûts d'exploitation. Celui-ci, fixé à seulement 3 °C, permet d'éviter le bris lié au gel. Une nitrification complète a été obtenue, aucune accumulation de N-NH3 ou de NO2 n'étant observée, et ce même lors d'un épisode de forte pluviométrie ayant entrainé un doublement des débits à traiter.

Bien que les MBBR soient considérés comme des technologies matures, ils continuent de faire l'objet de nombreuses recherches visant à surmonter certaines limites persistantes (Makki et al., 2025). Les performances de ces systèmes sont notamment affectées dans des conditions extrêmes, telles que les fortes salinités (Navada et Vadstein, 2022) ou les températures hivernales rencontrées

en milieu nordique (Ren et al., 2025). À ce titre, Ren et al. (2025) ont démontré qu'une gestion saisonnière adaptée des charges en N-NH₃, avec un apport soutenu à l'automne, favorise la formation d'un biofilm plus mince mais plus dense, améliorant significativement la nitrification en période froide. Parallèlement, des procédés biologiques innovants sont également étudiés. Qiu et al. (2025) ont montré que les systèmes IFAS (Integrated Fixed-film Activated Sludge), qui combinent biomasse libre et biofilm fixé, surpassent les MBBR en conditions salines en maintenant une diversité fonctionnelle accrue des communautés nitrifiantes et dénitrifiantes. Cette configuration permet notamment de limiter l'inhibition de l'ammonia monooxygenase (AMO) et de la nitrite réductase, deux enzymes clés affectées par la salinité. Aktan et al. (2025) proposent pour leur part un procédé en deux étapes combinant la nitrification dans un réacteur MBBR et la dénitrification autotrophe en colonne. Ce système, reposant sur l'oxydation du soufre élémentaire comme donneur d'électrons, atteint des rendements d'enlèvement de 90 % pour les nitrites et de 85 % pour les nitrates. Il offre en outre une grande stabilité opérationnelle, sans nécessiter l'ajout de carbone organique externe, ce qui réduit à la fois les coûts d'exploitation, la consommation énergétique et les émissions potentielles de CO₂.

2.3.7 Traitement (semi-)passif

Il existe naturellement de nombreuses interactions entre la biomasse (végétaux, micro-organismes), les sédiments, l'eau et l'atmosphère dans les écosystèmes. L'enlèvement de l'azote total (TN) peut alors y être régi par des phénomènes de volatilisation, de nitrification-dénitrification, d'assimilation par les macrophytes et phytoplanctons, par sorption sur la biomasse ou les sédiments, ou encore par sédimentation (Reddy et De Laune, 2022). La nitrification-dénitrification est généralement le phénomène majoritairement responsable de l'enlèvement de l'azote (Vymazal, 2007). De nombreux procédés s'appuyant sur ces phénomènes naturels, pouvant notamment avoir lieu au sein de marais épurateurs, existent. Ceux-ci jouissent notamment de coûts en réactifs et en énergie, ainsi que de besoins en suivi, bien plus modéré que ceux des procédés plus conventionnels actifs. Leur utilisation peut, en revanche, être limitée pour de forte contamination des effluents ou pour d'importants volumes à traiter. Leur déploiement implique souvent une exigence élevée en termes de surface disponible au sol.

Divers agents biologiques peuvent intervenir sur le cycle de l'azote en contexte minier. Les algues en font partie et sont des organismes photosynthétiques comprenant des milliers d'espèces

aquatiques, dont la majorité est photoautotrophe (Ali et al., 2022). Bien que la phycoremédiation (procédé de traitement utilisant des algues) reste marginale dans les applications de traitement des eaux usées, elle a fait l'objet de nombreuses études depuis le début du 20ème siècle (Li et al., 2022). La recherche de procédés toujours plus économes en énergie a suscité un regain d'intérêt pour la possibilité d'exploiter la capacité des algues à éliminer de nombreux contaminants, ces procédés présentant une efficacité énergétique et économique supérieure à celle des procédés conventionnels (par exemple, le procédé de coagulation/floculation et le procédé de boues activées) ou des procédés de traitement avancés (par exemple, les technologies membranaires et les procédés d'oxydation avancé) (Li et al., 2022 ; Ali et al., 2022). Les algues peuvent, de plus, se développer dans des environnements hautement contaminés. À titre d'exemple, Nanda et al. (2021) ont étudié la tolérance de diverses souches d'algues au Pb(II) et au Cd(II). L'IC50, la concentration menant à une diminution de 50% du développement de la population testée, était de l'ordre de 80 mg/L pour le CdCl₂ et atteignait 400 - 500 mg/L pour le PbCl₂. En comparaison, une inhibition de plus de 90% de l'activité nitrifiante microbienne est observée pour des concentrations de Cd de l'ordre de 10 mg/L (Semerci et Çeçen, 2007), ce qui prouve la résilience des systèmes de phycoremédiation et leur capacité à traiter des effluents avec des niveaux d'inhibiteurs plus élevés. L'utilisation de souches endémiques, ayant poussé dans des conditions similaires, peut encore accroître la robustesse des processus de phycoremédiation (Li et al., 2022). Cette capacité à croître malgré des concentrations élevées de métaux et de métalloïdes peut s'expliquer par la capacité des algues à adsorber ces substances à leur surface, qui présente de nombreux sites fonctionnels différents (Ali et al., 2022), les rendant indisponibles pour la biomasse interne. Do et al. (2021), par exemple, ont étudié le potentiel d'une souche de microalgues, Chlorella sorokiniana, pour le traitement biologique de deux concentrés d'osmose inverse (OI), l'un d'entre eux ayant une salinité élevée, en raison de concentrations élevées de Cl⁻ (1,6 g/L), Na⁺ (1,1 g/L) et de certains métaux et métalloïdes tels que Mn (3,8 mg/L) et Ni (0,8 mg/L). L'étude a prouvé que la culture de microalgues peut être utilisée comme une stratégie efficace pour enlever les nutriments et les métaux de l'OI.

Au sein d'un environnement complexe tel qu'un bassin d'eaux minières, de nombreux processus biogéochimiques peuvent impliquer les contaminants azotés. Comme mentionné précédemment, l'assimilation par les algues est l'un d'eux. Des processus bactériens tels que la nitrification-dénitrification en est un autre. Cette dernière a d'ailleurs joué un rôle majeur dans l'enlèvement des contaminants azotés dans un marais épurateur (Vymazal, 2007). Une activité symbiotique entre

les algues et les bactéries peut aussi être observée (Reddy et De Laune, 2022; Ali et al., 2022). L'immobilisation de métaux, tels que Cu par exemple, lors de la croissance des algues et permettant un développement des populations bactériennes en est un exemple (Ali et al., 2022). L'oxygénation de l'effluent par la photosynthèse peut aussi stimuler la nitrification (Reddy et De Laune, 2022). L'accumulation d'algues en décomposition au fond des bassins peut fournir le carbone organique et les conditions anoxiques nécessaires à la dénitrification (Vymazal, 2007). Cette dernière peut cependant être source de remobilisation de N-NH3 (Chapman et al., 2007), par ammonification de la matière organique principalement. Bien que généralement plus minoritaires, l'enlèvement des contaminants azotés peut être complété par d'autres procédés biologiques (Anammox, dénitrification autotrophe), ou par des processus physico-chimiques tels que l'adsorption sur les sédiments et la biomasse ou l'oxydation chimique et par les UV solaires notamment (Vymazal, 2007; Reddy et De Laune, 2022).

L'un des principaux inconvénients de la phycoremédiation est toutefois la nécessité de récolter la biomasse, car sa dégradation peut entraîner la remobilisation des contaminants enlevés. Cet inconvénient peut être compensé par la possibilité de valoriser la biomasse, grâce à l'extraction d'acides gras et à la production de biocarburants (Li et al., 2022). L'augmentation de la production de métabolites et de lipides par les algues exposées à de fortes concentrations en métaux en fait, de plus, une solution intéressante pour le traitement des eaux minières (Ali et al., 2022). Une autre alternative de valorisation est basée sur la production de charbon actif, qui peut ensuite être utilisé pour la sorption des métaux. Une telle approche a été utilisée pour le traitement du Cr(VI), permettant la sorption de 15,24 mg/g de biomasse (Afshin et al., 2021) pour des effluents synthétiques contenant initialement entre 50 et 100 mg/L de Cr(VI).

2.3.8 Réhabilitation du site minier Colomac

Bien que les applications minières de la phycoremédiation soient actuellement limitées, quelques études ont été menées pour examiner les avantages des processus à base d'algues pour la décontamination de l'eau des mines. La réhabilitation du site minier abandonné de Colomac, dans les Territoires du Nord-Ouest, est l'une de ces études. Celle-ci fait l'objet de l'article de Chapman et al. (2007). Pendant l'exploitation du site minier, l'eau de cyanuration a été stockée dans l'aire de confinement des résidus construite dans les bassins des lacs Tailings et Spruce (TCA). À l'origine, l'aire de confinement des résidus avait été autorisée en tant qu'installation à rejet nul. Les résidus

n'ont donc pas été traités pour éliminer le cyanure pendant les opérations. Lorsque le niveau d'eau du bassin a augmenté et que sa capacité de stockage maximale a été atteinte, l'eau contaminée a été transférée dans le lac de la fosse de la zone 2 pour la première fois en 1998. Cette opération a été répétée en 2004 et 2006. La qualité de l'eau s'est alors révélée similaire pour les deux zones, mais avec des concentrations plus faibles pour la zone 2. Une stratégie de traitement a alors dû être définie. Différentes alternatives (chloration alcaline au point de rupture, traitement biologique actif dans un contacteur biologique rotatif RBC, promotion de l'atténuation naturelle) ont alors été envisagées. Cette dernière a été retenue comme stratégie privilégiée, et éventuellement la chloration pour augmenter temporairement la capacité de traitement, et a été mise en œuvre en 2002. Douze tonnes de MAP ont été utilisées pour le lac de résidus ($\approx 3,12$ millions de m³) et 24 tonnes ont été nécessaires pour le lac de la fosse de la zone 2 (6,44 millions de m³). Le MAP a été appliqué à la surface des lacs juste avant le dégel afin de favoriser la dissolution du MAP relativement peu soluble. L'objectif était alors d'atteindre une concentration de 1 mg/L de Ptot. En mai 2003, 9 tonnes supplémentaires de MAP ont été ajoutées à chaque masse d'eau pour augmenter le niveau de phosphore. Depuis lors, aucun ajout supplémentaire de phosphore n'a été effectué. Une surveillance bimensuelle (pH, POR, oxygène dissous, NH₄⁺, identification des algues et des bactéries) de l'eau à différents endroits et à différentes profondeurs a ensuite été mise en place. Le cyanure total et le cyanure WAD (à acide faible dissociable) ont été rapidement éliminés et sont devenus inférieurs aux limites de la licence de rejet de l'eau de 0,1 mg/L et 0,025 mg/L respectivement en 2004 dans le TCA. Les concentrations de thiocyanate ont diminué en l'espace de quelques mois après l'ajout initial de phosphore et se situent constamment sous le seuil de détection, bien en deçà des 3 mg/L de la limite de la licence. Cette diminution a été plus importante que celle estimée si aucun ajout de MAP n'avait été effectué. Le N-NH3 a été plus long à traiter et se situait encore à 20,9 mg/L et 12,5 mg/L en septembre 2003 et 2004 respectivement. Il a continué à diminuer au cours des années suivantes pour atteindre 2,1 mg/L en 2006. Les NO₃-, initialement plus faibles, ont suivi la même tendance, tandis que les NO₂ sont restés constamment très faibles (< 0,4 mg/L). Ces diminutions ont été accompagnées par des diminutions de Ptot et PO4³⁻. Une augmentation des concentrations en nutriments (N-NH₃, PO₄³⁻, Ptot) a été observée en hiver, allant jusqu'à une remobilisation de l'ordre 150 mg/m²/j pour N-NH₃.

Bien que la même procédure ait été appliquée pour la zone 2, les résultats ont été très différents. Ceci est dû à la profondeur importante (100 m) de ce lac. La profondeur du mélange dans la fosse

de la zone 2 a été estimée à 15 à 20 m, inférieure à la profondeur de 100 m de la fosse. L'atténuation naturelle du SCN⁻ était donc limitée à la partie supérieure de la colonne d'eau, où elle était similaire à celle observée pour le TCA. L'absence de formation de NO₃- et de NO₂- pendant la période de diminution maximale des concentrations en N-NH3 était également un signe de l'absence de processus de nitrification biologique, qui a été attribuée à un manque d'oxygène. Un programme d'aération en profondeur a donc été mis en œuvre en 2006 afin d'homogénéiser complètement la colonne d'eau et de promouvoir l'oxydation des SCN contenus dans les eaux plus profondes en introduisant de l'oxygène. Une diminution rapide des quantités de SCN- contenues dans le lac a alors été observée. Même si le traitement du N-NH3 a eu lieu dans la colonne d'eau (par volatilisation, oxydation ou assimilation par les algues), les concentrations ont eu tendance à augmenter dans un premier temps. Cela est dû au fait que le taux d'oxydation du SCN dépassait le taux de traitement de N-NH₃. Après oxydation totale du SCN⁻, celle de N-NH₃ a progressé à des taux comparables à ceux observés avant le fonctionnement de l'aération. Le NO₃ a été généré à un rythme similaire à celui de l'oxydation du N-NH₃, ce qui suggère que la majeure partie de N-NH₃ a été nitrifiée. Cette hypothèse a été confirmée par la formation de NO₂-, un intermédiaire de la nitrification. La promotion de l'atténuation naturelle, par l'ajout de phosphore, combinée à une meilleure gestion de l'eau, s'est finalement avérée être une méthode très rentable de gestion de l'eau contaminée dans la fosse TCA et la zone 2 et a ainsi permis d'économiser, par rapport au traitement chimique traditionnel, plusieurs millions de dollars.

2.3.9 Autres études

L'intérêt potentiel de l'utilisation d'un procédé à base d'algues pour le traitement des eaux minières a été confirmé plus récemment (Marcotte et al., 2023). Dans cette étude, différents dosages de PO₄³⁻ (0 à 8 mg/L) et éventuellement de multivitamine ou de vitamine B12 ont été ajoutés à un effluent minier salin. Sur la base de preuves visuelles, cohérentes avec le pH et les concentrations d'azote ammoniacal enregistrées, la croissance accrue des algues a été la plus importante pour 0,5, 1 et 2 mg-PO₄³⁻/L et a conduit à un taux élevé de traitement de N-NH₃. Celui-ci était plus faible lorsqu'aucun phosphate n'était ajouté et pour 4 mg-PO₄³⁻/L, et même très faibles lorsque 8 mg-PO₄³⁻/L étaient appliqués. Cela montre que le phosphore, qui est à l'origine le nutriment limitant dans l'effluent minier testé, peut également conduire à l'inhibition de la croissance des algues s'il est en excès. Ceci a démontré qu'un ajout de 0,5 à 2,0 mg de P-PO₄³⁻/L pouvait améliorer l'atténuation naturelle de l'azote ammoniacal sur le site de la mine. Pour ces dosages, le traitement

de près de 90 % de N-NH₃ a été observé en 24 jours. Cet essai en laboratoire a été suivi d'un essai à grande échelle. 3650 m³ d'eau contaminée ont donc été pompés dans un étang revêtu d'une membrane (profondeur moyenne de l'eau de 1,3 m), où environ 1 mg de PO₄³-/L a été ajouté, en ajoutant 11,5 kg de phosphate monoammonique (MAP). La qualité de l'eau a ensuite été contrôlée pendant les 68 jours de l'essai. Aucune différence significative n'a été constatée en fonction de la profondeur. Alors que les sédiments présents au fond du bassin étaient initialement visibles, la turbidité a rapidement augmenté, rendant l'eau opaque après seulement 2 jours et restant ainsi jusqu'à la fin de l'essai. Ce phénomène est dû à une forte croissance des populations de microalgues, qui a entraîné une diminution des concentrations de N-NH₃ de 70 à un peu moins de 50 mg/L en 68 jours. La baisse des concentrations de N-NH₃ a été particulièrement notable au cours des 12 premiers jours, comme pour l'essai à l'échelle du laboratoire, ce qui correspond à la période de croissance maximale des algues. Même si une légère diminution était attendue, les performances du traitement étaient en revanche significativement inférieures à celles obtenues à l'échelle du laboratoire et nécessitent donc de plus profondes investigations.

2.4 Utilisation des données isotopiques pour la détermination des origines et du devenir des contaminants azotés

Selon leurs sources et leurs transformations, les différentes espèces azotées peuvent présenter des compositions isotopiques distinctes (Coplen et al.,2002). Les compositions isotopiques de l'azote ($\delta^{15}N$) pour divers produits azotés (incluant des fertilisants) commerciaux ont été auparavant inventoriées (Coplen et al., 2002). Les valeurs sont généralement comprises entre -5‰ et +15‰ pour les sels d'ammonium et entre -20‰ et +15‰ pour les nitrates. Ces contrastes dans les compositions isotopiques de différents produits azotés représentent une opportunité pour l'utilisation du traçage isotopique dans la perspective de suivre les sources et la migration de contaminants dans l'hydrosphère. Une telle approche ($\delta^{15}N$ -NH₃, $\delta^{15}N$ -NO₃- et δ^{18} O-NO₃-) a notamment été utilisée afin d'évaluer les impacts de l'utilisation d'explosifs de type ANFO et de cyanure de sodium au sein de mines d'or comme sources de contamination en N-NH₃ et NO₃- de trois lacs situés au sein de deux districts miniers au nord de la Suède (Widerlund et al., 2014). Le traçage isotopique a aussi permis d'identifier et de quantifier les sources de NO₃- des lixiviats issus de stériles de charbon se déversant au sein de la rivière Elk River, au sud de la Colombie Britannique (Mahmood et al., 2017). Cette étude a permis d'identifier l'utilisation des explosifs

comme étant la source principale de contamination en NO₃⁻. La composition isotopique (δ¹⁵N-NH₃, δ¹⁵N-NO₃ et δ¹⁸O-NO₃) montre que ces derniers sont issus de la nitrification au cours de l'écoulement de lixiviats d'explosifs riches en N-NH₃. Cette étude a permis d'établir un lien entre l'augmentation de la concentration en NO₃ dans la rivière et le volume de stériles générés sur le site minier adjacent. Une partie des NO₃- produits par l'oxydation des résidus d'explosifs se trouve, cependant, réduits au sein de stériles saturés en eau. Le traçage isotopique s'appuyant sur les δ^{15} N-NO₃⁻ et δ¹⁸O-NO₃⁻ a permis d'identifier la dénitrification biologique comme étant la cause de cette diminution des NO₃⁻ en zone anoxique sur le site minier d'Elk River, en Colombie Britannique (Hendry et al., 2018). Cette constatation est à l'origine de la mise en place d'essais in-situ de promotion de l'atténuation naturelle à grande échelle par ajout de méthanol (Hendry et al., 2023). Cette dernière étude a démontré que l'approche isotopique double, basée sur les signatures δ^{15} N et δ¹⁸O du nitrate, permettait d'estimer avec une grande fiabilité la fraction de NO₃- résiduel dans un aquifère soumis à une bioremédiation active. Les résultats obtenus par cette méthode étaient en excellent accord avec ceux issus de l'approche conventionnelle fondée sur la mesure des concentrations en NO₃⁻ et en Br⁻ (traceur conservatif). Cette convergence méthodologique valide la robustesse de l'outil isotopique pour le suivi quantitatif de la dénitrification in situ, même dans des environnements complexes comme les zones saturées des stériles miniers.

Bosman (2009) a, pour sa part, utilisé des données δ¹⁵N-NO₃⁻ et δ¹⁸O-NO₃⁻ et une caractérisation chimique (N-NH₃, NO₂⁻, NO₃⁻) de l'eau afin d'identifier les sources de contamination en NO₃⁻ d'eau de distribution au sein d'une école avoisinant une mine à ciel ouvert dans la province de Limpopo, en Afrique du Sud. Cette étude a permis de lier les problèmes de contamination dans la région avec les activités minières, ce qui a été corroboré par une étude portant sur les sources de contamination par un couplage d'analyses chimiques avec une approche multi-isotopique (δ²H-H₂O, δ¹⁸O-H₂O, δ³⁴S-SO₄²⁻, δ¹⁸O-SO₄²⁻, δ¹⁵N-NO₃⁻ et δ¹⁸O-NO₃⁻) (Ihlenfeld et al., 2009). Cette étude permis d'expliquer la contamination par l'écoulement de lixiviats depuis la zone de stockage de stériles miniers ou depuis des installations domestiques et agricoles. L'utilisation des données isotopiques peut ainsi s'avérer être un puissant outil pour l'identification de sources de contamination des aquifères par des activités anthropiques, y compris minières.

De nombreux processus biogéochimiques impliquant la transformation des espèces azotées peuvent également engendrer des fractionnements isotopiques. Ces processus exercent une influence sur la composition isotopique de l'azote et de l'oxygène dans les espèces azotées. Par

exemple, la dénitrification biologique, entraîne une diminution de la concentration en NO₃⁻ accompagnée d'un enrichissement en isotopes lourds au sein des NO₃⁻ résiduels. Le suivi des concentrations et de la composition isotopique des espèces azotées peut ainsi contribuer à l'identification et à la quantification de processus de dénitrification notamment dans les eaux minières (Marcotte et al., 2022). Cette approche a été utilisée avec succès à l'échelle du site minier suédois de Kiruna, la plus grande mine souterraine de fer au monde (Nilsson et Widerlund, 2017). L'étude précitée a notamment permis de mettre en évidence l'influence de réactions de nitrification, de volatilisation de l'ammoniac et d'adsorption de l'ammonium dans les eaux du site minier.

L'ampleur du fractionnement isotopique est définie par le facteur de fractionnement isotopique α (Équation 2.17), lequel est lié mathématiquement à l'enrichissement isotopique ϵ (Équation 2.18). Pour les isotopes de l'oxygène et de l'azote, le rapport isotopique R des réactifs et produits est défini, par convention, comme étant le ratio de l'abondance en isotopes lourds d'une substance donnée sur l'abondance en isotopes légers ($^{18}O/^{16}O$ et $^{15}N/^{14}N$).

Équation 2.17:
$$\alpha_{réactifs}^{produits} = \frac{R_{produits}}{R_{réactifs}} = \frac{1}{\alpha_{produits}^{réactifs}}$$

Équation 2.18:
$$\varepsilon_{r\acute{e}actifs}^{produits} = 1000 \left(\alpha_{r\acute{e}actifs}^{produits} - 1 \right)$$

Du fait des faibles variations des rapports isotopiques R généralement observées, ceux-ci sont fréquemment exprimés sous leur forme relative δ (exprimée en ‰ par rapport à un standard de référence). Les mesures conjointes des ratios isotopiques dans l'échantillon ($R_{\text{éch}}$) et dans un matériau de référence ($R_{\text{réf}}$) permet alors d'en déterminer la valeur (Équation 2.19). Dans le cas des données isotopiques de l'oxygène et de l'azote, les valeurs sont exprimées par rapport aux standards de référence VSMOW (Vienna Standard Mean Ocean Water) pour l'oxygène et à l'azote atmosphérique (Air- N_2) pour l'azote.

Équation 2.19 :
$$\delta_{\acute{e}ch} = \left(\frac{R_{\acute{e}ch}}{R_{r\acute{e}f}} - 1\right) * 1000$$

Au sein d'un système non réalimenté en réactifs, les divers processus biochimiques induisant un fractionnement isotopique peuvent être décrits à l'aide du modèle de Rayleigh. Il est alors théoriquement possible de prédire les valeurs des compositions isotopiques des réactifs δ_r (Équation 2.20) et des produits δ_p (Équations 2.21 et 2.22) en fonction de la fraction f de réactifs résiduels et de la composition isotopique initiale des réactifs $\delta_{r,0}$:

Équation 2.20 :
$$\delta_r = (\delta_{r,0} + 1000). f^{\alpha-1} - 1000$$

Équation 2.21 :
$$\delta_p = (\delta_{r,0} + 1000) \cdot \alpha \cdot f^{\alpha-1} - 1000$$

Équation 2.22 :
$$\delta_p = \delta_{r,0} - \varepsilon F$$
, avec $F = \frac{f \ln(f)}{1-f}$

La projection de données expérimentales sur des graphiques comportant des courbes théoriques calculées à partir de ces équations peut permettre d'estimer le facteur de fractionnement isotopique associé à une réaction. Par exemple, la construction d'un graphique présentant les valeurs $\delta^{15}N$ de réactifs résiduels en fonction de -ln(f) devrait théoriquement permettre de définir une droite de pente ϵ (Mariotti et al., 1981).

Comme préalablement discuté, diverses études ont évalué l'évolution de la composition isotopique de différentes espèces azotées en réponse aux processus biogéochimiques impliqués dans le cycle de l'azote en contexte minier. La fixation de l'azote atmosphérique (ammonification), par exemple, n'induit pas de fractionnement isotopique significatif ($\alpha \sim 1$) (Hoering et Ford, 1960) et abouti ainsi à la formation d'une biomasse fixant le N₂ et du N-NH₃ dont les δ¹⁵N sont, par conséquent, similaires à celui de l'azote atmosphérique (0 ‰ par convention). Dans le cas de la nitrification biologique, ayant pour conséquence une diminution des concentrations en N-NH3 accompagnée d'un enrichissement en isotope lourd au sein des N-NH3 résiduels, un enrichissement $\varepsilon_{N-NH2}^{NO_3^-}$ de δ¹⁵N-NH₃ de l'ordre de -10‰ à -20‰ est généralement constaté (Mahmood et al., 2017; Hendry et al., 2018, Marcotte et al., 2022). Cela correspond à un facteur de fractionnement $\alpha_{N-NH_3}^{NO_3^-}$ compris entre 0,98 et 0,99. Le fractionnement isotopique de l'oxygène au cours de la nitrification est, quant à lui, plus modéré et imposé par l'incorporation, au cours de celle-ci, d'un atome d'oxygène issu de l'air et de deux atomes issus de l'eau (Buchwald et Casciotti, 2010). Les évolutions de $\delta^{15}N$ -NO₃⁻ et δ¹⁸O-NO₃⁻ restent globalement corrélées. La construction d'un graphique présentant δ¹⁸O- NO_3^- en fonction de $\delta^{15}N-NO_3^-$ mène alors à une droite dont la pente est de l'ordre de 1 (Granger et al., 2004). Buchwald et Casciotti (2010) s'intéressent tout particulièrement au fractionnement de l'oxygène induit par la nitratation, la dernière étape de la nitrification au cours de laquelle les nitrites sont oxydés en nitrates. Des expériences menées avec de l'eau marquée au ¹⁸O ont montré que moins de 3 % des atomes d'oxygène du nitrite étaient échangés avec ceux de l'eau (Knöller et al., 2011). Un tel échange n'aurait lieu que lorsque le pH est faible ou que les températures sont élevées (Knöller et al., 2011). Ainsi, bien que certains auteurs préconisent une analyse immédiate après échantillonnage, ces derniers résultats invalident fortement l'hypothèse d'un équilibrage isotopique entre les NO_x^- et l'eau. Cela serait dû au fait que la nitratation, ainsi que sa réaction inverse (réduction des nitrates) n'impliquent que l'atome d'oxygène issu de l'air, les deux venant de l'eau restant inchangés. Une autre étude, menée avec *Nitrococcus, Nitrobacter et Nitrospira*, trois souches nitrifiantes communes, a montré que l'incorporation de l'eau lors de la réaction enzymatique de nitrite oxydoréductase est l'étape limitante de la nitratation en présence d'un pool de NO_2^- suffisant, et provoque un enrichissement en isotopes lourds des NO_2^- résiduels, $\varepsilon_{NO_2}^{NO_3^-}$ étant situé entre -12,8 % à -18,2 % (Buchwald et Casciotti, 2010).

La dénitrification biologique est un autre processus pouvant exercer une influence sur la composition isotopique des espèces azotées. Les valeurs de $\varepsilon_{NO_3}^{N_2}$ pour δ^{15} N-NO₃ peuvent atteindre des valeurs inférieures à -20 ‰ (Swart et al., 2014) et ainsi entraîner de fortes augmentations en δ^{15} N dans le réservoir résiduel de NO_3^- . Des valeurs de $\varepsilon_{NO_3}^{N_2}$ pour δ^{15} N- $NO_3^$ se situant généralement entre -5% et -40% sont rapportées dans la littérature scientifique concernant la dénitrification (Swart et al., 2014; Granger et al., 2008; Knöller et al., 2011). Cela suggère une forte dépendance du fractionnement isotopique à plusieurs conditions expérimentales et environnementales (concentrations initiales, pH, température et salinité notamment) ainsi qu'aux voies de réaction et aux enzymes impliquées. Ainsi, bien que la catalyse enzymatique soit la cause la plus probable de l'enrichissement isotopique du nitrate au cours de la dénitrification (Granger et al., 2008), ce dernier peut aussi être contrôlé par des processus limitant la vitesse en amont de la réaction enzymatique (par exemple, l'absorption et le transport d'un substrat vers le site réactif de l'enzyme, la liaison du substrat pour former des complexes enzyme-substrat) (Knöller et al., 2011). L'étude précitée a également mis en évidence que ni les compositions isotopiques du donneur d'électrons (généralement un carbone organique) ni celle de l'eau n'affecte significativement les facteurs de fractionnement isotopique $\alpha_{NO_3}^{N_2}$ observés. Les évolutions des $\delta^{15}N$ et δ¹⁸O des NO₃⁻ sont, de plus, généralement corrélés. La construction d'un graphique présentant les valeurs de δ^{15} N en fonction de δ^{18} O donne une droite dont la pente est comprise entre 0,5 et 1 (Mariotti et al., 1981; Granger et al., 2008), ce qui est caractéristique de la dénitrification. L'étude menée par Knöller et al. (2011) suggère pour sa part que l'enrichissement en isotopes lourds de l'azote et de l'oxygène (δ^{15} N-NO₃⁻ et δ^{18} O-NO₃⁻) des nitrates résiduels au cours de la dénitrification

biologique aurait varié entre 8,6-16,2 et 4,0-7,3 ‰, respectivement, soit une pente de δ¹⁵N-NO₃⁻ en fonction de δ¹⁵N-NO₃⁻ de 0,49. Alors qu'une telle pente de l'ordre de 0,5 est fréquente pour des eaux douces, un rapport des facteurs d'enrichissement en N et en O en milieu marin d'environ 1 est plus généralement constaté (Granger et al., 2008). Selon les auteurs, cela résulterait de différences de localisation du site permettant la fixation biologique de NO₃⁻, et tout particulièrement de l'étape enzymatique de réduction du nitrate en nitrite par le nitrate réductase. Alors que cette dernière a lieu au sein de la membrane respiratoire (NAR) dans un environnement salin, les rapports plus faibles obtenus pour les eaux douces seraient quant à eux caractéristiques de la réduction du nitrate par le nitrate réductase périplasmatique (NAP) (Granger et al., 2008; Knöller et al., 2011).

L'assimilation, qu'elle soit promue par des micro-organismes, des végétaux ou des algues, est un autre exemple de processus pouvant être suivi par traçage isotopique. Swart et al. (2014), par exemple, se sont intéressés au fractionnement isotopique provoqué par l'assimilation des NO₃- par des algues. Cette étude a permis de documenter l'influence de la concentration de NO₃ sur le fractionnement isotopique de N et de O pendant l'assimilation, jusqu'à tendre vers zéro à des concentrations inférieures à 1 μ M. Bien que le δ^{18} O et le δ^{15} N des NO₃- résiduels restent corrélés, la pente de la relation varie avec la concentration de NO₃⁻, avec des pentes supérieures à l'unité (de l'ordre de 2) à faible concentration. Ces résultats suggèrent des changements dans le mécanisme de fractionnement dominant, probablement dû à des changements dans la physiologie et possiblement dans le mécanisme d'absorption des algues (Swart et al., 2014). Celui-ci peut être considéré comme un processus en trois étapes (Granger et al., 2004; Mariotti et al., 1981; Swart et al., 2014). L'assimilation de NO₃⁻ par les algues, par exemple, peut se décomposer en une première étape de transport de NO₃ à travers la membrane cellulaire (ε_{in}), suivie d'une étape de nitrate réductase assimilative (ε_{NR}), et enfin un flux hors de la cellule (ε_{out}). Le fractionnement global manifesté par l'organisme, exprimé ε_{org}, est lié au fractionnement de l'influx, de l'efflux et de la nitrate réductase par :

Équation 2.23 :
$$\varepsilon_{\text{org}} = \varepsilon_{\text{in}} + \gamma (\varepsilon_{\text{NR}} + \varepsilon_{\text{out}})$$

où γ est la proportion relative de l'efflux par rapport à l'influx.

Alors que la nitrate réductase est généralement l'étape limitante, notamment en présence de concentrations élevées en NO₃-, et donc celle majoritairement responsable du fractionnement, le transport à travers la membrane biologique peut devenir limitant à faible concentration. Cette

évolution est à l'origine des différentes pentes des graphiques $\delta^{15}N = f(\delta^{18}O)$ obtenues par Swart et al. (2014), un rapport de 1 : 1 étant cohérent avec le fractionnement de l'azote et de l'oxygène pendant le NR, alors que le fractionnement pendant la diffusion cellulaire donnerait une relation 2 : 1 (Granger et al., 2004). Des concentrations plus faibles entraînant une diffusion limitée, l'effet du fractionnement isotopique associé à l'activité enzymatique s'exprime moins et celui associé au processus de transport intracellulaire (qui est généralement faible) peut alors devenir prépondérant (Swart et al., 2014).

Sur un site minier, il est fréquent de rencontrer simultanément plusieurs processus biochimiques de transformation de l'azote (Tableau 2.6). Leurs effets sont parfois opposés, ce qui peut complexifier la compréhension des données obtenues. L'utilisation des données isotopiques en complément à la caractérisation chimique des effluents a néanmoins permis d'identifier et de quantifier des processus de transformation de l'azote en contexte minier dans plusieurs études récentes, tels que la nitrification, la dénitrification biologique ou encore l'adsorption sur les sédiments (Hendry et al., 2018 ; Marcotte et al., 2022; Hendry et al., 2023).

Tableau 2.6 : Récapitulatif des principaux processus biochimiques du cycle de N et de leurs effets sur la composition isotopique des contaminants résiduels

Processus Contaminant(s traité(s)		Spéciation finale de N	Évolution de δ ¹⁵ N des contaminants résiduels	Référence(s)
Anammox	N-NH ₃ , NO ₂ -	$N_2(g)$	7	Mariotti et al., 1981
Assimilation	N-NH ₃ , NO ₃ -	biomasse	7	Granger et al., 2004
Dénitrification hétérotrophe	NO ₃ -	N ₂ (g) (NO ₂ -)	7	Hendry et al., 2023
Dénitrification autotrophe	SCN ⁻ , NO ₃ -	N ₂ (g)	7	Knöller et al., 2011
Nitrification	N-NH ₃ , NO ₂	NO ₃ - (NO ₂ -)	7	Buchwald et Casciotti, 2010
Réduction dissimilative des NO ₃ - (DNRA)	NO ₃ -	N-NH ₃	7	Granger et al., 2008
Sorption de NH ₄ ⁺	N-NH ₃	$R-NH_4^+$	٧	Hendry et al., 2023
Volatilisation	N-NH ₃	NH ₃ (g)	7	Hendry et al., 2018

Aucune étude, en revanche, n'a entrepris de caractériser les performances de traitement des contaminants azotés au sein d'une unité MBBR ou de déterminer les processus impliqués dans le traitement par promotion de l'atténuation naturelle.

2.5 Synthèse des connaissances

Comme indiqué précédemment, de nombreux paramètres (Tableau 2.7) peuvent être déterminant quant au choix de la méthode de traitement optimal des contaminants azotés présents dans les effluents miniers. La salinité en est l'un des principaux. En effet, les procédés (électro)chimiques sont, par exemple, moins affectés que les systèmes biologiques par de fortes salinités (Ryskie et al., 2020; Ryskie et al., 2023). Ils peuvent, de plus, avoir lieu au sein de réacteurs de taille plus modeste, du fait des faibles TRH qui y sont généralement nécessaires. Cette méthode de traitement peut, de plus, tirer avantage de la présence de certains composés dissouts tels que Br (Khuntia et al., 2013; Marcotte, 2020) ou éventuellement Cl⁻, ces derniers ayant alors un effet catalytique sur l'oxydation des contaminants azotés par ozonation. La présence de Br-peut, de plus, favoriser une oxydation partielle de N-NH₃ en N₂ au lieu de NO₃- (Khuntia et al., 2013). La présence de bromates résiduels peut en revanche être source de toxicité (Ryskie et al., 2020). Bien que pouvant parfois légèrement catalyser l'ozonation, la présence de métaux peut en revanche conduire à la toxicité de l'effluent traité (Ryskie et al., 2023), certainement par formation de nanoparticules métalliques. Enfin, dans le cadre du traitement d'effluents particulièrement contaminés, pour lesquelles une approche biologique (active ou passive) ne serait pas appropriée, l'ozonation à microbulles peut s'avérer particulièrement intéressante. La cinétique élevée de l'oxydation des contaminants azotés par l'ozone (Ryskie et al., 2020), comparativement aux méthodes biologiques, permet, en effet, le traitement de fortes charges. L'efficacité du traitement s'avère, d'ailleurs, plus élevée pour des effluents fortement contaminés.

Bien que plus résilient que d'autres procédés biologiques, tels que les boues activées par exemple (Young et al., 2016; Hoang et al., 2014), les procédés actifs biologiques de type MBBR peuvent être inhibés par divers paramètres. Les concentrations en métaux dissouts, en Cu notamment (Stasinakis et al., 2003), font partie de ceux-ci. Une étape de prétraitement par coagulation-floculation y est toutefois facile à implanter. Le recours à une filière MBBR de traitement peut, de plus, permettre de répondre à la problématique d'inhibition liée à une présence massive d'autres inhibiteurs tels que les dérivés du cyanure (SCN⁻ et CNO⁻), N-NH₃ ou NO₂⁻ (Villemur et al., 2015)

au cours du traitement. La salinité (Bassin et al., 2012; Navada et al., 2021) est un autre paramètre pouvant avoir un impact important sur les performances d'un procédé de traitement biologique. L'utilisation d'une biomasse acclimatée, telle que celle se développant dans les bassins de rétention de l'effluent à traiter ou au sein d'installations de traitement semblables, peut toutefois permettre d'y remédier (Grommen et al., 2005).

Tableau 2.7 : Paramètres importants dans le choix d'une méthode de traitement des contaminants azotés dans les effluents miniers

Paramètre	Ozonation à microbulles	Nitrification-dénitrification MBBR	Promotion de l'atténuation naturelle
Alcalinité	Chute du pH observée si alcalinité <50 mg/L CaCO ₃ . Optimal : >100 mg/L pour maintien du pH (Ryskie, 2017).	Nécessaire ≈ 7,1 mg CaCO ₃ /mg-N (Hoang et al., 2014).	Alcalinité optimale > 80–120 mg/L CaCO ₃ (Marcotte et al., 2023).
Br ⁻ / Cl ⁻	Br : catalyseur de l'ozonation par formation d'oxybromures à pH > 8 (Kuntia et al., 2013). Cl : effet similaire suspecté (Marcotte, 2020).	Cl ⁻ inhibe si > 5 g/L. Pas d'effet pour < 1 g/L (Navada et Vadstein, 2022).	Peut inhiber l'activité microbienne comme pour le traitement biologique – algues moins sensibles (Do et al., 2021)
Charges à traiter	Cinétique élevée permettant le traitement de fortes charges (Ryskie, 2017)	NH ₄ ⁺ >300 mg/L : inhibition. Rendement stable jusqu'à 200 mg/L (Young et al., 2016). Une filière de traitement permet de répondre au besoin de traitement de fortes charges (Villemur et al., 2015)	Plus adapté à de faibles charges ou à des sites en fermeture (Chapman et al., 2007)
Cyanures et dérivés (SCN ⁻ , CNO ⁻)	CN ⁻ et SCN ⁻ oxydé en <15 min (Ryskie, 2017). Oxydation plus lente des CNO ⁻ (≈ 30 min) (Ryskie, 2017).	CN ⁻ inhibe nitrifiants dès 1 mg/L. Dénitrifiants sensibles aussi. Prétraitement recommandé (Gould et al., 2012). Filière de traitement permet de limiter l'inhibition de la nitrification (Villemur et al., 2015).	CN ⁻ toxique dès 0,3 mg/L. Inhibition complète à 1 mg/L (Ali et al., 2022).
MES / turbidité de l'effluent traité	Pas de retrait direct des MES mais amélioration de la clarification (Takahashi et al., 2012).	MES = 10 à 30 mg/L en sortie. Clarificateur peut être nécessaire (Young et al., 2016).	Peut être très élevée et nécessité une clarification (Marcotte et al., 2023)

Tableau 2.7 : Paramètres importants dans le choix d'une méthode de traitement des contaminants azotés dans les effluents miniers (suite)

Paramètre	Ozonation à microbulles	Nitrification-dénitrification MBBR	Promotion de l'atténuation naturelle	
Métaux et métalloïdes (Cu, Co, Ni, etc.)	Bien que pouvant améliorer l'efficacité du traitement, peut générer des nanoparticules métalliques toxiques (Ryskie et al., 2023).	Cu ²⁺ inhibe nitrifiants dès 0,25 mg/L. Zn ²⁺ , Cd ²⁺ effet similaire (Schopf et al., 2018; Çeçen et al., 2010).	Bioaccumulation de Cd ²⁺ jusqu'à 5 mg/L, Pb ²⁺ 2 mg/L. Toxique à plus forte dose (Nanda et al., 2021).	
NO ₂ -	NO ₂ - transformé rapidement en NO ₃ Très réactif avec O ₃ (Marcotte, 2020).	Intermédiaire transitoire, notamment lors de l'utilisation du saccharose (De Filippis et al. 2013). S'accumule si nitrobactéries affectées (Hoang et al., 2014). Peut inhiber la croissance bactérienne, surtout à pH acide (Anthonisen et al., 1976)	Assimilation possible selon l'espèce. N-NH ₃ privilégié. (Ali et al., 2022). Peut-être oxydé biologiquement en présence de O ₂ produit par les algues (Reddy et De Laune, 2022)	
рН	pH optimal 9,5 à 11. À pH <9, rendement chute fortement. Nécessité d'un tampon alcalin (Ryskie, 2017).	pH optimal 7,5 à 8,2 pour nitrification (Alleman et al., 1984). Dénitrification possible entre 6,5–8,5 (Salvetti et al., 2006).	Photosynthèse active à pH 7 à 9. Inhibition au-delà de 10. Acidité réduit l'adsorption (Ali et al., 2022).	
PO ₄ ³⁻	-	PO ₄ ³⁻ nécessaire pour croissance. Consommation minime. Apport recommandé >1 mg/L (Painter & Loveless, 1983).	PO ₄ ³⁻ indispensable. Arrêt croissance pour <0,5 mg/L. Idéal : 1–3 mg/L (Li et al., 2022, Marcotte et al, 2023).	
Produit final du traitement	Produit final : NO ₃ Conversion complète si ozone en excès (Ryskie et al., 2020).	NO ₃ ⁻ converti en N ₂ si source de carbone organique. Dénitrification partielle sinon (Oleszkiewicz & Berquist, 1988).	N assimilé dans biomasse (Chapman et al., 2007; Marcotte et al., 2023).	
Salinité	Peu affectée (Ryskie, 2020).	Rendement diminue si >10 g/L. Adaptation possible jusqu'à 20 g/L NaCl (Navada et Vadstein, 2022).	Algues moins sensibles à la salinité (Ali et al., 2022) Peut réduire l'activité microbienne (dégradation des SCN ⁻ notamment)	
Température	Perte de performance pour T > 30 °C (Marcotte, 2020).	Taux de nitrification réduit drastiquement entre 20 °C et 1 °C. Biofilm maintient 30–50 % d'activité (Young et al., 2016). 5 % de perte d'efficacité par °C en moins (Ahmed et al., 2019)	Croissance maximale entre 20–30 °C. Croissance ralentie de 50–70 % à 10 °C (Ali et al., 2022).	

La promotion de l'atténuation naturelle, quant à elle, peut s'avérer particulièrement intéressante pour le traitement de faibles charges, pour lesquelles elle s'avère la plus économique (Marcotte et al, 2023; Chapman et al, 2007). Sa mise en place, par épandage de PO4³⁻ directement sur les bassins de rétention des effluents en période de gel, s'avère, de plus, la plus simple à mettre en œuvre. Les algues étant autotrophes, un ajout d'alcalinité peut s'avérer nécessaire. L'alcalinité minimale nécessaire est estimée entre 50 et 100 mgCaCO₃/L (Marcotte et al., 2023). Cette méthode de traitement peut, en revanche, être largement affectée par la présence d'inhibiteurs biologiques (métaux et métalloïdes principalement) et est entachée par la remobilisation des contaminants liée à la dégradation des algues en conditions hivernales (Chapman et al., 2007; Marcotte et al., 2023). Les populations biologiques responsables de l'enlèvement des contaminants azotés (algues et bactéries) se montre généralement plus résiliente que les bactéries nitrifiantes et dénitrifiantes (Afshin et al., 2021; Ali et al., 2022).

CHAPITRE 3 MATÉRIEL ET MÉTHODES

Afin d'identifier les paramètres clés influençant le choix d'une méthode de traitement des contaminants azotés, des essais ont été menés sur une gamme variée d'effluents réels et synthétiques (Figure 3.1), couvrant un large spectre de charges azotées et de salinités. Trois approches ont été évaluées dans le contexte du traitement des eaux minières : l'ozonation à microbulles, la nitrification-dénitrification en réacteur MBBR, et la promotion de l'atténuation naturelle.

L'effluent réel E1, caractérisé par une forte teneur en solides dissous totaux (SDT) et une contamination légèrement supérieure à 50 mg/L en SCN⁻ et N-NH₃, a servi de cas d'étude commun aux trois méthodes, permettant une évaluation comparative directe. En complément, deux effluents moins chargés, E4 et E5, ont été testés spécifiquement dans le cadre de l'atténuation naturelle, afin d'examiner la sensibilité de cette approche à la charge initiale en contaminants.

Concernant l'ozonation à microbulles, des essais ont été réalisés sur un panel plus large d'effluents, à la fois synthétiques et réels. Les effluents synthétiques ont été formulés pour reproduire les caractéristiques (charge en azote oxydable, SDT) des effluents réels ultérieurement testés, et présentent une diversité marquée en termes de concentrations en SCN-, N-NH₃, SO₄²⁻ et Cl⁻. Cette démarche vise à isoler et à quantifier l'impact de chaque paramètre sur l'efficacité du traitement. Enfin, E1, E2 et E3 ont été soumis à l'ozonation à microbulles afin de valider les enseignements tirés des essais sur les effluents synthétiques, en évaluant la transférabilité des résultats au traitement d'effluents réels complexes et représentatifs du terrain.

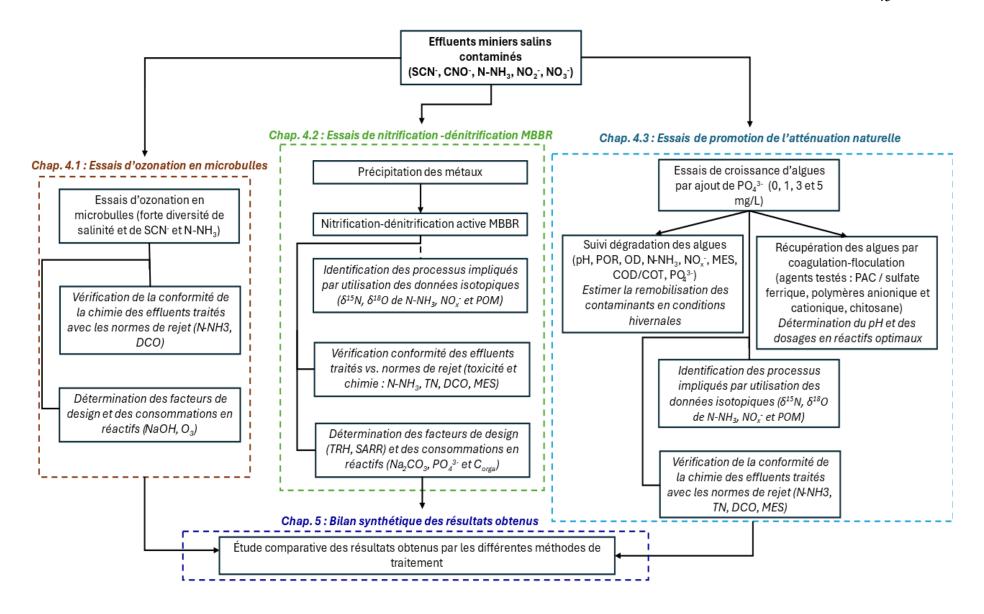


Figure 3.1 : Schéma conceptuel des différents essais menés et des objectifs attenants au cours du projet de Maitrise

3.1 Prétraitement – Coagulation-floculation des métaux dissouts

La présence de métaux et de métalloïdes peut inhiber le développement biologique, même à de faibles concentrations (Stasinakis et al., 2003 ; Çeçen et al., 2010). Pour atténuer cet effet, les métaux dissous présents dans l'effluent à traiter sont précipités avant leur passage dans l'installation pilote (Annexe D).

La coagulation-floculation débute par l'ajout de 1 mL de sulfate ferrique (100 g/L) par litre d'eau, sous une agitation de 250 tours par minute (Figure 3.2). Le pH est ensuite ajusté à 9,0 à l'aide d'une solution de NaOH (50 g/L). À t=2 min, 25 μ L d'Hydrex 6909 (par L d'eau) sont ajoutés. À t=8 min, du microsable (10 g/L) et la moitié du polymère anionique Hydrex 6105 (0,5 mL/L à 10 g/L) sont incorporés. Le reste du polymère est ajouté à t=9,5 min. L'agitation est arrêtée à t=13,5 min, et des échantillons sont prélevés pour analyse à t=15,5 min.

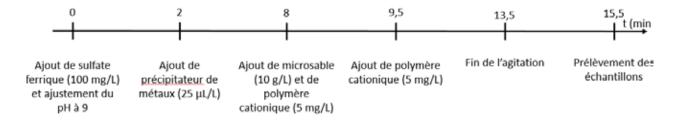


Figure 3.2 : Déroulement des essais de coagulation-floculation des métaux en amont du traitement biologique

La turbidité et la concentration en cuivre dissous sont alors mesurées. Pour chaque essai de précipitation, la concentration en cuivre est déterminée par colorimétrie (méthode Hach 8506) et/ou ICP-OES avant le transfert dans le réservoir d'alimentation. Si la concentration résiduelle en Cu est inférieure à 0,2 mg/L, seuil correspondant à la concentration moyenne mensuelle acceptable définie par le REMMD (Gouvernement du Canada, 2025), l'effluent est considéré conforme. Il est alors utilisé pour les essais de nitrification-dénitrification au sein de l'unité MBBR. La faible teneur en cuivre présente ne devrait alors pas provoquer d'inhibition particulière du développement bactérien.

3.2 Pilotes d'essais

3.2.1 Essais d'ozonation à microbulles

Figure 3.3: Photographie du pilote d'ozonation à microbulles

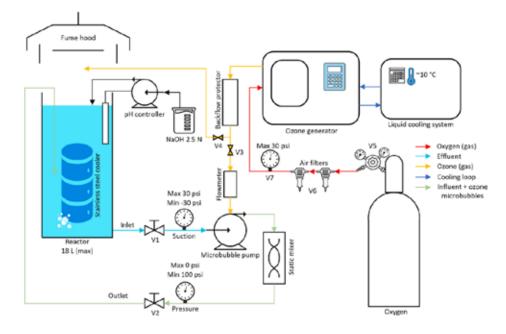


Figure 3.4 : Schéma simplifié du pilote d'ozonation à microbulles (d'après Ryskie et al., 2023)

Les essais d'oxydation des contaminants azotés sont réalisés dans des conditions similaires (Figures 3.3 et 3.4) à ceux menés par Ryskie et al. (2023). Le protocole des essais est fourni en

annexe (Annexe A). Le générateur d'ozone utilisé pour les essais est un Primozone® GM1. Celuici, dépendamment du débit d'oxygène médicale (> 99,5% - N° CAS : 7782-44-7) d'alimentation, peut produire jusqu'à 60 g O₃/h. Pour les présents essais, le débit utilisé était de 22 g-O₃/h. La pompe utilisée pour la production des microbulles est une NIKUNI KTM20N (60 Hz). La pression d'opération de cette pompe était de 58 psi à la sortie et de -5 psi à la succion. Après son passage dans la pompe à microbulles, l'effluent chargé en O₃ passe au sein d'un mélangeur statique OHR modèle MX-E15 permettant d'affiner la taille des bulles. L'ozone y est ainsi diffusé sous forme de microbulles. Le pH des effluents est maintenu constant à 9 par ajout de NaOH. Cela permet notamment la formation de radicaux hydroxyles fortement oxydants (Ryskie et al., 2020).

3.2.2 Essais de nitrification-dénitrification active MBBR

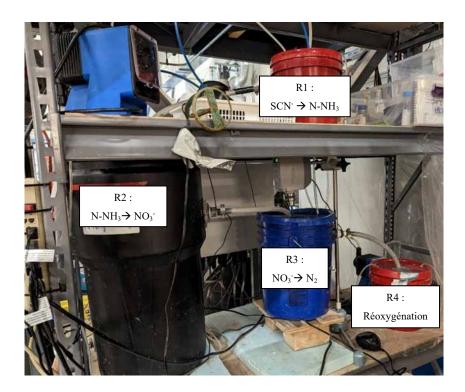


Figure 3.5 : Photographie du pilote d'essais de nitrification-dénitrification MBBR

Le but de cette partie du projet est d'évaluer si le traitement par nitrification-dénitrification au sein d'une filière MBBR peut durablement atteindre les objectifs de qualité des effluents pour un possible rejet en milieu naturel. Un essai pilote a donc été mis en place et a fonctionné en continu pendant 9 mois (Annexe B). Celui-ci reprend le design proposé par Villemur et al. (2015), auquel est ajouté une étape supplémentaire de dénitrification (Figures 3.5 et 3.6). L'effluent à traiter est ainsi envoyé du réservoir d'alimentation aux réacteurs MBBR par une pompe péristaltique à un

débit contrôlé. Le débit est initialement faible (0,1 L/h) pour permettre à la biomasse de se développer et est progressivement réajusté en fonction de la capacité du pilote à répondre à la charge de contaminants. L'écoulement gravitaire se fait ensuite entre les différents réacteurs (R1 à R5), qui ont alors une fonction principale définie (Tableau 3.1), nécessitant l'ajout de différents réactifs, l'aération ou l'agitation pour permettre des conditions optimales pour la croissance des populations biologiques.

Le premier réacteur est dédié à l'oxydation du SCN⁻ et à l'hydrolyse du CNO⁻ ainsi produit. Le réacteur est équipé d'un système d'aération (pompe d'aquarium et pierre de diffusion). Pour contrer une éventuelle acidification du milieu, notamment dans le cas d'une nitrification partielle dans ce réacteur, le pH est contrôlé autour de 7,4 au moyen d'une pompe doseuse distribuant une solution de Na₂CO₃. De plus, une pompe péristaltique est utilisée pour ajouter une solution de NH₄H₂PO₄ afin de répondre aux besoins en PO₄³⁻ de la croissance biologique. Le second réacteur est dédié à la nitrification des effluents et est alors en conditions aérobies (présence d'une pompe d'aquarium équipée d'une pierre de diffusion) et est à l'origine de l'acidification de l'eau, ce pourquoi le pH est constamment ajusté par l'ajout d'une solution de Na₂CO₃ à l'aide d'une pompe doseuse à une valeur de consigne de 7,4.

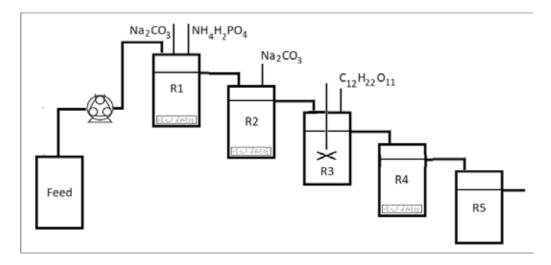


Figure 3.6 : Schéma simplifié du pilote d'essais MBBR

Le réacteur R3 est conçu pour la dénitrification des effluents. L'effluent n'est donc pas aéré, l'homogénéisation étant réalisée par agitation mécanique. Une pompe péristaltique assure l'ajout contrôlé d'une solution de C₁₂H₂₂O₁₁ pour fournir le carbone organique nécessaire aux bactéries dénitrifiantes hétérotrophes. Le débit de la solution de saccharose est initialement défini de manière

à obtenir un rapport massique C/N de l'ordre de 4. Celui-ci est ensuite réévalué en fonction des performances de dénitrification, d'une éventuelle DCO excessive en sortie du pilote ou au contraire d'une OD trop élevée au sein du réacteur. R4 est conçu pour un traitement de polissage par réoxygénation. Même si l'objectif principal dans ce réacteur est l'oxydation de l'excès de carbone organique provenant de l'étape de dénitrification, diverses autres réactions d'oxydation peuvent alors avoir lieu (telles que celles de N-NH₃, NO₂- et, éventuellement, H₂S formé lors de la dénitrification) dans le réacteur R4 qui doit donc être aéré.

Tableau 3.1 : Description des différents réacteurs composant la filière MBBR étudiée

Réacteur	Principale fonction	Ajout de réactifs	Aération	Agitation mécanique	Volume du réacteur (L)	Taux de remplissage MBBR initial (%)
R1	Oxydation/ hydrolyse des SCN ⁻ et CNO ⁻	Na ₂ CO ₃ NH ₄ H ₂ PO ₄	Oui	Non	5	30
R2	Nitrification	Na ₂ CO ₃	Oui	Non	40	30
R3	Dénitrification	$C_{12}H_{22}O_{11}$	Non	Oui	15	30
R4	Réoxydation	-	Oui	Non	5	30
R5	Sédimentation de la biomasse	-	Non	Non	15	0

Bien que les MBBR produisent moins de MES que les systèmes à boues activées, le dernier réacteur est conçu pour permettre la sédimentation de la biomasse détachée des différentes étapes du pilote. Cela permet non seulement de réduire la turbidité de l'effluent traité, mais aussi de limiter la possibilité de remobilisation des contaminants lors de la dégradation de la biomasse.

3.2.3 Promotion de l'atténuation naturelle

L'objectif principal de cette partie du projet est d'évaluer l'impact de la matrice de l'eau sur le développement des algues en effectuant des tests sur trois effluents miniers réels représentant une diversité de salinité et d'espèces dissoutes, comme les composés azotés et les métaux par exemple (protocole fourni dans l'Annexe C). Les algues, qui sont autotrophes, ont notament besoin de carbone inorganique. Une alcalinité inférieure à 50 mg-CaCO₃/L peut entraîner un déficit et donc limiter la croissance (Marcotte et al., 2023). Elles ont également besoin d'une source de phosphore. Celle-ci est introduite sous la forme d'une solution de 10 g/L (7,0 g-PO₄³⁻/L) d'engrais (Plant starter fertilizer, 10/52/10, GolfgreenTM). Différents dosages de nutriments sont donc opérés. Ces tests

sont réalisés en période estivale (juillet-août 2023), correspondant aux meilleures conditions de température et de luminosité pour le développement biologique, celui-ci pouvant se retrouver nul en conditions hivernales (faibles température et luminosité). Dans de telles conditions, la dégradation des algues étant supérieure à leur croissance, une remobilisation de contaminants est même attendue.

La possibilité de cultiver des microalgues dans les effluents a d'abord été étudiée lors de tests en chambre de culture (Figure 3.7). Pour ce faire, différents ajouts de PO₄³⁻ ont été effectués (0, 1, 3 et 5 mg/L). Afin de simuler les conditions observables en été, les tests ont été réalisés avec une période d'éclairage journalière de 18 h.

Figure 3.7 : Photographie des essais de promotion de l'atténuation naturelle en chambre de culture

Figure 3.8 : Photographie des essais de promotion de l'atténuation naturelle réalisés sur un site minier

Des essais sur un site minier ont ensuite été réalisés sur de plus gros volume d'effluents (1000 L) dans des bacs dont la paroi supérieure a été enlevée (Figure 3.8). Ceux-ci ont été précédés d'une

caractérisation initiale complète (chimie, teneur en bactéries et/ou algues) des effluents étudiés (Tableau 3.2). Les différents bacs ont ensuite été placés sur une surface plane et donc sans ombres. Cela permet une exposition homogène à la lumière du soleil, nécessaire à la croissance des algues photoautotrophes. Différents ajouts de PO₄³⁻ ont ensuite été effectués (1, 3 et 5 mg/L) au début de la période d'essais.

Tableau 3.2 : Essais de promotion de l'atténuation naturelle réalisés

Essais	Effluent	Test	Volume d'effluent initial (L)	Concentration souhaitée en PO ₄ ³⁻ (mg/L)	Volume de PO ₄ ³⁻ ajouté (mL)
		-	1	0	0
Chambre de		-	1	1	0,14
culture	E5	-	1	3	0,43
		-	1	5	0,72
	E4	A1	1030	1	148
		A2	980	3	422
		A3	1020	5	733
	E1	A4	1000	1	144
In-situ		A5	965	3	416
		A6	990	5	711
		A7	1000	1	144
	E5	A8	1000	3	431
		A9	1050	5	754

3.3 Effluents testés

Afin d'estimer l'influence de différents paramètres tels que la salinité ou la charge en contaminants sur les performances de traitement pour les trois méthodes étudiées, les essais sont conduits sur divers effluents. Ceux-ci peuvent notamment être synthétique, comme cela est majoritairement le cas pour les essais d'ozonation à microbulles. Les essais biologiques (MBBR et promotion de l'atténuation naturelle) n'ont été menés que sur des effluents miniers réels. Il est d'ailleurs à noter que l'effluent E1 a fait l'objet d'essais selon les trois méthodes de traitement.

3.3.1 Ozonation à microbulles

L'objectif des essais d'ozonation à microbulles est d'estimer l'influence de la salinité et de la charge en contaminants sur les performances de traitement. Une attention particulière est porté aux

anions majoritaires présents. Trois effluents réels E1, E2 et E3, de profil anionique respectif SO₄²-, SO₄²- et Cl⁻, ont été testés (Tableau 3.3).

Tableau 3.3 : Effluents synthétiques S et réels E utilisés lors des essais d'ozonation

Effluent	[SO4 ²⁻] (g/L)	[Cl ⁻] (g/L)	[N-NH ₃] (mg N/L)	[SCN ⁻] (mg N/L)	[N oxydable] (mg N/L)
S1	2,40	-	55	55	110
E1	2,30	0,23	56	53	109
S2	2,40	-	100	50	150
E2	2,50	0,18	103	50	153
S3	2,40	-	110	-	110
S4	-	2,40	110	-	110
S5	-	18,0	110	-	110
E3 dilué (30 %)	-	18,0	110	-	110
E3	-	60,0	370	-	370

Tableau 3.4 : Masses de sels ajoutés lors de la préparation (15 L) des effluents synthétiques utilisés lors des essais d'ozonation à microbulles

Divers effluents synthétiques ont de même été testés afin de vérifier le conportement observé pendant les essais sur les effluents réels, mais aussi de définir plus précisement l'influence de la salinité et du profil anionique des effluents sur les performances de traitement.

Effluent	(NH ₄) ₂ SO ₄ (g)	NH ₄ Cl (g)	Na ₂ SO ₄ (g)	NaCl (g)	NaSCN (g)
S1	3,89	-	49,05	-	4,78
S2	7,08	-	45,62	-	4,34
S3	7,78	-	44,86	-	-
S4	-	6,30	-	52,46	-
S5	-	6,30	-	438,24	-

Les effluents synthétiques de profil anionique SO₄²⁻ ont été préparés par dissolution de sels de (NH₄)₂SO₄ dans de l'eau désionisée afin d'obtenir une concentration en N-NH₃ de 55 et de 110 mg/L. Afin que la concentration en SO₄²⁻ soit similaire à celle généralement observée dans des effluents miniers, une masse donnée de Na₂SO₄ a été ajoutée dans les différentes solutions. Les différents sels sont préalablement déshydratés pendant 4 heures dans un dessiccateur. Les effluents synthétiques de profil anionique Cl⁻ ont été obtenus de manière analogue aux précédents par préparation de solutions de NH₄Cl (100 mg/L de N-NH₃) dans de l'eau désionisée. Les

concentrations en Cl⁻ ont ensuite été ajustées par ajout de NaCl. L'ensemble des masses de sels, préalablement séchés, et des volumes d'eau à ajouter pour la préparation de 15 L d'effluent sont regroupées dans le Tableau 3.4. Le pH est, enfin, éventuellement corrigé à une valeur de 9 par ajout de NaOH à 10 g/L ou de HCl concentré.

3.3.2 **MBBR**

Les essais de nitrification-dénitrification au sein de la filière MBBR ont été menés sur l'effluent minier réel E1 ayant la même origine que celui utilisé lors des essais d'ozonation à microbulles. Aussi, afin de vérifier la capacité du traitement biologique à répondre aux fluctuations de la composition initiale des effluents, cinq prélèvements (P1 à P5) ont été réalisés entre juin et octobre 2023 et envoyés à l'UQAT pour la réalisation des essais (Tableau 3.5).

Tableau 3.5 : Effluents réels utilisés lors des essais de nitrification-dénitrification au sein de la filière MBBR

Paramètre	Unité	E1 – P1	E1 – P2	E1 – P3	E1 – P4	E1 – P5
Alcalinité	mg CaCO ₃ /L	130	140	140	110	110
CNO-	mg-N/L	<0,2	0,5	12,3	5,7	0,3
Cu ²⁺	μg/L	154	440	44	15	16
N-NH ₃	mg-N/L	49	50	54	52	57
NO ₂ -	mg-N/L	0,4	0,4	0,4	0,3	0,3
NO ₃ -	mg-N/L	11,8	12,0	14,6	13,7	15,0
рН	-	7,93	7,86	7,84	7,89	7,78
PO ₄ ³ -	mg/L	0,01	<0,05	<0,05	0,05	<0,05
SCN-	mg-N/L	53,1	50,6	60,3	67,5	67,5

Bien qu'ayant la même origine, ces différents prélèvements montrent une certaine diversité, notamment en terme de salinité (Tableau 3.5). Les SCN⁻, par exemple, sont compris entre 50,6 (prélèvement P2) et 67,5 (prélèvements P4 et P5) mg-N/L. Le N-NH₃ varie lui aussi entre 49 (P1) et 57 (P5) mg-N/L. Le NO₃⁻, pour sa part, reste minoritaire quand NO₂⁻ et CNO⁻ peuvent même s'avérer négligeables. L'effluent testé peut aussi contenir divers métaux, tels que Cu²⁺ connu pour son potentiel inhibiteur. Celui-ci est préalablement traité par coagulation-floculation (Annexe D). Le PO₄²⁻, quant à lui, reste très faible et insuffisant pour la nitrification-dénitrification.

3.3.3 Promotion de l'atténuation naturelle

Les essais de traitement par promotion de l'atténuation naturelle ont été mené sur trois effluents miniers réels (Tableau 3.6). L'un de ceux-ci (E1) a aussi été utilisé lors des essais de nitrification-dénitrification MBBR et d'ozonation à microbulles. Ces trois effluents couvrent une large gamme de concentrations en SCN⁻ (3,4 mg-N/L pour E5 contre 79,6 mg-N/L pour E1), en CNO⁻ (0,2 mg-N/L pour E5 contre 53,3 mg-N/L pour E1) et en N-NH3 (18 mg-N/L pour E5 contre 64 mg-N/L pour E1). Le NO₃⁻ est une autre forme prépondérante de l'azote au sein des effluents testés, particulièrement pour E1 (21 mg-N/L). Les NO₂⁻ sont, en revanche, négligeables. Les différents effluents testés contiennent également des concentrations diverses en métaux tels que Cu. Celuici, très faible pour l'effluent E5 (4 μg/L), se situe à des niveaux élevés pour les effluents E4 (1 mg/L) et E1 (10 mg/L). De telles concentrations en Cu peuvent être source d'une sévère inhibition de processus biologiques tels que la nitrification-dénitrification (Çeçen et al., 2010). Le PO₄³-, indispensable au développement des bactéries et des algues, est initialement très faible (< 0,1 mg/L). L'alcalinité, quant à elle, est comprise entre 71 (E5) et 110 (E4) mg-CaCO₃/L.

Tableau 3.6 : Effluents réels utilisés lors des essais de traitement par promotion de l'atténuation naturelle

Paramètre	Unité	E1	E4	E5
Essais	.1	A4 (+1 mg-PO ₄ ³⁻ /L) A5 (+3 mg-PO ₄ ³⁻ /L) A6 (+5 mg-PO ₄ ³⁻ /L)	Chambre de culture (0, 1, 3 et 5 mg-PO ₄ ³⁻ /L) A1 (+1 mg-PO ₄ ³⁻ /L) A2 (+3 mg-PO ₄ ³⁻ /L) A3 (+5 mg-PO ₄ ³⁻ /L)	A7 (+1 mg-PO ₄ ³ -/L) A8 (+3 mg-PO ₄ ³ -/L) A9 (+5 mg-PO ₄ ³ -/L)
Alcalinité	mg-CaCO ₃ /L	86	110	71
CNO-	mg-N/L	53,3	6,0	0,2
Cu ²⁺	μg/L	9600	950	3,7
N-NH ₃	mg-N/L	64	29	18
NO ₂ -	mg-N/L	0,3	< 0,2	0,37
NO ₃ -	mg-N/L	21	4	0,23
рН	-	7,60	7,99	7,90
PO ₄ ³⁻	mg/L	0,05	< 0,05	< 0,05
SCN-	mg-N/L	79,6	22,4	3,4

3.4 Suivi des conditions opératoires

Divers paramètres font l'objet d'un suivi au cours des différents essais. Le Tableau 3.7 présente ceux-ci ainsi que les méthodes d'analyse associées. Les différents échantillons ont été prélevés et conservés selon les diverses recommandations du CEAEQ (Centre d'expertise en analyse environnementale du Québec, 2024).

Le POR, le pH, la température et l'OD au cours des essais sont mesurés à l'aide d'une sonde multiparamétrique. Le suivi de la concentration en Cu²⁺ et de la turbidité est réalisé à l'aide d'un colorimètre Hach DR900 selon les méthodes Hach 8505 et 8237 respectivement. L'alcalinité est déterminée par dosage pHmétrique jusqu'à pH = 4,5 à l'aide d'une sonde pH, tel que défini dans la méthode MA. 315 – Alc-Aci 1.0 du CEAEQ (2016). Les matières en suspension (MES) sont déterminées par mesure gravimétrique tel que défini par la méthode MA. 104 – S.S. 2.0 (CEAEQ, 2012). Enfin, dans le cas des essais d'ozonation à microbulles, les concentrations en SO₄²⁻, Cl⁻ et en (per)chlorates sont déterminées par chromatographie ionique (chromatographe ThermoFisher muni d'une colonne AS18 et d'un détecteur infrarouge).

Tableau 3.7 : Liste des principaux paramètres physico-chimiques suivis lors des essais réalisés

Paramètre	Ozon	MBBR	ENA	Instrument de mesure	Méthode
Alcalinité	X	٧	٧	Sonde pH	MA. 315 – Alc-Aci 1.0 (CEAEQ, 2016)
Cl ⁻ / (per)chlorate	٧	X	X	Chromatographe ionique ThermoFisher	MA. 300 – Ions 1.3 Rév. 6 (CEAEQ, 2020)
Cu ²⁺	X	٧	X	Colorimètre Hach DR900	Hach 8506
MES	X	٧	٧	Balance de précision analytique (± 0,0001 g)	MA. 104 – S.S. 2.0 (CEAEQ, 2012)
OD	X	٧	٧	Sonde de terrain multi- paramètre	-
рН	٧	٧	٧	Sonde de terrain multi- paramètre	MA. 100 – pH 1.1, Rév. 6 (CEAEQ, 2023)
POR	٧	V	٧	Sonde de terrain multi- paramètre	-
SO ₄ ²⁻	٧	X	X	Chromatographe ionique ThermoFisher	MA. 300 – Ions 1.3 Rév. 6 (CEAEQ, 2020)
Turbidité	X	٧	٧	Colorimètre Hach DR900	Hach 8237

Dans le cas des essais MBBR avec écoulement, le débit d'eau à l'entrée et celui des ajouts de PO4³⁻ et de saccharose ont aussi été mesurés régulièrement. Les mesures ont été effectuées à l'aide d'un cylindre gradué pendant au moins 10 minutes et confirmées par le contrôle des différents volumes de nutriments pompés. Dans le cas de Na₂CO₃ ajouté ponctuellement, cette méthode ne permet pas d'en déterminer le débit. La consommation est alors estimée en suivant l'évolution du volume de solution restant et les ajouts réalisés. Le TRH dans chacun des réacteurs, de volume V_{Réacteur}, est calculé à partir du débit d'alimentation du pilote Q uniquement :

Équation 3.1 :
$$TRH = Q / V_{Réacteur}$$

Les effets de dilution générée par l'ajout de solutions de Na₂CO₃, NH₄H₂PO₄ et de saccharose sont considérés comme négligeables.

3.5 Évolution de la spéciation de l'azote

Différentes méthodes analytiques ont été utilisées au cours des essais afin d'estimer les concentrations en contaminants azotés. Celles-ci sont regroupées au sein du Tableau 3.8. Les mesures des concentrations en SCN⁻ et CNO⁻, par exemples, sont effectués par chromatographie ionique.

Tableau 3.8 : Méthodes de détermination des concentrations en contaminants azotés au cours des essais

Paramètre	Ozon	MBBR	ENA	Instrument de mesure	Méthode
SCN-	٧	٧	٧	Chromatographe ionique ThermoFisher	MA. 300 – Ions 1.3 Rév. 6 (CEAEQ, 2020)
CNO-	٧	٧	٧	Chromatographe ionique ThermoFisher	MA. 300 – Ions 1.3 Rév. 6 (CEAEQ, 2020)
N-NH ₃	V (1)	V (1)	V (2)	Sonde sélective ThermoFisher Orion (1) Colorimètre Hach DR900 (2)	Hach 10031 (2)
NO ₂ -	V (4)	V (3)	V (3)	Colorimètre Hach DR900 (3) Chromatographe ionique ThermoFisher (4)	Hach 8507 (3) MA. 300 – Ions 1.3 Rév. 6 (CEAEQ, 2020) (4)
NO ₃ -	V (6)	V (5)	V (5)	Colorimètre Hach DR900 (5) Chromatographe ionique ThermoFisher (6)	Hach 8039 (5) MA. 300 – Ions 1.3 Rév. 6 (CEAEQ, 2020) (6)

Le N-NH₃ est mesuré, après ajout de NaOH (pH > 12), à l'aide d'une électrode sélective Thermo Scientific Orion High-Performance Ammonia Electrode. Celle-ci est étalonnée avant chaque utilisation. Les échantillons sont filtrés (filtre pour seringue de 0,45 µm en PTFE) avant la mesure, le plus souvent effectuée le jour même de l'échantillonnage. Ils sont conservés au frais si ce n'est pas le cas. Les analyses sont ensuite effectuées dans un délai maximum de 48 heures après le prélèvement. Dans le cas des essais de traitement par promotion de l'atténuation naturelle, réalisés sur un site minier, le suivi de N-NH₃ se fait par colorimétrie, selon la méthode Hach 10031.

Les NO₂⁻ et NO₃⁻ sont aussi mesurés à l'aide du colorimètre Hach DR900 selon les méthodes 8507 et 8039, respectivement. Ces paramètres sont mesurés juste après l'échantillonnage et la filtration. Une dilution des échantillons peut alors être nécessaire pour se situer dans les plages de mesure des différentes méthodes. L'oxydation du NO₂⁻ par l'addition de KI, comme recommandée par la méthode Hach 8039, a été utilisée à partir de t = 50 j pour les essais MBBR afin d'éliminer l'interférence sur la mesure du NO₃⁻. Les mesures effectuées sont alors celles de (NO₂⁻ + NO₃⁻). Le suivi des NO_x⁻ est effectué, dans le cas des essais d'ozonation à microbulles, par chromatographie ionique.

Le suivi régulier ainsi décrit est complété, dans le cas des essais MBBR et de promotion de l'atténuation naturelle, par une caractérisation chimique plus poussée au sein d'un laboratoire externe à l'UQAT. Les composés à base d'azote (SCN-, CNO-, N-NH3, NO₂-, NO₃-, TN, TKN), de S (SO₄²-, S₂O₃-, S₄O₆-) ou de P (PO₄³-, P total/dissous) sont concernés. Un balayage ICP complet est également effectué pour déterminer les concentrations en métaux et métalloïdes.

3.6 Efficacité du traitement

L'efficacité du traitement, exprimé en %, est défini, pour un contaminant X, de concentrations initiales et finales $[X]_i$ et $[X]_f$, selon l'équation suivante :

Équation 3.2 :
$$Efficacité = \frac{([X]_i - [X]_f)}{[X]_i} * 100,$$

Dans le cas des essais de promotion de l'atténuation naturelle, impactés par une évaporation significative (≈ 30 %), l'efficacité est déterminée de manière analogue à partir des masses de contaminants en présence, ces dernières étant calculées à partir des concentrations mesurées et des volumes d'eau restants (Équation 3.2) :

Équation 3.2 :
$$Efficacit\acute{e} = \frac{(V_i * [X]_i - V_f * [X]_f)}{V_i * [X]_i} * 100$$

Cela permet de s'affranchir de l'effet de l'évaporation ou d'épisodes de pluviométrie sur les concentrations des espèces dissoutes. L'efficacité des différents traitements est aussi exprimée sous forme de capacité surfacique et/ou volumique de traitement (SARR, Surface Area Removal Rate). Alors que cette donnée est exprimée relativement au volume des essais pour l'ozonation à microbulles et la promotion de l'atténuation naturelle (Équation 3.3), celle-ci est aussi déterminée par m² de garnissage (SMBBR) pour les essais MBBR (Équation 3.4).

Équation 3.3 :
$$SARR = \frac{(v_{f^*}[X]_f - v_{i^*}[X]_i)}{v_{i^*t}}$$

Équation 3.4 :
$$SARR = \frac{Q_{V^*}([X]_f - [X]_i)}{S_{MBBR}}$$
, avec Q_V est le débit d'alimentation du pilote

3.7 Identification des processus biochimiques impliqués

Les échantillons destinés à des analyses isotopiques (δ¹⁵N et δ¹⁸O des espèces dissoutes NO₃⁻ et N-NH₃) ont été filtrés à 0,45 μm puis congelés (- 15 °C) immédiatement après l'échantillonnage. Dans le cas des essais de promotion de l'atténuation naturelle réalisés sur un site minier, les échantillons ont été congelés après prélèvement, sans filtration, et transportés au sein d'une glacière munie de blocs de glaces jusqu'au laboratoire. Les échantillons ont ensuite été maintenus dans une chambre froide à 4 °C jusqu'à leur fonte complète (environ 72 h). Ils ont ensuite été filtrés à 0,45 μm. Les filtrats (100 mL pour NO₃⁻ et 50 mL pour N-NH₃) ont été recueillis dans des flacons en HDPE puis envoyés à l'*Isotope Science Laboratory* de l'Université de Calgary dans une glacière. Les analyses isotopiques des espèces dissoutes N-NH₃ et NO₃⁻ ont été réalisées par EA-IRMS (couplage d'un analyseur élémentaire EA et d'un spectromètre à ratio isotopique IRMS). Les analyses sont précédées de la récupération de N-NH₃, ou de NO₃⁻ préalablement réduit par ajout de réactif Dévarda, sur un filtre acidifié (méthode de microdiffusion).

Les filtres ayant permis la récupération de la biomasse ont été rincés à l'eau désionisée puis lyophilisés. Tel que préconisé par Velázquez-Ochoa et al. (2022), les filtres ont ensuite été placés dans un espace clos dans lequel a été introduit un bécher d'acide chlorhydrique concentré (37 %). Un tel environnement riche en vapeur acide devrait permettre d'enlever une grande partie des MES minérales telles que les carbonates. Les filtres sont ensuite à nouveau rincés à l'eau désionisée puis lyophilisés. Les masses retenues sur les filtres lors des différentes étapes sont déterminées, permettant ainsi la détermination des quantités de MES et de biomasse. Les filtres sont finalement

envoyés vers l'*Environmental Isotope Laboratory* de l'Université de Waterloo pour analyse de la composition isotopique de la biomasse par EA-IRMS.

3.8 Essais de dégradation de la biomasse

Une remobilisation partielle des contaminants azotés pouvant être observée en conditions hivernales, une étude de la dégradation des algues a été menée pendant 5 mois. Quinze litres ont alors été prélevés dans chaque bac contenant de l'eau provenant de tests de croissance d'algues effectués précédemment et ont été placés dans une chambre froide dans des seaux fermés afin de simuler les conditions froides et sombres de l'hiver. Un suivi régulier a ensuite été effectué (N-NH₃, NO₂-, NO₃-, pH, POR, DO, température) à l'aide d'un colorimètre Hach DR900 (méthodes 10031, 8507 et 8039) et d'une sonde multiparamètre de terrain.

3.9 Récupération de la biomasse par coagulation-floculation

Des essais de récupération des algues par coagulation-floculation ont été opérés. Ces différents essais ont été menés sur des eaux échantillonnées à la fin des essais de croissance d'algues pour lesquelles un bloom d'algues avait été atteint. Les essais de récupération des MES par coagulation-floculation ont été réalisés sur 500 mL (selon les étapes définies dans le Tableau 3.9 ci-dessous).

Le sulfate ferrique et le PAC (chlorure de polyaluminium) ont été utilisés comme coagulant et des polymères anioniques ou cationiques ont été utilisés pour la floculation après une éventuelle correction du pH à l'aide de NaOH. Le chitosan, d'origine naturelle et agissant à la fois comme coagulant et floculant, est aussi testé. À la fin des essais de coagulation-floculation, la turbidité du surnageant a été mesurée afin d'estimer la récupération des algues et est confirmée pour les meilleures recettes par une analyse gravimétrique des MES résiduelles.

Tableau 3.9 : Protocole de récupération des algues par coagulation-floculation

Temps (min)	Ajout effectué	Agitation (rpm)		
0	NaOH + coagulant			
3	50 % du polymère + microsable	200		
4,5	50 % du polymère			
6	Fin de l'agitation			
9	Échantillonnage du surnageant	0		

CHAPITRE 4 RÉSULTATS ET DISCUSSION

4.1 Essais de traitement par ozonation à microbulles

L'effet catalytique potentiel de Br⁻ sur l'oxydation de N-NH₃ a déjà été rapporté dans la littérature (Khuntia et al., 2013 ; Marcotte, 2020). Un mécanisme similaire est envisagé pour Cl⁻, notamment par la formation de (per)chlorate (Ryskie et al., 2020). Les essais menés visent ainsi à évaluer l'influence de Cl⁻ sur le traitement par ozonation à microbulles des effluents miniers.

Dans un premier temps, l'ozonation à microbulles est appliquée à divers effluents synthétiques afin d'analyser l'impact des concentrations initiales en N-NH₃ et, potentiellement, en SCN⁻, ainsi que l'effet de la salinité et du profil anionique, en comparant SO₄²⁻ et Cl⁻. Une seconde série d'essais a ensuite été réalisée sur des effluents réels afin de confirmer les observations préliminaires obtenues avec les effluents synthétiques.

4.1.1 Suivi des conditions opératoires

Le pH des effluents, initialement compris entre 5,9 et 8,0 pour les effluents synthétiques et entre 7,1 et 8,9 pour les effluents réels (Figure 4.1), est ajusté dès le début des essais par l'ajout de NaOH. De plus, afin de compenser l'acidification induite par l'oxydation de N-NH₃, un suivi régulier du pH est réalisé, accompagné d'ajouts de NaOH si nécessaire. Grâce à ces ajustements, le pH se maintient entre 9 et 9,5 tout au long des essais.

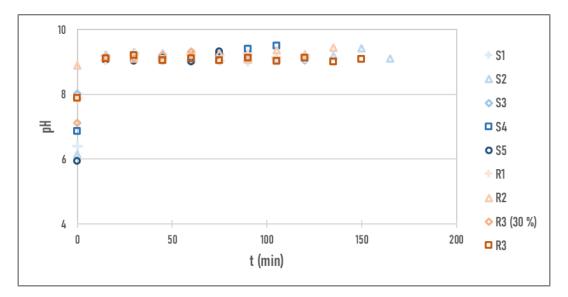


Figure 4.1 : Évolution du pH au cours des essais d'ozonation à microbulles

Concernant le potentiel d'oxydoréduction (POR), il varie initialement entre 100 et 250 mV selon les effluents testés (Figure 4.2), qu'ils soient synthétiques ou réels. Sous l'effet de l'ozonation à microbulles, il augmente rapidement pour atteindre des valeurs de l'ordre de 500 à 600 mV en fin d'essais, et dépasse même 800 mV pour E3. Ces niveaux élevés traduisent des conditions fortement oxydantes au sein de la cuve de l'ozonateur en microbulles.

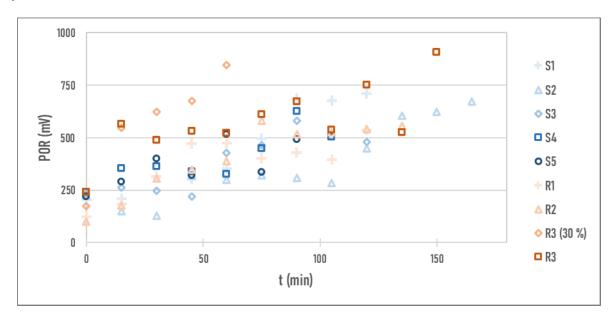


Figure 4.2 : Évolution du POR au cours des essais d'ozonation à microbulles

4.1.2 Évolution de la spéciation de l'azote

Pour l'ensemble des essais, une ozonation à microbulles de 1h30 à 2h45 est nécessaire pour abaisser la concentration en N-NH3 sous 0,5 mg/L (Figure 4.4). Dans le cas de l'effluent S1, contenant initialement 62,1 mg-N/L de N-NH3, 50,6 mg-N/L de SCN- et 2,4 g/L de SO42-, l'oxydation de 99,4 % du N-NH3 a été atteinte en 2 heures. Durant les 30 premières minutes, une dégradation complète des SCN- a été observée (Figure 4.3), entraînant une accumulation temporaire de N-NH3 durant les 15 premières minutes. Ensuite, la concentration en N-NH3 a diminué rapidement à un rythme d'environ 1 mg-N/L/min, ce qui est cohérent avec les 2 heures nécessaires pour oxyder 100 mg/L de N-NH3 documenté dans une autre étude (Khuntia et al., 2013).

L'effluent S2 a nécessité un temps de traitement légèrement plus long, soit 2h15, pour diminuer la teneur en N-NH₃ à 0,5 mg-N/L. Sa concentration initiale en N-NH₃ était plus élevée (103,9 mg-N/L) que celle de S1, tandis que celle en SCN⁻ était de 44,4 mg-N/L. Comme pour S1, l'oxydation

complète des SCN⁻ a eu lieu en 30 minutes, provoquant une augmentation temporaire du N-NH₃ durant les 15 premières minutes. La concentration en N-NH₃ a ensuite diminué progressivement pour atteindre 0,38 mg-N/L après 135 minutes, soit une efficacité de plus de 99 %. À titre de comparaison, après 90 minutes de traitement, l'efficacité était de 76,3 % pour S2 contre 93,5 % pour S1. Ces résultats confirment que la charge initiale en N-NH₃ influence directement le temps nécessaire à son oxydation complète. Plus la concentration est élevée, plus la cinétique de réaction est rapide au cours de l'ozonation à microbulles.

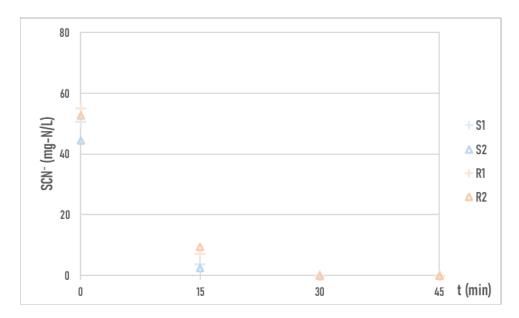


Figure 4.3 : Évolution des concentrations en SCN- lors des essais d'ozonation à microbulles

L'effluent S3, contenant seulement du N-NH₃ à 117 mg-N/L et des SO₄²⁻, a nécessité un temps de traitement de 105 minutes, plus faible que pour S2. Cette différence est due à la présence de SCN⁻ dans l'effluent S2 qui consomment la majorité de l'ozone produite au début du traitement et par la plus forte charge en azote oxydable (SCN⁻ et N-NH₃), de 117 mg-N/L pour S3 contre 148 pour S2. Ces résultats sont cohérents avec ceux d'autres études au cours desquelles les procédés d'oxydation avancée ont été utilisés pour traiter simultanément N-NH₃ et ces précurseurs, tels que SCN⁻ et CNO⁻, montrant alors le potentiel inhibiteur de ces derniers sur l'oxydation de N-NH₃ (Ryskie, 2017).

Des résultats similaires ont été obtenus pour les essais S3 et S4, ces deux effluents contenant les mêmes concentrations en N-NH₃ mais une concentration de 2,4 g/L de Cl⁻ ou de SO₄²⁻ pour S4 et S3 respectivement. Cela, ajouté à l'absence de formation de (per)chlorate au cours de l'ozonation,

tend à infirmer l'hypothèse de la participation des Cl⁻ au processus d'oxydation de N-NH₃. L'effluent S5, similaire à S4, avec une concentration en Cl⁻ plus élevée (3,2 g/L), pour lequel un temps de traitement semblable a été nécessaire, et pour lequel aucune formation de (per)chlorate n'a été détectée, confirme cette observation. Bien que la formation de (per)chlorate au cours de l'ozonation ait déjà été documentée, celle-ci ne semble avoir lieu qu'après l'oxydation de N-NH₃ (Khuntia et al., 2013).

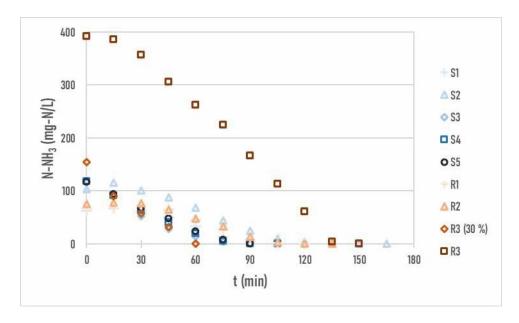


Figure 4.4 : Évolution des concentrations en N-NH3 lors des essais d'ozonation à microbulles

Trois effluents réels sont soumis, à leur tour, à une ozonation à microbulles. E1 contient initialement 54,9 et 67,5 mg-N/L en SCN⁻ et N-NH₃ et un profil anionique fortement dominé par SO4²⁻. Le traitement par ozonation à microbulles a alors nécessité 2 h. Cela est similaire aux résultats obtenus pour S1 et S2, les deux effluents synthétiques de composition proche de celle de E1. Cela est aussi le cas pour E2, cet effluent étant proche de E1 en termes de contaminants azotés et de salinité. E3, présentant quant à lui une concentration initiale de 392 mg-N/L et pas de SCN⁻, a tout d'abord été dilué (30 % massique). Seulement 60 minutes ont été nécessaires afin de complètement oxyder N-NH₃. La durée nécessaire à l'oxydation complète de N-NH₃ a été plus importante (150 min) lors des essais avec l'effluent non dilué. Cela confirme l'influence de la charge en contaminants sur les performances de l'ozonation à microbulles. Étant donnée la forte concentration en N-NH₃ de E3, une oxydation plus rapide est observée pour cet effluent. Cette constatation a déjà été effectuée lors des essais menés par Marcotte (2020). Cependant, bien que

ce dernier émette l'hypothèse que cela puisse être lié à la forte concentration en Cl⁻ de cet effluent, l'absence de (per)chlorate au cours des essais menés dans le cadre de ce projet tend à invalider cette présomption. Une étude plus approfondie des différents processus impliqués au cours de l'ozonation des effluents miniers est alors nécessaire afin de déterminer les causes réelles des gains en efficacité lors de l'ozonation à microbulles de ce dernier effluent réel.

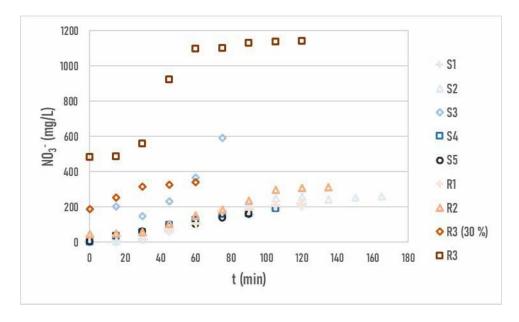


Figure 4.5 : Évolution des concentrations en NO₃- lors des essais d'ozonation à microbulles

À la fin des essais, les ions NO₃⁻ représentent la principale forme d'azote résiduelle, atteignant des concentrations supérieures à 1 g/L dans le cas de l'effluent E3 (Figure 4.5). Cette accumulation résulte de l'oxydation progressive des différents contaminants azotés en conditions fortement oxydantes rencontrées pendant l'ozonation à microbulles. La présence de NO₃⁻ à des concentrations élevées peut favoriser des phénomènes d'eutrophisation. Ainsi, une étape de traitement complémentaire, telle qu'un procédé de dénitrification biologique ou une adsorption sur un matériau spécifique, pourrait être nécessaire pour limiter leur impact environnemental.

4.1.3 Efficacité du pilote d'étude

Comme mentionné précédemment, l'ozonation à microbulles au sein du pilote d'essais a permis l'oxydation de plus de 99 % de N-NH₃, et des SCN⁻ lorsque présents, pour l'ensemble des essais avec un TRH compris entre 60 (E3 dilué à 30%) et 135 (E3) minutes (Figure 4.6). Ces différences s'expliquent principalement par les différences de charges oxydables des différents effluents testés.

Ces résultats sont cohérents avec les 2 heures nécessaires à l'oxydation complète d'un effluent synthétique contenant 100 mg/L de N-NH₃.

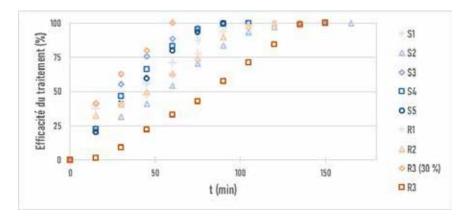


Figure 4.6 : Évolution temporelle de l'efficacité de traitement par ozonation à microbulles

Au cours des différents essais, le traitement de l'azote oxydable (SCN⁻ et N-NH₃) varie entre 0 et environ 4,8 g-N/h. L'efficacité est généralement plus élevée lorsque les concentrations en contaminants sont élevées, au début des essais notamment, et tend à diminuer au cours de l'oxydation de N-NH₃. Hormis pour E3 (dilué ou non), pour lequel un traitement maximal de l'ordre de 250 mg-N/L/h est observé, les vitesses maximales d'oxydation sont semblables pour les différents essais et sont de l'ordre de 100 à 150 mg-N/L/h (Figure 4.7).

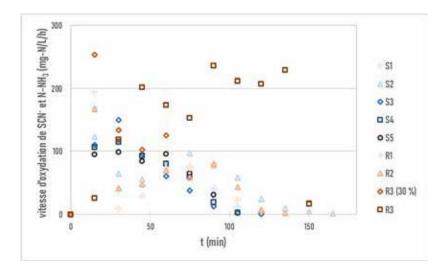


Figure 4.7 : Évolution de la vitesse d'oxydation de SCN⁻ et N-NH₃ au cours de l'ozonation à microbulles

Les résultats obtenus corroborent ceux de Ryskie et al. (2020), en confirmant que l'effluent E3, caractérisé par la plus forte concentration en chlorures, présente une cinétique de traitement

significativement plus élevée lors des essais d'ozonation. Cependant, l'absence de formation de (per)chlorate tend à invalider l'effet catalytique suspecté de Cl⁻ sur les performances de traitement.

4.1.4 Évaluation des consommations en réactifs

La concentration en O₃ résiduelle dans l'effluent traité n'a pas fait l'objet de suivi. L'hypothèse que celui-ci est intégralement consommé au sein du réacteur est donc émise afin de déterminer la consommation en O₃ (Figure 4.8).



Figure 4.8 : Évolution de la consommation en O₃ (en mg-O₃/mg-N) au cours des essais d'ozonation à microbulles

Outre une meilleure efficacité du traitement, de hautes concentrations en contaminants induisent une consommation plus modérée en O₃. Cela confirme les observations déjà émises par différentes études (Marcotte, 2020; Ryskie et al., 2020). Elle est ainsi comprise entre 6 et 15 g-O₃/g-N-NH₃ au cours des 15 premières minutes des différents essais (sauf R3) puis tend à augmenter au cours des essais du fait de la limitation de la quantité d'azote oxydable. La consommation en ozone au début des essais s'avère même légèrement inférieure à celles observées dans la dernière étude citée. Le débit d'ozone produit, 60 g/h, au lieu des 22 g/h dans le cas des présents essais, en est très certainement la principale cause. Ces résultats sont du même ordre de grandeur que ceux obtenus

dans des conditions similaires (ozonation à microbulles à pH \approx 9) par Ryskie et al. (2020) et bien moins élevée que lors de la diffusion plus grossière (\approx 50 g-O₃/g-N_{ox}) testée lors de cette même étude. Cela confirme l'importance que revêt la taille des bulles sur la performance d'une unité d'ozonation et sur la consommation en O₃ qui y a lieu.

4.2 Essais de traitement biologique actif MBBR

La nitrification-dénitrification biologique est un procédé massivement utilisé pour le traitement des eaux usées. Dans le cas des effluents miniers, les fortes salinités peuvent être source d'inhibition. L'utilisation de biomasse préacclimatée peut alors être requise. À cette fin, le pilote est initialement alimenté avec des boues venant des biodisques RBC du site minier LaRonde pour l'oxydation des SCN- et la nitrification et issues du clarificateur subséquent pour la dénitrification. Le développement biologique sous forme de biofilm, lors de l'emploi de RBC ou MBBR notamment, permet un gain en résilience du système de traitement. Le but de cette partie du projet est alors d'évaluer si un traitement par nitrification-dénitrification au sein d'une filière MBBR peut durablement permettre d'atteindre les objectifs de qualité des effluents pour un possible rejet en milieu naturel. Cette étude doit, de plus, permettre de déterminer les performances du pilote et d'estimer la consommation de réactifs dans le cadre d'une étude à long terme.

4.2.1 Prétraitement par coagulation-floculation

La présence de métaux ou de métalloïdes peut avoir un effet inhibiteur sur les processus biologiques. Cela est particulièrement vrai pour le cuivre, dont une concentration de 0,1 mg/L peut entraîner une perte de performance non négligeable (Stasinakis et al., 2003). L'effluent minier testé présente généralement des concentrations plus élevées (Tableau 4.1).

Tableau 4.1 : Principaux métaux inhibiteurs présents dans les différents prélèvements (P1 à P5) de l'effluent E1 et après prétraitement par coagulation-floculation

	Paramètre	P	P1		P2		Р3		P5
	Co (µg/L)	416	-	Ī	ı	-	540	1	760
E1 (avant	Cu (µg/L)	154	240	440	460	44	7	15	1,8
précipitation)	Ni (μg/L)	1190	1500	720	720	350	280	230	1,3
	Co (µg/L)	393	-	-	-	-	470	-	560
Alimentation	Cu (µg/L)	<1,0	<0,5	1,3	4,5	<0,5	< 0,5	6,3	1,8
du pilote	Ni (μg/L)	45,6	35	100	150	12	< 1	1,6	1,1

Le Ni, et dans une moindre mesure le Co, sont deux autres espèces initialement présentes qui peuvent nuire à la nitrification-dénitrification (Skinner et Walker, 1961). Une étape de prétraitement est donc nécessaire. La précipitation, selon le protocole défini ci-dessus, permet une bonne récupération de ces métaux, et d'atteindre des niveaux de contamination permettant une croissance optimale de la biomasse vis-à-vis de ces paramètres (Tableau 4.1). La récupération du Co est, quant à elle, presque insignifiante, pouvant conduire à une légère inhibition du traitement biologique.

4.2.2 Suivi des conditions opératoires

Une mesure du pH, du POR et de l'OD dans l'eau d'alimentation et dans tous les réacteurs a été réalisée chaque semaine, à minima, à l'aide d'une sonde multi-paramètres. Le pH s'avère être le paramètre le plus stable au cours des essais et s'élève, en moyenne, à 7,88, 7,66, 7,53, 6,92 et 8,00 pour l'eau d'alimentation, R1, R2, R3 et R4 respectivement. Ces niveaux de pH neutres à légèrement alcalins sont idéaux pour le développement des bactéries nitrifiantes et dénitrifiantes (Alleman et al., 1984). Ils sont également conformes aux objectifs de qualité des effluents en vue de leur rejet en milieu naturel (6,0 - 9,0) tout au long de la période d'essai (Gouvernement du Canada, 2025; Gouvernement du Québec, 2025).

L'oxygène dissous est un autre paramètre de fonctionnement important. Il doit être suffisant dans les réacteurs aérobies R1, R2 et R4 (objectif : OD > 4 mg/L). En revanche, il doit être modéré (OD < 1 mg/L) dans le réacteur de dénitrification, sinon l'O2 jouera préférentiellement le rôle d'accepteur d'électrons. A l'exception de quelques épisodes ponctuels, toutes les OD mesurées, 7,48, 7,17, 0,39 et 6,53 mg/L pour R1, R2, R3 et R4 respectivement, sont conformes à ces objectifs initialement définis. Tout au long des 9 mois d'essai, des conditions oxydantes ont alors été observées pour R1, R2 et R4, et des conditions réductrices pour R3. Dans le cas de R5, un développement de bactéries sulfato-réductrices (BSR) est suspecté. Cela est cohérent avec les conditions particulièrement réductrices observées et par l'odeur caractéristique du H2S en émanant. Ce dernier pouvant induire une toxicité de l'effluent traité, ce réacteur a été démantelé à t = 82 j.

4.2.3 Évolution de la spéciation de l'azote au sein du pilote d'étude

Les SCN⁻, environ 60 mg-N/L dans l'alimentation du pilote, sont généralement complètement oxydés en sortie du réacteur R1 (Figure 4.9). Les quelques accumulations de SCN⁻ dans le réacteur

R1 étaient principalement dues à des défaillances du pilote (rupture de l'écoulement ou arrêt de la pompe à aquarium). Les concentrations dans les autres réacteurs ont toutefois été constamment maintenues en dessous de 5 mg/L, et même plus généralement en dessous de 1 mg/L. Les SCN⁻ à la sortie du pilote ne devraient donc pas être une source de toxicité des effluents produits (Gould et al., 2012).

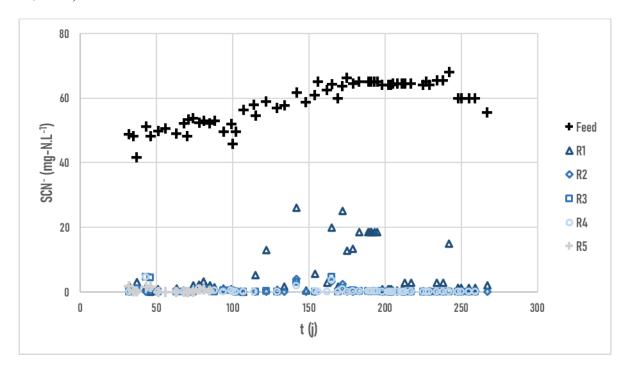


Figure 4.9 : Évolution des concentrations en SCN dans les différents réacteurs MBBR au cours des essais de nitrification-dénitrification

Lors de la dégradation du SCN-, l'hydrolyse initiale en CNO- est généralement l'étape limitante, ces derniers étant à leur tour rapidement hydrolysés en N-NH₃. L'absence d'accumulation significative de CNO- est également confirmée par le bilan de masse du réacteur R1. Par conséquent, les concentrations en CNO- n'ont pas été mesurées, à l'exception des analyses effectuées par le laboratoire externe sur l'alimentation et la sortie de l'installation pilote. La dégradation des SCN- dans R1 s'accompagne d'une augmentation de la concentration de N-NH₃, qui devient la forme d'azote prédominante dans ce réacteur (Figure 4.10). En effet, à l'exception des 70 premiers jours des essais durant lesquels le taux d'alimentation a été augmenté et pour lesquels un début de nitrification est observable dans ce réacteur, N-NH₃ représente la majeure partie de l'azote au sein de R1.

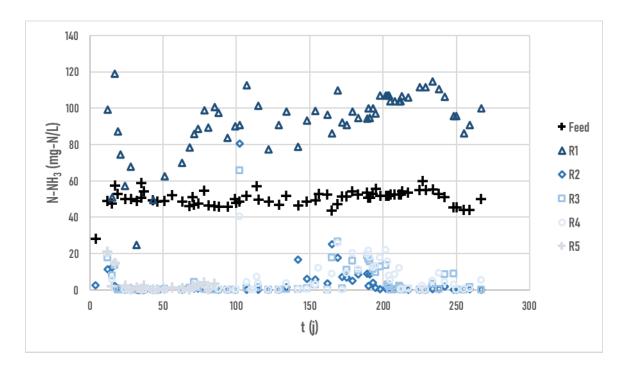


Figure 4.10 : Évolution des concentrations en N-NH3 dans les différents réacteurs MBBR

Le N-NH₃ est ensuite oxydé dans R2 et devient alors généralement négligeable dans ce réacteur. À l'exception de la période de 150 à 200 jours, le N-NH3 dans ces différents réacteurs reste constamment inférieur à 10 mg/L. Cela a été corrigé par le simple ajout d'une nouvelle pompe à air, équipée de pierre de diffusion. Cela démontre l'importance de l'influence potentielle d'une mauvaise conception des systèmes d'aération. Cela est cohérent avec les conclusions d'une autre étude de la dénitrification biologique (Ødegaard, 2006). Au cours des 70 premiers jours, la nitrification a partiellement lieu dans R1. Une accumulation de NO₂- (Figure 4.11) et de NO₃-(Figure 4.12) est alors observable. Il faut également noter que les valeurs élevées de NO₃ mesurées autour de t = 40 j sont surévaluées. Ceci est dû à l'interférence générée par NO₂ sur la mesure de NO₃ par colorimétrie. Une oxydation préalable aux mesures par une solution de KI a alors été mise en œuvre. Les paramètres mesurés sont NO₂⁻ et (NO₂⁻ + NO₃⁻). La concentration en NO₃⁻ correspond à la différence entre ces deux valeurs mesurées. La quantité d'azote nitrifié dans R1 augmente au cours des 40 premiers jours et diminue ensuite en raison de l'augmentation du taux d'alimentation jusqu'à devenir négligeable à partir de t = 70 j. La nitrification a alors lieu dans le réacteur R2. Ainsi, à l'exception de la période de 150 à 200 jours où elle est incomplète, conduisant à une accumulation de NO₂, les NO₃ sont la forme prédominante dans R2. La mise en place de la nouvelle pompe d'aération dans ce réacteur opérée à t = 190 jours semble alors avoir aussi été efficiente face aux accumulations de NO_2^- dans ce réacteur.

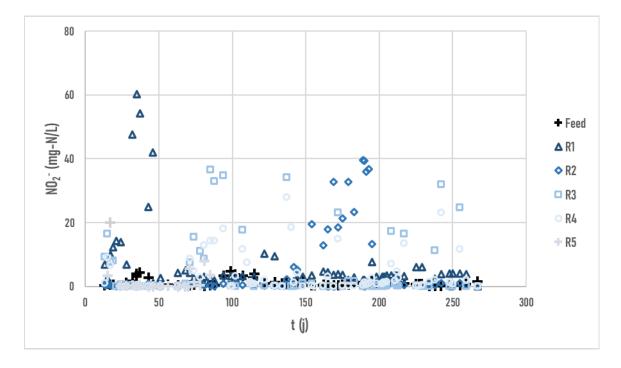


Figure 4.11 : Évolution des concentrations en NO₂ dans les différents réacteurs MBBR

Le NO3⁻ subit ensuite une réduction en N2 dans R3. Ce phénomène est modéré au début (t < 100 j), ce qui entraîne des concentrations importantes de NO3⁻. Ceci est dû non seulement à l'augmentation des taux d'alimentation, mais aussi aux faibles taux de croissance des bactéries hétérotrophes anaérobies telles que les dénitrifiantes (Zaitsev et al., 2008). Après cette période, le NO3⁻ devient faible à la sortie de R3 et reste ensuite constamment inférieur à 20 mg/L. L'effluent initial contenant légèrement plus de 100 mg/L de TN, cela représente une efficacité de dénitrification minimale de l'ordre de 80 %. La dénitrification reste cependant incomplète, comme le montre l'accumulation de NO2⁻ parfois jusqu'à plus de 30 mg/L, observée dans ce réacteur (Figure 4.11). Le potentiel d'accumulation de NO2⁻ lors de l'utilisation de saccharose a déjà été documenté (De Filippis et al., 2013; Phung et al., 2014). Bien que cela ne soit pas perceptible dans les essais réalisés, elle est généralement temporaire. Les NO2⁻ subissent alors une réoxydation au sein de R4. Celle-ci est cependant incomplète, l'excès de carbone organique issu de la dénitrification étant préférentiellement oxydé (Schopf et al., 2018). La réduction de cette dernière charge devrait améliorer la situation mais pourrait également conduire à une dénitrification plus partielle. Un excès de NO2⁻ peut être problématique, une concentration supérieure à 1 mg/ L

pouvant être source de toxicité, notamment pour la truite. L'optimisation de l'étape de réoxygénation devrait alors permettre de corriger cette situation. Le changement de la source de carbone peut être une autre solution. Le glucose, par exemple, un monosaccharide, est moins propice à l'accumulation de NO₂- (De Filippis et al., 2013).

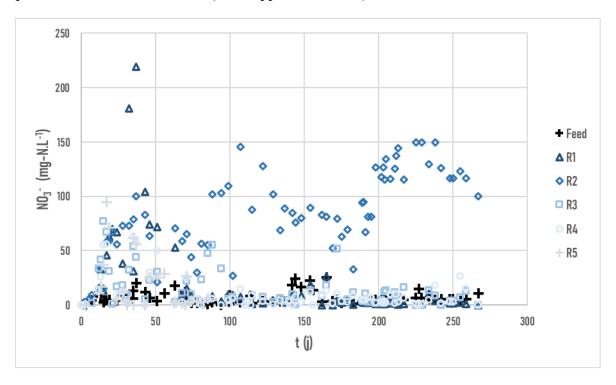


Figure 4.12 : Évolution des concentrations en NO₃ dans les différents réacteurs MBBR

Une caractérisation chimique plus poussée est réalisé par un laboratoire externe pour l'effluent en sortie du pilote d'étude (Tableau 4.2). Celle-ci, reposant majoritairement sur des analyses chromatographiques, permet de valider les résultats obtenus par colorimétrie, méthode pour laquelle de nombreuses interférents existent. Ainsi, elle confirme l'absence de SCN⁻ (< 5 mg/L) et CNO⁻ (< 1 mg/L), ou du moins leur maintien à des seuils bien inférieurs à une éventuelle toxicité pour les daphnies et les truites, au sein de l'effluent traité. Le N-NH3, en revanche, peut s'avérer non-négligeable en sortie de pilote. Celui-ci monte ainsi jusqu'à 12 mg N/L pour le prélèvement P4. De plus, du fait du pH proche du pK_a = 8,25 du couple acidobasique NH4⁺/NH3 pour ce prélèvement, le NH3 est non-négligeable et s'avère supérieur au critère de rejet admissible défini par la REMMD (0,5 mg N/L en moyenne; Gouvernement du Canada, 2025). Un autre dépassement de ce critère est aussi constaté, dans une moindre mesure, pour P3. À la vue de la DL50 de N-NH3 sur les daphnies, de l'ordre de 2 mg/L selon l'USEPA (2013), ces épisodes d'accumulation de N-

NH₃ pourrait alors être sources de léthalité lors des essais de toxicité. L'accumulation de NO₂⁻ constatée pour P3, de l'ordre du mg N/L, pourrait aussi être problématique. Ces accumulations ont lieu malgré l'existence du réacteur R4 dédié à la réaération post-dénitrification.

Tableau 4.2 : Spéciation de l'azote des effluents en sortie de traitement au sein de la filière MBBR

Paramètre		P1		P2		Р3		P4	P5
рН	-	8,10	7,79	7,64	7,67	7,71	7,19	7,97	7,56
SCN-	mg N.L ⁻¹	0,14	<0,04	< 0,04	< 0,04	<0,04	< 0,04	<0,04	0,00
CNO-	mg N.L ⁻¹	0,90	< 0,02	< 0,02	<0,02	<0,02	< 0,02	<0,02	<0,02
N-NH ₃	mg N.L ⁻¹	0,75	1,20	2,40	0,50	7,30	<0,02	12,0	2,20
NO ₂ -	mg N.L ⁻¹	0,04	0,21	<0,20	<0,20	0,91	<0,20	<0,20	0,22
NO ₃ -	mg N.L ⁻¹	<0,02	29,0	0,02	0,09	<0,02	<0,20	<0,20	<0,20

Diverses solutions existent afin de limiter ces accumulations de N-NH₃ et NO₂⁻. Tout d'abord, l'utilisation du saccharose comme source de carbone organique au cours de la dénitrification ne semble pas optimale compte tenu de sa propension à favoriser de telles accumulations, comparativement à des sources plus simples telles que le méthanol par exemple (Phung et al, 2014). Ce dernier peut, en revanche, présenter certains risques lors de son transport ou sa manipulation. Le glucose, monomère du saccharose, peut alors s'avérer être une alternative de choix. Une diminution du ratio C/N utilisé au cours de la dénitrification peut aussi permettre de remédier à ces problèmes d'accumulation de N-NH₃ et de NO₂⁻. En effet, le carbone en excès est prioritairement oxydé dans R4 et est donc source d'inhibition de l'oxydation des contaminants azotés (Schopf et al., 2018). La diminution du rapport C/N pourrait, en revanche, être responsable d'une dénitrification incomplète induisant une légère accumulation de NO₃⁻.

4.2.4 Toxicité des effluents produits

Les 8 campagnes d'échantillonnage mentionnées ci-dessus ont aussi été réalisées à des fins d'étude de la toxicité de l'effluent produit au sein du pilote d'étude. Les certificats des analyses réalisées par des laboratoires externes à l'UQAT sont fournis en Annexe F. Pour la majorité des prélèvements, aucune toxicité anormale (> à 50 %) n'a été signalée, que ce soit pour les daphnies comme pour les truites (Tableau 4.3).

Tableau 4.3 : Résultats des essais de toxicité (en unité de toxicité TU) sur les daphnies et truites de l'effluent traité

	P	1	P	22	P3		P4	
Daphnies	< 1	< 1	< 1	< 1	< 1	< 1	1,41	< 1
Truites	< 1	< 1	< 1	< 1	1,41	< 1	< 1	< 1

En fait, deux prélèvements seulement se sont montrés toxiques, l'un pour les daphnies, certainement du fait d'une forte DCO ainsi que par une concentration en N-NH₃ supérieure à la DL₅₀, de l'ordre de 2mg//L (USEPA, 2013). L'autre épisode de toxicité concerne les truites. Ce dernier est concomitant à une accumulation de NO₂⁻ (cf. Tableaux 4.2 et 4.3) qui en est alors très certainement la cause.

4.2.5 Efficacité du pilote d'étude

Les taux de traitement surfaciques (SARR) ont été calculés à partir des concentrations obtenues par colorimétrie lors du suivi analytique réalisé tout au long des essais. Ces valeurs sont donc déterminées pour une température de l'ordre de 20 °C.

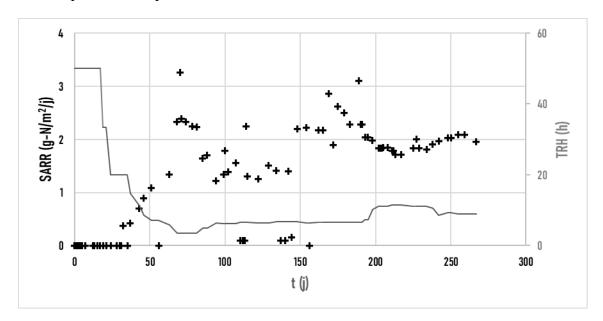


Figure 4.13 : Évolution du TRH et du SARR au sein du réacteur R1 de la filière MBBR

Le réacteur R1 est soumis initialement à un TRH de 50 h puis ce dernier est progressivement ramené à 10 h (Figure 4.13). L'oxydation des SCN⁻ et CNO⁻, initialement nulle, se développe au cours des essais et atteint 3,3 g-N/m²/j lorsque le TRH est le plus faible (t = 70 j). Aucune accumulation notable de SCN⁻ n'est cependant constatée lors de cet épisode. Cela implique que

l'oxydation des SCN⁻ en N-NH₃ reste complète dans R1. Les capacités maximales de ce réacteur n'ont, par conséquent, peut-être pas totalement été atteintes.

Du fait de son volume plus élevé (40 L), le TRH appliqué au sein du réacteur R2 est bien supérieur à celui au sein de R1. Initialement de 400 h, celui-ci est progressivement diminué, au cours des 70 premiers jours d'essais, jusqu'à environ 30 h (Figure 4.14).

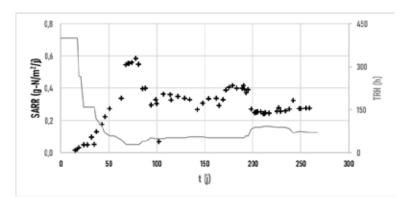


Figure 4.14 : Évolution du TRH et du SARR au sein du réacteur R2 de la filière MBBR

La transformation de l'azote y est plus modérée que dans R1. Ainsi, la nitrification dans ce réacteur atteint 0,59 g-N/m²/j. Celle-ci a été atteinte sans accumulation de N-NH₃ ou de NO₂-, ce qui suggère que la limite maximale n'avait pas encore été totalement atteinte. Cela reste néanmoins bien en deçà des valeurs communément admises, de l'ordre de 2 g-N/m²/j (Ødegaard, 2006), pour la nitrification des eaux usées domestiques. Cela met notamment en avant l'influence importante de la salinité des eaux minières sur les performances de traitement par nitrification.

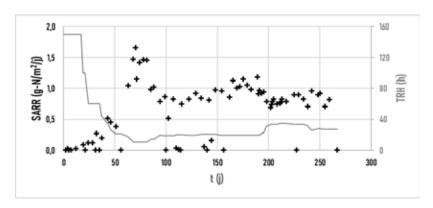


Figure 4.15 : Évolution du TRH et du SARR au sein du réacteur R3 de la filière MBBR

Le réacteur R3, dédié à la dénitrification de l'effluent, est quant à lui soumis à un TRH initial de l'ordre de 150 h (Figure 4.15). Après une période d'acclimatation de la biomasse, ce dernier est

progressivement diminué jusqu'à atteindre environ 30 h. Une réduction sous forme de N₂ d'environ 1,7 g-N/m²/j est alors obtenue avec le TRH le plus court. L'accumulation de NO₃⁻ et de NO₂⁻ résiduels à ce stade pourrait être le signe que la capacité maximale du traitement était proche d'être atteinte.

4.2.6 Évaluation des consommations en réactifs

Au cours des essais de nitrification-dénitrification, les consommations en réactifs ont demeurées globalement stables. Les fortes incertitudes liées à la mesure de celles-ci expliquent en partie la dispersion des valeurs obtenues. La consommation est alors comprise entre 0,09 et 0,16 g-NH₄H₂PO₄/g-N pour le phosphore (Tableau 4.4).

Tableau 4.4 : Suivi des consommations en réactifs (en g/g-N traité) lors des essais de traitement au sein de la filière MBBR

Réactif	Réacteur	P	·1	P2		F	23	P4	P5			
NH ₄ H ₂ PO ₄	Pilote complet	0,09	0,16	0,13	0,15	0,14	0,15	0,12	0,12			
	R1	1,7	2,9	10,6	9,7	-	0	4,2	0			
Na ₂ CO ₃	R2	3,5	0,6	2,4	1,4	4,6	3,6	2,8	3,9			
	R1 + R2	2,2	1,4	3,5	2,3	4,6	3,4	2,9	3,7			
C ₁₂ H ₂₂ O ₁₁	R3		≈ 10									

L'alcalinité initiale de l'effluent testé ne suffit pas à endiguer l'acidification liée à la nitrification au sein des réacteurs. Cela est généralement le cas pour les eaux minières (Jermakka et al., 2015). Compte tenu des concentrations en SCN⁻ et N-NH₃ (les CNO⁻ et NO₂⁻ sont considérés comme négligeables) de l'ordre de 50 mg/L et de l'alcalinité de l'effluent légèrement supérieure à 100 mg-CaCO₃/L, environ 1 g-CaCO₃/g-N nitrifiable est initialement disponible. Cela est inférieur au 7,1 g-CaCO₃/g-N nécessaire (Hoang et al., 2014). L'ajout d'une solution de Na₂CO₃ est donc nécessaire. Sa consommation montre des fluctuations plus marquées que pour le PO₄³⁻ et s'élève en moyenne à 2,9 g-Na₂CO₃/g-N, équivalent à 2,7 g-CaCO₃/g-N. Cela est plus faible que ce qui était attendu. Cela peut notamment s'expliquer par l'élévation de l'alcalinité lors de l'étape de précipitation des métaux préalables aux essais de nitrification-dénitrification n'a pas été pris en compte dans ce bilan. Oscillant entre 1,4 et 4,6 g-Na₂CO₃/g-N nitrifié sur l'ensemble du pilote, les consommations au sein mêmes des réacteurs connaissent des variations encore plus importantes, allant jusqu'à 10,6 g-Na₂CO₃/g-N au sein du réacteur R1. Ces périodes de consommations plus

élevées en alcalinité correspondent à une diminution de l'activité nitrifiante au sein de ce réacteur. Elles sont alors suivies d'une nette diminution, la consommation étant alors proche de 0 lorsque ce réacteur ne permet plus que la dégradation des SCN⁻ en N-NH₃.

Le saccharose, quant à lui, est alimenté afin de fournir un ratio massique C/N de l'ordre de 3,7, soit légèrement inférieur à 10 quand exprimé en g-DCO/g-N. Cela est bien supérieures aux recommandations émises pour des sources de carbone organiques, telles que le méthanol, l'ethanol ou les acétates par exemples. Dans ces conditions, le rapport C/N est usuellement compris entre 3 et 5 g-DCO/g-N (Zaitsev et al., 2008). Des diminutions à court-terme (de l'ordre de 1 à 2 jours) du ratio C/N ont été expérimentées. Celles-ci ont menées à des augmentations de NO₃-. Cela a aussi été le cas lors de la période pour laquelle le débit d'alimentation en effluent était sous-estimé de l'ordre de 35 % (t compris entre 68 à 80 jours). Au cours de cette période, pour laquelle le rapport C/N est légèrement supérieur à 7 g-DCO/g-N, le NO₃- représente jusqu'à 25 % de l'azote total initial de l'effluent en sortie de dénitrification. Des accumulations de NO₂- ont aussi été constatées au cours de cette période. Cela est le signe d'une dénitrification incomplète dont la cause a été attribuée à un déficit en carbone organique. Le rétablissement du ratio C/N initial a alors été décidé.

4.2.7 Identificiation des processus biochimiques impliqués au cours du traitement MBBR

L'azote subit de nombreuses transformations au sein de la filière de réacteurs MBBR étudiée. L'eau alimentant le pilote est initialement composée de SCN $^-$ et N-NH $_3$ (environ 50 mg/L chacun). Cet effluent va subir une oxydation au sein de R1. L'azote y est alors quasi exlusivement sous forme N-NH $_3$. Cette évolution de la spéciation est accompagnée d'une diminution de δ^{15} N-NH $_3$, de 7,1 ‰ à 0,8 ‰ (Figure 4.16). Cette augmentation de la concentration en N-NH $_3$ accompagnée d'une diminution de δ^{15} N-NH $_3$ est typique de la dégradation biologique des SCN $^-$ (Marcotte et al., 2023). Le N-NH $_3$ est par la suite presque totalement oxydé dans le réacteur R2 (f < 0,01). Comme nous aurions pu s'y attendre dans le cas de la nitrification biologique, une augmentation de δ^{15} N-NH $_3$ est alors constatée. Celui-ci est alors de 13,2 ‰ dans le réacteur R2. Une légère augmentation de la concentration en N-NH $_3$ est constatée (f \approx 0,02) au sein du réacteur R3. Celle-ci s'accompagne d'une augmentation de δ^{15} N-NH $_3$ restent relativement stables dans le réacteur suivant (R4) ainsi que dans l'effluent traité (15,9 et 17,3 ‰ respectivement).

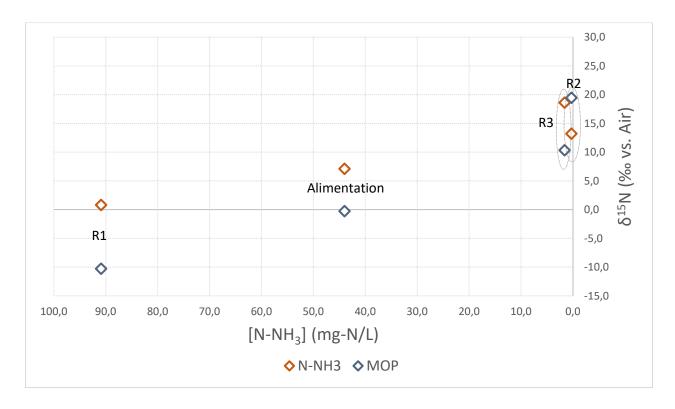


Figure 4.16 : Évolution de δ^{15} N-NH₃ et de δ^{15} N-MOP au cours des essais de traitement MBBR

La composition isotopique de la biomasse (δ^{15} N-MOP) connaît une évolution semblable à celle de δ^{15} N-NH₃. Initialement très proche de 0 ‰ dans l'effluent alimentant le pilote, δ^{15} N-POM descend jusqu'à – 10,3 ‰ dans R1 et connait une remontée, comme dans le cas de δ^{15} N-NH₃, jusqu'à atteindre 19,5 ‰ en sortie de R2. Une nouvelle diminution de δ^{15} N-POM, aux alentours de 11 ‰, est observé au sein du réacteur R3. Une raison possible est la formation de N-NH₃ par DNRA. Cette hypothèse prend une considération particulière compte-tenu de l'excès de carbone organique appliqué au sein de ce réacteur favorable au DNRA. L'augmentation de δ^{15} N-NH₃ concomitante à la diminution de δ^{15} N-POM pourrait aussi indiquer une dégradation de biomasse accumulée dans le réacteur R3. δ^{15} N-POM reste, par la suite, relativement stable au sein du réacteur R4 et dans l'effluent traité.

4.3 Essais de traitement par promotion de l'atténuation naturelle

À la vue des informations exposées dans la revue de littérature de ce présent mémoire, la promotion de l'atténuation naturelle est jugée comme étant une alternative de premier intérêt dans le cadre du traitement des contaminants azotés présents dans des effluents miniers salins. Ce choix est

notamment conforté par les faibles coûts de mise en place, comparativement à d'autres méthodes plus traditionnelles, d'une telle approche semi-passive.

4.3.1 Essai préliminaire en chambre de culture

Des essais initiaux ont été réalisés sur un effluent minier faiblement salin dans une chambre de croissance. Une augmentation significative de la turbidité a alors été observée dans l'effluent auquel une solution fertilisante avait été ajoutée (à respectivement 1, 2 et 3 mg-PO₄³⁻/L). En revanche, aucune croissance n'a été observée lorsqu'aucune solution d'engrais n'a été ajoutée.

Tableau 4.5 : Évolution des concentrations en contaminants azotés au cours des essais en chambre de culture

Contaminant	Ajout de PO ₄ ³⁻ (mg/L)	Initiale	Finale	Balance (%)
	0		< 1	- 100
g co I	1		< 1	- 100
SCN-	3	3,4	< 1	- 100
	5		< 1	- 100
	0		< 1	- 100
63.7.6	1		< 1	- 100
CNO-	3	0,2	< 1	- 100
	5		< 1	- 100
	0		13,9	- 23
	1		1,7	- 91
N-NH ₃	3	18	0,8	- 96
	5		1,3	- 93
	0		0,1	+ 16
110	1		0,1	+ 6
NO_2^-	3	0,1	0,1	+ 9
	5		0,1	+ 13
	0		0,1	+ 8
110	1		0,1	+ 2
NO_3^-	3	0,1	0,1	+ 4
	5		0,1	- 2

Ces observations sont cohérentes avec les valeurs de pH mesurées. Une augmentation de ce dernier est en effet attendue lors de la croissance des algues (Marcotte et al., 2023). Alors que le pH est

resté pratiquement constant lorsqu'aucune solution de PO₄³⁻ n'a été ajoutée, une augmentation a été observée pour les échantillons expérimentant la croissance d'algues. Ceci confirme l'hypothèse initiale selon laquelle la quantité de PO₄³⁻ initialement présente dans les effluents miniers étudiés est trop faible pour soutenir efficacement la promotion de l'atténuation naturelle. Les échantillons qui ont connu une croissance algale notable (lors de l'ajout de PO₄³⁻) ont montré une diminution significative de TN, et particulièrement de N-NH₃. Par exemple, alors que le N-NH₃ a légèrement diminué (23 %) lorsque aucun PO₄³⁻ n'a été ajouté, une diminution supérieure à 90 % a été observée pour les autres tests (Tableau 4.5). Cela confirme que l'atténuation naturelle des composés azotés pourrait être améliorée par l'ajout d'une source de PO₄³⁻.

4.3.2 Suivi des conditions opératoires des essais in-situ

Les températures des bacs ont fluctué entre 11 et 25°C au cours des essais, en raison des variations météorologiques et des moments de mesure (matin ou après-midi). Toutefois, elles sont restées homogènes entre les bacs pour une même date, garantissant des conditions similaires.

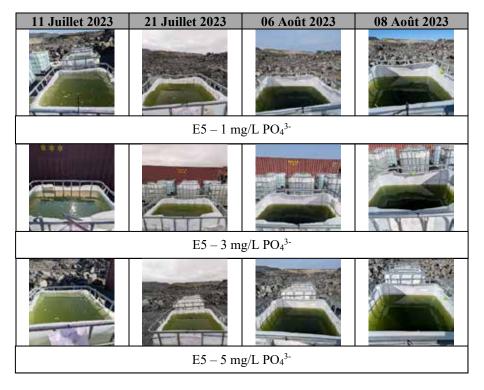


Figure 4.17 : Évolution de la turbidité au cours des essais de promotion de l'atténuation naturelle sur l'effluent minier réel E5

Les essais en plein air ont exposé les bacs à l'évaporation et aux précipitations, nécessitant un contrôle régulier des niveaux d'eau. En raison des faibles précipitations, les volumes ont diminué

de 15 à 20 %, passant de 965 (A4) -1050 L (A9) initialement à 800 (A2 et A7) -860 L (A1 et A3). Pour éviter les biais liés aux variations de concentration, les contaminants sont exprimés en masse totale plutôt qu'en concentration. La turbidité, indicatrice de la présence de matières en suspension et de microalgues, a évolué différemment selon les effluents. Stable pour E1, elle a augmenté pour E5 dès les premiers jours des essais (de 20 à 60 UFA en 7 jours). La turbidité a ensuite connu une évolution plus modérée (Figure 4.17). Dans le cas de l'effluent E4, la turbidité s'est maintenue relativement constante pendant une bonne partie des essais. L'augmentation de la turbidité a alors principalement eut lieu au cours des derniers jours des essais et s'est avéré bien plus importante lorsque des ajouts 3 et 5 mg/L de PO₄³⁻ avaient été réalisés (Figure 4.18).

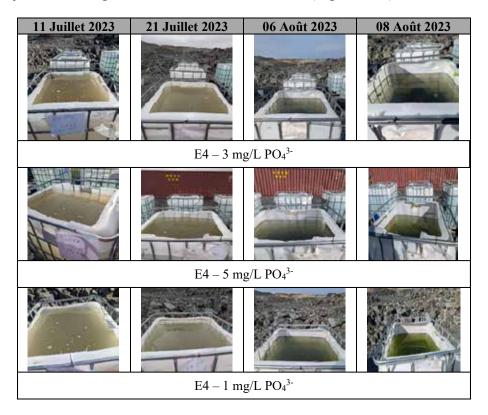


Figure 4.18 : Évolution de la turbidité au cours des essais de promotion de l'atténuation naturelle sur l'effluent minier réel E4

Le pH initial d'environ 8 est resté stable hors périodes de forte croissance algale. Pour R₅, il a augmenté jusqu'à 10 en six jours, tandis que pour E4, la hausse plus tardive (durant les 2-3 derniers jours des essais) était modérée et dépendante du dosage de PO₄³⁻. Aucune augmentation notable n'a été observée pour E1.

L'alcalinité a évolué différemment selon les effluents. Elle a diminué lors de la croissance des algues pour E5 et E4, conséquence de l'assimilation des carbonates par les algues autotrophes, mais a augmenté dans d'autres cas, notamment par dégradation des SCN⁻. Ces hausses de pH, concomitantes à des baisses d'alcalinité, observées pour E5 et au cours des derniers jours d'essai pour E4, sont cohérentes avec les observations faites dans d'autres études (Chapman et al., 2007, Marcotte et al., 2023), car ces changements sont des conséquences directes de la prolifération des algues. L'alcalinité inférieure à 50-100 mg-CaCO₃/L peut limiter la croissance des algues (Marcotte et al., 2023) et expliquer l'absence de croissance algale au début des essais sur E5 et leur développement plus tardif comparé à E4.

Le POR n'a été mesuré que les premières et dernières semaines en raison d'un dysfonctionnement de la sonde. Il est resté stable pour E1 mais a diminué pour E4 et E5, cette baisse coïncidant avec la phase de croissance des algues pour E5. L'oxygène dissous (OD) a montré des tendances distinctes selon les effluents. Il est resté stable pour E1, tandis qu'une forte augmentation a été observée pour E5 pendant la croissance algale, atteignant la limite de mesure de la sonde (15 mg O₂/L). La baisse en fin d'essais résulte du déclin de la biomasse et de la consommation d'OD par sa dégradation. Pour E4, l'OD a chuté jusqu'à des conditions quasi-anaérobies (<2 mg/L) pour les faibles dosages en PO₄³⁻, avant d'augmenter légèrement avec le développement des algues. Ces fluctuations sont également influencées par l'alternance jour-nuit, la photosynthèse augmentant l'OD le jour et la respiration le réduisant la nuit.

4.3.3 Évolution de la spéciation de l'azote

Les trois effluents testés contenaient initialement différentes charges de contaminants azotés, notamment SCN⁻ et CNO⁻, allant respectivement de 3,4 à 80 mg-N/L et de 0,2 à 53 mg-N/L (Tableau 4.6). Les concentrations de ces contaminants changent de manière significative au cours des 32 jours d'essais de croissance des algues. Le CNO⁻, par exemple, est presque complètement éliminé, même pour E1, l'effluent le plus contaminé contenant initialement 53 mg-N/L, qui n'a pas connu de prolifération d'algues. La diminution des concentrations en CNO⁻ ne semble donc pas être liée à la croissance des algues. D'autre part, les changements de concentration en SCN⁻ dépendent de l'effluent testé. Ainsi, alors qu'une diminution négligeable (< 10 %), a été observée pour E1 et E5, une nette diminution a été rapportée pour E4 (≥ 90 %). Cette réduction semble également être affectée par le dosage de PO₄³⁻ utilisé, étant d'autant plus importante que l'ajout de

PO₄³⁻ est élevé. Plus de 87% des SCN⁻ ont donc été éliminés à la fin des essais pour A1 (1 mg-PO₄³⁻/L), et même la quasi-totalité pour A3 (5 mg/L). Le suivi régulier de la masse de SCN⁻ contenue dans les différents bacs montre également que cette réduction n'est pas constante tout au long de la période d'essai. Alors qu'il n'y a pratiquement pas eu de réduction au cours des 19 premiers jours, il y a eu une forte baisse au cours des derniers jours.

Tableau 4.6 : Évolutions des masses de contaminants impliqués dans les essais de promotion de l'atténuation naturelle

Effluent			R ₄			\mathbf{R}_1			R ₅			
Dosage en PO ₄ ³⁻ (mg/L)		1	3	5	1	3	5	1	3	5		
Essais		A1	A2	A3	A4	A5	A6	A7	A8	A9		
	Initial (g)	22,8	21,7	22,5	78,4	75,6	77,6	3,3	3,3	3,5		
	Final (g)	2,5	1,9	< 0,1	71,8	72,1	76,0	3,0	3,3	3,4		
N-SCN-	Balance (g)	20,3	19,8	> 22,4	6,6	3,6	1,6	0,3	0,0	0,1		
	Enlèvement (%)	89,2	91,2	> 99,8	8,4	4,7	2,1	8,6	0,4	1,7		
	Initial (g)	6,2	5,9	6,1	53,3	51,5	52,8	0,2	0,2	0,2		
	Final (g)	< 0,1	< 0,2	< 0,2	0,9	1,7	< 0,3	0,1	< 0,1	0,1		
N-CNO	Balance (g)	> 6,1	> 5,7	> 5,9	52,4	49,8	> 52,5	0,1	> 0,1	0,1		
	Enlèvement (%)	> 98,7	> 97,7	> 97,6	98,3	96,8	> 99,5	52,7	> 66,5	43,6		
	Initial (g)	29,9	28,4	29,6	64,0	61,8	63,3	18,0	18,0	18,9		
	Final (g)	36,1	34,4	35,3	57,1	58,2	59,0	0,6	0,7	0,9		
N-NH ₃	Balance (g)	-6,3	-6,0	-5,7	6,9	3,5	4,3	17,4	17,3	18,1		
	Enlèvement (%)	-20,9	-21,0	-19,2	10,8	5,7	6,8	96,5	96,4	95,5		
	Initial (g)	< 0,2	< 0,2	< 0,2	0,3	0,3	0,3	0,4	0,4	0,4		
	Final (g)	< 0,2	< 0,2	< 0,2	0,1	0,2	0,2	0,0	0,1	0,2		
N-NO ₂ -	Balance (g)	ı	-	-	0,1	0,1	0,1	0,3	0,2	0,2		
	Enlèvement (%)	-	-	-	50,2	38,1	32,3	88,8	60,1	56,7		
	Initial (g)	4,1	3,9	4,1	21,0	20,2	20,8	0,2	0,2	0,2		
	Final (g)	< 0,1	< 0,1	< 0,1	19,1	17,6	17,7	0,3	0,3	0,3		
N-NO ₃ -	Balance (g)	> 4,0	> 3,8	> 4,0	1,9	2,6	3,1	-0,1	-0,0	-0,0		
	Enlèvement (%)	> 97,9	> 98,0	> 97,9	9,2	13,0	14,8	-28,7	-14,1	-9,1		

L'évolution de la masse de N-NH₃ contenue dans les différents bacs lors des essais in situ dépend de l'effluent étudié. Par exemple, alors que la masse de N-NH₃ contenue dans E4 tend à augmenter, en raison de l'oxydation des SCN⁻ et CNO⁻, elle diminue pour E5 durant les 20 premiers jours. Cette période correspond à une phase de croissance algale intense. Dans le cas des essais menés sur l'effluent E1, une légère diminution de N-NH₃ est constatée (≈ 5 à 10 %). Du fait de l'absence de signe d'activité biologique significative (turbidité constante, pas de formation de NO₃⁻, conditions peu favorables à la dénitrification), ce dernier résultat reste inexpliqué. Le NO₂⁻ a aussi fait l'objet d'un suivi régulier et n'a pas montré de variations significatives. Il est ainsi resté globalement négligeable dans le bilan global de l'azote.

Le NO₃⁻ est relativement constant au cours des tests effectués sur R₅. Ceci, ajouté à la diminution de N-NH₃, tend à confirmer l'hypothèse selon laquelle les algues assimilent préférentiellement N-NH₃ au lieu de NO₃⁻. Cela indique également que l'assimilation par les algues est le principal processus et que la nitrification peut être considérée comme négligeable. Les résultats des NO₃⁻ pour R₁ et R₄ sont un peu plus difficiles à interpréter. Les mesures montrent alors des variations imprévisibles. Celles-ci pourraient être partiellement attribuées à la dilution nécessaire des échantillons pour effectuer l'analyse. C'est particulièrement le cas pour R₁ qui a nécessité la plus forte dilution. De légères diminutions du NO₃⁻ semblent toutefois s'être produite.

Un bilan massique de l'azote est effectué selon les états initiaux et finaux caractérisés par les laboratoires du Bureau Veritas. Au cours des essais sur R₄, une diminution d'environ 25 g de TN est observée. La masse de SCN⁻ a diminué d'environ 20 g, tandis que 6 g de CNO⁻ ont également été éliminés. Dans le même temps, le N-NH₃ n'a augmenté que d'environ 6 g. Aucun signe de nitrification notable n'a été observé. Cette diminution de TN, environ 40 %, pourrait être en partie liée à la croissance massive des algues observée au cours des derniers jours. Même si aucune algue n'a poussé pendant les tests effectués sur R₁, l'azote total a diminué de près de 60 g. Le CNO⁻ est la principale espèce concernée (perte de 52,4 g). Comme aucune croissance d'algues n'a été observée, une augmentation équivalente de la masse de N-NH₃ (ou forme plus oxydée comme NO₂⁻ ou NO₃⁻) était attendue. Ces résultats restent inexpliqués. R₅, moins contaminée, a atteint une diminution de TN encore plus élevée (approximativement 80%). Cela correspond au traitement d'environ 18 g de TN pour chacun de ces tests. Celle-ci est principalement due à une forte diminution de N-NH₃. Ceci est cohérent avec les données mesurées sur site par colorimétrie qui

ont montré une diminution significative de ce paramètre pendant les deux premières semaines de croissance massive des algues.

4.3.4 Identification et dénombrement des souches d'algues et de bactéries

Les populations d'algues et de bactéries ont été identifiées et dénombrées par Larratt Aquatic Consulting (certificats d'analyse fournis en annexe) au début et à la fin du projet. Initialement, l'effluent R4 était dominé par des bactéries et des micro-chrysophytes. Les micro-chrysophytes dominantes comprenaient Chromulina nebulosa et Stichogloea cf. doederleinii. Les concentrations de limon et de détritus organique ont été jugées communes. R₁ était dominée par de grandes quantités de limon et contenait de faibles densités de Chromulina nebulosa et de bactéries. R5 était dominée par des bactéries et des micro-flagellés. Les micro-flagellés dominants comprennent des espèces de Chrysococcus. Cet échantillon contenait également plusieurs amiboïdes. Les concentrations de limon et de détritus organique ont été jugées communes. À la fin du projet, les échantillons A2, A3 (R4), A7, A8 et A9 (R5) présentaient des densités variables d'une efflorescence d'algues vertes, suffisamment importante pour colorer les échantillons en vert vif. L'échantillon A1 présentait une abondance de taxons similaires à ceux de ces échantillons, ainsi qu'une abondance de bactéries aquatiques. Les échantillons A4, A5 et A6 (tests sur R₁) présentaient, quant à eux, un dénombrement d'algues pratiquement nul. Ces densités de biomasse sont cohérentes avec les observations précédentes. Des cyanobactéries, présentes dans pratiquement tous les environnements aquatiques, ont aussi été observées dans les échantillons A1 (faible), A2 (faible), A3 (commun) et A7 (commun). Le risque de cyanotoxicité posé par les échantillons A1 et A2 est négligeable, tandis que les échantillons A3 et A7 présentent un risque faible. D'autres souches, comme Chrysochromulina, pourraient avoir des effets nocifs. Seules des traces ont été détectées dans les échantillons A1, A2 et A3 à des concentrations très faibles (7 - 154 cellules/mL). Le risque de toxicité de Chrysochromulina dans ces échantillons est donc négligeable. Les problèmes de toxicité ne se posent que lorsque cette algue prolifère (par exemple, ~600 000 cellules/mL).

4.3.5 Efficacité du traitement semi-passif

Les diminutions de N-NH₃ pour R₅ sont particulièrement marquées au cours des 19 premiers jours. Au cours de cette période, la masse de N-NH₃ dans les bacs est passée de près de 19 à un peu moins de 3 g de N. Ramené à la surface occupée au sol (≈ 1 m²), cela correspond à une assimilation d'environ 840 mg N-NH₃/m²/j. Sur l'ensemble de la période d'essai (32 jours), cela correspond à

une diminution de 590 mg N-NH₃/m²/j. Le SARR réel en N-NH₃ est même un peu plus élevé, car R₅ contenait à l'origine du SCN⁻ et du CNO⁻ et atteindrait alors 600 mg N-NH₃/m²/j.

Même si une croissance des algues a été observée pour les tests sur R₄, une augmentation de N-NH₃ a été observée. Ceci est dû à l'oxydation des SCN⁻ et CNO⁻. Cette augmentation n'est, en revanche, pas équilibrée par la baisse de SCN⁻ / CNO⁻, indiquant que la croissance des algues était responsable d'une consommation significative de N-NH₃, comprise entre 620 et 710 mg N-NH₃/m²/j (pour les ajouts de 1 et 5 mg-PO₄³⁻ respectivement).

4.3.6 Évaluation des consommations en réactifs

Le comportement du PO₄³⁻ a varié en fonction des tests réalisés. Par exemple, pour le traitement R₅, la concentration en PO₄³⁻ a diminué rapidement pour atteindre la concentration initiale après seulement une semaine, même pour les doses plus élevées. Ce phénomène est en adéquation avec la prolifération des algues observée durant cette période, ainsi qu'avec l'augmentation du pH, favorable à la précipitation du PO₄³⁻. Bien qu'une croissance significative des algues ait été notée à la fin des essais avec R₄, la concentration en PO₄³⁻ est restée globalement stable tout au long de la période d'expérimentation. Cette stabilité a également été constatée pour R₁, où aucune croissance notable de la biomasse n'a été observée.

4.3.7 Identification des processus biochimique impliqué au cours du traitement semi-passif

L'utilisation des données isotopiques, des $\delta^{15}N$ et $\delta^{18}O$ notamment, s'avère un outil pertinent pour l'identification de processus impliqués au cours du cycle géochimique de l'azote (Hendry et al., 2023; Marcotte et al., 2023). L'assimilation par les algues, la nitrification ou la dénitrification, par exemples, font partie des processus susceptibles d'engendrer des fractionnements isotopiques.

Une augmentation significative de δ^{15} N-NH₃ est constatée lors des premiers jours des essais menés sur E5 (essais A7, A8 et A9), passant d'environ 5 ‰ à environ 16-18 ‰, dépendamment des essais, au bout de 10 jours (Figure 4.19). Un facteur de fractionnement $\alpha_{N-NH_3}^{POM} = 0,992$, appliqué dans un modèle de Rayleigh, modélise assez fidèlement l'évolution de δ^{15} N-NH₃ au cours de cette première partie des essais. Aux vues des données existantes dans la littérature, la valeur obtenue pour $\alpha_{N-NH_3}^{POM}$ s'avère un peu élevée, celle-ci étant plus usuellement de l'ordre de 0,98 (Hendry et al., 2018). Bien que la concentration en N-NH₃ ait continué de décroitre dans un deuxième temps (jours 11 à 30),

l'évolution de δ^{15} N-NH₃ diverge fortement. Ainsi, alors qu'une faible augmentation est constatée pour l'essai A9, δ^{15} N-NH₃ diminue significativement pour A7, et dans une moindre mesure pour A8. Les valeurs de δ^{15} N-NH₃ à la fin des essais sont de 4,7, 16,3 et 20,1 ‰ pour les essais A7, A8 et A9, respectivement. Cela pourrait notamment être le signe de changements des processus biochimiques impliqués ou de leurs contributions respectives.

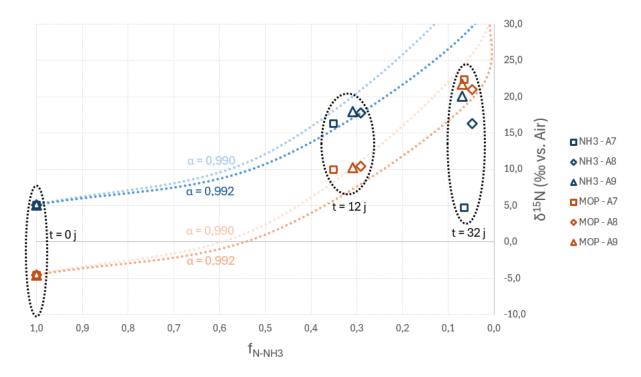


Figure 4.19 : Évolution de δ^{15} N-NH₃ et δ^{15} N-MOP au cours des essais A7 à A9 de promotion de l'atténuation naturelle

Comme l'indique Marcotte et al. (2022), l'évaporation peut mener à une mauvaise interprétation des données isotopiques du cycle de l'azote décrite au sein d'un système de Rayleigh. Cela est dû à l'effet de l'évaporation sur f, par concentration des contaminants résiduels. Dans le cas des présents essais, l'évaporation s'est avérée non négligeable (de l'ordre de 15 à 20 %). Un changement de la définition de la fraction résiduelle f prenant alors en compte les masses de contaminants en présence (équation 4.1) au lieu des concentrations doit permettre de pallier ce problème.

Équation 4.1 :
$$f_{corr} = \frac{m_t}{m_i} = \frac{c_t * V_t}{c_i * V_i}$$

Dans le cas des présents essais, cette correction apporte peu de changements, l'ensemble des données restant modélisables, au sein d'un système de Rayleigh, par un processus dont le facteur de fractionnement $\alpha_{N-NH_2}^{POM} = 0.991$.

Au cours de la deuxième partie des essais (t > 12 j), bien que δ^{15} N-MOP continue de suivre une évolution vraisemblablement imputable au développement biologique, l'assimilation ne permet plus de décrire l'évolution de δ¹⁵N-NH₃. Cela renforce l'hypothèse voulant qu'un nouveau processus soit impliqué dans l'évolution des concentrations et de la composition isotopique de N-NH₃. Aucune accumulation notable de NO₂ ou de NO₃ n'étant constatée, la piste de la nitrification est peu probable, d'autant plus avec le pH atteint (≈ 10) au cours de cette période. L'élévation de ce dernier a en revanche fait évoluer la spéciation de N-NH₃, NH₄⁺ étant majoritaire au début des essais (pH_i = $8 < pK_a(NH_4^+/NH_3)$) et NH₃ au bout de quelques jours. La piste de la volatilisation serait donc plus réaliste. Outre les conditions de pH, l'exposition des bacs au soleil et au vent, ainsi que l'échange permanent d'O2 des eaux sursaturées vers l'atmosphère peuvent, eux aussi, avoir promu la volatilisation. Ce processus implique cependant préférentiellement le ¹⁴N. Une augmentation de δ¹⁵N-NH₃ est donc attendue dans le pool résiduel de N-NH₃. La sorption pourrait pour sa part expliquer une diminution de δ^{15} N-NH₃. Bien que le pH à la fin des essais et donc de la spéciation de N-NH₃, NH₄⁺ étant fortement minoritaire, n'y soient pas favorables, la sorption de N-NH₃ sur la biomasse pourrait être un processus prépondérant. Comme le mentionne Marcotte et al. (2022), une diminution de δ^{15} N-NH₃ peut aussi parfois être imputable à la dégradation de SCN⁻ et de CNO-.

Les données isotopiques $\delta^{15}N$ et $\delta^{18}O$ des NO_3^- sont aussi sources d'intérêt (Figure 4.20). Ceux-ci connaissent une légère augmentation de $\delta^{15}N$, associée à une diminution de $\delta^{18}O$ au cours des premiers jours d'essais. Cela invalide l'hypothèse de l'existence d'assimilation de NO_3^- au cours de cette phase. Les augmentations concomitantes de $\delta^{15}N-NO_3^-$ et de $\delta^{18}O-NO_3^-$ dans un deuxième temps pourraient, en revanche, laisser penser que l'assimilation de NO_3^- a lieu. Les pentes obtenues à l'aide de la représentation de l'évolution de $\delta^{15}N-NO_3^-$ en fonction de celle de $\delta^{18}O-NO_3^-$ sont de 0,44, 0,14 et 0,21 pour A7, A8 et A9 respectivement. Cela est faible aux vues des données existantes dans la littérature, celles-ci étant plutôt de l'ordre de 0,5 à 0,6 pour l'assimilation des NO_3^- dans des eaux salines et de l'ordre de 1 pour les eaux douces (Granger et al., 2004). Plus encore que pour les données relatives à N-NH₃, les suivis par colorimétrie des NO_3^- sont entachés de nombreuses incertitudes ayant pu fausser ces valeurs, qui nécessiterait alors confirmation. Cela

est tout de même cohérent avec la diminution des concentrations en NO₃⁻ observées au cours de la deuxième partie des essais principalement et des études existantes, faisant état d'une possible assimilation des NO₃⁻ après épuisement de N-NH₃ (Li et al., 2022). La diminution des concentrations en NO₃⁻, ainsi que les conditions (OD, POR) oxydantes observées, invalident pour leur part l'existence de nitrification ou de dénitrification.

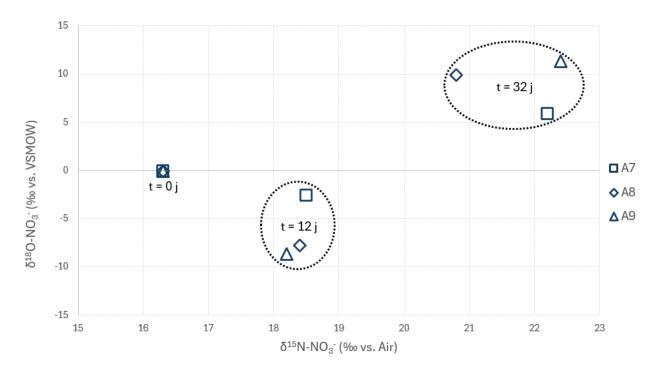


Figure 4.20: Évolutions de δ^{15} N-NO $_3$ et δ^{18} O-NO $_3$ au cours des essais A7 à A9 de promotion de l'atténuation naturelle

Dans le cas des essais A1 à A3, les évolutions de N-NH₃ et de sa composition isotopique ne peuvent être modélisées à l'aide des équations de Rayleigh. En effet, la présence non-négligeable de SCN- et CNO- induit une augmentation en N-NH₃ au cours des essais. Cela reviendrait à une augmentation graduelle de la fraction résiduelle f au cours des essais, celui-ci étant constamment supérieur à 1. Une modification de la définition f_{corr} (Équation 4.2) de f est alors apportée afin de tout de même permettre une représentation graphique (Figure 4.21).

Équation 4.2:
$$f_{corr} = \frac{\sum (SCN^- + CNO^- + N - NH_3)_t}{\sum (SCN^- + CNO^- + N - NH_3)_0}$$

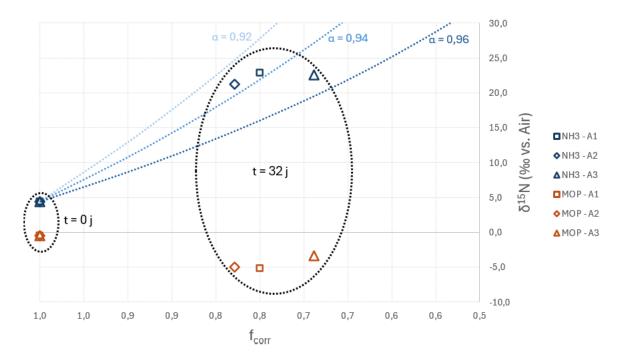


Figure 4.21 : Évolution de $\delta^{15}N$ de N-NH3 et de la biomasse lors des essais A1 à A3 de promotion de l'atténuation naturelle

Ayant initialement un δ^{15} N de l'ordre de 5‰, N-NH₃ connaît un enrichissement en 15 N au cours des essais A1 à A3. δ^{15} N-NH₃ s'établit alors à environ 22 ‰ à la fin des essais. L'augmentation de δ^{15} N-NH₃ constatée est cohérente avec un processus d'assimilation de N-NH₃ par les algues. Cela correspondrait toutefois à un processus dont le facteur de fractionnement $\alpha^{POM}_{N-NH_3}$ serait de 0,94, soit un enrichissement $\varepsilon^{POM}_{N-NH_3}$ de 60 ‰. Cela est significativement plus élevé que les valeurs rapportées dans la littérature. Comme le mentionne Marcotte et al. (2022), cette surestimation est principalement due à la présence initiale de SCN⁻ et de CNO⁻. Les souches d'algues ainsi que leurs dénombrements finaux étant assez similaires pour les essais A1 à A3 à ceux obtenus pour A7 à A9, une valeur de $\alpha^{POM}_{N-NH_3}$ de l'ordre de 0,991 devrait être plus fidèle pour la modélisation de l'assimilation au cours des essais A1 à A3.

4.3.8 Essais de dégradation des algues

Le 10 août 2023, 15 L de chacun des tests de croissance d'algues réalisés sur site ont été prélevés dans des seaux opaques et hermétiquement fermés. Dès leur réception, ces échantillons ont été stockés en chambre froide. Un suivi régulier, comprenant la mesure de la température, du pH, du POR, de l'OD et des composés azotés, a été effectué au moins une fois toutes les trois semaines

pour évaluer l'impact de la dégradation des algues sur la qualité de l'eau. À l'exception des premiers jours (avant la réception des seaux), les échantillons ont été maintenus à une température constante entre 4 et 5°C.

L'évolution du pH a varié d'un échantillon à l'autre. Pour l'échantillon R₁, où aucune croissance d'algues n'a été observée, le pH est passé de 8,5 à 9 durant les premiers jours (avant l'entrée en chambre froide), avant de redescendre à sa valeur initiale le mois suivant et de se stabiliser pour le reste des essais. En revanche, pour l'échantillon E5, où la croissance des algues a été similaire indépendamment du dosage de PO₄³⁻ utilisé, une forte baisse du pH a été observée durant la période de transport (de 9,8 à 6,8), suivie d'une diminution plus modérée pendant le mois suivant, pour se stabiliser ensuite autour de 6,5. Dans les essais effectués avec E4, la croissance des algues a été modérée avec un dosage de 1 mg/L de PO₄³⁻, tandis que le bloom a été atteint avec les dosages de 3 et 5 mg/L. Ce phénomène explique que le pH initial soit plus faible (7,8) pour le dosage de 1 mg/L, par rapport à 8,4 pour 3 mg/L et 9,0 pour 5 mg/L. Une diminution du pH a été observée au cours des tests de dégradation pour ces trois dosages. Tandis que cette diminution est survenue au cours du premier mois pour les essais avec E1 et E5, elle a pris plus de temps (environ 3 à 4 mois) pour les essais dans lesquels un bloom algal avait été observé avec E4. Malgré les différences dans l'évolution du pH selon l'effluent et le dosage de PO₄³⁻, les pH finaux restent conformes aux normes de rejet en milieu naturel (Gouvernement du Canada, 2025 ; Gouvernement du Québec, 2025).

Bien que le POR et l'OD aient été contrôlés régulièrement, les données collectées sont difficiles à interpréter en raison de problèmes techniques liés à la sonde utilisée, rendant les mesures instables et difficiles à reproduire. Néanmoins, une tendance générale semble se dessiner. Tous les tests ont montré un POR relativement constant. Les mesures d'OD, bien qu'affectées par des erreurs, indiquent également des tendances générales. Par exemple, pour E1, où aucune dégradation de la biomasse n'était attendue, les valeurs constantes du POR et de l'OD sont cohérentes avec l'absence de dégradation. Pour les tests E4 et E5, bien que des proliférations algales aient eu lieu, aucune baisse substantielle de l'OD n'a été observée, contrairement à ce qui était attendu lors de la dégradation des matières organiques. Toutefois, une augmentation des concentrations de N-NH3 a été observée. Dans le cas de l'effluent E5, la concentration initiale en N-NH3 était de 18 mg/L avant les essais de promotion de l'atténuation naturelle et celle-ci a chuté à 1 mg/L à la fin des essais, avec une remobilisation d'environ 30 % de la contamination assimilée durant les 5 mois d'essais de

dégradation. L'augmentation de N-NH₃ de 5 mg/L observée est similaire à celle notée pour les essais réalisés sur l'effluent E4.

4.3.9 Essais de récupération des algues par coagulation-floculation

La récupération des matières en suspension (MES) a été réalisée à l'aide de divers coagulants (polychlorure d'aluminium, PAC, et sulfate ferrique, Fe₂(SO₄)₃) ainsi que de floculants (polymères anioniques et cationiques) à différents dosages. Un coagulant-floculant moins conventionnel, le chitosane, a également été testé. Le pH de l'effluent a été ajusté, si nécessaire, par l'ajout de NaOH. Les essais ont été effectués en ajoutant des dosages variés de coagulants (PAC et Fe₂(SO₄)₃) accompagnés de 0,5 mL de solution de polymère (anionique ou cationique) à 10 g/L par litre d'effluent. Dans les expériences utilisant du Fe₂(SO₄)₃ à 100 g/L, des ajouts de 0,5 mL ont conduit à une réduction significative de la turbidité, particulièrement à un pH légèrement alcalin, lorsque combiné avec un polymère cationique. Ce dosage correspond à une concentration de 100 mg/L de Fe₂(SO₄)₃. Cependant, pour la récupération efficace de la biomasse, des pH plus fortement alcalins sont requis lorsqu'un polymère anionique est utilisé, rendant ce dosage inadapté à la récupération des MES dans des conditions neutres ou légèrement alcalines. À l'inverse, un ajout de 1 mL de $Fe_2(SO_4)_3$ a permis de réduire significativement la turbidité pour un pH légèrement alcalin ($\approx 8,5$). Les dosages nécessaires lors de l'utilisation du PAC comme coagulant sont généralement plus faibles. En effet, sauf à des pH élevés, non adaptés pour le rejet de l'effluent dans l'environnement naturel, les ajouts de 0,02 et 0,05 mL de PAC n'ont pas entraîné de diminution significative de la turbidité. Toutefois, un ajout de 0,1 mL de PAC a permis une réduction substantielle de la turbidité lorsque le pH était compris entre 5,5 et 8,5, quel que soit le polymère utilisé. Pour le chitosane, le dosage nécessaire était plus élevé, un ajout de plus de 6 mL (60 mg/L) étant requis pour atteindre une récupération de la biomasse supérieure à 80 %. Cependant, le chitosane présente l'avantage de pouvoir agir simultanément comme coagulant et floculant, et son efficacité semble moins sensible aux variations de pH de l'effluent. L'approvisionnement peut en revanche s'avérer difficile. Le PAC, associé au polymère cationique, donne la meilleure efficacité de récupération de la biomasse. Il démontre aussi une bonne efficacité pour des pH compris entre 7 et 9. Cela peut engendrer une diminution des besoins en ajustement du pH et donc limiter les coûts de traitement. L'utilisation de PAC est donc recommandée.

En comparaison avec des données de la littérature (Matter et al., 2019), les dosages nécessaires (Tableau 4.7) pour une récupération optimale des MES semblent légèrement plus élevés. Cette différence pourrait être attribuée à la présence d'EDTA dans l'engrais utilisé pour l'ajout de PO₄³-, ainsi qu'à la présence d'autres agents chélatants, comme NH₄+, dans les échantillons traités dans le cadre de cette étude.

Tableau 4.7 : résultats des essais de récupération de la biomasse

Effluent (mL)	Coagulant (dosage)	NaOH (mL)	Polymère (mL)	Sable (g)	pН	Turbidité (FTU)	MES (mg/L)
500	Eau brute			5,98	11,6	37	
500	Fe ₂ (SO ₄) ₃ (0,5 mL)	1	Cationique (0,5 mL)	5	7,06	5,3	-
500	Fe ₂ (SO ₄) ₃ (0,5 mL)	1,5	Cationique (0,5 mL)	5	8,63	2,7	8,2
500		Eat	u brute		6,74	11,8	42
500	Fe ₂ (SO ₄) ₃ (0,5 mL)	0,5	Anionique (0,5 mL)	5	7,35	26,8	-
500	Fe ₂ (SO ₄) ₃ (1 mL)	1	Anionique (0,5 mL)	5	8,54	2,29	8,4
500	Fe ₂ (SO ₄) ₃ (1 mL)	1	Anionique (0,5 mL)	5	8,41	2,02	7,8
500		Ear	u brute		5,98	11,6	37
500	PAC (0,1 mL)	0,5	Cationique (0,5 mL)	5	6,73	0,38	1,0
500	PAC (0,1 mL)	1	Cationique (0,5 mL)	5	8,24	0,50	1,8
500		Ear	u brute		7,07	13,43	42
500	PAC (0,1 mL)	0,5	Anionique (0,5 mL)	5	6,61	0,57	1,2
500	PAC (0,1 mL)	1	Anionique (0,5 mL)	5	8,91	1,94	6,6
500		Ear	u brute		-	10,2	37
500	Chitosane (0,5 mL)	5	-	9,16	-	5	-
500	Chitosane (1 mL)	5	-	7,95	-	5	-
500	Chitosane (2 mL)	5	-	6,38	-	5	-
500	Chitosane (3 mL)	5	-	5,35	-	5	-
500	Chitosane (4 mL)	5	-	4,12	-	5	-
500	Chitosane (6 mL)	5	-	1,96	7,8	5	-
500	Chitosane (8 mL)	5	-	1,09	4,3	5	-
500	Chitosane (10 mL)	5	-	0,49	2,4	5	-

CHAPITRE 5 SYNTHÈSE

Lors du choix d'une méthode de traitement des contaminants azotés dans les eaux minières, plusieurs paramètres fondamentaux doivent être pris en compte afin d'assurer une efficacité optimale et une intégration adéquate au contexte environnemental et opérationnel. L'analyse des essais réalisés (Tableau 5.1) met en évidence plusieurs critères déterminants. Le premier facteur concerne la nature du traitement requis. L'ozonation à microbulles et la nitrification (précédée, si nécessaire, d'une oxydation de SCN- et de CNO-) assurent uniquement l'oxydation du N-NH3 en NO₃-, ce qui ne constitue pas un enlèvement complet du contaminant mais seulement un changement de sa spéciation. L'accumulation de nitrates peut engendrer des impacts environnementaux indésirables, tels que l'eutrophisation des milieux aquatiques et la contamination des eaux souterraines (Bailey et al., 2013). La promotion de l'atténuation naturelle, quant à elle, favorise principalement l'assimilation de l'azote sous forme de biomasse algale ou microbienne (Vymazal, 2007). Cela est confirmé par les résultats des dénombrements biologiques et l'analyse des données isotopiques (δ^{15} N-NH₃, δ^{15} N-NO₃ et δ^{15} N-POM) issues des essais menés au cours de ce projet. Cette immobilisation temporaire n'élimine toutefois pas complètement l'azote du système, car la décomposition de la biomasse peut entraîner une remobilisation partielle des nutriments, notamment lors des phases de mortalité cellulaire et de dégradation de la matière organique (Chapman et al., 2007; Marcotte et al., 2023). Des essais menés lors de ce projet de maitrise indiquent que la biomasse peut être facilement récupérée par coagulation-floculation à l'aide de divers coagulants et floculants usuels (Fe2SO4, PAC et polymère anionique ou cationique).

La dénitrification biologique est une autre méthode viable pour assurer un véritable enlèvement des contaminants azotés. Toutefois, cette étape reste fréquemment incomplète, notamment lorsque le saccharose est utilisé comme source de carbone organique (Phung et al., 2014). Lors des essais MBBR (nitrification-dénitrification) menés sur neuf mois, une réduction moyenne de 85 % du TN a été observée. Celle-ci peut, cependant, s'accompagner d'accumulations ponctuelles de N-NH3 et/ou de NO2⁻. Ces déséquilibres illustrent la nécessité d'un contrôle rigoureux des conditions opératoires, typique des procédés biologiques (Hoang et al., 2014 ; Kwoffie et al., 2021). Parmi ces paramètres critiques, le choix et le dosage du carbone jouent un rôle central. Un dosage supérieur à 7,5 mg-DCO/g-N à dénitrifier est nécessaire dans les conditions appliquées (utilisation de saccharose, TRH, température) lors des essais MBBR. Cela est notamment mis en avant par les

accumulations de NO₂ et de NO₃, signes d'une dénitrification incomplète, constatées lors de l'application d'un tel dosage (à t compris entre 68 et 90 jours). Un excès de carbone, notamment lorsque le saccharose est utilisé, peut favoriser ces accumulations indésirables (De Filippis et al., 2013). Cette dernière étude suggère aussi que des substrats tels que le méthanol ou l'acide acétique pourraient non seulement limiter ces phénomènes, mais aussi réduire le temps de rétention hydraulique nécessaire à la conversion des nitrates. Selon Lorrain et al. (2004), le saccharose reste utilisable pour la dénitrification, mais son efficacité est nettement inférieure à celle de l'acétate ou de l'éthanol, avec des taux de dénitrification jusqu'à 2,5 fois plus faibles. Cette performance réduite s'explique par sa structure chimique complexe. En tant que disaccharide, le saccharose doit être hydrolysé en glucose et en fructose avant d'être assimilé par les bactéries dénitrifiantes, ce qui freine sa biodisponibilité. L'étude rapporte d'ailleurs une accumulation de ces monosaccharides, signe de cette assimilation différée. L'utilisation directe de glucose ou de fructose, plus simples et directement assimilables, constituerait alors une alternative plus efficace. Bien qu'ils n'aient pas été testés individuellement dans cette étude, les résultats exposés soulignent la supériorité des substrats facilement biodisponibles, justifiant leur préférence face au saccharose dans un contexte de dénitrification optimisée. Par ailleurs, des études ont montré que les conditions de forte disponibilité en carbone ou de faible concentration en nitrate peuvent favoriser la réduction dissimilatoire des nitrates en ammonium (DNRA), menant à une accumulation de N-NH₃ (van den Berg et al., 2015; Kraft et al., 2014), au détriment de la dénitrification. Cette compétition entre DNRA et dénitrification dépend également des concentrations relatives en nitrite et en nitrate, influençant le métabolisme bactérien selon les conditions du milieu (van den Berg et al., 2017). Ainsi, un apport excessif de carbone peut non seulement ralentir la dénitrification mais également orienter le métabolisme microbien vers la voie DNRA, réduisant l'efficacité globale du procédé en termes d'élimination nette de l'azote. Une diminution de l'apport en carbone organique pourrait alors permettre de limiter ces accumulations de N-NH3 observées lors des essais menés de nitrification-dénitrification MBBR et ainsi limiter les risques associés de toxicité. Cela devrait aussi favoriser la nitrification au sein du réacteur R4, dédié à la réaération de l'effluent. Une diminution de l'inhibition, particulièrement marquée pour les bactéries de type NOB (conduisant donc à de possibles accumulations de NO₂-), liée à la présence de NH₃ non ionisé pourrait en partie l'expliquer (Anthonisen et al., 1976; Villemur et al., 2015). Le maintien du pH, lors de cette étape du traitement, à des valeurs plus faibles pourrait conduire à des effets semblables (Anthonisen et al., 1976) mais constituerait de nouveaux coûts de traitement. Les travaux menés par Schopf et al. (2018) mettent en avant l'inhibition potentielle de la nitrification lors de la présence élevée de carbone organique. Celle-ci est principalement due, selon les auteurs, à une stratification des populations biologiques. Cette disposition de la biomasse a été observée lors des essais MBBR menés (Figure 5.1). Les populations nitrifiantes se retrouvent alors cantonner au sein des couches inférieures, pouvant mener à une diminution de l'activité nitrifiante liée à une insuffisance de l'OD notamment (Schopf et al., 2018).

Figure 5.1 : Photographie d'un média du réacteur R4 montrant une stratification des populations biologiques

La charge à traiter est un autre paramètre clé influençant le choix du procédé à adopter. Lors des essais menés au cours de ce projet, l'atténuation naturelle a montré une capacité de traitement du N-NH₃ d'environ 700 mg-N/m³/j (rapporté au volume d'eau des essais), comparable aux résultats obtenus par une autre étude menée à plus grande échelle dans un bassin peu profond (< 10 m; Marcotte et al., 2023). En comparaison, la biodégradation des SCN⁻ dans la filière de réacteurs MBBR testée atteint environ 3,5 g-N/m²/j (rapporté à la surface de garnissage), tandis que le traitement du N-NH₃ par nitrification est de 0,6 g-N/m²/j et que la dénitrification permet un enlèvement de 1,7 g-N/m²/j. À titre comparatif, une oxydation semblable de N-NH₃ en NO₃⁻, comprise entre 0,35 et 0,70 g-N/m²/j, a été obtenue pour une autre étude ayant portée sur la nitrification au sein d'un réacteur MBBR (Ren et al., 2025) en condition hivernale. Cela démontre de l'importance cruciale de la température sur l'efficacité des procédés biologiques. Les essais de

traitement menés par ozonation à microbulles se distinguent par des performances nettement supérieures, atteignant jusqu'à 250 g-N/m³/j. Cette méthode est donc particulièrement adaptée aux charges élevées et aux eaux à forte teneur en azote ammoniacal. Une cinétique accrue a d'ailleurs été constatée pour ce type de traitement pour des effluents fortement contaminés (Khuntia et al., 2013; Ryskie et al., 2020). Cela est confirmé par les résultats des différents essais menés. Les capacités de traitement influencent directement l'empreinte spatiale des procédés. L'ozonation et, dans une moindre mesure, le réacteur MBBR, permettent alors une intensification du traitement dans des unités compactes, tandis que l'atténuation naturelle nécessiterait de vastes bassins ou une période prolongée pour atteindre un niveau de traitement équivalent. Toutefois, cette dernière peut être mise en œuvre directement dans des bassins de rétention existants, réduisant ainsi les coûts d'infrastructure (Chapman et al., 2007). Du fait de sa faible consommation en réactifs et en énergie, l'atténuation naturelle constitue une solution économiquement viable pour le traitement des charges modérées en contaminants azotés, notamment sur des sites orphelins ou en phase de fermeture (Chapman et al., 2007), où la maintenance à long terme des installations peut être une contrainte importante. Le traitement des contaminants azotés peut cependant se limiter à l'épilimnion (inférieure à 10 m de profondeur; Marcotte et al., 2023). La mise en place d'une aération forcée du bassin peut permettre d'y remédier (Marcotte et al., 2023) mais aussi fortement diminuer l'intérêt économique d'un traitement par promotion de l'atténuation naturelle. La stabilité de la charge à traiter est aussi à prendre en compte, notamment pour les procédés biologiques particulièrement sensibles aux variations de chimie des effluents (Koren et al., 2000; Jermakka et al., 2015; Kwofie et al., 2021).

La présence d'inhibiteurs biologiques, notamment certains métaux comme le cuivre, peut également impacter la sélection du procédé. Le cuivre est un inhibiteur majeur des processus biologiques dès des concentrations aussi faibles que 0,1 mg/L, entraînant une inhibition de la croissance et de l'activité enzymatique (Skinner et Walker, 1961). Lors des essais réalisés sur l'effluent E5 (Cu ≈ 1 mg/L), un développement des populations algales a tout de même été observée. La promotion de l'atténuation naturelle semble ainsi faire preuve d'une plus grande résilience à la toxicité du cuivre que les traitements biologiques classiques. L'ozonation à microbulles, moins sensible aux métaux et métalloïdes (Ryskie, 2017), demeure une autre alternative viable, bien que certains métaux puissent réagir avec les radicaux libres générés, favorisant la formation de complexes métalliques toxiques (Ryskie et al., 2023). Dans ce cas, une

étape préalable de coagulation-floculation est recommandée pour précipiter ces contaminants avant l'oxydation avancée (Ryskie et al., 2023).

La salinité constitue un autre facteur influençant les procédés biologiques, notamment la nitrification et la dénitrification (Navada et al., 2021). À titre d'exemple, des concentrations en sels dépassant 10% peuvent drastiquement inhiber l'activité des bactéries nitrifiantes (Bassin et al., 2012; Navada et Vadstein, 2022) en raison du stress osmotique provoqué. Toutefois, malgré une conductivité électrique initiale élevée (5,6 mS/cm) dans l'effluent E1, témoin d'une forte salinité, le procédé MBBR a permis un enlèvement du TN supérieur à 80 %. Cela suggère une bonne adaptation de la biomasse aux conditions salines lors des essais. En revanche, aucune croissance algale n'a été observée dans ce même effluent, ce qui a limité grandement l'enlèvement du N par assimilation biologique. Il est probable que cette absence de développement des algues soit davantage liée à la forte concentration en cuivre (10 mg/L). Cette hypothèse est confirmée par les résultats d'une étude parallèle sur un effluent similaire (Marcotte et al., 2023) où une efflorescence algale a été observée malgré des niveaux de salinité comparables. Ce paramètre impacte de manière bien moins significative les performances de traitement par ozonation à microbulles (Marcotte et al., 2020). La présence de Cl⁻ et de Br⁻ est même supectée avoir un effet catalytique sur l'oxydation des contaminants azotés par ozonation à microbulles (Khuntia et al., 2013; Ryskie, 2017). Les essais menés au cours de ce projet n'ont cependant pu vérifier l'implication des Cl-, aucune formation de (per)chlorate n'ayant été constatée.

La production de matières en suspension (MES) constitue un paramètre crucial influençant la qualité de l'eau traitée et les besoins en post-traitement. L'ozonation à microbulles génère peu de MES (Ryskie, 2017). Celles-ci, certainement des nanoparticlues métalliques, peuvent en revanche présenter une toxicité pour *Daphnia Magna* notamment (Ryskie et al., 2023). Une précipitation par coagulation-flocculation en amont de l'ozonation est alors préférable (Ryskie et al., 2023). Au contraire, dans les procédés biologiques, tels que la nitrification-dénitrification MBBR et l'atténuation naturelle, la biomasse en suspension et les sous-produits métaboliques peuvent s'accumuler (Chapman et al., 2007; Marcotte et al., 2023). Une dégradation excessive de cette biomasse peut entraîner une remobilisation des contaminants initialement assimilés, augmentant le risque de relargage de l'azote dans le milieu (Chapman et al., 2007). Cette problématique peut être atténuée par des procédés de séparation solides-liquides tels que la coagulation-floculation suivie d'une décantation ou d'une filtration (Matter et al., 2019; Ali et al., 2022). Les essais menés ont

montré que l'utilisation de coagulants conventionnels, comme le PAC ou le sulfate ferrique, associés à des polymères anioniques ou cationiques, permet un enlèvement efficace (>90 %) des MES pour des pH neutres à légèrement alcalins, tandis que le chitosane, un biopolymère naturel aux propriétés coagulantes et floculantes, offre un enlèvement légèrement moindre mais présente l'avantage de ne pas nécessiter d'ajustement du pH.

Les trois méthodes testées pour le traitement du N-NH₃ présents dans les eaux minières présentent des profils de coûts contrastés en matière de consommation énergétique, d'utilisation de réactifs et d'investissements en infrastructures. L'ozonation à microbulles se distingue par une efficacité de traitement très élevée, mais elle est aussi la plus consommatrice en énergie, principalement en vue de la génération d'ozone sous forme de microbulles (Takahaski et al., 2012). Elle nécessite des unités spécialisées et compactes, impliquant des coûts d'infrastructure élevés, bien que compensés partiellement par un encombrement réduit et une cinétique rapide de traitement, avantageuse pour les sites à forte charge ou contraints en espace (Jermakka et al., 2015). Le procédé MBBR (Moving Bed Biofilm Reactor) repose sur une nitrification-dénitrification biologique, avec des consommations modérées en énergie, principalement liées à l'aération (Wang et al., 2019). Il requiert toutefois des apports réguliers en PO43-, en alcalinité et en carbone organique, ce qui représente des coûts récurrents en réactifs non-négligeables. Les infrastructures nécessaires, bien que plus complexes que pour l'atténuation naturelle, sont moins coûteuses que pour l'ozonation, avec une empreinte spatiale raisonnable et une automatisation accessible (Jermakka et al., 2015). Enfin, la promotion de l'atténuation naturelle est la méthode la moins coûteuse en énergie et en réactifs (Chapman et al., 2007; Ali et al., 2022), puisqu'elle s'appuie sur des processus biologiques spontanés. Elle peut souvent être mise en œuvre dans des bassins de rétention d'eaux déjà existants (Chapman et al., 2007), ce qui en fait une solution peu coûteuse en infrastructures. Cependant, elle requiert des surfaces importantes et des temps de traitement prolongés, ce qui peut limiter son efficacité ou son applicabilité sur les sites à forte charge ou soumis à des contraintes de temps ou d'espace (Chapman et al., 2007).

En conclusion, le choix de la méthode de traitement doit être basé sur une évaluation rigoureuse des besoins en traitement, des charges de contaminants, des contraintes environnementales et des interactions avec les paramètres physico-chimiques de l'effluent. La Figure 5.2 fournit ci-dessous donne une représentation graphique des principaux avantages et inconvénients des trois méthodes de traitement testées. Celles-ci sont ainsi évaluées sur différents critères (les notes fournies varient

de 0 corespondant à un état nul, à 3 dénotant d'un niveau élévé. L'ozonation à microbulles tire ainsi l'une de ses principales forces de sa cinétique élevée. Cela permet des installations dédiées au traitement plus compactes. Elle est aussi plus résiliente face à la présence d'inhibiteurs biologiques. Les métaux et métalloïdes en font partie. Aussi, bien que ces derniers impactent peu l'efficacité du traitement par ozonation à microbulles, ils peuvent mener à la formation de colloïdes toxiques. À l'image du procédé biologique MBBR, un traitement préalable par coagulation-floculation est alors conseillé (Marcotte et al., 2023). L'ozonation à microbulles est, de plus, entachée par des coûts importants du traitement (Marcotte, 2020), que ce soit en infrastructures, en réactifs et en énergie.

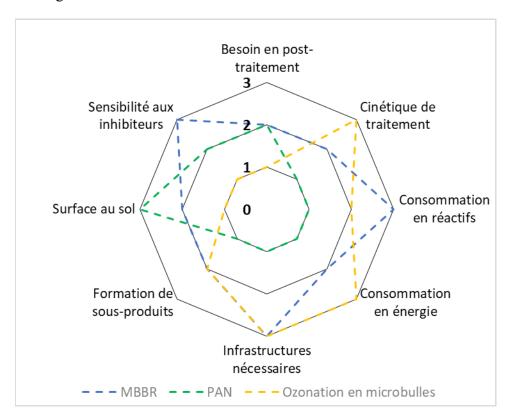


Figure 5.2 : Principaux avantages et inconvénients des méthodes testées pour le traitement des contaminants azotés

Le procédé biologique MBBR démontre, quant à lui, une cinétique de traitement plus modérée. Il nécessite, de plus, l'ajout de nombreux réactifs. Le PO₄³⁻ étant généralement limitant dans les eaux minières pour la croissance biologique, une source doit être ajoutée. Le pH doit, de plus, être maintenu aux alentours de 7,5 lors de la nitrification (Alleman et al., 1984) par ajout d'un produit alcalin. Une source de carbone organique est aussi nécessaire lors de la dénitrification. Ces

différents points justifie en partie les forts coûts de cette méthode de traitement. À ceux-ci s'ajoutent une consommation énergétique élevée, principalement pour l'aération des réacteurs, pouvant représenter jusqu'à 70 % du coût global de traitement (Wang et al, 2019), et un besoin important en infrastructures et matériels. Cela inclue généralement une étape de post-traitement pour la clarification des boues générées. Bien que le 5ème réacteur de la filière MBBR des présents essais ait été prévue à cette fin, l'anoxie au sein de ce réacteur, liée à l'accumulation de boues qui y a lieu, a conduit à des épisodes d'émissions de H₂S et donc à son démantèlement. La nitrification-dénitrification biologique reste cependant généralement considérée comme la plus économiquement viable afin de traiter efficacement les contaminants azotés dans les eaux minières (Jermakka et al., 2015; Hoang et al., 2014).

La promotion de l'atténuation naturelle, pour finir, bénéficie d'une réelle simplicité de mise en place. Un simple ajout de PO₄³⁻ peut alors permettre de traiter le N-NH₃ efficacement. Elle peut avoir lieu directement au sein des bassins de rétention des eaux, participant ainsi aux faibles coûts. Celle-ci peut en revanche être fortement limitée dans les eaux profondes, supérieures à une dizaine de mètres (Chapman et al., 2007; Marcotte et al., 2023). Cela peut être corrigée par ajout de systèmes d'aération (Chapman et al., 2007; Marcotte et al., 2023) mais amenuise légèrement l'intérêt économique du procédé. La promotion de l'atténuation naturelle ne peut, de plus, pas être utilisée pour tout type d'effluents miniers. L'absence de croissance d'algues lors des essais menés sur l'effluent le plus contaminé en est la démonstration. Une alcalinité insuffisante peut aussi compromettre le traitement. Les travaux menés semble d'ailleurs confirmer l'hypothèse, émise par d'autres travaux (Marcotte et al., 2023), qu'une alcalinité minimale de l'ordre de 80 mg-CaCO₃/L est nécessaire. Cette méthode est de plus limitée par sa très faible cinétique. Ainsi, alors que l'ozonation à microbulles et, dans une moindre mesure, le MBBR permettent un traitement efficace des charges élevées avec un encombrement réduit, l'atténuation naturelle constitue une solution viable seulement pour des charges plus modérées, notamment dans des contextes de fermeture de site (Chapman et al., 2007) où la réduction des coûts d'exploitation et de maintenance peut s'avérer primordiale.

Tableau 5.1 : Synthèse des différents résultats obtenus pour les trois méthodes de traitement testées

Effluent testé	Paramètre(s)	Ozonation à microbulles	Nitrification-dénitrification MBBR	Promotion de l'atténuation naturelle
	Contaminant(s) traité(s)	SCN-, CNO-, N-NH ₃ , NO ₂ -	SCN ⁻ , CNO ⁻ , N-NH ₃ , NO ₂ ⁻ , NO ₃ ⁻	N-NH ₃ , (NO ₃ -)
-	Produit(s) final(s)	NO ₃ -	N ₂ + Biomasse	Biomasse (+ NH ₃ (atm)) N-NH ₃ en conditions hivernales
E1: $SCN^{-}_{i} = 79,6 \text{ mg-N/L}$ $CNO^{-}_{i} = 17,8 \text{ mg-N/L}$ $N-NH_{3,i} = 64 \text{ mg-N/L}$	Consommation en réactif(s)	$pprox 10 \text{ g O}_3/\text{g-N-NH}_3$ au début des essais $pprox 25 \text{ g O}_3/\text{g-N-NH}_3$ en moyenne NaOH pour ajustement du pH à 9	Alcalinité : 2,9 g-Na ₂ CO ₃ /g- N ; C _{orga} : 10 g-C ₁₂ H ₂₂ O ₁₁ /g-N PO ₄ ³⁻ : 0,13 g-NH ₄ H ₂ PO ₄ /g- N	
NO_2 -i = 0,3 mg-N/L NO_3 -i = 21 mg-N/L pH_i = 7,6 Cu_i = 9,6 mg/L	Performance maximale de traitement obtenue	Oxydation complète de SCN- et de N-NH ₃ (réacteur de 15 L) en moins de 2 heures	R1 (SCN ⁻ \rightarrow N-NH ₃): 3,3 g- N/m ² /j R2 (N-NH ₃ \rightarrow NO ₃ ⁻): 0,6 g- N/m ² /j R3 (NO ₃ ⁻ \rightarrow N ₂): 1,7 g N/m ² /j	Pas de croissance d'algues Enlèvements limités en contaminants azotés (légère
Alcalinité _i = 86 mg CaCO ₃ /L EC_i = 5,6 mS/cm Cl^i = 0,18 mg/L $SO_4^{2-}_i$ = 2,5 g/L	Processus impliqué dans l'évolution des concentrations en contaminants azotés	-	R1: dégradation biologique des SCN ⁻ R2: nitrification R3: dénitrification R4: dégradation de la biomasse + nitrification (partiellement bloquée à l'étape de nitritation)	biodégradation des SCN ⁻ seulement)

Tableau 5.1 : Synthèse des différents résultats obtenus pour les trois méthodes de traitement testées (suite)

Effluent testé Paramètre(s)		Ozonation à microbulles	Nitrification-dénitrification MBBR	Promotion de l'atténuation naturelle
E2: $SCN_{i}^{-} = 53 \text{ mg-N/L}$ $N-NH_{3,i} = 56 \text{ mg-N/L}$ $pH_{i} = 7,9$ $Cl_{i}^{-} = 0,23 \text{ mg/L}$	Consommation en réactif(s)	$pprox 10 \text{ g O}_3/\text{g-N-NH}_3$ au début des essais $pprox 25 \text{ g O}_3/\text{g N-NH}_3 \text{ en}$ moyenne	-	-
$SO_4^{2-}_{i} = 2,3 \text{ g/L}$ E3: $N-NH_{3,i} = 370 \text{ mg-N/L}$	Performance maximale de traitement obtenue	Oxydation complète de SCN- et de N-NH ₃ (réacteur de 15 L) en moins de 2 heures	-	-
$pH_{i} = 7.9$ $C1_{i}^{-} \approx 60 \text{ g/L}$	Performance maximale de traitement obtenue	Oxydation complète de SCN- et de N-NH ₃ (réacteur de 15 L) en 2,5 heures	-	-
E4: $SCN_{i} = 22 \text{ mg-N/L}$ $CNO_{i} = 6.0 \text{ mg-N/L}$ $N-NH_{3,i} = 29 \text{ mg-N/L}$	Efficacité maximale de traitement obtenue	-	-	$SCN^{-} > 89 \%$ $CNO^{-} > 98 \%$ $N-NH_{3}$: augmentation de 20 % $NO_{3}^{-} > 98 \%$
NO_{2} $\stackrel{\cdot}{_{i}}$ < 0.2 mg-N/L NO_{3} $\stackrel{\cdot}{_{i}}$ $= 4.0$ mg-N/L pH_{i} $= 8.0$ Cu_{i} $= 950$ mg/L $Alcalinit\acute{e}_{i}$ $= 110$ mg- $CaCO_{3}$ /L EC_{i} $= 2.7$ mS/cm	Processus impliqué dans l'évolution des concentrations en contaminants azotés	-	-	Assimilation majoritaire de N-NH ₃ au début des essais Dégradation biologique de SCN ⁻ et CNO ⁻ Adsorption de N-NH ₃ sur la biomasse et des sédiments

Tableau 5.1 : Synthèse des différents résultats obtenus pour les trois méthodes de traitement testées (suite)

Effluent testé	Paramètre(s)	Ozonation à microbulles	Nitrification-dénitrification MBBR	Promotion de l'atténuation naturelle
E5: $SCN_{i} = 3.4 \text{ mg-N/L}$	Performance maximale de traitement obtenue	-	-	SCN ⁻ : 0,8 – 8,6 % N-NH ₃ > 95 %
$CNO_i = 0.2 \text{ mg-N/L}$				
$N-NH_{3,i} = 18 \text{ mg-N/L}$	Processus impliqué dans l'évolution des concentrations en contaminants azotés			
$NO_{2i} = 0.4 \text{ mg-N/L}$				
$NO_{3i} = 0.2 \text{ mg-N/L}$				Dégradation biologique de SCN ⁻ et CNO ⁻
$pH_{i} = 7,9$		-	-	Assimilation de N-NH ₃
$Cu_i = 4 \text{ mg/L}$				rissimilation de 1 (1111)
Alcalinité _i = 71 mg-CaCO ₃ /L				
$EC_i = 1,3 \text{ mS/cm}$				

CHAPITRE 6 CONCLUSION ET RECOMMANDATIONS

Ce mémoire, intitulé *Traitement des contaminants azotés dans les effluents miniers*, vise à comparer trois approches distinctes de traitement, à savoir l'ozonation à microbulles, le réacteur biologique à lit fluidisé (MBBR) et la promotion de l'atténuation naturelle, dans le contexte spécifique des effluents miniers à forte salinité. L'objectif principal n'est pas de recommander une stratégie unique de gestion, mais de fournir des éléments techniques, analytiques et opérationnels permettant une prise de décision éclairée sur le choix du procédé le plus adapté selon les caractéristiques des effluents. L'évaluation porte notamment sur l'efficacité de traitement des principaux contaminants azotés (SCN-, N-NH₃, NO₂-, NO₃-), les conditions opératoires optimales, les consommations en réactifs, la résilience face aux inhibiteurs, ainsi que les contraintes pratiques d'implantation.

L'ozonation à microbulles a montré une efficacité particulièrement élevée pour l'oxydation des espèces azotées réduites, avec une diminution supérieure à 95 % pour les concentrations en SCN-et N-NH₃ en moins de 2 heures. Une efficacité accrue est constatée lors du traitement d'effluents plus contaminés. Les résultats indiquent une conversion quasi-complète des contaminants azotés en NO₃-, ce qui peut nécessiter un traitement complémentaire dans le cas de rejets soumis à des seuils réglementaires stricts sur ce point. Les besoins en dénitrification pourraient éventuellement être comblés grâce à l'adoption d'un procédé d'ozonation catalytique (sur MgO ou TiO₂ par exemples). Bien que l'hypothèse initiale d'un effet catalytique du chlorure ait été explorée, les résultats expérimentaux n'ont pas confirmé la formation de perchlorates ou d'autres oxydants secondaires significatifs. Cette hypothèse ne semble alors pas vérifiée pour des concentrations en Cl⁻ telles que celles rencontrées dans les effluents miniers. La consommation moyenne d'ozone a varié entre 10 et 25 g O₃/g N traité, et s'est révélée plus faible pour les effluents à forte charge azotée initiale. Cette technologie offre donc une solution rapide et efficace, notamment dans les cas où les contraintes temporelles ou la charge polluante excluent les procédés biologiques lents.

Le procédé biologique MBBR repose sur la formation d'un biofilm sur des supports mobiles, qui favorise la nitrification et la dénitrification même en conditions inhibitrices (métaux, salinité, faibles températures). Un enlèvement moyen de 80 % de l'azote total a été maintenu pendant neuf mois d'essai, avec des vitesses de traitement de 3,3 g N/m²/jour pour le SCN⁻ et de 1,7 g N/m²/jour pour les NO₃⁻. Les tests écotoxicologiques ont confirmé que les effluents traités étaient conformes

aux exigences environnementales, sauf dans deux cas isolés, attribués à une DCO résiduelle excessive. Bien qu'ayant permis de soutenir la dénitrification, l'utilisation de saccharose comme source de carbone organique n'est pas conseillée. Celle-ci a notamment pu mener aux accumulations de NO₂⁻ et de N-NH₃ observées. L'utilisation de sources plus facilement assimilables, telles que l'éthanol ou le méthanol, permettant un apport nécessaire plus limité, devraient être envisagée. Le glucose et/ou le fructose, monomères du saccharose, pourraient être d'autres pistes à explorer dans une recherche de compromis entre la qualité de la source de carbone organique et sa facilité et sécurité de transport, d'utilisation ou de stockage.

L'approche semi-passive par atténuation naturelle repose sur des processus biologiques impliquant des microalgues et des bactéries. Le traitement des contaminants azotés peut alors être complétés par des phénomènes d'adsorption sur la biomasse et les sédiments. La promotion de l'atténuation naturelle peut être obtenue grâce à des ajouts de 1 à 3 mg-PO₄³-/L. Elle s'est révélée efficace pour le traitement des effluents à charge modérée, avec un enlèvement mesuré de l'ordre de 40 à 60 % du N-NH₃ dans des conditions favorables (alcalinité > 80 mg CaCO₃/L et pour des faibles concentrations en inhibiteurs biologiques tels que le Cu). Les dénombrements réalisés indiquent que les populations biologiques sont alors dominées par des microalgues (Chrysococcus notamment). La présence de cyanobactéries a aussi été observée. Celle-ci est cependant restée à des niveaux pour lesquels une toxicité associée est peu probable. Une confirmation grâce à des essais écotoxicologiques des effluents en fin de traitement permettrait cependant de statuer plus précisément sur la capacité de cette méthode de traitement à fournir des effluents respectueux des normes réglementaires en vigueur à ce niveau. Une remobilisation des contaminants, sous forme de N-NH₃ notamment, est généralement observée en période de mortalité de la biomasse. Une augmentation pouvant dépasser 30 % du N-NH3 initialement traité a été mesurée lors d'essais prolongés à 4 °C. Ce phénomène peut être contrôlé par des stratégies de récupération de la biomasse, notamment par coagulation-floculation. Les essais ont montré que des coagulants métalliques (PAC, Fe₂(SO₄)₃) couplés à des polymères ioniques ou des polymères naturels seuls (chitosane) permettent une récupération de plus de 90 % de la biomasse algale. Cette étape limite l'attrait économique et en termes de simplicité de mise en place d'un tel traitement. Une valorisation, comme amendement, y compris pour la revégétalisation de sites, ou par la production de biocarburants seraient des pistes à explorer afin d'y remédier. Cette approche semble tout de même supérieure aux deux autres testées sur ces deux paramètres économiques et d'aisance de mise en place. Elle pourrait ainsi s'avérer intéressante dans une phase post-fermeture de sites miniers par exemple, demeurant limitée par la lenteur de ses cinétiques.

L'analyse isotopique (δ^{15} N et δ^{18} O) réalisée sur les effluents traités a permis de caractériser les mécanismes biochimiques prédominants dans chaque procédé biologique testé (assimilation, dégradation biologique de SCN⁻ en N-NH₃, nitrification, dénitrification ou adsorption sur la biomasse et les sédiments). Dans le cas des essais MBBR, celles-ci sont cohérentes avec les processus biologiques attendus de dégradation des SCN-, de nitrification et de dénitrification dans les réacteurs R1, R2 et R3 respectivement. Les accumulations de N-NH3 au sein de ce dernier réacteur tendent à indiquer que la DNRA y est aussi impliquée dans la spéciation des contaminants azotés. Un complément d'étude pourrait alors permettre de quantifier les participations respectives de la DNRA et de la dénitrification. Cela nécessiterait notamment un plus grand nombre d'échantillons analysés afin d'affiner la modélisation de l'évolution des différentes données isotopiques. Des analyses des concentrations en NO₂ et en NO₃ par une méthode plus précise que la colorimétrie, la chromatographie ionique par exemple, pourrait aussi contribuer en ce sens. Ces données renforceraient la compréhension des transformations de l'azote et contribueraient à la validation des performances observées. Ces améliorations possibles des résultats sont aussi vraies pour les essais de promotion de l'atténuation naturelle menés. L'utilisation des données isotopiques y a tout de même permis de confirmer que des processus biologiques sont les principaux contributeurs au traitement des contaminants azotés observé. Dans le cas du traitement de SCN-, celles-ci sont cohérentes avec leur dégradation biologique en N-NH3. Les essais menés tendent aussi à confirmer l'assimilation préférentielle de N-NH₃ sur NO₃. Celle-ci a principalement lieu lors d'une première phase de quelques jours, marquée par une augmentation intense de la turbidité. Le N-NH₃ continue de diminuer dans un deuxième temps malgré l'absence d'augmentation de la turbidité. Bien qu'une volatilisation, liée à l'augmentation du pH lors de l'efflorescence d'algues, aurait pu en être la cause, l'évolution des données isotopiques indique que l'adsorption sur la biomasse ou les sédiments est plus probable. Les analyses réalisées au cours de ces essais ont indiqué une augmentation des matières particulaires minérales. Une simulation numérique (à l'aide d'outil tel que Visual MINTECH par exemple) pourrait alors permettre de définir les minéraux formés. Cela permettrait notamment de déterminer si ces derniers peuvent être impliqués dans le traitement de N-NH₃ constaté et donc de prédire plus précisément le potentiel devenir de ce-dernier. En conclusion, malgré les points demeurant à approfondir cités, ce travail fournit une base comparative rigoureuse permettant d'orienter le choix des technologies de traitement des contaminants azotés dans les effluents miniers salins. Il identifie des indicateurs clés, tels que la charge azotée, la salinité, la température, les métaux dissous, la disponibilité en carbone et les contraintes de temps, qui doivent être considérés pour sélectionner la méthode la plus adaptée. L'enjeu n'est alors pas de recommander un procédé unique, mais de fournir un cadre d'analyse robuste pour soutenir la prise de décision technico-économique dans divers contextes d'exploitation minière.

RÉFÉRENCES

- Afshin, S., Rashtbari, Y., Vosough, M., Dargahi, A., Fazlzadeh, M., Behzad, A., & Yousefi, M. (2021). Application of Box–Behnken design for optimizing parameters of hexavalent chromium removal from aqueous solutions using Fe₃O₄ loaded on activated carbon prepared from alga: Kinetics and equilibrium study. *Journal of Water Process Engineering*, 42, 102113. https://doi.org/10.1016/j.jwpe.2021.102113
- Ahmed, W., Tian, X., & Delatolla, R. (2019). Nitrifying moving bed biofilm reactor: Performance at low temperatures and response to cold-shock. *Chemosphere*, 229, 295–303. https://doi.org/10.1016/j.chemosphere.2019.04.176
- Aktan, C. K., Dinler, V., Mesum, B. N., Caliskan, S. N., Ahmad, J. A., & Sahinkaya, E. (2025). A new approach for treating ammonia-rich wastewater deficient in organic matter: A tandem process for nitrification/nitritation in MBBR followed by sulfur-based denitrifying column reactor. *Chemical Engineering Journal*, *513*, 1–9. https://doi.org/10.2139/ssrn.5151579
- Ali, S. S., El-Sheekh, M., Manni, A., Ruiz, H. A., Elsamahy, T., Sun, J., & Schagerl, M. (2022).

 Microalgae-mediated wastewater treatment for biofuels production: A comprehensive review. *Microbiological Research*, 265, Article 127187.

 https://doi.org/10.1016/j.micres.2022.127187
- Alleman, J. E., Kennedy, M. S., Mines, R. O., Weber, A. S., & Sherrard, J. H. (1984). Activated Sludge. *Journal (Water Pollution Control Federation*), 56(6), 568-577. http://www.jstor.org/stable/25042299
- An, W., Xiao, S., Liu, H., & Ma, L. (2025). UV irradiation enhanced removal of ammonia nitrogen and mineralization of typical organic pollutants of high chlorine wastewater in catalytic ozonation. *Journal of Environmental Chemical Engineering*, 13(1), Article 115395. https://doi.org/10.1016/j.jece.2025.115395
- Andrade-Linares, D. R., Lehmann, A., & Rillig, M. C. (2016). Microbial stress priming: A meta-analysis. *Environmental Microbiology*, 18(4), 1277–1288. https://doi.org/10.1111/1462-2920.13223

- Anthonisen, A. C., Loehr, R. C., Prakasam, T. B. S., & Srinath, E. G. (1976). Inhibition of nitrification by ammonia and nitrous acid. *Journal of the Water Pollution Control Federation*, 48(5), 835–852. http://www.jstor.com/stable/25038971
- Aravinthan, V., Takizawa, S., & Fujita, K. (1998). Factors affecting nitrogen removal from domestic wastewater using immobilized bacteria. *Water Science and Technology*, 38(1), 193–202. https://doi.org/10.2166/wst.1998.0047
- Bailey, B. L., Smith, L. J. D., Blowes, D. W., Ptacek, C. J., Smith, L., & Sego, D. C. (2013). The Diavik Waste Rock Project: Persistence of contaminants from blasting agents in waste rock effluent. *Applied Geochemistry*, 36, 256–270. https://doi.org/10.1016/j.apgeochem.2012.04.008
- Bassin, J. P., Kleerebezem, R., Muyzer, G., Rosado, A. S., van Loosdrecht, M. C. M., & Dezotti, M. (2012). Effect of different salt adaptation strategies on the microbial diversity, activity, and settling of nitrifying sludge in sequencing batch reactors. *Applied Microbiology and Biotechnology*, 93(3), 1281–1294. https://doi.org/10.1007/s00253-011-3428-7
- Bougie, V. (2011). Diversité bactérienne d'un biofilm impliqué dans la biodégradation du thiocyanate et cyanate, Université du Québec INRS-Institut Armand-Frappier]. https://espace.inrs.ca/id/eprint/149
- Bosman, C. (2009). The hidden dragon: Nitrate pollution from open-pit mines A case study from the Limpopo Province, South Africa. In International Mine Water Conference 2009 Proceedings (pp. 982–987). International Mine Water Association. https://www.imwa.info/docs/imwa_2009/IMWA2009_Bosman.pdf
- Buchwald, C., & Casciotti, K. L. (2010). Oxygen isotopic fractionation and exchange during bacterial nitrite oxidation. Limnology and Oceanography, 55(3), 1064–1074. https://doi.org/10.4319/lo.2010.55.3.1064
- Cao, T., Xu, J., Li, X., Fu, S., Zeng, Q., Cui, B., Cui, H., & Zhou, D. (2024). Extremely efficient catalytic ozonation of ammonia N to N₂ using Co/Mg(OH)₂ as catalysts. *Journal of Hazardous Materials*, 480, Article 136076. https://doi.org/10.1016/j.jhazmat.2024.136076

- Çeçen, F., Semerci, N., & Geyik, A. G. (2010). Inhibitory effects of Cu, Zn, Ni and Co on nitrification and relevance of speciation. *Journal of Chemical Technology & Biotechnology*, 85(4), 520-528. https://doi.org/10.1002/jctb.2321
- Centre d'expertise en analyse environnementale du Québec. (2024, 2 juillet). Mode de conservation des échantillons de rejets liquides (eaux usées) (Publication DR-09-04). Ministère de l'Environnement et de la Lutte contre les changements climatiques, de la Faune et des Parcs. https://www.ceaeq.gouv.qc.ca/documents/publications/echantillonnage/dr-09-04-rejets-liquides.pdf
- Chapman, J., Coedy, W., Schultz, S., & Rykaart, M. (2007). Water treatment and management during the closure of the Colomac Mine. Proc. Mine Closure 2007 Conference, Santiago, Chile (p. 16-19).
- Conseil canadien des ministres de l'environnement. (2012). Recommandations canadiennes pour la qualité des eaux : protection de la vie aquatique : ion nitrate [Document scientifique].

 Winnipeg (Manitoba): Auteur. https://ccme.ca/fr/res/ion-nitrate-fr-recommandations-canadiennes-pour-la-qualit-des-eaux-protection-de-la-vie-aquatique.pdf
- Coplen, T. B., Böhlke, J. K., De Bièvre, P., Ding, T., Holden, N. E., Hopple, J. A., ... Xiao, Y. K. (2002). Isotope-abundance variations of selected elements (IUPAC Technical Report).

 *Pure and Applied Chemistry, 74(10), 1987–2017.

 https://doi.org/10.1351/pac200274101987
- Dauchy, J. W., Waller, W. T., & Piwoni, M. D. (1980). Acute toxicity of cyanate to *Daphnia magna*. *Bulletin of Environmental Contamination and Toxicology*, 25(1), 194-196. https://doi.org/10.1007/BF01985510
- De Filippis, P., Di Palma, L., Scarsella, M., & Verdone, N. (2013). Biological denitrification of high-nitrate wastewaters: A comparison between three electron donors. *Chemical Engineering Transactions*, 32, 319–324. https://doi.org/10.3303/CET1332054
- Delatolla, R., Tufenkji, N., Comeau, Y., Gadbois, A., Lamarre, D., & Berk, D. (2009). Kinetic analysis of attached growth nitrification in cold climates. *Water Science and Technology*, 60(5), 1173–1184. https://doi.org/10.2166/wst.2009.419

- Do, J.-M., Jo, S.-W., Yeo, H.-T., Yoon, H.-S., & Shin, D. H. (2021). Biological treatment of reverse osmosis concentrate by microalgae cultivation and utilization of the resulting algal biomass. *Journal of Water Process Engineering*. Advance online publication. https://doi.org/10.1016/j.jwpe.2021.102157
- Eytcheson, S. A., & LeBlanc, G. A. (2018). Hemoglobin levels modulate nitrite toxicity to *Daphnia magna*. *Scientific Reports*, 8, 7172. https://doi.org/10.1038/s41598-018-24087-7
- Gonzalez-Merchan, C., Genty, T., Bussière, B., Potvin, R., Paquin, M., Benhammadi, M., & Neculita, C. M. (2016). Ferrates performance in thiocyanates and ammonia degradation in gold mine effluents. *Minerals Engineering*, 95, 124–130. https://doi.org/10.1016/j.mineng.2016.06.022
- Gould, D. W., King, M., Mohapatra, B. R., Cameron, R. A., Kapoor, A., & Koren, D. W. (2012). A critical review on destruction of thiocyanate in mining effluents. *Minerals Engineering*, 34, 38–47. https://doi.org/10.1016/j.mineng.2012.04.009
- Gouvernement du Canada. (2025). Règlement modifiant le Règlement sur les effluents des mines de métaux et des mines de diamants (DORS 2025-138). Gazette du Canada, Partie II, 159(14), 42–43. https://gazette.gc.ca/rp-pr/p2/2025/2025-07-02/html/sor-dors138-fra.html
- Gouvernement du Québec, Ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs. (2025, février). *Directive 019 Industrie minière* (éd. 2025). https://www.environnement.gouv.qc.ca/milieu_ind/directive019/directive-019-2025.pdf
- Granger, J., Sigman, D. M., Needoba, J. A., & Harrison, P. J. (2004). Coupled nitrogen and oxygen isotope fractionation of nitrate during assimilation by cultures of marine phytoplankton. *Limnology and Oceanography*, 49(5), 1763–1773. https://doi.org/10.4319/lo.2004.49.5.1763
- Granger, J., Sigman, D. M., Lehmann, M. F., & Tortell, P. D. (2008). Nitrogen and oxygen isotope fractionation during dissimilatory nitrate reduction by denitrifying bacteria. *Limnology and Oceanography*, 53(6), 2533–2545. https://doi.org/10.4319/lo.2008.53.6.2533

- Grommen, R., Dauw, L., & Verstraete, W. (2005). Elevated salinity selects for a less diverse ammonia-oxidizing population in aquarium biofilters. *FEMS Microbiology Ecology*, *52*(1), 1–11. https://doi.org/10.1016/j.femsec.2004.10.001
- Happold, F. C., Johnstone, K. I., Rogers, H. J., & Youatt, J. B. (1954). The isolation and characteristics of an organism oxidizing thiocyanate. *Journal of General Microbiology*, 10(2), 261–266. https://doi.org/10.1099/00221287-10-2-261
- Harrison, J. J., Ceri, H., Stremick, C. A., & Turner, R. J. (2004). Biofilm susceptibility to metal toxicity. *Environmental Microbiology*, 6(12), 1220–1227. https://doi.org/10.1111/j.1462-2920.2004.00656.x
- Hem, L. J., Rusten, B., & Ødegaard, H. (1994). Nitrification in a moving-bed biofilm reactor. *Water Research*, 28(6), 1425–1433. https://doi.org/10.1016/0043-1354(94)90310-7
- Hendry, M. J., Wassenaar, L. I., Barbour, S. L., Schabert, M. S., Birkham, T. K., Fedec, T., & Schmeling, E. E. (2018). Assessing the fate of explosives derived nitrate in mine waste rock dumps using the stable isotopes of oxygen and nitrogen. *Science of the Total Environment*, 640–641, 127–137. https://doi.org/10.1016/j.scitotenv.2018.05.275
- Hendry, M. J., Barbour, S. L., Schmeling, E. E., Wassenaar, L. I., Shaw, S., & Schabert, M. S. (2023). Quantifying denitrification in a field-scale bioremediation experiment. *Science of the Total Environment*, 854, 158762. https://doi.org/10.1016/j.scitotenv.2022.158762
- Hoang, V., Delatolla, R., Laflamme, E., & Gadbois, A. (2014). An investigation of moving bed biofilm reactor nitrification during long-term exposure to cold temperatures. *Water Environment Research*, 86(1), 36–42. https://doi.org/10.2175/106143013X13807328848694
- Hoering, T. C., & Ford, H. T. (1960). The isotope effect in the fixation of nitrogen by *Azotobacter*. *Journal of the American Chemical Society*, 82(2), 376–378.

 https://doi.org/10.1021/ja01487a031
- Hwang, J. H., & Oleszkiewicz, J. A. (2007). Effect of cold-temperature shock on nitrification.

 *Water Environment Research, 79(9), 964–968.

 https://doi.org/10.2175/106143007X176022

- Ihlenfeld, C., Oates, C. J., Bullock, S., & Van Zyl, R. (2009, October 19–23). Isotopic fingerprinting of groundwater nitrate sources around Anglo Platinum's RPM Mogalakwena operation (Limpopo Province, South Africa). In *Proceedings of the International Mine Water Conference* (pp. 882–891). International Mine Water Association. Curran Associates, Inc. (ISBN 978-1-61738-662-6)
- Jermakka, J., Wendling, L., Sohlberg, E., Heinonen, H., & Vikman, M. (2015). Potential technologies for the removal and recovery of nitrogen compounds from mine and quarry waters in subarctic conditions. *Critical Reviews in Environmental Science and Technology*, 45(7), 703–748. https://doi.org/10.1080/10643389.2014.900238
- Katayama, Y., Narahara, Y., Inoue, Y., Amano, F., Kanagawa, T., & Kuraishi, H. (1992). A thiocyanate hydrolase of *Thiobacillus thioparus*: A novel enzyme catalyzing the formation of carbonyl sulfide from thiocyanate. *Journal of Biological Chemistry*, 267(13), 9170–9175. https://doi.org/10.1016/S0021-9258(19)50404-5
- Khuntia, S., Majumder, S. K., & Ghosh, P. (2013). Removal of ammonia from water by ozone microbubbles. *Industrial & Engineering Chemistry Research*, 52(1), 318–326. https://doi.org/10.1021/ie302212p
- Knöller, K., Vogt, C., Haupt, M., Feisthauer, S., & Richnow, H.-H. (2011). Experimental investigation of nitrogen and oxygen isotope fractionation in nitrate and nitrite during denitrification. *Biogeochemistry*, 103(1–3), 371–384. https://doi.org/10.1007/s10533-010-9483-9
- Koren, D. W., Gould, W. D., & Bédard, P. (2000). Biological removal of ammonia and nitrate from simulated mine and mill effluents. *Hydrometallurgy*, 56(2), 127–144. https://doi.org/10.1016/S0304-386X(99)00088-2
- Kwofie, I. A., Jogand, H., De Ladurantaye-Noël, M., & Dale, C. (2021). Removal of Cyanide and Other Nitrogen-Based Compounds from Gold Mine Effluents Using Moving Bed Biofilm Reactor (MBBR). *Water*, *13*(23), 3370. https://www.mdpi.com/2073-4441/13/23/3370
- Li, M., Zamyadi, A., Zhang, W., Dumée, L. F., & Gao, L. (2022). Algae-based water treatment: A promising and sustainable approach. *Journal of Water Process Engineering*, 46, 102630. https://doi.org/10.1016/j.jwpe.2022.102630

- Lorrain, M.-J., Tartakovsky, B., Peisajovich-Gilkstein, A., & Guiot, S. R. (2004). Comparison of different carbon sources for ground water denitrification. *Environmental Technology*, 25(9), 1041–1049. https://doi.org/10.1080/09593330.2004.9619397
- Mahmood, F. N., Barbour, S. L., Kennedy, C., & Hendry, M. J. (2017). Nitrate release from waste rock dumps in the Elk Valley, British Columbia, Canada. *Science of the Total Environment*, 605–606, 915–928. https://doi.org/10.1016/j.scitotenv.2017.05.253
- Makki, A. (2025). Moving Bed Biofilm Reactors for Wastewater Treatment: A Review and Analysis using VOSviewer. *Journal of Babylon University Engineering Sciences*, *33*(3), 18–33. https://mail.journalofbabylon.com/index.php/JUBES/article/view/5756/4309
- Marcotte, P. (2020). Performance Evaluation of Pilot Scale Ozonation System for Nitrogen-Based Contaminants Removal in Mine Impacted Water [Master's thesis, Polytechnique Montréal]. PolyPublie. https://publications.polymtl.ca/5235/
- Marcotte, P., Neculita, C. M., Cloutier, V., Bordeleau, G., & Rosa, E. (2022). Tracing the sources and fate of nitrogen at a Canadian underground gold mine. *Applied Geochemistry*, *142*, 105238. https://doi.org/10.1016/j.apgeochem.2022.105238
- Marcotte, P., Baechler, J., Gillman, M., & Genty, T. (2023, 30 avril–3 mai). *Ammonia nitrogen removal by enhanced algae growth: Case study of a subarctic mine site* [Communication présentée au congrès CIM 2023 Convention, Montréal, Canada].
- Mariotti, A., Germon, J. C., Hubert, P., Kaiser, P., Letolle, R., Tardieux, A., & Tardieux, P. (1981). Experimental determination of nitrogen kinetic isotope fractionation: Some principles; illustration for the denitrification and nitrification processes. *Plant and Soil*, 62(3), 413-430. https://doi.org/10.1007/BF02374138
- Matter, I. A., Bui, V. K. H., Jung, M., Seo, J. Y., Kim, Y. E., Lee, Y. C., & Oh, Y. K. (2019). Flocculation harvesting techniques for microalgae: A review. *Applied Sciences*, *9*(15), 3069. https://doi.org/10.3390/app9153069
- Mba, D., Bannister, R. H., & Findlay, G. E. (1999). Mechanical redesign of the rotating biological contactor. *Water Research*, 33(18), 3679–3688. https://doi.org/10.1016/S0043-1354(99)00086-X

- Muruganandham, M., Suri, R. P. S., Jafari, S., Sillanpää, M., Lee, G. J., Wu, J. J., & Swaminathan, M. (2014). Recent developments in homogeneous advanced oxidation processes for water and wastewater treatment. *International Journal of Photoenergy*, 2014, Article 821674. https://doi.org/10.1155/2014/821674
- Nanda, M., Jaiswal, K. K., Kumar, V., Verma, M., Vlaskin, M. S., Gururani, P., ... Hussain, A. (2021). Bio-remediation capacity for Cd(II) and Pb(II) from the aqueous medium by two novel strains of microalgae and their effect on lipidomics and metabolomics. *Journal of Water Process Engineering*, 44, 102404. https://doi.org/10.1016/j.jwpe.2021.102404
- Navada, S., Gaumet, F., Tveten, A.-K., Kolarevic, J., & Vadstein, O. (2021). Seeding as a start-up strategy for improving the acclimation of freshwater nitrifying bioreactors to salinity stress. *Aquaculture*, 540, 736663. https://doi.org/10.1016/j.aquaculture.2021.736663
- Navada, S., & Vadstein, O. (2022). Salinity acclimation strategies in nitrifying bioreactors. Frontiers in Marine Science, 9, Article 867592. https://doi.org/10.3389/fmars.2022.867592
- Nilsson, L., & Widerlund, A. (2017). Tracing nitrogen cycling in mining waters using stable nitrogen isotope analysis. *Applied Geochemistry*, 84, 41–51. https://doi.org/10.1016/j.apgeochem.2017.05.025
- Ødegaard, H. (2006). Innovations in wastewater treatment: the moving bed biofilm process. *Water Science and Technology*, *53*(9), 17–33. https://doi.org/10.2166/wst.2006.284
- Oleszkiewicz, J. A., & Berquist, S. A. (1988). Low temperature nitrogen removal in sequencing batch reactors. *Water Research*, 22(9), 1163–1171. https://doi.org/10.1016/0043-1354(88)90012-7
- Painter, H. A., & Loveless, J. E. (1983). Effect of temperature and pH value on the growth-rate constants of nitrifying bacteria in the activated-sludge process. *Water Research*, 17(3), 237–248. https://doi.org/10.1016/0043-1354(83)90176-8
- Papirio, S. (2012). Fluidized-bed bioreactor applications for the treatment of metal-sulfate and nitrate-contaminated mine waters. A Doctoral Thesis of the Department of Chemical Engineering. University of Cassino and Southern Lazio, Italy. https://gitisa.it/wp-content/uploads/tesi/2013/06-Tesi Stefano Papirio.pdf

- Pastorelli, G., Andreottola, G., Canziani, R., de Fraja Frangipane, E., De Pascalis, F., Gurrieri, G., & Rozzi, A. (1997). Pilot-plant experiments with moving-bed biofilm reactors. *Water Science and Technology*, 36(1), 43–50. https://doi.org/10.1016/S0273-1223(97)00321-1
- Patwardhan, A. W. (2003). Rotating biological contactors: A review. *Industrial & Engineering Chemistry Research*, 42(10), 2035–2051. https://doi.org/10.1021/ie0200104
- Phung, A. D., Othman, M., & Yulian, J. (2014). Effect of sucrose on denitrification through simulation, lab-scaled batch tests and pilot plants. *Science & Technology Development*, 17(M2-2014). https://doi.org/10.32508/stdj.v17i4.1535
- Potivichayanon, S., Supromin, N., & Toensakes, R. (2017). Development of a mixed microbial culture for thiocyanate and metal cyanide degradation. *3 Biotech*, 7(3), 191. https://doi.org/10.1007/s13205-017-0814-6
- Qiu, H., Zhao, W., Zhao, Z., Bai, M., Bi, X., Zhou, X., Wang, Y., Su, S., Qin, Y., & Wang, C. (2025). Nitrogen removal activity and functional microbial community structure in IFAS, activated sludge, and MBBR systems under different salinity conditions. *Journal of Water Process Engineering*, 76, 108285. https://doi.org/10.1016/j.jwpe.2025.108285
- Reddy, K. R., DeLaune, R. D., & Inglett, P. W. (2022). *Biogeochemistry of wetlands: Science and applications* (2° éd.). CRC Press. https://doi.org/10.1201/9780429155833
- Ren, Y., Oleszkiewicz, J. A., Uyaguari, M., Ferraz, F., & Devlin, T. R. (2025). Impact of fall ammonia fluctuations on winter nitrification in moving bed biofilm reactors. *Science of the Total Environment*, *962*, 178499. https://doi.org/10.1016/j.scitotenv.2025.178499
- Ryskie, S. (2017). Traitement de l'azote ammoniacal dans les effluents miniers contaminés au moyen de procédés d'oxydation avancée [Mémoire de maîtrise, École Polytechnique de Montréal]. PolyPublie. https://publications.polymtl.ca/2486/
- Ryskie, S., Gonzalez-Merchan, C., Neculita, C. M., & Genty, T. (2020). Efficiency of ozone microbubbles for ammonia removal from mine effluents. *Minerals Engineering*, *145*, Article 106071. https://doi.org/10.1016/j.mineng.2019.106071
- Ryskie, S., Bélanger, E., Neculita, C. M., Couture, P., & Rosa, E. (2023). Influence of ozone microbubble enhanced oxidation on mine effluent mixes and *Daphnia magna* toxicity. *Chemosphere*, 329, 138559. https://doi.org/10.1016/j.chemosphere.2023.138559

- Salvetti, R., Azzellino, A., Canziani, R., & Bonomo, L. (2006). Effects of temperature on tertiary nitrification in moving-bed biofilm reactors. *Water Research*, 40(15), 2981–2993. https://doi.org/10.1016/j.watres.2006.05.013
- Schopf, A., Delatolla, R., Mathew, R., Tsitouras, A., & Kirkwood, K. M. (2018). Investigation of copper inhibition of nitrifying moving bed biofilm (MBBR) reactors during long term operations. *Bioprocess and Biosystems Engineering*, 41(10), 1485-1495. https://doi.org/10.1007/s00449-018-1976-2
- Semerci, N., & Çeçen, F. (2007). Importance of cadmium speciation in nitrification inhibition.

 Journal of Hazardous Materials, 147(1), 503–512.

 https://doi.org/10.1016/j.jhazmat.2007.01.041
- Shaw, D. R., Ali, M., Katuri, K. P., Gralnick, J. A., Reimann, J., Mesman, R., van Niftrik, L., Jetten, M. S. M., & Saikaly, P. E. (2020). Extracellular electron transfer–dependent anaerobic oxidation of ammonium by anammox bacteria. *Nature Communications*, 11(1), Article 2058. https://doi.org/10.1038/s41467-020-16016-y
- Skinner, F. A., & Walker, N. (1961). Growth of *Nitrosomonas* europaea in batch and continuous culture. *Archiv für Mikrobiologie*, *38*(4), 339–349. https://doi.org/10.1007/BF00408008
- Stasinakis, A. S., Thomaidis, N. S., Mamais, D., Papanikolaou, E. C., Tsakon, A., & Lekkas, T. D. (2003). Effects of chromium (VI) addition on the activated sludge process. *Water Research*, 37(9), 2140–2148. https://doi.org/10.1016/S0043-1354(02)00623-1
- Sterritt, R. M., & Lester, J. N. (1980). Interactions of heavy metals with bacteria. *Science of the Total Environment*, 14(1), 5–17. https://doi.org/10.1016/0048-9697(80)90122-9
- Swart, P. K., Evans, S., Capo, T., & Altabet, M. A. (2014). The fractionation of nitrogen and oxygen isotopes in macroalgae during the assimilation of nitrate. *Biogeosciences*, 11(21), 6147–6157. https://doi.org/10.5194/bg-11-6147-2014
- Takahashi, M., Ishikawa, H., Asano, T., & Horibe, H. (2012). Effect of microbubbles on ozonized water for photoresist removal. *Journal of Physical Chemistry C*, 116(23), 12578–12583. https://doi.org/10.1021/jp301746g

- Tanabene, R. (2016). Développement d'une approche biologique de dénitrification des effluents des mines d'or à l'échelle de laboratoire [Mémoire de maîtrise, École Polytechnique de Montréal]. PolyPublie. https://publications.polymtl.ca/2418/
- Tchobanoglous, G., Burton, F. L., & Stensel, H. D. (2003). Wastewater engineering: Treatment and reuse (4° éd.). McGraw-Hill.
- Teitzel, G. M., & Parsek, M. R. (2003). Heavy metal resistance of biofilm and planktonic *Pseudomonas aeruginosa. Applied and Environmental Microbiology*, 69(4), 2313–2320. https://doi.org/10.1128/AEM.69.4.2313-2320.2003
- U.S. Environmental Protection Agency. (2013, août). Aquatic Life Ambient Water Quality Criteria for Ammonia Freshwater (Document no. EPA-820-F-13-013). Office of Water. https://www.epa.gov/sites/default/files/2015-08/documents/fact_sheet_aquatic-life-ambient-water-quality-criteria-for-ammonia-freshwater-2013.pdf
- Van Dam, R. A., Harford, A. J., Lunn, S. A., & Gagnon, M. M. (2014). Identifying the cause of toxicity of a saline mine water. *PLOS ONE*, *9*(9), e106857. https://doi.org/10.1371/journal.pone.0106857
- van den Berg, E. M., van Dongen, U., Abbas, B., & van Loosdrecht, M. C. M. (2015). Enrichment of DNRA bacteria in a continuous culture. *The ISME Journal*, *9*(10), 2153–2161. https://doi.org/10.1038/ismej.2015.26
- Vázquez-Padín, J., Fernández, I., Figueroa, M., Mosquera-Corral, A., Campos, J. L., & Méndez, R. (2009). Applications of Anammox based processes to treat anaerobic digester supernatant at room temperature. *Bioresource Technology*, 100(12), 2988–2994. https://doi.org/10.1016/j.biortech.2009.01.028
- Velázquez-Ochoa, R., Ochoa-Izaguirre, M. J., & Soto-Jiménez, M. F. (2022). An analysis of the variability in δ¹³C in macroalgae from the Gulf of California: Indicative of carbon concentration mechanisms and isotope discrimination during carbon assimilation. *Biogeosciences*, 19(1), 1–27. https://doi.org/10.5194/bg-19-1-2022
- Villemur, R., Juteau, P., Bougie, V., Ménard, J., & Déziel, E. (2015). Development of four-stage moving bed biofilm reactor train with a pre-denitrification configuration for the removal of

- thiocyanate and cyanate. *Bioresource Technology*, 181, 254–262. https://doi.org/10.1016/j.biortech.2015.01.051
- Vincent, S., Dale, C., Young, B., Laliberté, M., & Pouzenc, A. (2016). Gold mine effluent treatment: Cyanide compounds and total nitrogen biodegradation using moving bed biofilm reactor [Conference paper]. Proceedings of the Water Environment Federation, 2016(7), 5636–5651. https://doi.org/10.2175/193864716819714474
- Vymazal, J. (2007). Removal of nutrients in various types of constructed wetlands. Science of The Total Environment, 380(1), 48–65. https://doi.org/10.1016/j.scitotenv.2006.09.014
- Wang, S., Parajuli, S., Sivalingam, V., & Bakke, R. (2019). Biofilm in moving bed biofilm process for wastewater treatment. In S. Dinçer, M. S. Özdenefe, & A. Arkut (Éds.), *Bacterial Biofilms* (p. 1–15). IntechOpen. https://doi.org/10.5772/intechopen.88520
- Widerlund, A., Chlot, S., & Öhlander, B. (2014). Sedimentary records of δ¹³C, δ¹⁵N and organic matter accumulation in lakes receiving nutrient-rich mine waters. Science of The Total Environment, 485–486, 205–215. https://doi.org/10.1016/j.scitotenv.2014.03.068
- Youatt, J. B. (1954). Studies on the metabolism of *Thiobacillus thiocyanoxidans*. *Microbiology*, 11(2), 139–149. https://doi.org/10.1099/00221287-11-2-139
- Young, B., Delatolla, R., Ren, B., Kennedy, K., Laflamme, E., & Stintzi, A. (2016). Pilot-scale tertiary MBBR nitrification at 1 °C: Characterization of ammonia removal rate, solids settleability and biofilm characteristics. *Environmental Technology*, 37(16), 2124–2132. https://doi.org/10.1080/09593330.2016.1143037
- Zaitsev, G., Mettänen, T., & Langwaldt, J. (2008). Removal of ammonium and nitrate from cold inorganic mine water by fixed-bed biofilm reactors. *Minerals Engineering*, 21(1), 10–15. https://doi.org/10.1016/j.mineng.2007.08.014
- Zaviska, F., Drogui, P., Blais, J.-F., & Mercier, G. (2009). In situ active chlorine generation for the treatment of dye-containing effluents. *Journal of Applied Electrochemistry*, 39(12), 2397– 2408. https://doi.org/10.1007/s10800-009-9927-x

ANNEXE A Protocole suivi lors des essais d'ozonation à microbulles

1. Objectif des essais

Ce protocole vise à évaluer de manière rigoureuse l'efficacité de l'ozonation en tant que procédé d'oxydation avancée pour l'élimination de l'azote ammoniacal (sous forme N-NH₃) présent dans les effluents issus d'activités minières. L'étude accorde une attention particulière à l'influence de la salinité sur les performances du traitement, en mettant l'accent sur le rôle potentiel des ions chlorure (Cl⁻), suspectés de catalyser l'ozonation des composés azotés (Khuntia et al., 2013). Pour ce faire, des essais seront réalisés sur des effluents, qu'ils soient synthétiques ou réels, caractérisés par un profil anionique dominé soit par les chlorures (Cl⁻), soit par les sulfates (SO₄²⁻), afin d'identifier et de quantifier l'impact différentiel de ces anions sur l'efficacité du procédé.

2. Matériel nécessaire

Le pilote utilisé est le même que pour les travaux de Ryskie et al. (2020). Le matériel utilisé lors de ces essais est donc :

- Générateur d'ozone : Primozone® GM1.
- Réacteur batch en verre borosilicaté d'un volume utile de 15 litres.
- Système de diffusion d'ozone, incluant un générateur de microbulles NIKUNI KTM20N
 (60 Hz) et un mélangeur statique OHR MX-E15.
- Sonde multi-paramètre (pH, POR, température, conductivité) calibrée.
- Sonde sélective au NH₃ (Thermo Scientific[™] Orion[™] High Performance Ammonia Combination Ion Selective Electrode)
- Flacons stériles pour les prélèvements d'échantillons.
- Filtres à seringue de 0,45 µm en PTFE.
- Seringues et béchers en plastique ou verre.
- Équipement de sécurité (gants, lunettes, hotte ventilée).

3. Effluents testés

L'étude vise à évaluer de manière précise l'influence de la salinité et de la composition anionique sur les performances de traitement par ozonation à microbulles. Une attention particulière est portée à l'effet des anions majoritaires (SO₄²⁻, Cl⁻) et des contaminants spécifiques (SCN⁻, N-NH₃). Pour cela, une série d'essais a été réalisée en milieu synthétique afin de contrôler rigoureusement les paramètres d'intérêt. Des effluents synthétiques à profils anioniques dominants SO₄²⁻ ou Cl⁻ ont été préparés (15 L) à partir d'eau désionisée par dissolution de sels préalablement déshydratés pendant 4 heures dans un dessiccateur, afin de garantir la précision des concentrations (Tableau 1). Les effluents synthétiques à base de SO₄²⁻ ont été obtenus en dissolvant du (NH₄)₂SO₄ pour atteindre des concentrations en N-NH₃ de 55 mg/L et 110 mg/L, puis en ajoutant du Na₂SO₄ afin d'ajuster la teneur en SO₄²⁻ à des niveaux représentatifs des effluents miniers. Les effluents synthétiques à base de Cl⁻ ont été préparés en dissolvant du NH₄Cl (N-NH₃ = 100 mg/L) suivi d'un ajustement en Cl⁻ par ajout de NaCl.

Tableau 1 : Masses de sels ajoutés lors de la préparation (15 L) des effluents synthétiques utilisés lors des essais d'ozonation à microbulles

Effluent	(NH ₄) ₂ SO ₄ (g)	NH ₄ Cl (g)	Na ₂ SO ₄ (g)	NaCl (g)	NaSCN (g)
S1	3,89	-	49,05	-	4,78
S2	7,08	-	45,62	-	4,34
S3	7,78	-	44,86	-	-
S4	-	6,30	-	52,46	-
S5	-	6,30	-	438,24	-

Ces essais synthétiques permettent d'isoler et de quantifier précisément l'effet de chaque paramètre. Une étude paramétrique est mise en place en ne faisant varier qu'un seul facteur à la fois (SCN-, N-NH3, Cl- ou SO42-), les autres étant maintenus constants, afin de garantir la comparabilité des résultats. En complément, trois effluents réels (notés R1, R2 et R3) ont été sélectionnés pour valider les observations issues des milieux synthétiques. Ces effluents présentent des profils anioniques dominés respectivement par SO42- (R1 et R2) et Cl- (R3), comme indiqué dans le Tableau 2. Leur étude permet de confronter les résultats obtenus en conditions contrôlées avec ceux issus de matrices complexes. Aussi, afin de limiter les concentrations en métaux pouvant être source de toxicité de l'effluent traité (Marcotte et al., 2023), ceux-ci sont préalablement précipité. Le protocole de coagulation à flocs lestés est fourni en annexe D. Avant l'ozonation à

microbulles, le pH est ajusté à 9 par ajout de NaOH afin de garantir une bonne efficacité de traitement (Marcotte et al., 2020).

Tableau 2 : Effluents synthétiques S et réels R utilisés lors des essais d'ozonation

Effluent	[SO ₄ ²⁻] (g/L)	[Cl ⁻] (g/L)	[N-NH ₃] (mg N/L)	[SCN ⁻] (mg N/L)	[N oxydable] (mg N/L)
S_1	2,40	-	55	55	110
R_1	2,30	0,23	56	53	109
S_2	2,40	-	100	50	150
R_2	2,50	0,18	103	50	153
S_3	2,40	-	110	-	110
S ₄	-	2,40	110	-	110
S ₅	-	18,0	110	-	110
R ₃ dilué (30 %)	-	18,0	110	-	110
R ₃	-	60,0	370	-	370

Cette approche combinée, alliant essais synthétiques contrôlés et validation sur effluents réels, permet d'évaluer de manière robuste et détaillée l'influence de la salinité, de la composition anionique et de la charge en contaminants sur l'efficacité du procédé d'ozonation à microbulles.

4. Mise en place de l'essai

- 1. Verser la solution (synthétique ou réelle) dans le réacteur d'ozonation.
- 2. Ajuster le pH à 9
- 3. Installer l'agitateur et le système de diffusion d'ozone.
- 4. Mettre en route l'agitateur à une vitesse constante (150 à 200 tr/min).
- 5. Lancer la production d'ozone et injecter celui-ci dans la solution à l'aide du diffuseur.
- 6. Le temps de contact doit être mesuré à partir de l'injection initiale d'ozone. Les échantillons sont prélevés à des intervalles réguliers de 15 minutes jusqu'à diminution de la concentration en N-NH₃ au-dessous de1 mg/L.
- 7. À chaque temps de prélèvement, un échantillon est filtré à 0,45 μm, puis analysé immédiatement ou conservé à 4 °C pour analyse ultérieure (dans un délai de 24 heures).

5. Analyses à effectuer

À chaque point de prélèvement, effectuer les analyses suivantes :

- [N-NH₃]: par sonde sélective
- [SCN⁻], [CNO⁻], [NO₂⁻], [NO₃⁻], [Cl⁻], [SO₄²-], (per)chlorate: par chromatographie ionique.
- pH, Température, Conductivité, Potentiel redox.

6. Traitement et interprétation des résultats

- Calculer la concentration résiduelle de N-NH₃ à chaque point, et en déduire le pourcentage d'élimination.
- Tracer les courbes d'évolution de SCN-, N-NH₃, NO₂- et NO₃- en fonction du temps.
- Calculer la quantité d'ozone consommée par mg de N-NH₃ éliminé.
- Le cas échéant, déterminer les cinétiques (pseudo-premier ordre) à l'aide des courbes ln([N-NH₃]₀/[N-NH₃]_t) en fonction du temps.

ANNEXE B Protocole suivi lors des essais de nitrification-dénitrification MBBR

1. Objectifs

Cette partie du projet a pour objectif d'évaluer la capacité d'un procédé de traitement biologique par nitrification-dénitrification, intégré dans une filière de type MBBR (Moving Bed Biofilm Reactor), à atteindre de façon durable les standards de qualité exigés pour un rejet direct des effluents dans le milieu naturel. À cette fin, un essai pilote à l'échelle semi-industrielle est mis en place et fonctionne en continu pendant une période de neuf mois, afin d'analyser les performances du système dans des conditions représentatives d'une exploitation réelle.

2. Pilote d'essais MBBR

Le procédé étudié reprend le design proposé par Villemur et al. (2015) en y intégrant une étape supplémentaire de dénitrification (Figure 1). L'effluent à traiter est d'abord transféré du réservoir d'alimentation vers les réacteurs MBBR à l'aide d'une pompe péristaltique, selon un débit rigoureusement contrôlé. Ce débit est initialement fixé à 0,1 L/h afin de favoriser le développement de la biomasse, puis il est progressivement ajusté en fonction de la capacité du système pilote à dégrader la charge contaminante. L'écoulement entre les réacteurs (R1 à R5) s'effectue par gravité. Chaque réacteur remplit une fonction spécifique (Tableau 2.1), nécessitant l'ajout de réactifs, une aération ou une agitation adaptée pour garantir des conditions optimales à la croissance et à l'activité des communautés microbiennes.

Le premier réacteur (R1) assure l'oxydation du thiocyanate (SCN⁻) et l'hydrolyse du cyanate (CNO⁻) qui en résulte. Il est équipé d'un système d'aération composé d'une pompe d'aquarium et d'une pierre de diffusion. Pour prévenir l'acidification du milieu — en particulier en cas de nitrification partielle — le pH est maintenu autour de 7,4 grâce à l'injection contrôlée de carbonate de sodium (Na₂CO₃) par une pompe doseuse. Une seconde pompe péristaltique injecte une solution de phosphate monoammonique (NH₄H₂PO₄) afin de satisfaire les besoins en phosphore (PO₄³⁻) des microorganismes.

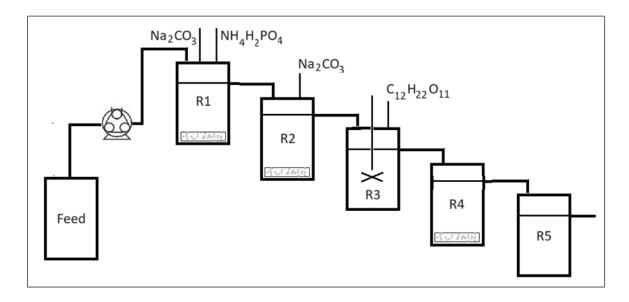


Figure 1 : Schéma simplifié du pilote d'essais MBBR

Le réacteur R2, également aéré via une pompe d'aquarium et une pierre de diffusion, est dédié à la nitrification des effluents. Ce processus générant une acidification du milieu, une régulation continue du pH à 7,4 est assurée par une injection de Na₂CO₃ à l'aide d'une pompe doseuse.

Tableau 1	l : De	escription	des	différents	réacteurs	composant	la 1	filière	MBBR	étudiée

Réacteur	Principale fonction	Ajout de réactifs	Aération	Agitation mécanique	Volume du réacteur (L)	Taux de remplissage MBBR initial (%)
R1	Oxydation/ hydrolyse des SCN- et CNO-	Na ₂ CO ₃ NH ₄ H ₂ PO ₄	Oui	Non	5	30
R2	Nitrification	Na ₂ CO ₃	Oui	Non	40	30
R3	Dénitrification	$C_{12}H_{22}O_{11}$	Non	Oui	15	30
R4	Réoxydation	-	Oui	Non	5	30
R5	Sédimentation de la biomasse	-	Non	Non	15	0

Le réacteur R3 prend en charge la dénitrification des effluents. Il n'est pas aéré, et l'homogénéisation du milieu s'effectue par agitation mécanique. Une pompe péristaltique ajoute une solution de saccharose (C₁₂H₂₂O₁₁) servant de source de carbone organique pour les bactéries dénitrifiantes hétérotrophes. Le débit de cette solution est initialement défini pour atteindre un rapport massique C/N d'environ 4. Ce ratio est ensuite ajusté selon les performances de

dénitrification observées, les concentrations résiduelles de DCO en sortie, ou la présence d'oxygène dissous (OD) excessive dans le réacteur.

Le réacteur R4 réalise un traitement de polissage par réoxygénation. Bien que sa fonction principale soit l'oxydation de l'excès de carbone organique issu de la dénitrification, d'autres réactions d'oxydation peuvent également s'y produire, telles que celles des formes réduites de l'azote (N-NH₃, NO₂⁻) ou du sulfure d'hydrogène (H₂S) potentiellement formé lors de la dénitrification. Ce réacteur est donc maintenu en conditions aérobies.

Enfin, bien que les réacteurs MBBR génèrent moins de matières en suspension (MES) que les systèmes à boues activées, le réacteur R5 est conçu pour permettre la sédimentation de la biomasse détachée en aval des différentes étapes. Cette configuration permet à la fois de réduire la turbidité de l'effluent final et de limiter les risques de remobilisation des contaminants liés à la dégradation de la biomasse.

2.1 Montage du pilote :

- Dans les différents réacteurs, mesurer la hauteur nécessaire afin d'avoir le volume utile souhaité
- À cette hauteur, percer un trou pour le raccordement du tuyau de sortie
- Installer les différents réacteurs afin de permettre un écoulement gravitaire entre eux
- Mettre en place les différents réservoirs de réactifs. Les graduer afin de pouvoir en suivre le volume restant.
- Installer les pompes volumétriques (alimentation en effluent, NH4H2PO4, C12H22O11)
- Installer les pompes doseuses et calibrer les sondes pH
- Ajouter les médias MBBR (Kaldnes K3) afin que ceux-ci occupent 30 % du volume utile
- Mettre en place les pompes à aquarium (munies de pierre de diffusion) dans les réacteurs R1, R2 et R4
- Installer le système d'agitation
- Mettre en écoulement

2.2 Inoculation des réacteurs

Les réacteurs R1 et R2 sont respectivement inoculés à l'aide de médias MBBR prélevés directement à l'étage correspondant de l'Unité de Traitement des Effluents (UTFE) : l'étage de dégradation des thiocyanates (SCN⁻) pour R1 et l'étage de nitrification pour R2. Le réacteur R3 est quant à lui inoculé par des ajouts de boues récupérées au sein du clarificateur final de l'UTFE. Aucun inoculum n'est introduit dans le réacteur R4, tandis que le réacteur R5 ne contient pas de médias MBBR.

3. Réalisation des essais

3.1. Phase de démarrage (acclimatation)

Le réacteur pilote reçoit dans un premier temps un débit de 0,1 L/h d'effluent minier. Afin de prévenir tout choc toxique, en particulier lié à la présence de cuivre (Cu), les métaux sont préalablement précipités (voir Annexe D). Si Cu se retrouve inférieur à 1 mg/L, l'effluent peut être utilisé au sein du pilote. Une fois le procédé biologiquement stabilisé, c'est-à-dire en l'absence d'accumulation significative de nitrites (NO₂⁻) ou d'ammoniac (N-NH₃) au-delà de 2 mg/L, le débit d'alimentation augmente progressivement. Cette montée en charge, effectuée par paliers contrôlés, permet de préserver l'intégrité de la biomasse et de conduire le système vers un débit cible d'environ 1 L/h.

3.2 Suivi analytique

À minima, un suivi du procédé est réalisé par semaine. Les paramètres suivis sont :

- N-NH₃ par sonde sélective calibrée (Thermo Scientific™ Orion™ High Performance Ammonia Combination Ion Selective Electrode)
- NO₂-, NO₃-, PO₄³-par colorimétrie (Hach DR900)
- SCN par spectrométrie (460 nm)
- pH, POR, temperature, OD à l'aide d'une sonde multiparamètre calibrée
- Volume restant dans les différents réservoirs de réactifs
- Débit des pompes (mesuré à l'aide d'un cylindre gradué et d'un chronomètre)

Avant analyse, les échantillons sont filtrés à 0,45 µm puis directement analysés. Dans le cas où cela ne serait pas possible, ils sont conservés au maximum 48 h à 4 °C.

Ce suivi est complété par une caractérisation plus exhaustive (DCO, DBO, alcalinité, métaux et écotoxicologie) dans un laboratoire accrédité. L'échantillonnage est réalisé lorsque les données obtenues par colorimétrie s'avèrent stables et avant l'augmentation du débit d'alimentation. Après une éventuelle filtration (si nécessaire), les échantillons sont expédiés à ce dernier dans des glacières munies de pains de glace.

4. Interprétation des données

- Bilan massique : Établir un bilan massique de l'azote total pour vérifier la transformation des contaminants en produits finaux (N₂, NO₃⁻, etc.).
- Visualisation : représentations graphiques des évolutions temporelles des concentrations en azote, des paramètres physico-chimiques, et des rendements.
- Calculs de performance : Déterminer les rendements d'élimination (%), les vitesses spécifiques de dégradation (en g-N/m²/h) et les charges critiques pour chaque contaminant.
- Déterminer les consommations en réactifs (en g/g-N)
- Analyse de la stabilité du procédé : réponse du système aux variations de charge, pH, température, etc.

ANNEXE C Protocole suivi lors des essais de promotion de l'atténuation naturelle

1. Objectif du protocole

Ce protocole expérimental a pour objectif d'évaluer, dans un contexte de traitement semi-passif, l'efficacité de l'ajout de phosphate (PO₄³-) — à des concentrations de 1, 2 et 3 mg/L — pour stimuler l'atténuation naturelle des contaminants azotés présents dans des eaux minières. L'étude vise à déterminer dans quelle mesure différents dosages de phosphate influencent les cinétiques de dégradation de ces contaminants, en identifiant la concentration optimale favorisant l'activité biologique.

L'analyse conjointe des paramètres physico-chimiques (pH, potentiel redox et oxygène dissous) permettra de caractériser les conditions redox les plus favorables à la transformation des composés azotés. En parallèle, la comparaison des résultats obtenus pour plusieurs types d'effluents miniers permettra d'identifier les facteurs influençant l'efficacité du traitement, notamment la charge polluante initiale, la salinité, et les concentrations en métaux dissous. Ces données seront essentielles pour établir des critères de sélection des sites propices à une stratégie de biostimulation au phosphate dans le cadre de traitements passifs ou semi-passifs.

2. Caractérisation initiale des eaux minières

Avant le démarrage des essais, un échantillon représentatif des eaux minières à traiter sera collecté. Une première série d'analyse de l'effluent (pH, ORP, température, turbidité, OD, NO₂-, NO₃-, N-NH₃, PO₄³-) est alors réalisée. Celle-ci est complétée par une caractérisation physico-chimique plus exhaustive (DCO, DBO, alcalinité, MES, carbone organique et métaux notamment) menée par un laboratoire accrédité. Des échantillons sont également prélevés afin d'identifier et dénombrer les espèces biologiques ou les matières minérales présentes. Cette étape permet de poser un diagnostic de l'état initial du système et d'identifier les paramètres pouvant influencer l'activité biologique.

3. Réalisation des essais

Différents essais de promotion de l'atténuation naturelle sont menés (Tableau 1). Ceux-ci sont réalisés, dans un premier temps, en chambre de culture. Ils sont par la suite repris lors d'essais insitu à plus grande échelle.

Tableau 1 : Essais de promotion de l'atténuation naturelle réalisés

Essais	Effluent	Test	Volume d'effluent initial (L)	Concentration souhaitée en PO ₄ ³⁻ (mg/L)	Volume de PO4 ³⁻ ajouté (mL)
		-	1	0	0
Chambre de	D.5	-	1	1	0,14
culture	R5	-	1	3	0,43
		-	1	5	0,72
		A1	1030	1	148
	R4	A2	980	3	422
		A3	1020	5	733
		A4	1000	1	144
In-situ	R1	A5	965	3	416
		A6	990	5	711
		A7	1000	1	144
	R5	A8	1000	3	431
		A9	1050	5	754

3.1. Essais en chambre de culture :

Des échantillons de 500 mL d'effluent minier sont ajoutés dans des petits bacs en plastique. Des ajouts de PO₄³⁻ sont alors éventuellement réalisés (0, 1, 2 ou 3 mg/L selon les essais). Celui-ci est ajouté ici sous forme d'une solution contenant 10 g/L d'engrais (7,0 g PO₄³⁻/L), soit un fertilisant de type *Plant Starter 10-52-10* (GolfgreenTM). Afin de simuler les conditions estivales, la chambre de culture est programmée pour une période d'éclairage de 18 h, suivie d'une période d'obscurité de 6 h.

3.2. Essais in-situ

Les essais sont réalisés dans des réservoirs en polyéthylène haute densité (PEHD) d'un volume unitaire de 1 m³, ouverts sur le dessus pour permettre une exposition directe aux conditions atmosphériques. Ces réservoirs sont installés sur une surface plane et stable, non ombragée, afin de maximiser l'ensoleillement tout au long de la journée. Chaque réservoir est rempli avec un type d'effluent spécifique à tester, dont le volume initial est soigneusement mesuré et consigné pour assurer la traçabilité et la reproductibilité des essais.

Les expérimentations sont conduites au cours des mois de juillet et août 2023, une période caractérisée par des températures diurnes élevées (souvent supérieures à 20 °C) et une intensité lumineuse maximale dans la région d'étude.

4. Suivi expérimental

Des prélèvements d'échantillons liquides seront réalisés à intervalles réguliers (tous les 3 jours) au cours des 2 premières et de la dernière semaine des essais. Les concentrations en N-NH₃, NO₂-, NO₃-, et PO₄³-, ainsi que la turbidité, sont mesurées à l'aide d'un colorimètre Hach DR900. Le pH, le POR, l'OD, la température et la conductivité sont mesurés à l'aide d'une sonde de terrain multiparamètre calibrée. Un échantillon supplémentaire est filtré (0,45 μm) et conservé à 4 °C. Celui-ci est analysé (SCN-, CNO- et alcalinité notamment) dès le retour du terrain (conservation maximale de 15 jours). Une analyse par chromatographie ionique est aussi réalisée afin de confirmer les valeurs obtenues in-situ par colorimétrie.

5. Démantèlement des essais

À la fin des essais, des échantillons sont prélévés, éventuellement filtrés à 0,45 µm, puis envoyé à un laboratoire accrédité afin de réaliser une caractérisation complète des effluents après traitement. Un autre échantillon est pris afin de réaliser une identification et un dénombrement des populations biologiques et d'éventuelles matières minérales particulaires. Une chaudière de chacun des effluents après traitement est aussi prélevée afin de permettre la réalisation des essais de dégradation et de récupération de la biomasse à venir.

6. Analyse et interprétation des résultats

Les résultats obtenus permettront de comparer les cinétiques de dégradation des contaminants azotés selon les différents dosages de phosphate appliqués. L'objectif est d'identifier la concentration en PO₄³⁻ qui favorise le plus efficacement l'activité biologique. Les données de pH, redox et oxygène dissous permettront aussi d'évaluer l'environnement redox favorable à la dégradation des contaminants. La comparaison des résultats obtenus pour les différents effluents testés, permettra de définir un ensemble de paramètres (charge à traiter, salinité, concentrations en métaux notamment) influant sur l'efficacité du traitement.

ANNEXE D Protocole suivi pour la précipitation des métaux

La présence de métaux lourds et de métalloïdes dans les effluents industriels ou miniers constitue un facteur de risque majeur pour le bon déroulement des processus biologiques de traitement, en particulier la nitrification et la dénitrification. Même à faibles concentrations, ces éléments peuvent interférer avec l'activité enzymatique des micro-organismes et perturber l'équilibre des communautés bactériennes (Stasinakis et al., 2003 ; Çeçen et al., 2010). Afin de prévenir tout effet inhibiteur dans l'unité pilote de traitement biologique, une étape de décontamination chimique est systématiquement mise en œuvre pour réduire la teneur en métaux dissous, en particulier le cuivre.

1. Étape de la précipitation chimique

La stratégie adoptée repose sur une séquence optimisée de coagulation-floculation visant à favoriser la précipitation des ions métalliques sous forme d'hydroxydes ou de complexes insolubles. Le traitement est réalisé selon le protocole suivant :

1.1. Coagulation:

- Ajout de 1 mL de sulfate ferrique (Fe₂(SO₄)₃, 100 g/L) par litre d'effluent.
- Agitation rapide à 250 tours par minute (rpm) pendant toute la phase de mélange.

Le sulfate ferrique agit comme coagulant primaire, en formant des hydroxydes ferriques (Fe(OH)₃) à pH basique, qui piègent les particules colloïdales et les métaux dissous

1.2. Ajustement du pH:

- Le pH est ajusté à 9,0 à l'aide d'une solution de soude caustique (NaOH, 50 g/L).

Ce pH favorise la précipitation optimale du cuivre sous forme de Cu(OH)₂, faiblement soluble à ce niveau de basicité, ainsi que d'autres métaux comme le zinc, le nickel ou le plomb.

1.3. Floculation:

 À t = 2 minutes, injection de 25 μL d'Hydrex 6909/L, un précipitateur sulfuré de métaux, destiné à renforcer la coagulation en facilitant la neutralisation des charges électrostatiques.

- À t = 8 minutes, ajout de microsable (10 g/L) pour servir de noyau de floculation, et de la moitié du volume de polymère anionique Hydrex 6105 (soit 0,25 mL/L à 10 g/L). Ce polymère forme des ponts entre les particules, augmentant la taille et la densité des flocs.
- Le reste du polymère est ajouté à t = 9,5 minutes pour compléter la formation des flocs.
- L'agitation est stoppée à t = 13,5 minutes pour permettre la décantation.

1.4. Décantation et prélèvement :

- Après 2 minutes de repos, soit à t = 15,5 minutes, des échantillons clairs en surface sont prélevés pour analyses.

2. Contrôle de la qualité de l'effluent clarifié

Les échantillons prélevés sont soumis à une double analyse pour évaluer l'efficacité du traitement :

- Turbidité : mesurée pour vérifier la clarté de l'effluent, indicateur de la bonne séparation phase solide/liquide.
- Concentration en cuivre dissous : par colorimétrie (méthode Hach 8506) et/ou par ICP-OES.

Le seuil critique est fixé à 0,2 mg/L de cuivre dissous, correspondant à la concentration mensuelle moyenne maximale autorisée selon le REMMD (Règlement sur les effluents des mines de métaux et des mines de diamants, Gouvernement du Canada, 2025). Si cette valeur est respectée, l'effluent est considéré conforme à la réglementation environnementale et apte à être introduit dans l'unité MBBR (Moving Bed Biofilm Reactor).

3. Intégration dans le traitement biologique

Une fois traité, l'effluent conforme (Cu < 0,2 mg/L) est transféré dans le réservoir d'alimentation du pilote biologique MBBR pour les essais de nitrification-dénitrification. À cette concentration, le cuivre résiduel est suffisamment faible pour ne pas compromettre l'activité des bactéries

autotrophes (Nitrosomonas, Nitrobacter) et hétérotrophes impliquées dans le cycle de l'azote. Cette précaution est essentielle pour garantir la fiabilité des performances du procédé biologique étudié, sans biais liés à une toxicité métallique résiduelle.

ANNEXE E Données des suivis des essais d'ozonation à microbulles

	de l'Abilità-Térisicamingue 446, bout, de l'Univerzità Rougest cranda (Deliber) J0X-554 Tél.: (819) 752-007 1 poste 2558 * Fax: (819) 79 7-5672												
Analy se des an	ions par chromatographie ionique												
Préparation:	Arnaud G												
Analyse:	Roch Germain												
Date d'a naly se : Vérification :	Le 14 juillet 2023												
Projet:	PI-Arnaud G												
	Ion	Fluorure F	Chlorure Cl	Nitrite NO ₂	Bromure Br	Nitrate NO ₃	Phosphate PO ₄ 3-	Sulfite SO ₃ 2-	Sulfate SO ₄ 2-	Cy a nate CNO	Thiosulfate \$20.2	Thiocy a nate \$CN	Tetrathionate
	LDM	0,2	0,7	0,7	0,7	0,7	0,9	1	1	1	1	1	
PI-Arnaud G	Ozonation R1 t0 IC (U116170)	<0,2	247,4	<0,7	3,3	68,8	<0,9		1899		245	4	<1
Pl-Arnaud G	Ozonation R1 t0 IC (U116170D)	<0,2	246,6	<0,7	3,3	68,4	<0,9		1892		244	3	<1
PI-Arnaud G	Ozonation \$2 t0 IC (U116169)	<0,2	1,8	<0,7	<0,7	<0,7	<0,9		2418		194	<1	<1
PI-Arnaud G	Ozonation R3 t0 IC (U116168)	<0,2	36329,5	<0,7	260,8	2336,2	<0,9		1208		<1	<1	<1
PI-Arnaud G	Ozonation R2 t0 IC (U116167)	0,9	220,2	2,6	2,2	93,2	<0,9		2221		229	24	<1
PI-Arnaud G	Ozonation 85 t0 IC (U116166)	<0,2	17721,6	<0,7	<0,7	<0,7	<0,9		2		<1	<1	<1
PI-Arnaud G	Ozonation R3 dilue t0 IC (U116165)	<0,2	10354,3	21,5	50,8	620,0	<0,9		325		<1	<1	<1
PI-Arnaud G	Ozonation \$4 t0 IC (U116164)	<0,2	2487,8	<0,7	<0,7	<0,7	<0,9		<1		<1	<1	<1
PI-Arnaud G	Ozonation \$1 t0 IC (U116163)	<0,2	1,1	<0,7	<0,7	<0,7	<0,9		2521		218	<1	<1
Pl-Arnaud G	Ozonation \$3 t0 IC (U116162)	<0,2	1,1	<0,7	<0,7	<0,7	<0,9		2426		218	<1	<1
Pl-Arnaud G	Ozonation \$3 t0 IC (U116162D)	<0,2	<0,7	<0,7	<0,7	<0,7	<0,9		2510		<1	<1	<1
Reprise													
PI-Arnaud G	Ozonation R1 t0 IC (U116170)								1606		251		
PI-Arnaud G	Ozonation R1 t0 IC (U116170D)								1584		248		
PI-Arnaud G	Ozonation \$2 t0 IC (U116169)								2378		198		
PI-Arnaud G	Ozonation R3 t0 IC (U116168)		33709,3			1949,6			996		<1		
PI-Arnaud G	Ozonation R2 t0 IC (U116167)								1941		234		
PI-Arnaud G	Ozonation S5 t0 IC (U116166)		A venir										
Pl-Arnaud G	Ozonation R3 dilue t0 IC (U116165)		9324,3								<1		
PI-Arnaud G PI-Arnaud G	Ozonation \$4 t0 IC (U116164)		2206,1						2435		<1		
PI-Arnaud G PI-Arnaud G	Ozonation \$1 t0 IC (U116163)								2433		221		
PI-Arnaud G PI-Arnaud G	Ozonation \$3 to IC (U116162) Ozonation \$3 to IC (U116162)								2291 2421		<1		
peCHECK Minéraux, ni		12,1	463	nd	nd	nd	nd		395		nd	nd	nd
peCHECK Minéraux, ni	v. 3 ²	10,3	480,4	nd	nd	nd	nd		393		nd	nd	nd
CQ Tétrahionate (15 p	pm)¹												16
CQ Tétrahionate (6 pp	m)¹												6
CQ Anions (15 ppm) ¹		15.8	16.5	15.1	16.3	16.6	15.3		15		15	16	
CQ Anions (15 ppm) ¹		15,1	15,7	14,9	13,7	13,4	16,8		15		15	16	
CQ Anions (6 ppm) ¹		5,9	5,9	6,0	5,9	5,9	6,0		6		6	6	-
CQ Anions (6 ppm) ¹		6,3	6,1	6,7	6,1	6,4	6,2		7		6	6	-
Disco de conteste de		-0.3	-0.7	-0.7	-0.7	-0.7	-00					- 4	
Blanc de contrôle (0 p		<0,2 <0,2	<0,7 <0.7	<0,7 <0,7	<0,7 <0,7	<0,7 <0,7	<0,9 <0,9		<1 <1		<1 <1	<1	<1 <1
Blanc de contrôle (0 p	pm _J -	<0,2	<0,7	<0,/	<u, <="" td=""><td><0,/</td><td><0,9</td><td></td><td><1</td><td></td><td><1</td><td><1</td><td><1</td></u,>	<0,/	<0,9		<1		<1	<1	<1
	Les résultats sont exprimés en mg/l												
	LDM : Limite de détection de la méthode.												
	Valeurs attendues												
	² Valeurs obtenues												

CH31111	nāki de recherch+et de oarvice en technologie ministale 6 l'Abliki-Teints-ramingue 6, best de Nichael 1, best de Nichael 1, de 18,740.002 1 posta 2558 + fac: (810.79.26872 u. (810.740.002 1 posta 2558 + fac: (810.79.26872												
Analyse des ani	ons par chromatographie ionique												
Préparation:	Arnaud Grimault												
Analyse:	Roch Germain												
Date d'analyse:	Le 19 juillet 2023												
Vérification:													
Projet	Pi-Amaud G												
	lon		Chlorure	Nitrite	Bromure	Nitrate	Phosphate	Sulfite	Sulfate	Cyanate			Tetrathionate
		Ł.	CI	NO,	Br'	NO ₃	PO ₄ 3	\$0 ₃ 5	80,2°	CNO.	\$202	SCN'	5,0,2
	LDM	0,2	0,7	0,7	0,7	0,7	0,9	1	1	1	1	1	
PI-Arnaud G	020 S4 tf K sans (U116511)	<0.2	7480	<0.7	3.4	140.0	<0.9		2		<1	<1	<1
PI-Arnaud G	020 \$3 tf IC (U116509)	<0.2	<0.7	40,7	40,7	29.5	<0.9		245		<1	<1	<1
PI-Arnaud G	ozo 52tf IC (U119508D)	<0.2	<0.7	<0.7	<0,7	186,6	<0.9		822		<1	<1	<1
PI-Arnaud G	ozo \$2 tf IC (U116508)	<0,2	<0,7	<0,7	<0,7	187,0	<0,9		820		<1	<1	<1
peCHECK Minéraux, niv	*1	12,1	463.0	nd	nd	nd	nd		395		nd	nd	nd
peCHECK Minéraux, niv.		3.0	4741	nd	nd	nd	nd		389		nd	nd	nd
pecneck wineraus, niv.	.5-	5,0	4/47	no	no	no	no l		209		no	na	na
CQ Tétrahionate (15 pp	m)*												15
CQ Tétrahionate (6 ppm	I'												6
CQ Anions (15 ppm)		15,9	14,8	14,9	14,6	15,1	15,2		16		15	16	
CQ Anions (6 ppm)*		6.3	6,3	6.1	6.7	6.0	6.0		6		- 6	6	
CQ Anions (6 ppm)*		5,7	4,3	5,9	5,1	5,6	6,3		6		6	6	
Blanc de contrôle (0 pp	m/r	40.2	40.7	40.7	40.7	40.7	<0.9		41		<1	<1	-4
Blanc de contrôle (0 pp		<0,2	<0,7	<0,7	<0,7	40,7	<0,9		<1		<1	<1	<1
	Les résultats sont exprimés en mg/l												
	LDM: Limite de détection de la méthode.												
	Valeurs attendues												
	² Valeurs obtenues												

MIKAIN	Modili de sertrechest die service en technologie ministale de l'Alabia-Téchnic arrenges 40, just de Notrepuil Respit estata (Oudes) 20, 004 Tel (810/1000) 1 parts 2001 + Les (810/10/2400)												
Analyse des ar	nions par chromatographie ionique												
Préparation:	Arnaud Grimault												
Analyse:	Roch Germain												
Date d'analyse:	Le 21 juillet 2023												
Vérification:	,												
Projet:	PI-Arnaud G												
	lon	Fluorure	Chlorure	Nitrite	Bromure	Nitrate	Phosphate	Sulfite	Sulfate	Cyanate	Thiosulfate	Thiocyanate	Tetrathionate
		F.	CI.	NO ₂	Br ⁻	NO ₃	PO ₄ 3-	SO ₃ ² ·	SO ₄ ² ·	CNO.	S ₂ O ₃ ² ·	SCN"	S ₄ O ₆ -2
	LDM	0,2	0,7	0,7	0,7	0,7	0,9	1	1	1	1	1	
PI-Arnaud G	S5 IC tf (U116542)	0,7	773.4	-0.7	-0.7	4.4	<0,9		<1		<1	<1	<1
PI-Arnaud G PI-Arnaud G				<0,7 <0.7	<0,7	4,4							<1
PI-Arnaud G	S5 IC(1h) (U116539)	0,6	751,7	<0,7	<0,7	3,3	<0,9		<1		<1	<1	<1
peCHECK Minéraux, r	niv. 3 ¹	12,1	463	nd	nd	nd	nd		395		nd	nd	nd
peCHECK Minéraux, r	niv. 3 ²	9,9	490,7	nd	nd	nd	nd		381		nd	nd	nd
peCHECK Minéraux, r	iv. 3 ²	10,2	468,8	nd	nd	nd	nd		362		nd	nd	nd
CQ Tétrahionate (15 _l	opm)¹												15
CQ Tétrahionate (6 p	pm)¹												6
CQ Anions (15 ppm) ¹		16,3	15,6	15,8	15,1	15,2	15,5		16		15	15	
CQ Anions (15 ppm)		15,6	14,1	13,3	15,1	16,4	14,7		15		15	15	
CQ Anions (6 ppm) ¹		5,7	6,1	6,1	6,1	5,6	6,2		6		6	6	
CQ Anions (6 ppm) ¹		5,7	6,2	5,8	6,3	5,6	6,5		7		6	6	
CC Anions (6 ppm).		5,8	0,2	5,8	0,3	5,8	0,0				В	В	
Blanc de contrôle (0		<0,2	<0,7	<0,7	<0,7	<0,7	<0,9		<1		<1	<1	<1
Blanc de contrôle (0 p	ppm)¹	<0,2	<0,7	<0,7	<0,7	<0,7	<0,9		<1		<1	<1	<1
	Les résultats sont exprimés en mg/l												
	LDM : Limite de détection de la méthode.												
	¹ Valeurs attendues												

ANNEXE F Données des suivis des essais de nitrification-dénitrification MBBR

F.1 - R1/P1

-	100	1	7	¥	9	9	Y	7	7	Ŧ	#	#	#	17		7	3	Ŧ	#	15	-	10	1	*	U	#	F	Ī
2	SAZ.	À						1						The state of	909	- 3									1	South Section 1		ı
	Sile.	1						2000			-		9	1000	.0	ij	2000	300	985					20000	ă	900	ı	ı
	100										2000		1	ě.	×	ā	- 1	0	Ü					2000			1	ı
	3/12	1						1000			ğ	1000	1	1000	9	- 8	Same.	0.00	0					112011	763	8	1000	ı
	747	1000												- 194										-			- 80.	ı
-	*	200						-											_				=					
-	207	1																			-tr		2	1	8	7		İ
-	が	STATE OF THE PARTY.																			-		7	a con	-	1	6546	
-	347	200																			×-		2	-8	-80			İ
	****	100						×					1	4	ij.	ij	7	ğ			1	bad		200	257.00	700	1	
+	***			w	Ψ.		-		W.	ž.		1	ı	200	1	7		1	6	- 1	t		11	4	4	i.	The same of	i
-	*						ľ						I		1	8		ı	-4:-		8	T.				1		Ī
2	7												-	0.							1	1	- EL	4		1		i
-	-	N.	100	95	- 15	器	1	827	8	-	10	뫮	H	#	- 12	15	-	無	製	100	4	1	4	#	4	-	8	Ī
***	7.00														ı	I	1	1	I	1		I	ı	ı	I	ı	1	
			I	i	1	i	1	1	Ĭ	i	Ī	Ī	I	i	25.000										0.0		i	1
			-	8	8		1	100	-	200	-	200	-	- 10 10 10 10	200	1	8	9	8	i i	2000	9		1	9	1	-	İ
	198	=				F										E		Ħ				Ħ	1					ŧ
-	100	- 10				-8-			1	1	===					1						1	1			-8		1
	T.	I		1	30.0		-	200	2	1				-	355			1		-	200		i	1	1		1	I
		at the															İ	N/A			-		i		1	Ī	1	
-		A110	ı			ı		9	000000				ı	00000	200011		ı	I				30000		20,000			2000	
	滥	福建	i	3300	11100	ii.	i	11100	11100	Ĭ	3000	*	ii.	Š	13338	1	i	ž.	1	1000	i	100	Ü	3300	35338	i	1000	

Site Location: Meadowbank Division Your C.O.C. #: 253665-01-01

Attention: Thomas Genty

Agnico Eagle Mines Ltd. Meadowbank Division 280 Ave Larivière Rouyn-Noranda, QC CANADA J9X 4H4

Report Date: 2022/10/21 Report #: R3251713 Version: 3 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C277535 Received: 2022/10/04, 08:15

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity @25C (pp, total), CO3,HCO3,OH	3	N/A	2022/10/07	BBY65OP-00026	SM 23 2320 B m
Biochemical Oxygen Demand	3	2022/10/06	2022/10/11	BBY6SOP-00045	SM 23 5210 B m
Chloride/Sulphate by Auto Colourimetry	3	N/A	2022/10/07	BBY650P-00011 / BBY650P-00017	SM23-4500-CI/SO4-E m
Cyanide (Free) (1)	3	2022/10/11	2022/10/11	CAL SOP-00265	EPA 9016d RO m
Cyanide (total) (1)	1	N/A	2022/10/10	CAL SOP-00270	SM 23 4500-CN m
Cyanide (total) (1)	2	N/A	2022/10/11	CAL SOP-00270	SM 23 4500-CN m
COD by Colorimeter	3	N/A	2022/10/07	BBY6SOP-00024	SM 23 5220 D m
Cyanate Calculation	3	N/A	2022/10/12	BBY WI-00033	Auto Calc
Daphnia Magna LC50 Multi-concentration	1	N/A	2022/10/07	BBY250P-00007	EC EPS 1/RM/14 R2
Carbon (DOC) -Lab Filtered (1, 4)	3	N/A	2022/10/09	AB SOP-00087	MMCW 119 1996 m
Conductivity @25C	3	N/A	2022/10/07	BBY6SOP-00026	SM 23 2510 B m
Fluoride	3	N/A	2022/10/07	BBY65OP-00048	SM 23 4500-F C m
Hardness Total (calculated as CaCO3) (5)	3	N/A	2022/10/12	BBY WI-00033	Auto Calc
Hardness (calculated as CaCO3)	3	N/A	2022/10/07	BBY WI-00033	Auto Calc
Bromide as Bromine (Br) by ICPMS	3	N/A	2022/10/11	BBY75OP-00002	EPA 6020B R2 m
Na, K, Ca, Mg, S by CRC ICPMS (diss.)	3	N/A	2022/10/07	BBY WI-00033	Auto Calc
Elements by CRC ICPMS (dissolved) (6)	3	N/A	2022/10/07	BBY7SOP-00002	EPA 6020b R2 m
Na, K, Ca, Mg, S by CRC ICPMS (total)	3	2022/10/05	2022/10/12	BBY WI-00033	Auto Calc
Elements by CRC ICPMS (total)	3	2022/10/07	2022/10/11	BBY750P-00003 / BBY750P-00002	EPA 6020b R2 m
Ammonia-N (Total)	3	N/A	2022/10/11	AB SOP-00007	SM 23 4500 NH3 A G m
Nitrate + Nitrite (N)	3	N/A	2022/10/06	BBY650P-00010	SM 23 4500-NO3-1 m
Nitrite (N) by CFA	3	N/A	2022/10/06	BBY6SOP-00010	SM 23 4500-NO3-1 m
Nitrogen - Nitrate (as N)	3	N/A	2022/10/06	BBY WI-00033	Auto Calc
Filter and HNO3 Preserve for Metals	3	N/A	2022/10/07	BBY7 WI-00004	SM 23 30308 m
pH @25°C (7)	3	N/A	2022/10/07	BBY6SOP-00026	SM 23 4500-H+ B m
Orthophosphate by Konelab (8)	2	N/A	2022/10/06	BBY6SOP-00013	SM 23 4500-P E m
Orthophosphate by Konelab (8)	1	N/A	2022/10/12	BBY650P-00013	SM 23 4500-P E m
Rainbow Trout Single Concentration-100%	1	N/A	2022/10/06	BBY25OP-00004	EPS 1/RM/13 m
Total Dissolved Solids (Fllt. Residue)	3	2022/10/07	2022/10/11	BBY6SOP-00033	SM 23 2540 C m

Page 1 of 26

Buresu Ventes Burnally: 4606 Canada Way VSG 1KS Felephone;604) 734-7276 Fax(604) 731-2386

Site Location: Meadowbank Division Your C.O.C. #: 253665-01-01

Attention: Thomas Genty

Agnico Eagle Mines Ltd. Meadowbank Division 280 Ave Larivière Rouyn-Noranda, QC CANADA J9X 4H4

> Report Date: 2022/10/21 Report #: R3251713 Version: 3 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C277535 Received: 2022/10/04, 08:15

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Carbon (Total Organic) (1, 9)	3	N/A	2022/10/09	AB SOP-00087	MMCW 119 1996 m
Total Phosphorus	3	2022/10/07	2022/10/07	BBY6SOP-00013	SM 23 4500-P E m
Total Suspended Solids (NFR)	3	2022/10/07	2022/10/11	BBY6SOP-00034	SM 23 2540 D m
Thiocyanate (2)	3	N/A	2022/10/12	CAM SOP-00473	SM 23 4500-CN M m
Thiosulfates (3)	3	N/A	2022/10/17	STL SOP-00010	MA.304-lons 1.1 R1 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) This test was performed by Bureau Veritas Calgary, 4000 19 St., Calgary, AB, T2E 6P8
- (2) This test was performed by Bureau Veritas Campobello, 6740 Campobello Road , Mississauga, ON, L5N 2L8
- (3) This test was performed by Bureau Veritas Montreal , 889 Montee de Liesse , Ville St-Laurent, QC, H4T 1PS
- (4) DOC present in the sample should be considered as non-purgeable DOC. Dissolved > Total Imbalance: When applicable, Dissolved and Total results were reviewed and data quality meets acceptable levels unless otherwise noted.
- (5) "Total Hardness" was calculated from Total Ca and Mg concentrations and may be biased high (Hardness, or Dissolved Hardness, calculated from Dissolved Ca and Mg, should be used for compliance if available).

Site Location: Meadowbank Division Your C.O.C. #: 253665-01-01

Attention: Thomas Genty

Agnico Eagle Mines Ltd. Meadowbank Division 280 Ave Larivière Rouyn-Noranda, QC CANADA J9X 4H4

> Report Date: 2022/10/21 Report #: R3251713 Version: 3 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C277535

Received: 2022/10/04, 08:15

- (6) Dissolved > Total Imbalance: When applicable, Dissolved and Total results were reviewed and data quality meets acceptable levels unless otherwise noted.
- (7) The CCME method requires pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the CCME holding time. Bureau Veritas endeavours to analyze samples as soon as possible after receipt.
- (8) Orthophosphate > Total Phosphorus Imbalance: When applicable, Orthophosphate, Total Phosphorus and dissolved Phosphorus results were reviewed and data quality meets acceptable levels unless otherwise noted.
- (9) TOC present in the sample should be considered as non-purgeable TOC.

Encryption Key

Eandise Wilson Customer Polutions Representative 21 Oct 2022 11:37:17

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Customer Solutions, Western Canada Customer Experience Team

Email: customersolutionswest@bureauveritas.com

Phone# (604) 734 7276

.....

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Agnico Eagle Mines Ltd.

Site Location: Meadowbank Division

Sampler Initials: AG

RESULTS OF CHEMICAL ANALYSES OF WATER

UNITS mg/L	2022/10/03 14:00 253665-01-01 RAW WATER ST19 (JUNE)	RDL	OC Batch	2022/10/03 14:00 253665-01-01		
	RAW WATER ST19	RDL	QC Batch			
		RDL	QC Batch			
mg/L				FEED MBBR	RDL	QC Batch
mg/L						
	0.397	0.0050	A746517	3.84	0.050	A746517
N/A	LAB	T	A744641	LAB		A744641
mg/L	11.8	0.20	A743706	5.83	0.10	A743706
mg/L	<0.50	0.50	A745993	<0.75	0.75	A745993
mg/L	<1.3(1)	1.3	A763522	<1.3 (1)	1.3	A763522
mg/L	17	2.0	A744630	33	2.0	A744630
mg/L	309	10	A747436	241	10	A747436
uS/cm	4800	2.0	A751806	5000	2.0	A751806
ug/L	10 (2)	2.0	A751104	14 (2)	2.0	A751104
mg/L	0.0559	0.00050	A748021	0.0570	0.00050	A748051
pН	7.93	N/A	A751799	7.51	N/A	A751799
mg/L	8.5	0.50	A749676	8.3	0.50	A749676
mg/L	3600 (3)	17	A747977	3500 (3)	22	A747977
mg/L	11 (4)	3.3	A747247	4.8	1.0	A747247
mg/L	6.3	0.50	A749679	5.3	0.50	A748322
mg/L	<1.0	1.0	A751805	<1.0	1.0	A751805
mg/L	130	1.0	A751805	68	1.0	A751805
	mg/L mg/L mg/L mg/L uS/cm ug/L mg/L pH mg/L mg/L mg/L mg/L mg/L	mg/L 11.8 mg/L <0.50 mg/L <1.3 (1) mg/L 17 mg/L 309 uS/cm 4800 ug/L 10 (2) mg/L 0.0559 pH 7.93 mg/L 8.5 mg/L 3600 (3) mg/L 11 (4) mg/L 6.3	mg/L 11.8 0.20 mg/L <0.50	mg/L 11.8 0.20 A743706 mg/L <0.50	mg/L 11.8 0.20 A743706 5.83 mg/L <0.50 0.50 A745993 <0.75 mg/L <1.3 (1) 1.3 A763522 <1.3 (1) mg/L 17 2.0 A744630 33 mg/L 309 10 A747436 241 us/cm 4800 2.0 A751806 5000 ug/L 10 (2) 2.0 A751104 14 (2) mg/L 0.0559 0.00050 A748021 0.0570 pH 7.93 N/A A751799 7.61 mg/L 3600 (3) 17 A749676 8.3 mg/L 3600 (3) 17 A747977 3500 (3) mg/L 6.3 0.50 A749679 5.3 mg/L 6.3 0.50 A749679 5.3	mg/L 11.8 0.20 A743706 5.83 0.10 mg/L <0.50 0.50 A745993 <0.75 0.75 mg/L <1.3 (1) 1.3 A763522 <1.3 (1) 1.3 mg/L 17 2.0 A744630 33 2.0 mg/L 309 10 A747436 241 10 uS/cm 4800 2.0 A751806 5000 2.0 ug/L 10 (2) 2.0 A751104 14 (2) 2.0 mg/L 0.0559 0.00050 A748021 0.0570 0.00050 pH 7.93 N/A A751799 7.61 N/A mg/L 8.5 0.50 A749676 8.3 0.50 mg/L 3600 (3) 17 A747977 3500 (3) 22 mg/L 6.3 0.50 A749679 5.3 0.50 mg/L 6.3 0.50 A749679 5.3 0.50

RDL = Reportable Detection Limit

N/A = Not Applicable

⁽¹⁾ Detection limit raised due to matrix interference.

⁽²⁾ Interference checks not performed at the time of sampling. The lab cannot guarantee that interferences were not present at the time of sampling and that there is no low bias in results.

Results may have a high bias due to decomposition of hexacyanoferrate and some other metal-cyanide complexes to free cyanide.

⁽³⁾ RDL raised due to high concentration of solids in the sample.

⁽⁴⁾ RDL raised due to limited initial sample amount.

Sampler Initials: AG

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		BDP771			BDP772		
Sampling Date		2022/10/03 14:00			2022/10/03 14:00		
COC Number		253665-01-01			253665-01-01		
	UNITS	RAW WATER ST19 (JUNE)	RDL	QC Batch	FEED MBBR	RDL	QC Batch
Bicarbonate (HCO3)	mg/L	160	1.0	A751805	82	1.0	A751805
Carbonate (CO3)	mg/L	<1.0	1.0	A751805	<1.0	1.0	A751805
Dissolved Fluoride (F)	mg/L	0.10	0.050	A747139	0.085	0.050	A747139
Hydroxide (OH)	mg/L	<1.0	1.0	A751805	<1.0	1.0	A751805
Chloride (Cl)	mg/L	470	5.0	A747686	430	5.0	A747639
Sulphate (SO4)	mg/L	1800	25	A747686	1800	25	A747639
Nutrients							
Total Ammonia (N)	mg/L	49 (1)	0.38	A751883	59	0.75	A751883
Orthophosphate (P)	mg/L	0.011	0.0030	A753440	<0.0030	0.0030	A746150
Total Phosphorus (P)	mg/L	0.0069	0.0030	A748157	0.0097	0.0030	A748157
Nitrate plus Nitrite (N)	mg/L	12.2	0.20	A746516	9.68	0.10	A746516
Internal Sublet Analysis							
Thiocyanate	mg/L	220	5	A753227	200	5	A753227
RDL = Reportable Detection L							

⁽¹⁾ Matrix Spike invalid due to high sample concentration.

Agnico Eagle Mines Ltd.
Site Location: Meadowbank Division
Sampler Initials: AG

RESULTS OF CHEMICAL ANALYSES OF WATER

Bureau Veritas ID		BDP773		
Sampling Date		2022/10/03 14:00		
COC Number		253665-01-01		
	UNITS	TREATED WATER	RDL	QC Batch
ANIONS				
Nitrite (N)	mg/L	0.0420	0.0050	A746517
Calculated Parameters				
Filter and HNO3 Preservation	N/A	LAB		A744641
Nitrate (N)	mg/L	<0.020	0.020	A743706
Total Cyanate (CNO-)	mg/L	2.7	0.050	A745993
CONVENTIONALS				
Thiosulphate	mg/L	0.55	0.13	A763522
Daphnia Magna Bioassay				
LC50	% vol/vol	ATTACHED	N/A	A74799
Demand Parameters				
Biochemical Oxygen Demand	mg/L	35	3.0	A744630
Chemical Oxygen Demand	mg/L	162	10	A747438
Misc. Inorganics				
Conductivity	u\$/cm	4100	2.0	A75180
Free Cyanide (CN)	ug/L	13 (1)	2.0	A751104
Strong Acid Dissoc. Cyanide (CN)	mg/L	0.0515	0.00050	A748051
pH	pН	8.10	N/A	A751799
Total Organic Carbon (C)	mg/L	41	2.5	A749676
Total Dissolved Solids	mg/L	3200 (2)	13	A747977
Total Suspended Solids	mg/L	38	1.0	A747247
Lab Filtered Inorganics				
Dissolved Organic Carbon (C)	mg/L	18	0.50	A749679
Anions				
Alkalinity (PP as CaCO3)	mg/L	<1.0	1.0	A751805

RDL = Reportable Detection Limit

N/A = Not Applicable

Interference checks not performed at the time of sampling. The lab cannot guarantee that interferences were not present at the time of sampling and that there is no low bias in results.

Results may have a high bias due to decomposition of hexacyanoferrate and some other metal-cyanide complexes to free cyanide.

⁽²⁾ RDL raised due to high concentration of solids in the sample.

Agnico Eagle Mines Ltd. Site Location: Meadowbank Division Sampler Initials: AG

RESULTS OF CHEMICAL ANALYSES OF WATER

mg/L mg/L mg/L mg/L mg/L	2022/10/03 14:00 253665-01-01 TREATED WATER 320 390 <1.0 0.11 <1.0	1.0 1.0 1.0 0.050 1.0	QC Batch A751805 A751805 A751805 A747139 A751805
ng/L ng/L ng/L ng/L ng/L	253665-01-01 TREATED WATER 320 390 <1.0 0.11 <1.0	1.0 1.0 1.0 0.050	A751805 A751805 A751805 A747139 A751805
ng/L ng/L ng/L ng/L ng/L	320 390 <1.0 0.11 <1.0	1.0 1.0 1.0 0.050	A751805 A751805 A751805 A747139 A751805
ng/L ng/L ng/L ng/L ng/L	320 390 <1.0 0.11 <1.0	1.0 1.0 1.0 0.050	A751805 A751805 A751805 A747139 A751805
ng/l ng/l ng/l ng/l ng/l	390 <1.0 0.11 <1.0	1.0 1.0 0.050 1.0	A751805 A751805 A747139 A751805
mg/L mg/L mg/L mg/L	<1.0 0.11 <1.0	1.0 0.050 1.0	A751805 A747139 A751805
ng/L ng/L ng/L	0.11 <1.0	0.050 1.0	A747139 A751805
ng/L ng/L	<1.0	1.0	A751805
ng/L			
-	190	5.0	
A		2.00	A747639
mg/L	1500	25	A747639
ng/L	0.75	0.015	A751883
mg/L	<0.0030	0.0030	A746150
ng/L	0.43	0.0030	A748157
ng/L	0.047	0.020	A746516
ng/L	0.60	0.05	A753227
vol/vol	ATTACHED	N/A	A747576
	mg/L mg/L mg/L	mg/L 0.43 mg/L 0.047 mg/L 0.60	mg/L 0.43 0.0030 mg/L 0.047 0.020 mg/L 0.60 0.05

N/A = Not Applicable

Sampler Initials: AG

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Bureau Veritas ID		BDP771	BDP772	BDP773							
Sampling Date		2022/10/03	2022/10/03	2022/10/03							
Sampling Date		14:00	14:00	14:00							
COC Number		253665-01-01	253665-01-01	253665-01-01							
	UNITS	RAW WATER ST19 (JUNE)	FEED MBBR	TREATED WATER	RDL	QC Batch					
ANIONS											
Bromide (Br) mg,		3.53	3.58	2.45	0.10	A751033					
DL = Reportable Detection Limit											

Sampler Initials: AG

CSR DISSOLVED METALS (NO CV-HG) IN WATER

03 2022/10/03 2022/10/03		
14:00 14:00		
·01 253665-01-01 253665-01-0	1	
ST19 FEED MBBR RDL TREATED WAT	ER RDL	QC Batch
1030 0.50 699	0.50	A745777
<15 15 <6.0	6.0	A746269
12.6 2.5 3.9	1.0	A746269
3.20 0.50 0.91	0.20	A746269
62.4 5.0 18.4	2.0	A746269
<0.50 0.50 <0.20	0.20	A746269
<5.0 5.0 <2.0	2.0	A746269
284 250 193	100	A746269
<0.050 0.050 0.087	0.020	A746269
<5.0 5.0 <2.0	2.0	A746269
393 1.0 264	0.40	A746269
<1.0 1.0 7.32	0.40	A746269
<25 25 1260	10	A746269
<1.0 1.0 <0.40	0.40	A746269
<10 10 <4.0	4.0	A746269
21.1 5.0 80.8	2.0	A746269
99.1 5.0 52.6	2.0	A746269
45.6 5.0 12.7	2.0	A746269
164 0.50 39.4	0.20	A746269
2190 500 1550	200	A746269
<0.10 0.10 <0.040	0.040	A746269
2040 5.0 1400	2.0	A746269
<0.050 0.050 <0.020	0.020	A746269
<25 25 <10	10	A746269
<25 25 <10	10	A746269
11.3 0.50 0.91	0.20	A746269
<25 25 <10	10	A746269
<25 25 758	10	A746269
<0.50 0.50 <0.20	0.20	A746269
494 445 471	0.10	A744029
		<0.50 0.50 <0.20 0.20

Sampler Initials: AG

CSR DISSOLVED METALS (NO CV-HG) IN WATER

Bureau Veritas ID		BDP771	BDP772		BDP773		
Sampling Date		2022/10/03 14:00	2022/10/03 14:00		2022/10/03 14:00		
COC Number		253665-01-01	253665-01-01		253665-01-01		
	UNITS	RAW WATER ST19 (JUNE)	FEED MBBR	RDL	TREATED WATER	RDL	QC Batch
Dissolved Magnesium (Mg)	mg/L	24.7	25.4	0.25	17.7	0.10	A744029
Dissolved Potassium (K)	mg/L	184	186	0.25	127	0.10	A744029
Dissolved Sodium (Na)	mg/L	453	508	0.25	534	0.10	A744029
Dissolved Sulphur (S)	mg/L	733	769	15	527	6.0	A744029

Sampler Initials: AG

CSR TOTAL METALS (NO CV-HG) IN WATER

Bureau Veritas ID		BDP771	BDP772	BDP773		
Complian Date		2022/10/03	2022/10/03	2022/10/03		
Sampling Date		14:00	14:00	14:00		
COC Number		253665-01-01	253665-01-01	253665-01-01		
	UNITS	RAW WATER ST19 (JUNE)	FEED MBBR	TREATED WATER	RDL	QC Batcl
Calculated Parameters						
Total Hardness (CaCO3)	mg/L	1180	1130	731	0.50	A743728
Total Metals by ICPMS						
Total Aluminum (Al)	ug/L	<15	<15	<15	15	A74731
Total Antimony (Sb)	ug/L	19.4	13.5	4.2	2.5	A74731
Total Arsenic (As)	ug/L	84.5	3.52	0.99	0.50	A74731
Total Barium (Ba)	ug/L	89.3	66.7	19.8	5.0	A74731
Total Beryllium (Be)	ug/L	<0.50	< 0.50	< 0.50	0.50	A74731
Total Bismuth (Bi)	ug/L	<5.0	<5.0	<5.0	5.0	A74731
Total Boron (B)	ug/L	288	297	<250	250	A74731
Total Cadmium (Cd)	ug/L	0.100	<0.050	0.187	0.050	A74731
Total Chromium (Cr)	ug/L	<5.0	<5.0	<5.0	5.0	A74731
Total Cobalt (Co)	ug/L	307	318	236	1.0	A74731
Total Copper (Cu)	ug/L	154	<2.5	14.7	2.5	A74731
Total Iron (Fe)	ug/L	<50	58	4060	50	A74731
Total Lead (Pb)	ug/L	<1.0	<1.0	<1.0	1.0	A74731
Total Lithium (Li)	ug/L	<10	<10	<10	10	A74731
Total Manganese (Mn)	ug/L	5.4	21.5	79.2	5.0	A74731
Total Molybdenum (Mo)	ug/L	109	104	51.4	5.0	A74731
Total Nickel (Ni)	ug/L	1260	61.3	14.3	5.0	A74731
Total Selenium (Se)	ug/L	184	184	37.4	0.50	A74731
Total Silicon (Si)	ug/L	2680	1950	1310	500	A74731
Total Silver (Ag)	ug/L	0.15	<0.10	<0.10	0.10	A74731
Total Strontium (Sr)	ug/L	2200	2220	1390	5.0	A74731
Total Thallium (TI)	ug/L	<0.050	<0.050	<0.050	0.050	A74731
Total Tin (Sn)	ug/L	<25	<25	<25	25	A74731
Total Titanium (Ti)	ug/L	<25	<25	<25	25	A74731
Total Uranium (U)	ug/L	13.7	11.5	0.81	0.50	A74731
Total Vanadium (V)	ug/L	<25	<25	<25	25	A74731
Total Zinc (Zn)	ug/L	<25	<25	1570	25	A74731
Total Zirconium (Zr)	ug/L	<0.50	<0.50	<0.50	0.50	A74731
Total Calcium (Ca)	mg/L	432	408	263	0.25	A74403

Sampler Initials: AG

CSR TOTAL METALS (NO CV-HG) IN WATER

	BDP771	BDP772	BDP773		
	2022/10/03 14:00	2022/10/03 14:00	2022/10/03 14:00		
	253665-01-01	253665-01-01	253665-01-01		
UNITS	RAW WATER ST19 (JUNE)	FEED MBBR	TREATED WATER	RDL	QC Batch
mg/L	25.4	27.1	18.3	0.25	A744031
mg/L	195	200	133	0.25	A744031
mg/L	488	547	563	0.25	A744031
mg/L	775	795	520	15	A744031
	mg/L mg/L mg/L	2022/10/03 14:00 253665-01-01 UNITS RAW WATER ST19 (JUNE) mg/L 25.4 mg/L 195 mg/L 488	2022/10/03 2022/10/03 14:00 14:00 14:00 14:00 253665-01-01 253665-01-01 UNITS RAW WATER ST19 FEED MBBR mg/L 25.4 27.1 mg/L 195 200 mg/L 488 547	2022/10/03 2022/10/03 2022/10/03 14:00	2022/10/03 2022/10/03 2022/10/03 14:00 14:00 14:00 14:00

Agnico Eagle Mines Ltd. Site Location: Meadowbank Division Sampler Initials: AG

GENERAL COMMENTS

Sample BDP771 [RAW WATER ST19 (JUNE)]: The sample for dissolved metals was filtered and preserved at the lab. Values may not reflect concentrations at the time of sampling. Sample was analyzed past method specified hold time for Orthophosphate by Konelab. Exceedance of hold time increases the uncertainty of test results but does not necessarily imply that results are compromised.

Sample BDP772 [FEED MBBR]: The sample for dissolved metals was filtered and preserved at the lab. Values may not reflect concentrations at the time of sampling.

Sample BDP773 [TREATED WATER]: The sample for dissolved metals was filtered and preserved at the lab. Values may not reflect concentrations at the time of sampling.

Results relate only to the items tested.

Bureau Veritas Job #: C277535 Report Date: 2022/10/21

Agnico Eagle Mines Ltd. Site Location: Meadowbank Division

Sampler Initials: AG

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
A744630	SYC	Spiked Blank	Biochemical Oxygen Demand	2022/10/11		89	96	85 - 115
A744630	SYC	Method Blank	Biochemical Oxygen Demand	2022/10/11	<2.0		mg/L	
A744630	SYC	RPD	Biochemical Oxygen Demand	2022/10/11	5.3		%	20
A746150	JAV	Matrix Spike	Orthophosphate (P)	2022/10/06		87	%	80 - 120
4746150	JAV	Spiked Blank	Orthophosphate (P)	2022/10/06		96	%	80 - 120
A746150	JAV	Method Blank	Orthophosphate (P)	2022/10/06	<0.0030		mg/L	
A746150	JAV	RPD	Orthophosphate (P)	2022/10/06	0.16		%	20
A746269	SOM	Matrix Spike	Dissolved Aluminum (Al)	2022/10/07		99	%	80 - 120
			Dissolved Antimony (Sb)	2022/10/07		101	%	80 - 120
			Dissolved Arsenic (As)	2022/10/07		98	%	80 - 120
		Dissolved Barium (Ba)	2022/10/07		98	%	80 - 12	
		Dissolved Beryllium (Be)	2022/10/07		101	%	80 - 120	
			Dissolved Bismuth (Bi)	2022/10/07		95	%	80 - 12
			Dissolved Boron (B)	2022/10/07		97	%	80 - 120
			Dissolved Cadmium (Cd)	2022/10/07		98	%	80 - 12
			Dissolved Chromium (Cr)	2022/10/07		97	96	80 - 12
			Dissolved Cobalt (Co)	2022/10/07		97	%	80 - 12
			Dissolved Copper (Cu)	2022/10/07		96	%	80 - 12
			Dissolved Iron (Fe)	2022/10/07		101	%	80 - 12
			Dissolved Lead (Pb)	2022/10/07		100	96	80 - 12
			Dissolved Lithium (Li)	2022/10/07		101	%	80 - 12
			Dissolved Manganese (Mn)	2022/10/07		98	96	80 - 12
			Dissolved Molybdenum (Mo)	2022/10/07		97	96	80 - 12
			Dissolved Nickel (Ni)	2022/10/07		97	%	80 - 12
			Dissolved Selenium (Se)	2022/10/07		97	%	80 - 12
			Dissolved Silicon (Sil)	2022/10/07		110	96	80 - 12
			Dissolved Silver (Ag)	2022/10/07		95	%	80 - 12
			Dissolved Strontium (Sr)	2022/10/07		NC	96	80 - 12
			Dissolved Thallium (TI)	2022/10/07		97	%	80 - 17
			Dissolved Tin (Sn)	2022/10/07		97	%	80 - 12
			Dissolved Titanium (Ti)	2022/10/07		103	%	80 - 12
			Dissolved Uranium (U)	2022/10/07		102	%	80 - 12
			Dissolved Vanadium (V)	2022/10/07		99	%	80 - 12
			Dissolved Zinc (Zn)	2022/10/07		102	96	80 - 12
			Dissolved Zirconium (Zr)	2022/10/07		96	%	80 - 12
746269	SOM	Spiked Blank	Dissolved Aluminum (Al)	2022/10/07		108	96	80 - 12
			Dissolved Antimony (Sb)	2022/10/07		104	%	80 - 12
			Dissolved Arsenic (As)	2022/10/07		107	96	80 - 12
			Dissolved Barium (Ba)	2022/10/07		104	96	80 - 12
			Dissolved Beryllium (Be)	2022/10/07		109	96	80 - 12
			Dissolved Bismuth (Bi)	2022/10/07		106	96	80 - 12
			Dissolved Boron (B)	2022/10/07		104	96	80 - 12
			Dissolved Cadmium (Cd)	2022/10/07		105	96	80 - 12
			Dissolved Chromium (Cr)	2022/10/07		105	96	80 - 12
			Dissolved Cobalt (Co)	2022/10/07		106	26	80 - 12
			Dissolved Copper (Cu)	2022/10/07		105	56	80 - 12
			Dissolved Iron (Fe)	2022/10/07		110	%	80 - 12
			Dissolved Lead (Pb)	2022/10/07		108	16	80 - 12
			Dissolved Lithium (Li)	2022/10/07		110	%	80 - 12
			Dissolved Manganese (Mn)	2022/10/07		106	26	80 - 12
			Dissolved Malybdenum (Mo)	2022/10/07		107	%	80 - 12
			Dissolved Nickel (Ni)	2022/10/07		106	%	80 - 12
			Dissolved Nickel (Ni) Dissolved Selenium (Se)	2022/10/07		105	%	80 - 17
		Dissolved Selemani (Se)	2022/10/07		103	70	00-14	

Page 14 of 26

Sampler Initials: AG

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limi
			Dissolved Silver (Ag)	2022/10/07		101	96	80 - 12
			Dissolved Strontium (Sr)	2022/10/07		107	%	80 - 12
			Dissolved Thallium (TI)	2022/10/07		104	96	80 - 12
			Dissolved Tin (Sn)	2022/10/07		104	96	80 - 12
			Dissolved Titanium (Ti)	2022/10/07		110	96	80 - 12
			Dissolved Uranium (U)	2022/10/07		111	96	80 - 12
			Dissolved Vanadium (V)	2022/10/07		105	%	80 - 17
			Dissolved Zinc (Zn)	2022/10/07		112	%	80 - 12
			Dissolved Zirconium (Zr)	2022/10/07		102	%	80 - 1
746269	SOM	Method Blank	Dissolved Aluminum (Al)	2022/10/07	<3.0		ug/L	
			Dissolved Antimony (Sb)	2022/10/07	<0.50		ug/L	
			Dissolved Arsenic (As)	2022/10/07	<0.10		ug/L	
			Dissolved Barium (Ba)	2022/10/07	<1.0		ug/L	
		Dissolved Beryllium (Be)	2022/10/07	<0.10		ug/L		
			Dissolved Bismuth (Bi)	2022/10/07	<1.0		ug/L	
			Dissolved Boron (B)	2022/10/07	<50		ug/L	
			Dissolved Cadmium (Cd)	2022/10/07	<0.010		ug/L	
			Dissolved Chromium (Cr)	2022/10/07	<1.0		ug/L	
			Dissolved Cobalt (Co)	2022/10/07	<0.20		ug/L	
			Dissolved Copper (Cu)	2022/10/07	<0.20		ug/L	
			Dissolved Iron (Fe)	2022/10/07	<5.0		ug/L	
			Dissolved Lead (Pb)	2022/10/07	<0.20		ug/L	
			Dissolved Lithium (Li)	2022/10/07	<2.0		ug/L	
			Dissolved Manganese (Mn)	2022/10/07	<1.0		ug/L	
			Dissolved Molybdenum (Mo)	2022/10/07	<1.0		ug/L	
			Dissolved Nickel (Ni) Dissolved Selenium (Se)	2022/10/07	<1.0		ug/L	
			Dissolved Silicon (Si)	2022/10/07	<0.10 <100		ug/L	
			Dissolved Silver (Ag)	2022/10/07	<0.020		ug/L	
			Dissolved Strontium (Sr)	2022/10/07 2022/10/07	<1.0		ug/L	
			Dissolved Thallium (TI)	2022/10/07	<0.010		ug/L ug/L	
			Dissolved Tin (Sn)	2022/10/07	<5.0		ug/L	
			Dissolved Titanium (Ti)	2022/10/07	<5.0			
			Dissolved Uranium (U)	2022/10/07	<0.10		ug/L ug/L	
			Dissolved Vanadium (V)	2022/10/07	<5.0		ug/L	
			Dissolved Zinc (Zn)	2022/10/07	<5.0		ug/L	
			Dissolved Zirconium (Zr)	2022/10/07	<0.10		ug/L	
746516	YIL	Spiked Blank	Nitrate plus Nitrite (N)	2022/10/06	10.20	106	26	80 - 1
746516	YIL	Method Blank	Nitrate plus Nitrite (N)	2022/10/06	< 0.020	100	mg/L	00 1
746517	YIL	Spiked Blank	Nitrite (N)	2022/10/06	40.020	104	96	80 - 1
746517	YIL	Method Blank	Nitrite (N)	2022/10/06	<0.0050	104	mg/L	00-1
747139	DDE	Matrix Spike	Dissolved Fluoride (F)	2022/10/07	40.0030	104	96	80 - 1
747139	DDE	Spiked Blank	Dissolved Fluoride (F)	2022/10/07		98	96	80 - 1
747139	DDE	Method Blank	Dissolved Fluoride (F)	2022/10/07	< 0.050	30	mg/L	00 1
747139	DDE	RPD	Dissolved Fluoride (F)	2022/10/07	0		96	20
747247	TSO	Matrix Spike	Total Suspended Solids	2022/10/11	~	103	%	80 - 1
747247	TSO	Spiked Blank	Total Suspended Solids	2022/10/11		101	%	80 - 1
747247	TSO	Method Blank	Total Suspended Solids	2022/10/11	<1.0	202	mg/L	00-1
747247	TSO	RPD	Total Suspended Solids	2022/10/11	NC NC		%	20
747316	AA1	Matrix Spike	Total Aluminum (Al)	2022/10/11	146	102	%	80 - 1
	Pers	med is aprine	Total Antimony (Sb)	2022/10/11		106	96	80 - 1
			Total Arsenic (As)	2022/10/11		107	%	80 - 1
			Total Barium (Ba)	2022/10/11		NC NC	%	80 - 1
	Total Beryllium (Be)	2022/10/11		90	%	80 - 1		

Sampler Initials: AG

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
			Total Bismuth (Bi)	2022/10/11		95	96	80 - 120
			Total Boron (B)	2022/10/11		109	%	80 - 120
			Total Cadmium (Cd)	2022/10/11		102	%	80 - 120
			Total Chromium (Cr)	2022/10/11		104	%	80 - 120
			Total Cobalt (Co)	2022/10/11		98	%	80 - 120
			Total Copper (Cu)	2022/10/11		96	96	80 - 12
			Total Iron (Fe)	2022/10/11		NC	%	80 - 120
			Total Lead (Pb)	2022/10/11		100	%	80 - 12
			Total Lithium (Li)	2022/10/11		101	%	80 - 12
			Total Manganese (Mn)	2022/10/11		NC	%	80 - 12
			Total Molybdenum (Mo)	2022/10/11		112	%	80 - 12
			Total Nickel (Ni)	2022/10/11		96	%	80 - 12
			Total Selenium (Se)	2022/10/11		107	%	80 - 12
			Total Silicon (Si)	2022/10/11		NC	%	80 - 12
			Total Silver (Ag)	2022/10/11		98	%	80 - 12
			Total Strontium (Sr)	2022/10/11		NC	%	80 - 12
			Total Thallium (TI)	2022/10/11		99	%	80 - 12
			Total Tin (Sn)	2022/10/11		106	%	80 - 12
			Total Titanium (Ti)	2022/10/11		105	%	80 - 12
			Total Uranium (U)	2022/10/11		107	96	80 - 12
			Total Vanadium (V)	2022/10/11		102	%	80 - 12
			Total Zinc (Zn)	2022/10/11		96	96	80 - 12
			Total Zirconium (Zr)	2022/10/11		111	96	80 - 12
747316	AA1	Spiked Blank	Total Aluminum (Al)	2022/10/11		101	96	80 - 1
		Spines biolin	Total Antimony (Sb)	2022/10/11		103	%	80 - 1
			Total Arsenic (As)	2022/10/11		103	26	80 - 12
			Total Barium (Ba)	2022/10/11		103	%	80 - 12
			Total Beryllium (Be)	2022/10/11		94	26	80 - 12
			Total Bismuth (Bi)	2022/10/11		98	%	80 - 17
			Total Boron (B)	2022/10/11		108	%	80 - 1
				2.2			%	
			Total Cadmium (Cd)	2022/10/11		103	%	80 - 1
			Total Chromium (Cr)	2022/10/11		104		80 - 1
			Total Cobalt (Co)	2022/10/11		106	%	80 - 1
			Total Copper (Cu)	2022/10/11		105	%	80 - 17
			Total Iron (Fe)	2022/10/11		103	%	80 - 1
			Total Lead (Pb)	2022/10/11		100	%	80 - 1
			Total Lithium (Li)	2022/10/11		103	%	80 - 1
			Total Manganese (Mn)	2022/10/11		99	%	80 - 1
			Total Molybdenum (Mo)	2022/10/11		105	96	80 - 1
			Total Nickel (Ni)	2022/10/11		103	%	80 - 1
			Total Selenium (Se)	2022/10/11		105	%	80 - 1
			Total Silicon (Si)	2022/10/11		103	96	80 - 1
			Total Silver (Ag)	2022/10/11		101	%	80 - 1
			Total Strontium (Sr)	2022/10/11		97	96	80 - 1
			Total Thallium (TI)	2022/10/11		97	96	80 - 12
			Total Tin (Sn)	2022/10/11		102	%	80 - 12
			Total Titanium (Ti)	2022/10/11		105	%	80 - 1
			Total Uranium (U)	2022/10/11		102	%	80 - 1
			Total Vanadium (V)	2022/10/11		98	%	80 - 1
			Total Zinc (Zn)	2022/10/11		104	96	80 - 1
			Total Zirconium (Zr)	2022/10/11		102	96	80 - 1
47316	AA1	Method Blank	Total Aluminum (Al)	2022/10/11	<3.0		ug/L	
			Total Antimony (Sb)	2022/10/11	<0.50		ug/L	
			Total Arsenic (As)	2022/10/11	<0.10		ug/L	

Sampler Initials: AG

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
			Total Barium (Ba)	2022/10/11	<1.0		ug/L	
			Total Beryllium (Be)	2022/10/11	<0.10		ug/L	
			Total Bismuth (Bi)	2022/10/11	<1.0		ug/L	
			Total Boron (B)	2022/10/11	<50		ug/L	
			Total Cadmium (Cd)	2022/10/11	<0.010		ug/L	
			Total Chromium (Cr)	2022/10/11	<1.0		ug/L	
			Total Cobalt (Co)	2022/10/11	< 0.20		ug/L	
			Total Copper (Cu)	2022/10/11	< 0.50		ug/L	
			Total iron (Fe)	2022/10/11	<10		ug/L	
			Total Lead (Pb)	2022/10/11	<0.20		ug/L	
			Total Lithium (Li)	2022/10/11	<2.0		ug/L	
			Total Manganese (Mn)	2022/10/11	<1.0		ug/L	
			Total Molybdenum (Mo)	2022/10/11	<1.0		ug/L	
			Total Nickel (Ni)	2022/10/11	<1.0		ug/L	
			Total Selenium (Se)	2022/10/11	< 0.10		ug/L	
			Total Silicon (Si)	2022/10/11	<100		ug/L	
			Total Silver (Ag)	2022/10/11	< 0.020		ug/L	
			Total Strontium (Sr)	2022/10/11	<1.0		ug/L	
			Total Thallium (TI)	2022/10/11	<0.010		ug/L	
			Total Tin (Sn)	2022/10/11	<5.0		ug/L	
			Total Titanium (Ti)	2022/10/11	<5.0		ug/L	
			Total Uranium (U)	2022/10/11	<0.10		ug/L	
			Total Vanadium (V)		<5.0			
				2022/10/11			ug/L	
			Total Zinc (Zn)	2022/10/11	<5.0		ug/L	
			Total Zirconium (Zr)	2022/10/11	<0.10		ug/L	
47316	AA1	RPD	Total Aluminum (AI)	2022/10/11	0.93		%	20
			Total Antimony (Sb)	2022/10/11	NC		%	20
			Total Arsenic (As)	2022/10/11	4.0		%	20
			Total Barium (Ba)	2022/10/11	1.1		%	20
			Total Beryllium (Be)	2022/10/11	NC		%	20
			Total Bismuth (Bi)	2022/10/11	NC		%	20
			Total Boron (B)	2022/10/11	4.4		%	20
			Total Cadmium (Cd)	2022/10/11	NC		%	20
			Total Chromium (Cr)	2022/10/11	3.6		%	20
			Total Cobalt (Co)	2022/10/11	NC		96	20
			Total Copper (Cu)	2022/10/11	NC		%	20
			Total Iron (Fe)	2022/10/11	1.1		%	20
			Total Lead (Pb)	2022/10/11	NC		96	20
			Total Lithium (Li)	2022/10/11	0.73		%	20
			Total Manganese (Mn)	2022/10/11	0.18		96	20
			Total Molybdenum (Mo)	2022/10/11	NC		%	20
			Total Nickel (Ni)	2022/10/11	NC		96	20
			Total Selenium (Se)	2022/10/11	NC		%	20
			Total Silicon (Si)	2022/10/11	1.5		%	20
			Total Silver (Ag)	2022/10/11	NC NC		%	20
			Total Strontium (Sr)	2022/10/11	1.2		%	
					NC		% %	20 20
			Total Thallium (TI)	2022/10/11				
			Total Tin (Sn)	2022/10/11	NC		%	20
			Total Titanium (Ti)	2022/10/11	NC		96	20
			Total Uranium (U)	2022/10/11	NC		%	20
			Total Vanadium (V)	2022/10/11	NC		%	20
			Total Zinc (Zn)	2022/10/11	NC		%	20
			Total Zirconium (Zr)	2022/10/11	0.44		%	20
47436	BANACI I	Matrix Spike	Chemical Oxygen Demand	2022/10/07		NC	96	80 - 1

Sampler Initials: AG

			QUALITY ASSURANCE F	EFORT(CONT D)				
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
A747436	MWU	Spiked Blank	Chemical Oxygen Demand	2022/10/07	value	99	%	80 - 120
A747436	MWU	Method Blank	Chemical Oxygen Demand	2022/10/07	<10	,,,	mg/L	60-120
A747436	MWU	RPD	Chemical Oxygen Demand	2022/10/07	0.47		%	20
A747639	SE5	Matrix Spike	Chloride (CI)	2022/10/07	0.47	107	96	80 - 120
A/4/033	363	matrix spike	Sulphate (SO4)			102	%	80 - 120
A747639	SES	Spiked Blank	Chloride (CI)	2022/10/07		102	%	80 - 120
A/4/639	SES	Spiked Blank		2022/10/07		97	%	80 - 120
A747639	SES	Method Blank	Sulphate (SO4) Chloride (CI)	2022/10/07 2022/10/07	<1.0	97	mg/L	80 - 120
A/4/039	SES	Method Blank						
A747639	SES	RPD	Sulphate (504)	2022/10/07	<1.0		mg/L	20
A/4/539	SES	RPD	Chloride (CI)	2022/10/07	6.1		96	20
.7.7.	cee	**	Sulphate (SO4)	2022/10/07	NC	***	96	20
A747686	SE5	Matrix Spike	Chloride (CI)	2022/10/07		NC	96	80 - 120
		C-11-4 DI1	Sulphate (SO4)	2022/10/07		NC	96	80 - 120
A747586	SE5	Spiked Blank	Chloride (CI)	2022/10/07		104	%	80 - 120
			Sulphate (SO4)	2022/10/07		97	96	80 - 120
A747586	SE5	Method Blank	Chloride (CI)	2022/10/07	<1.0		mg/L	
			Sulphate (SO4)	2022/10/07	<1.0		mg/L	
A747586	SE5	RPD	Sulphate (SO4)	2022/10/07	1.9		%	20
A747977	WZ1	Matrix Spike	Total Dissolved Solids	2022/10/11		97	96	80 - 120
A747977	WZ1	Spiked Blank	Total Dissolved Solids	2022/10/11		99	%	80 - 120
A747977	WZ1	Method Blank	Total Dissolved Solids	2022/10/11	<10		mg/L	
A747977	WZ1	RPD	Total Dissolved Solids	2022/10/11	0		96	20
A748021	TMU	Matrix Spike	Strong Acid Dissoc. Cyanide (CN)	2022/10/10		92	%	80 - 120
A748021	TMU	Spiked Blank	Strong Acid Dissoc. Cyanide (CN)	2022/10/10		101	96	80 - 120
A748021	TMU	Method Blank	Strong Acid Dissoc, Cyanide (CN)	2022/10/10	< 0.00050		mg/L	
A748021	TMU	RPD	Strong Acid Dissoc. Cyanide (CN)	2022/10/10	5.4		96	20
A748051	JLD	Matrix Spike	Strong Acid Dissoc. Cyanide (CN)	2022/10/11		81	%	80 - 120
A748051	JLD	Spiked Blank	Strong Acid Dissoc. Cyanide (CN)	2022/10/11		100	96	80 - 120
A748051	JLD	Method Blank	Strong Acid Dissoc. Cyanide (CN)	2022/10/11	< 0.00050		mg/L	
A748051	JLD	RPD	Strong Acid Dissoc. Cyanide (CN)	2022/10/11	NC		96	20
A748157	JAV	Matrix Spike	Total Phosphorus (P)	2022/10/07		29	26	N/A
A748157	JAV	Spiked Blank	Total Phosphorus (P)	2022/10/07		89	96	80 - 120
A748157	JAV	Method Blank	Total Phosphorus (P)	2022/10/07	< 0.0030		mg/L	
A748157	JAV	RPD	Total Phosphorus (P)	2022/10/07	0.57		96	20
A748322	ZWU	Matrix Spike	Dissolved Organic Carbon (C)	2022/10/08		100	96	80 - 120
A748322	ZWU	Spiked Blank	Dissolved Organic Carbon (C)	2022/10/08		104	96	80 - 120
A748322	ZWU	Method Blank	Dissolved Organic Carbon (C)	2022/10/08	<0.50		mg/L	
A748322	ZWU	RPD	Dissolved Organic Carbon (C)	2022/10/08	NC		96	20
A749676	ZWU	Matrix Spike [BDP771-04]	Total Organic Carbon (C)	2022/10/09		87	96	80 - 120
A749576	ZWU	Spiked Blank	Total Organic Carbon (C)	2022/10/09		101	%	80 - 120
A749676	ZWU	Method Blank	Total Organic Carbon (C)	2022/10/09	< 0.50		mg/L	
A749576	ZWU	RPD [BDP771-04]	Total Organic Carbon (C)	2022/10/09	4.0		96	20
A749579	ZWU	Matrix Spike	Dissolved Organic Carbon (C)	2022/10/09		NC	96	80 - 120
A749679	ZWU	Spiked Blank	Dissolved Organic Carbon (C)	2022/10/09		102	96	80 - 120
A749579	ZWU	Method Blank	Dissolved Organic Carbon (C)	2022/10/09	< 0.50	-02	mg/L	
A749579	ZWU	RPD	Dissolved Organic Carbon (C)	2022/10/09	0.014		96	20
A751033	VBA	Matrix Spike	Bromide (Br)	2022/10/11	0.027	104	%	78 - 120
A751033	VBA	Spiked Blank	Bromide (Br)	2022/10/11		99	96	80 - 120
A751033	VBA	Method Blank	Bromide (Br)	2022/10/11	< 0.010	,,,	mg/L	00-120
A751033	VBA	RPD	Bromide (Br)	2022/10/11	NC 0.010		96	20
A751033	AP1	Matrix Spike	Free Cyanide (CN)	2022/10/11	110	92	%	80 - 120
A751104 A751104	AP1	Spiked Blank	Free Cyanide (CN)			89	%	80 - 120
A751104	AP1	Method Blank		2022/10/11	<20	99		80 - 120
	AP1	RPD	Free Cyanide (CN)	2022/10/11	<2.0		ug/L %	20
A751104	API	RFU	Free Cyanide (CN)	2022/10/11	11		29	20

Report Date: 2022/10/21

Agnico Eagle Mines Ltd.

Site Location: Meadowbank Division

Sampler Initials: AG

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
A751799	BB3	Spiked Blank	pH	2022/10/07		101	%	97 - 103
A751799	BB3	RPD	pH	2022/10/07	88.0		96	N/A
A751805	BB3	Spiked Blank	Alkalinity (Total as CaCO3)	2022/10/07		94	%	80 - 120
A751805	BB3	Method Blank	Alkalinity (PP as CaCO3)	2022/10/07	<1.0		mg/L	
			Alkalinity (Total as CaCO3)	2022/10/07	<1.0		mg/L	
			Bicarbonate (HCO3)	2022/10/07	<1.0		mg/L	
			Carbonate (CO3)	2022/10/07	<1.0		mg/L	
			Hydroxide (OH)	2022/10/07	<1.0		mg/L	
A751806	BB3	Spiked Blank	Conductivity	2022/10/07		103	96	80 - 120
A751806	BB3	Method Blank	Conductivity	2022/10/07	<2.0		uS/cm	
A751883	CBK	Matrix Spike [BDP771-05]	Total Ammonia (N)	2022/10/11		NC	96	80 - 120
A751883	CBK	Spiked Blank	Total Ammonia (N)	2022/10/11		106	96	80 - 120
A751883	CBK	Method Blank	Total Ammonia (N)	2022/10/11	< 0.015		mg/L	
A751883	CBK	RPD [BDP771-05]	Total Ammonia (N)	2022/10/11	0.19		%	20
A753227	éEY	Matrix Spike	Thiocyanate	2022/10/12		95	%	80 - 120
A753227	éEY	Spiked Blank	Thiocyanate	2022/10/12		103	96	80 - 120
A753227	éEY	Method Blank	Thiocyanate	2022/10/12	<0.05		mg/L	
A753227	éEY	RPD [BDP773-06]	Thiocyanate	2022/10/12	2.8		%	20
A753440	JAV	Matrix Spike	Orthophosphate (P)	2022/10/12		NC	96	80 - 120
A753440	JAV	Spiked Blank	Orthophosphate (P)	2022/10/12		102	%	80 - 120
A753440	JAV	Method Blank	Orthophosphate (P)	2022/10/12	< 0.0030		mg/L	
A753440	JAV	RPD	Orthophosphate (P)	2022/10/12	0.90		26	20
A763522	FS	Spiked Blank	Thiosulphate	2022/10/17		98	96	81 - 119
A763522	FS	Method Blank	Thiosulphate	2022/10/17	<0.13		mg/L	

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Automated Statchk

Agnico Eagle Mines Ltd. Site Location: Meadowbank Division Sampler Initials: AG

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

A ST
David Huang, M.Sc., P.Chem., QP, Scientific Services Manager
Cristian Carriere
Cristina Carriere-Inactive, Scientific Services
(Pulmus / Pulmus / Pu
Shu Yang, B.Sc. Chemist, Montreal, Analyst II
utsly
Melissa Thompson, Scientist
Sula
Suwan (Sze Yeung) Fock, B.Sc., Scientific Specialist
Bureau Vertos Proprietary Software Logiciel Proprietare de buseau Vertas

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: OL-1183515 Your Project #: MEADOWBANK DIVISION Your C.O.C. #: n-a

Attention: Thomas Genty

Agnico Eagle Mines Limited Meadowbank Meadowbank Keewatin, NU CANADA POX 0A1

> Report Date: 2022/12/07 Report #: R2810991 Version: 3 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C259780 Received: 2022/10/25, 08:00

Sample Matrix: Surface Water #Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Total Alkalinity (pH end point 4.5)	3	N/A	2022/10/25	STL SOP-00038	SM 23 2320-8 m
Anions in water	3	N/A	2022/11/20	STL SOP-00014	MA.300-lons 1.3 R6 m
Biochemical Oxygen Demand (5 days) (2)	1	2022/11/01	2022/11/06	STL SOP-00008	MA315-DBO 1.1 R3 m
Biochemical Oxygen Demand (5 days) (2)	2	2022/11/03	2022/11/08	STL SOP-00008	MA315-DBO 1.1 R3 m
Weak Acid Dissociable Cyanides	3	2022/11/03	2022/11/10	STL SOP-00035	MA300-CN 1.2 R4 m
Total Cyanide	3	2022/10/27	2022/10/28	STL SOP-00035	MA300-CN 1.2 R4 m
Chemical Oxygen Demand	3	2022/10/29	2022/10/29	STL SOP-00009	MA315-DCO 1.1 R4 m
Conductivity	3	N/A	2022/10/25	STL SOP-00038	SM 23 2510-8 m
Cyanates	3	N/A	2022/10/30	STL SOP-00010	MA.315-CNO 1.1 R3 m
Dissolved Organic Carbon (3)	1	2022/11/01	2022/11/09	STL SOP-00243	SM 23 5310-8 m
Dissolved Organic Carbon (3)	2	2022/11/09	2022/11/09	STL SOP-00243	SM 23 5310-B m
Fluoride	3	N/A	2022/10/31	STL SOP-00038	SM 23 4500-F m
Total Suspended Solids	3	2022/10/31	2022/11/01	STL SOP-00015	MA.104-S.S. 2.0 m
Dissolved Metals (Low DL) site filtered	3	N/A	2022/11/05	STL SOP-00062	MA.200-Mét. 1.2 R7 m
Total Extractable Metals by ICP	2	2022/10/28	2022/11/01	STL SOP-00062	MA.200-Mét. 1.2 R7 m
Total Extractable Metals by ICP	1	2022/10/28	2022/11/04	STL SOP-00062	MA.200-Mét. 1.2 R7 m
Ammonia Nitrogen	3	N/A	2022/10/27	STL SOP-00040	MA.300-N 2.0 R2 m
Nitrates(NO3-), Nitrites(NO2-)-water	3	N/A	2022/10/27	STL SOP-00014	MA.300-lons 1.3 R3 m
pH in water	3	N/A	2022/10/25	STL SOP-00038	MA.100-pH 1.1 R3 m
Ortho Phosphate	3	N/A	2022/10/26	STL SOP-00003	MA.303-P 1.1 R2 m
Total Dissolved Solids	2	2022/10/31	2022/11/01	STL SOP-00050	MA.115-S.D. 1.0 R4 m
Total Dissolved Solids	1	2022/10/31	2022/11/03	STL SOP-00050	MA.115-S.D. 1.0 R4 m
Thiocyanates	3	N/A	2022/11/02	STL SOP-00010	MA.304-lons 1.1 R1 m
Total Thiosalts + Thiosalt Species (1)	3	N/A	N/A		
Thiosulfates	3	N/A	2022/11/07	STL SOP-00010	MA.304-lons 1.1 R1 m
Total Organic Carbon (4)	3	N/A	2022/10/28	STL SOP-00243	SM 23 5310-B m

Remarks

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

Your P.O. #: OL-1183515 Your Project #: MEADOWBANK DIVISION Your C.O.C. #: n-a

Attention: Thomas Genty

Agnico Eagle Mines Limited Meadowbank Meadowbank Keewatin, NU CANADA POX 0A1

> Report Date: 2022/12/07 Report #: R2810991 Version: 3 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C259780 Received: 2022/10/25, 08:00

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Note: RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

- (1) This test was performed by SGS Canada Inc Lakefield, 185 Concession St , Lakefield, ON, KOL2HO
- (2) Please note that in the event a biochemical oxygen demand analysis cannot begin within the 48-hours holding time required (for a sample preserved at 4°C), sample will be frozen, unless otherwise specified by a regulation, to maintain it's integrity.
- (3) DOC present in the sample should be considered as non-purgeable DOC
- (4) TOC present in the sample should be considered as non-purgeable TOC

Note: All parameters included in the present certificate are accredited by the MELCC unless stated otherwise.

Encryption Key

Joses Moran Project Manager 08 Dec 2022 13:21:54

Please direct all questions regarding this Certificate of Analysis to: Touriya Naji, Project Manager Email: touriya.naji@bureauveritas.com

Phone# (514) 448-9001

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Aglaia Yannakis, General Manager responsible for Quebec Environmental laboratory operations.

DISSOLVED METALS (SURFACE WATER)

Bureau Veritas ID				LC4620	LC4650	LC4651		
Sampling Date				2022/10/24	2022/10/24	2022/10/24		
COC Number				n-a	n-a	n-a		
	Units	А	В	RAW WATER ST19 (JUIN)	FEED MBBR	TREATED WATER	RDL	QC Batcl
METALS ICP-MS								
Aluminum (Al) †	ug/L	100		<10	<10	<10	10	2347659
Antimony (Sb)	ug/L	6	1100	21	16	12	1.0	2347659
Silver (Ag) †	ug/L	100	0.62	<0.10	<0.10	<0.10	0.10	2347659
Arsenic (As)	ug/L	0.3	340	89	4.7	2.2	0.30	2347659
Barium (Ba)	ug/L	1000	600	110	79	45	2.0	2347659
Beryllium (Be) †	ug/L		-	<0.40	<0.40	< 0.40	0.40	2347659
Boron (B)	ug/L	5000	28000	360	350	270	20	2347659
Cadmium (Cd)	ug/L	5	1.1	0.27	<0.20	<0.20	0.20	2347659
Chromium (Cr)	ug/L	50	-	<0.50	<0.50	<0.50	0.50	2347659
Copper (Cu)	ug/L	1000	7.3	240	<0.50	2.7	0.50	2347659
Tin (Sn) †	ug/L	-	-	<1.0	<1.0	3.3	1.0	2347659
Iron (Fe)	ug/L	-	-	<60	<60	540	60	2347659
Lithium (Li) †	ug/L		-	<10	<10	<10	10	2347659
Manganese (Mn)	ug/L	50	2300	3.8	21	31	0.40	2347659
Molybdenum (Mo)	ug/L	40	29000	130	110	85	0.50	2347659
Mercury (Hg)	ug/L	1	0.0013	<0.10 (1)	<0.10 (1)	<0.10 (1)	0.10	2347659
Nickel (Ni)	ug/L	70	260	1500	35	30	1.0	2347659
Phosphorus	ug/L	-	-	<10	<10	400	10	2347659
Lead (Pb)	ug/L	5	34	< 0.10	<0.10	0.18	0.10	2347659
Selenium (Se)	ug/L	10	62	150	170	84	1.0	2347659
Strontium (Sr) †	ug/L		-	2500	2300	1700	2.0	2347659
Thallium (TI) †	ug/L	-	-	<2.0	<2.0	<2.0	2.0	2347659
Uranium (U)	ug/L	20	320	17	12	6.8	1.0	2347659
Titanium (Ti) †	ug/L	-	-	<10	<10	<10	10	2347659
Vanadium (V) †	ug/L	-	-	<2.0	<2.0	<2.0	2.0	2347659
Zinc (Zn)	ug/L	5000	67	<5.0	<5.0	160	5.0	2347659

RDL = Reportable Detection Limit QC Batch = Quality Control Batch † Parameter is not accreditable

(1) RDL exceeds criteria

TOTAL EXTRACTABLE METALS (SURFACE WATER)

Bureau Veritas ID				LC4620			LC4650	LC4651		
Sampling Date				2022/10/24			2022/10/24	2022/10/24		
COC Number				n-a			n-a	n-a		
	Units	А	В	RAW WATER ST19 (JUIN)	RDL	QC Batch	FEED MBBR	TREATED WATER	RDL	QC Batch
METALS										
Aluminum (Al)	ug/L	100	- 1	<10	10	2347351	<30 (1)	<30 (1)	30	2347412
Antimony (Sb)	ug/L	6	1100	23	1.0	2347351	16	12	1.0	2347412
Silver (Ag)	ug/L	100	0.62	<1.0 (2)	1.0	2347351	<1.0(2)	<1.0 (2)	1.0	2347412
Arsenic (As)	ug/L	0.3	340	93	1.0	2347351	5.1	2.8	1.0	2347412
Barium (Ba)	ug/L	1000	600	100	2.0	2347351	73	41	2.0	2347412
Beryllium (Be)	ug/L	-		<2.0	2.0	2347351	<2.0	<2.0	2.0	2347412
Boron (B) †	ug/L	5000	28000	360	50	2347351	340	260	50	2347412
Cadmium (Cd)	ug/L	5	1.1	<0.20	0.20	2347351	< 0.20	< 0.20	0.20	2347412
Chromium (Cr)	ug/L	50	-	<5.0	5.0	2347351	<5.0	<5.0	5.0	2347412
Copper (Cu)	ug/L	1000	7.3	250	1.0	2347351	3.2	6.2	1.0	2347412
Tin (Sn)	ug/L	-	-	<2.0	2.0	2347351	<2.0	3.6	2.0	2347412
Iron (Fe)	ug/L	-	-	<60	60	2347351	<60	620	60	2347412
Lithium (Li) ††	ug/L		-	<10	10	2347351	<10	<10	10	2347412
Manganese (Mn)	ug/L	50	2300	3.9	1.0	2347351	21	31	1.0	2347412
Mercury (Hg)	ug/L	1	0.0013	<0.10 (2)	0.10	2347351	<0.10 (2)	<0.10 (2)	0.10	2347412
Molybdenum (Mo)	ug/L	40	29000	130	1.0	2347351	110	81	1.0	2347412
Nickel (Ni)	ug/L	70	260	1500	2.0	2347351	42	24	2.0	2347412
Total phosphorous	ug/L	-	1000	<10	10	2347351	<10	490	10	2347412
Lead (Pb)	ug/L	5	34	0.58	0.50	2347351	< 0.50	<0.50	0.50	2347412
Selenium (Se)	ug/L	10	62	170	3.0	2357562	200	84	3.0	2347412
Strontium (Sr) +	ug/L	-	-	2400	2.0	2347351	2400	1700	2.0	2347412
Thallium (TI)	ug/L	-	-	<2.0	2.0	2347351	<2.0	<2.0	2.0	2347412
Titanium (Ti) ++	ug/L	-	-	<10	10	2347351	<10	<10	10	2347412
Uranium (U) ++	ug/L	20	320	16	1.0	2347351	12	6.7	1.0	2347412
Vanadium (V)	ug/L	- <	-	<2.0	2.0	2347351	<2.0	<2.0	2.0	2347412
Zinc (Zn)	ug/L	5000	67	<7.0	7.0	2347351	<7.0	220	7.0	2347412

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

[†] Parameter is not accredited

^{††} Parameter is not accreditable

⁽¹⁾ The detection limit was raised due to instrumentation.

⁽²⁾ RDL exceeds criteria

CONVENTIONAL PARAMETERS (SURFACE WATER)

Bureau Veritas ID				LC4620	LC4620		
Sampling Date				2022/10/24	2022/10/24		
COC Number				n-a	n-a		
	Units	A	В	RAW WATER ST19 (JUIN)	RAW WATER ST19 (JUIN) Lab-Dup	RDL	QC Batch
CONVENTIONALS							
BOD5	mg/L		-	26	N/A	16	2349577
COD	mg/L	ì	-	280	N/A	5.0	2347735
Conductivity	m5/cm	-	- 4	4.7	N/A	0.0010	2346083
Cyanate (CNO-)	mg/L		- 4	<0.25	N/A	0.25	2347867
Dissolved organic carbon †	mg/L	-		55	56	2.0	2351992
Fluoride (F)	mg/L	1.5	4	0.13	N/A	0.10	2348310
Nitrate (N) and Nitrite(N)	mg/L	10	-	12	N/A	0.20	2346597
Nitrates (N-NO3-)	mg/L		300	11	N/A	0.020	2346597
Nitrites (N-NO2-)	mg/L	1	-	0.39	N/A	0.20	2346597
Nitrogen ammonia (N-NH4+ and N-NH3)	mg/L	0.05	-	53	N/A	0.10	2346432
Orthophosphate (P)	mg/L		-	<0.050	N/A	0.050	2346420
pH	pН	ż	-	7.79	7.82	N/A	2346062
Thiocyanate	mg/L		-	210	N/A	17	2348890
Thiosulfate	mg/L			0.37	N/A	0.13	2351120
Total Cyanide (CN)	mg/L	·	-	0.082	N/A	0.0030	2346835
Total Organic Carbon	mg/L		-	51	N/A	2.0	2347306
Weak Acid Dissociable Cyanide (CN-)	mg/L	0.2	0.022	0.027	N/A	0.0030	2346844
Alkalinity Total (as CaCO3) pH 4.5 †	mg/L	-	-	140	N/A	1.0	2346084
Bromide (Br-)	mg/L		-	3.0	3.1	1.0	2355749
Chloride (CI)	mg/L	250	860	250	250	0.50	2355749
Sulfates (SO4)	mg/L	1-	-	2000	1900	5.0	2355749
Total Dissolved Solids	mg/L	٠	-	3800	N/A	10	2348231
Total suspended solids (TSS)	mg/L	-	-	2.0	N/A	2.0	2348080

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

† Parameter is not accreditable

CONVENTIONAL PARAMETERS (SURFACE WATER)

Bureau Veritas ID				LC4650			LC4651	LC4651		
Sampling Date				2022/10/24			2022/10/24	2022/10/24		
COC Number				n-a			n-a	n-a		
	Units	А	В	FEED MBBR	RDL	QC Batch	TREATED WATER	TREATED WATER Lab-Dup	RDL	QC Batch
CONVENTIONALS										
BOD5	mg/L		-	<4.0	4.0	2348463	6.5	N/A	5.3	2349500
COD	mg/L		-	280	5.0	2347735	39	N/A	5.0	2347674
Conductivity	mS/cm	-	-	4.8	0.0010	2346083	4.3	N/A	0.0010	2346083
Cyanate (CNO-)	mg/L	-	-	<0.25	0.25	2347867	<0.050	N/A	0.050	2347867
Dissolved organic carbon †	mg/L	-	-	58	2.0	2348498	8.9	N/A	0.20	2351992
Fluoride (F)	mg/L	1.5	4	<0.10	0.10	2348305	<0.10	N/A	0.10	2348310
Nitrate (N) and Nitrite(N)	mg/L	10	-	11	0.20	2346597	29	N/A	0.20	2346597
Nitrates (N-NO3-)	mg/L	-	300	11	0.020	2346597	29	N/A	0.20	2346597
Nitrites (N-NO2-)	mg/L	1	-	0.59	0.20	2346597	0.21	N/A	0.20	2346597
Nitrogen ammonia (N-NH4+ and N-NH3)	mg/L	0.05	-	52	0.10	2346432	1.2	N/A	0.040	2346432
Orthophosphate (P)	mg/L	-	-	<0.050	0.050	2346420	0.30	N/A	0.050	2346614
pH	pН	-	-	7.73	N/A	2346062	7.79	N/A	N/A	2346062
Thiocyanate	mg/L	-	-	210	17	2348890	<0.17	N/A	0.17	2348890
Thiosulfate	mg/L		-	< 0.13	0.13	2351120	< 0.13	N/A	0.13	2351120
Total Cyanide (CN)	mg/L		-	0.086	0.0030	2346835	0.049	0.049	0.0030	2346835
Total Organic Carbon	mg/L		-	51	2.0	2347306	8.0	N/A	0.20	2347306
Weak Acid Dissociable Cyanide (CN-)	mg/L	0.2	0.022	0.0056	0.0030	2346844	0.020	0.019	0.0030	2346844
Alkalinity Total (as CaCO3) pH 4.5 †	mg/L	-	-	93	1.0	2346084	220	N/A	1.0	2346084
Bromide (Br-)	mg/L	-	-	3.0	1.0	2355749	2.3	N/A	1.0	2355749
Chloride (CI)	mg/L	250	850	250	0.50	2355749	190	N/A	0.50	2355749
Sulfates (SO4)	mg/L		-	2100	5.0	2355749	1800	N/A	5.0	2355749
Total Dissolved Solids	mg/L	-	-	3800	10	2348274	3500	N/A	10	2348231
Total suspended solids (TSS)	mg/L		-	<2.0	2.0	2348080	5.0	N/A	2.0	2348080

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

† Parameter is not accreditable

GENERAL COMMENTS

A,B: Soil Criteria following appendix 2 of the "Guide d'intervention-Protection des sols et réhabilitation des terrains contaminés. MELCC, May 2021." entitled "Grille des critères génériques pour les sols". The soil criteria refer to the St. Lawrence Lowlands Geological Province.

Groundwater criteria A and B follow the appendix 7 entitled "Grille des critères de qualité des eaux souterraines" of the document mentionned above. The criterion A refers to "Drinking Water" and the criterion B refers to "Seepage into Surface Water".

These criteria references are shown for visual aid only, and should not be interpreted otherwise. - = This parameter is not part of the regulation.

CONVENTIONAL PARAMETERS (SURFACE WATER)

Reported detection limits are multiplied by dilution factors used for sample analysis.

Cyanates: Detection limit raised due to matrix interference. LC4620, LC4650

Nitrate and Nitrite: Detection limit raised due to matrix interference.

TOC < DOC: Both values fall within acceptable RPD limits for duplicates and are likely equivalent. Sample LC4620, Total Extractable Metals by ICP: Test repeated.

Results relate only to the items tested.

Bureau Veritas Job #: C259780 Report Date: 2022/12/07

Agnico Eagle Mines Limited Client Project #: MEADOWBANK DIVISION Your P.O. #: OL-1183515

Sampler Initials: AG

QUALITY ASSURANCE REPORT

QA/QC	E- N	067	2	Data Applied	Makes	D	0.3
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery 101	Unit:
346062	ZU	Spiked Blank	pH Conduct little	2022/10/25			
346083	ZLI	Spiked Blank	Conductivity	2022/10/25	-0.0010	106	%
346083 346084	ZU	Method Blank	Conductivity	2022/10/25	<0.0010	104	mS/ci %
	ZLI	Spiked Blank	Alkalinity Total (as CaCO3) pH 4.5	2022/10/25	-11.0	104	mg/
346084 346420	CLO	Method Blank QC Standard	Alkalinity Total (as CaCO3) pH 4.5	2022/10/25	<1.0	97	
346420	CLO	Spiked Blank	Orthophosphate (P) Orthophosphate (P)	2022/10/26		100	96 96
346420	CLO	Method Blank		2022/10/26	<0.050	100	
346432	CLO	QC Standard	Orthophosphate (P) Nitrogen ammonia (N-NH4+ and N-NH3)	2022/10/26 2022/10/27	<0.050	116	mg/
346432	CLO	Spiked Blank	Nitrogen ammonia (N-NH4+ and N-NH3)	2022/10/27		102	36
346432	CLO	Method Blank	Nitrogen ammonia (N-NH4+ and N-NH3)		<0.020	102	mg/
346597	GXL	Spiked Blank	Nitrate (N) and Nitrite(N)	2022/10/27 2022/10/27	<0.020	104	%
940397	GAL	Spikeu bialik	Nitrates (N-NO3-)	2022/10/27		104	76 56
						104	96
46597	GXL	Method Blank	Nitrites (N-NO2-) Nitrate (N) and Nitrite(N)	2022/10/27 2022/10/27	<0.020	104	mg/
140397	GAL	Mediod bialik	Nitrates (N-NO3-)	2022/10/27	<0.020		mg/
			Nitrites (N-NO2-)	2022/10/27	<0.020		mg/
46614	LI	QC Standard	,		<0.020	97	36
46514	LI	Spiked Blank	Orthophosphate (P) Orthophosphate (P)	2022/10/26		103	96
46514	LI	Method Blank		2022/10/26	< 0.050	103	
46835	DMI	Spiked Blank	Orthophosphate (F)	2022/10/26	<0.050	104	mg/ %
	DMI		Total Cyanide (CN)	2022/10/28	< 0.0030	104	
46835		Method Blank	Total Cyanide (CN)	2022/10/28	<0.0030	108	mg. %
46844	ANB	Spiked Blank	Weak Acid Dissociable Cyanide (CN-)	2022/11/10	-0.0020	108	
46844	ANB	Method Blank	Weak Acid Dissociable Cyanide (CN-)	2022/11/10	<0.0030	105	mg/
47306	HPA	Spiked Blank	Total Organic Carbon	2022/10/28	-0.20	105	96
47306	HPA	Method Blank	Total Organic Carbon	2022/10/28	<0.20	110	mg/
47351	AT7	Spiked Blank	Aluminum (Al)	2022/11/04		110	%
			Antimony (Sb)	2022/11/04		116	96
			Silver (Ag)	2022/11/04		113	%
			Arsenic (As)	2022/11/04		115	96
			Barium (Ba)	2022/11/04		115 106	76
			Beryllium (Be)	2022/11/04			96 96
			Boron (B)	2022/11/04		124 (1)	
			Cadmium (Cd)	2022/11/04		105	%
			Chromium (Cr)	2022/11/04		112	96
			Copper (Cu)	2022/11/04		99 114	% %
			Tin (Sn)	2022/11/04			
			Iron (Fe) Lithium (Li)	2022/11/04		109 101	% %
				2022/11/04		101	96
			Manganese (Mn)	2022/11/04			%
			Mercury (Hg) Molybdenum (Mo)	2022/11/04		128 (1) 113	34
				2022/11/04		99	%
			Nickel (Ni)	2022/11/04		106	76 96
			Total phosphorous Lead (Pb)	2022/11/04		110	76 96
				2022/11/04		110	76 96
			Strontium (Sr)	2022/11/04		114	76 96
			Thallium (TI)	2022/11/04			
			Titanium (Ti)	2022/11/04		104	% %
			Uranium (U)	2022/11/04		110	
		Vanadium (V)	2022/11/04		114	%	

Agnico Eagle Mines Limited Client Project #: MEADOWBANK DIVISION Your P.O. #: OL-1183515

Sampler Initials: AG

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
347351	AT7	Method Blank	Aluminum (Al)	2022/11/04	<10		ug/L
			Antimony (Sb)	2022/11/04	<1.0		ug/L
			Silver (Ag)	2022/11/04	<1.0		ug/L
			Arsenic (As)	2022/11/04	<1.0		ug/L
			Barium (Ba)	2022/11/04	<2.0		ug/t
			Beryllium (Be)	2022/11/04	<2.0		ug/t
			Boron (B)	2022/11/04	<50		ug/l
			Cadmium (Cd)	2022/11/04	<0.20		ug/l
			Chromium (Cr)	2022/11/04	<5.0		ug/l
			Copper (Cu)	2022/11/04	<1.0		ug/
			Tin (Sn)	2022/11/04	<2.0		ug/l
			Iron (Fe)	2022/11/04	<60		ug/
			Lithium (Li)	2022/11/04	<10		ug/
			Manganese (Mn)	2022/11/04	<1.0		ug/l
			Mercury (Hg)	2022/11/04	< 0.10		ug/
			Molybdenum (Mo)	2022/11/04	<1.0		ug/
			Nickel (Ni)	2022/11/04	<2.0		ug/
			Total phosphorous	2022/11/04	<10		ug/
			Lead (Pb)	2022/11/04	<0.50		ug/
			Strontium (Sr)	2022/11/04	<2.0		ug/
			Thallium (TI)	2022/11/04	<2.0		ug/
			Titanium (Ti)	2022/11/04	<10		ug/
			Uranium (U)	2022/11/04	<1.0		ug/
							-
			Vanadium (V)	2022/11/04	<2.0 <7.0		ug/
		C-th-dele-h	Zinc (Zn)	2022/11/04	<7.0	***	ug/
47412	AT7	Spiked Blank	Aluminum (Al)	2022/10/31		104	%
			Antimony (Sb)	2022/10/31		116	%
			Silver (Ag)	2022/10/31		106	%
			Arsenic (As)	2022/10/31		117	%
			Barium (Ba)	2022/10/31		112	96
			Beryllium (Be)	2022/10/31		119	%
			Boron (B)	2022/10/31		121 (1)	96
			Cadmium (Cd)	2022/10/31		108	%
			Chromium (Cr)	2022/10/31		111	%
			Copper (Cu)	2022/10/31		107	%
			Tin (Sn)	2022/10/31		116	%
			Iron (Fe)	2022/10/31		110	%
			Lithium (Li)	2022/10/31		115	56
			Manganese (Mn)	2022/10/31		113	%
			Mercury (Hg)	2022/10/31		121 (1)	%
			Molybdenum (Mo)	2022/10/31		108	96
			Nickel (Ni)	2022/10/31		119	%
			Total phosphorous	2022/10/31		106	96
			Lead (Pb)	2022/10/31		111	%
			Selenium (Se)	2022/10/31		112	%
			Strontium (Sr)	2022/10/31		111	26
			Thallium (TI)	2022/10/31		100	%
			Titanium (Ti)	2022/10/31		116	%
			Uranium (U)	2022/10/31		112	76 96
						113	%
		Vanadium (V) Zinc (Zn)	2022/10/31 2022/10/31		113	76 96	

Page 9 of 13

2022/12/07 18:50

Agnico Eagle Mines Limited Client Project #: MEADOWBANK DIVISION Your P.O. #: OL-1183515

Sampler Initials: AG

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
347412	AT7	Method Blank	Aluminum (AI)	2022/10/31	<30		ug/L
			Antimony (Sb)	2022/10/31	<1.0		ug/L
			Silver (Ag)	2022/10/31	<1.0		ug/L
			Arsenic (As)	2022/10/31	<1.0		ug/l
			Barium (Ba)	2022/10/31	<2.0		ug/I
			Beryllium (Be)	2022/10/31	<2.0		ug/
			Beron (B)	2022/10/31	<50		ug/
			Cadmium (Cd)	2022/10/31	< 0.20		ug/
			Chromium (Cr)	2022/10/31	<5.0		ug/
			Copper (Cu)	2022/10/31	<1.0		ug/
			Tin (Sn)	2022/10/31	<2.0		ug/
			Iron (Fe)	2022/10/31	<60		ug/
			Lithium (Li)	2022/10/31	<10		ug/
			Manganese (Mn)	2022/10/31	1.2,		ug/
					RDL=1.0		
			Mercury (Hg)	2022/10/31	< 0.10		ug/
			Molybdenum (Mo)	2022/10/31	<1.0		ug,
			Nickel (Ni)	2022/10/31	<2.0		ug,
			Total phosphorous	2022/10/31	<10		ug/
			Lead (Pb)	2022/10/31	< 0.50		ug/
			Selenium (Se)	2022/10/31	<3.0		ug/
			Strontium (Sr)	2022/10/31	<2.0		ug/
			Thallium (TI)	2022/10/31	< 2.0		ug,
			Titanium (Ti)	2022/10/31	<10		ug,
	Uranium (U)	2022/10/31	<1.0		ug,		
			Vanadium (V)	2022/10/31	<2.0		ug/
			Zinc (Zn)	2022/10/31	<7.0		ug/
47659	AT7	Spiked Blank	Aluminum (AI)	2022/11/05		115	96
			Antimony (Sb)	2022/11/05		119	26
			Silver (Ag)	2022/11/05		113	96
			Arsenic (As)	2022/11/05		119	96
			Barlum (Ba)	2022/11/05		119	%
			Beryllium (Be)	2022/11/05		111	34
			Boron (B)	2022/11/05		120	%
			Cadmium (Cd)	2022/11/05		111	%
			Chromium (Cr)	2022/11/05		112	36
			Copper (Cu)	2022/11/05		108	96
			Tin (Sm)	2022/11/05		117	96
			Iron (Fe)			117	%
				2022/11/05		111	34
			Lithium (Li)	2022/11/05			26
			Manganese (Mn)	2022/11/05		115	
			Molybdenum (Mo)	2022/11/05		118 136 (1)	96 96
			Mercury (Hg)	2022/11/05			
			Nickel (Ni)	2022/11/05		120	%
			Phosphorus	2022/11/05		119	96
			Lead (Pb)	2022/11/05		112	%
			Selenium (Se)	2022/11/05		110	%
			Strontium (Sr)	2022/11/05		116	%
			Thallium (TI)	2022/11/05		108	%
			Uranium (U)	2022/11/05		113	%
			Titanium (Ti)	2022/11/05		112	96

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Vanadium (V)	2022/11/05		112	96
			Zinc (Zn)	2022/11/05		106	94
347659	AT7	Method Blank	Aluminum (AI)	2022/11/05	<10		ug/L
			Antimony (Sb)	2022/11/05	<1.0		ug/L
			Silver (Ag)	2022/11/05	<0.10		ug/L
			Arsenic (As)	2022/11/05	< 0.30		ug/L
			Barium (Ba)	2022/11/05	<2.0		ug/L
			Beryllium (Be)	2022/11/05	< 0.40		ug/L
			Boron (B)	2022/11/05	<20		ug/L
			Cadmium (Cd)	2022/11/05	< 0.20		ug/L
			Chromium (Cr)	2022/11/05	< 0.50		ug/L
			Copper (Cu)	2022/11/05	< 0.50		ug/L
			Tin (5n)	2022/11/05	<1.0		ug/L
			Iron (Fe)	2022/11/05	<60		ug/L
			Lithium (Li)	2022/11/05	<10		ug/L
			Manganese (Mn)	2022/11/05	< 0.40		ug/L
			Molybdenum (Mo)	2022/11/05	< 0.50		ug/L
			Mercury (Hg)	2022/11/05	< 0.10		ug/L
			Nickel (Ni)	2022/11/05	<1.0		ug/L
			Phosphorus	2022/11/05	<10		ug/L
			Lead (Pb)	2022/11/05	< 0.10		ug/L
			Selenium (Se)	2022/11/05	<1.0		ug/L
			Strontium (Sr)	2022/11/05	<2.0		ug/L
			Thallium (TI)	2022/11/05	<2.0		ug/L
			Uranium (U)	2022/11/05	<1.0		ug/L
			Titanium (Ti)	2022/11/05	<10		ug/L
			Vanadium (V)	2022/11/05	<2.0		ug/L
					<5.0		ug/L
347674	TOO	Spiked Blank	Zinc (Zn) COD	2022/11/05	<3.0	96	%
347674	TOO	Spiked Blank DUP	COD	2022/10/29		102	%
		Method Blank		2022/10/29	<5.0	102	
347574	T00		COD	2022/10/29	₹5.0		mg/L
347735	T00	QC Standard	COD	2022/10/29		103	%
347735	TOO	Spiked Blank	COD	2022/10/29		104	%
347735	TOO	Spiked Blank DUP	COD	2022/10/29		102	%
347735	TOO	Method Blank	COD	2022/10/29	<5.0		mg/L
347867	SF5	Spiked Blank	Cyanate (CNO-)	2022/10/30		111	%
347867	SF5	Method Blank	Cyanate (CNO-)	2022/10/30	<0.050		mg/L
348080	VKH	Spiked Blank	Total suspended solids (TSS)	2022/11/01		96	%
348080	VKH	Method Blank	Total suspended solids (TSS)	2022/11/01	<2.0		mg/l
348231	VKH	Spiked Blank	Total Dissolved Solids	2022/11/01		97	%
348231	VKH	Method Blank	Total Dissolved Solids	2022/11/01	<10		mg/l
348274	HGU	Spiked Blank	Total Dissolved Solids	2022/11/03		101	%
348274	HGU	Method Blank	Total Dissolved Solids	2022/11/03	<10		mg/t
348305	ZLI	Spiked Blank	Fluoride (F)	2022/10/31		98	%
348305	ZLI	Method Blank	Fluoride (F)	2022/10/31	< 0.10		mg/l
348310	ZLI	Spiked Blank	Fluoride (F)	2022/10/31		99	%
348310	ZLI	Method Blank	Fluoride (F)	2022/10/31	<0.10		mg/l
348453	SSF	QC Standard	BOD5	2022/11/06		117	%
348463	SSF	Spiked Blank	BOD5	2022/11/06		108	%
348463	SSF	Spiked Blank DUP	BOD5	2022/11/06		108	%
348463	SSF	Method Blank	BOD5	2022/11/06	< 2.0		mg/L

Page 11 of 13 2022/12/07 18:50

Agnico Eagle Mines Limited Client Project #: MEADOWBANK DIVISION Your P.O. #: OL-1183515

Sampler Initials: AG

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
2348463	SSF	Method Blank DUP	BOD5	2022/11/06	<2.0		mg/L
2348498	HPA	Spiked Blank	Dissolved organic carbon	2022/11/01		105	%
2348498	HPA	Method Blank	Dissolved organic carbon	2022/11/01	< 0.20		mg/L
2348890	GXL	Spiked Blank	Thiocyanate	2022/11/02		98	%
2348890	GXL	Method Blank	Thiocyanate	2022/11/02	< 0.17		mg/L
2349500	MPZ	QC Standard	BOD5	2022/11/08		123	%
2349500	MPZ	Spiked Blank	BOD5	2022/11/08		112	%
2349500	MPZ	Spiked Blank DUP	BOD5	2022/11/08		115	96
2349500	MPZ	Method Blank	BOD5	2022/11/08	<2.0		mg/L
2349500	MPZ	Method Blank DUP	BOD5	2022/11/08	<2.0		mg/L
2349577	MPZ	QC Standard	BOD5	2022/11/08		127	%
2349577	MPZ	Spiked Blank	BOD5	2022/11/08		115	%
2349577	MPZ	Method Blank	BOD5	2022/11/08	<2.0		mg/L
2349577	MPZ	Method Blank DUP	BOD5	2022/11/08	<2.0		mg/L
2351120	GXL	Spiked Blank	Thiosulfate	2022/11/07		98	%
2351120	GXL	Method Blank	Thiosulfate	2022/11/07	< 0.13		mg/L
2351992	HPA	Spiked Blank	Dissolved organic carbon	2022/11/09		116	96
2351992	HPA	Method Blank	Dissolved organic carbon	2022/11/09	0.23,		mg/L
					RDL=0.20		
2355749	SF5	Spiked Blank	Bromide (Br-)	2022/11/20		102	%
			Chloride (CI)	2022/11/20		100	96
			Sulfates (SO4)	2022/11/20		101	26
2355749	SF5	Method Blank	Bromide (Br-)	2022/11/20	< 0.10		mg/L
			Chloride (CI)	2022/11/20	<0.050		mg/L
			Sulfates (SO4)	2022/11/20	< 0.50		mg/L
2357562	CBO	Spiked Blank	Selenium (Se)	2022/11/25		98	96
2357562	CBO	Method Blank	Selenium (Se)	2022/11/25	<3.0		ug/L

RDL = Reportable Detection Limit

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy. Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

(1) Recovery or relative percent difference (RPD) for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Christina Ruffini, B.Sc., Chemist, Superviseur – traitement d'échantillons

Faouzi Sarsi, B.Sc. Chemist, Montréal, SR Analyst

Mira

Mira El Masri, M.Sc. Chemist, Montréal, Analyst II

mist Mantenal Analyst

Shu Yang, B.Sc. Chemist, Montreal, Analyst II

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

F.2. R1/P2

					UNLEF					NA.				
B14	ERW POW	***	100 P 50 10 00 40 00	202 0 45 92.00 44.00	2022-10-10 13.00 71.00	Mariner Model	202 D 11 H-00 N-00	2002 19 15 09.00 76.00	10.00 10.00 10.00	2012-11-02 13.00 80.00	202 P IS U.M 80.00	2002-12-01 U-10 34-10	10.00 10.00	89 LAR 200.00
Need	Nood New Nood New	mil/h	0,000	0.00000 1,89	0.00080 1.89	0,0018W 3,49	0.00080	0,000380 1,88	0.00080 1,19	0.00004	0.0002	0,000TB 0,70	0,00000	0,00000E
	1995 304 -> 1949-3 95-99815-5	er erits er erits			1,30 7,54 7,55	1,09	7,67 7,62 7,34	8,34 7,54 7,54	1,35 7,62 7,93			E39 7.66 7.54	731 747 750	7,14
-	Death Pligation Separation	to high			7.55 6.96 7.56 7.11		4,65 500 7,15	6.56 7.36 7.27	6,54 6,00 7,00			5.76 7.65	431 737	181
	Food 1000 500 to 1000 5	FG			12:40 20:70	2,64	2630	30,30 31,30	7.09 33.50 30.40			38.40 30.90	1680	
temportes	Sheffarths Deal Plants	No Fo			20.40 20.90		30.90 30.10 20.70	30,80 20,90	20,50 20,50			30.40 20.60	3090 3090 2090	
	Specially Special	Fq.			20:40 38:70		2040 2870	20.00 20.00 T-86	20 MP			20,00	3030 LU	
	SCW TO WARD WE PROTECT	(mg0.8%) (mg0.8%)						7.60 6.60 7.60			6.13 6.92 7.65	7.66 7.60	724	
80	Deshifterion Manageho	IngO(h)						4.65			C44 4.14	4.94	037 380	
	Teet 1945 304 -> 1443	(mg O SPL)			SE(00 114:00		21,00 34,00	9,90 \$7,00 36,00	50,00 44,00			147,00 110,00	4,00 136,30	
Officerige	Shifter to	W W			MANUEL SELECT		\$75,00 \$1,00	M4,00 - U(00	326:00 5.00			186,70 170,40	38,40 -50,00	
	Says Says	W .			- E97,00 61,00		M/00 437.00	3100 -318,500	3,00 394,00			-1500	4,00	
Orto-Hoazute F	904-5-944-5 Vir.Plantin	1464/4 1464/4				*00								1007
Critic-Progratio F	Doub Mighton Market bin	118 9/4 118 9/4 118 9/4												
	Total SOW IN MINING	Ingt/d Ingt/d	i'n	0,06		100,00 200,00		1,44	2,64			A/86		200,00 200,00
cos	SCH 19 HINES Uh Rightin Drob Rightin	Inglia Inglia Inglia												
	Resource - Repo	Ingfd Ingfd IngfCqfd	200,06	236,36	221,87	270,00 200,00	223.96	217,40	215 W	10600	21549	306,90	215,00	230.00
509	SCH -> HHP-S VERWIEN DAMPHIEN	Programma Programma Programma Programma	3,37	1.14 0.00	094 1.80		6,40 1,13	234 405	13,34	174	2,37	137	140	
	Sent Plants	Herschill Herschill Herschill	0.00	600 600	23,23 2,39 4,99	arp	600 600	4.20 4.20	100 100	252 337 540	190	670	1.8	40.07
	504 -> 1444.5	148.40	4037	83,19 459	0,30	40,27	3,00 0,37	12.49	8,12 8,12	54.50 204	134	43.43	1400	45,02
104	SHARWING DIAMERS	146.40.0	0,00 0,00	5,00 6,00	630 600		600	0.90 0.85	1,09 675	030 081	C-00 C-00	0.66	0.0	
	Remarks Rept	1-10-10/11 1-10-10/11	0,00 0,00 8,58	6,00 6,00 8,98	0:00 0:00 8:00	40,04 4,00	6,00 6,00	081 081	0,19 0,72 4,89	030	6,39	0.00	0.00	40%
CND	200 to 194943 Uh Rhatibo	146.000												
	Desk Highton Managethia Span	1-1g-10/1 1-1g-10/1				+0.07								4,07
	Feet 304 -> 9443	Tragrets	48,60 49,90	46(00 76,30	47,00 61,90	51,00	47,50 96,30	54,50 36,90	46,50 19,20	46,34 200,349	61,69 27,64	45,65 65,39	4907 9030	40,50
***	GLAN PROFITS SEAN PROFITS SEANOWITE O	न्द्र प्रदेश व्यक्त प्रदेश	0,38 0,06 0,07	0,00 1,00 0,17	0,90 4,40 140		(10 (10	1,20 0,66 1,61	673 673 673	037 032 172	608 608 632	0.38 0.22 0.25	0.00 0.00 0.00	0,80
	1000 500 to 0405	146.40	0,64 27,66	4,30	1,40 1,10 2,30	2,40 32,00	1,96 1,46 2,06 8,70	100	0,50 0,50 1,61 1,75	5,40 239 439	1,40	0.11 4.64	1.0	3,30
440	NAME OF THE PARTY	1-16-10/11 1-16-10/11	52,10 76,34 3,00	9.10 36.40 11.40	91,50 61,54 21,50		41,30 9,30	5.80 30,33 1,50	36.70 20,70	3032 4730	E43 EUR EUR	200,20 20,20	30947 1,96	
	Remerby Rest	1-10 10 11 1-10 10 11	0,00 3,00	1,00 1,00 0,40	26,50	0,00	2,34 2,52 0,44	3.60 3.71 0.20	000 276 019	3,40 3,64 0,12	1,90	0.00	3.00	0,09
	200 -0 194943 90 -0 194943	146.4(1	0,36 6,30 0,46	1,20 1,20 1,40	6,52 6,20	1,00	130 140	0,29 1,50 0,76	200	130 0,0	1,09 1,09	3,36 0,74	4,96 3,35 0,96	1,00
uue.	Desk-Highton Seawarts o	निवास वर्षण विकास वर्षण	0.30 0.06 0.00	636 630	130		11,40 4,66 1,97	11, 10 4, 86 0,00	8,70 M,00 7,80	3650 5420	\$2,90 94,00	34,10 10,10	0.30	40.00
	1965 304 → 944-3	Ingredia Ingredia	18,07 187,76	0.00 308,39 86,00	204.70 204.70	+0,37 103,08	204.20	209.45 209.00	7,30 301.76 97.12	310 36 130 71	207.09	99,30	30(46	35(6
**	Shiftston Deal Plants	1-10-10/11 1-10-10/11	71,18	53:50 13,10	67,21 M,43		66,26 26,58	A6,20 10,10	50,30 M,30	5307 9410	304,70 86,08	26,12 26,04 66,66	30400 11047 6,98	
	Special Communication of the C	I ng Will I ng Will ng Yi	0.32 0,64 000000	3,17 3,68 900000	21,40 34,50 50000	2,42 8000,30	11,07 7,66 900000	11.11 9.90 9000.00	33,54 31,72 500000	2266 1001 1000.00	3071	30,11	1000.00	0,00
DUBY SHAME	Freezant nes	mg/s mg/s mg/stark	2540,000 30000000	250,00 2000000	200000	30000,00	2000000 20000000	20000,00	200.00 2000000	2000.00	2000000 2000000	20000,00	2000000	300000
	1 at 4 46 2008 Parcessans need	196/5	1128000	153500	1115000 64.0	11790,00	1225000	91190,00	1223030	1886,00	1111000	11150,00	11868	33390,00
	Fencesage says	46/4 46/4	94,0 96,4 96,5	396,5 296,0 36,4	106,5 106,0 16,0	396,5 396,5 36,7	365,4 365,4	300,6 340,4	365.4 365.4	900 900 3005 100	31,0 97,8 326,5	93,5 83,5 86,9	70/0 06/4 25/0	AU AU AU
DURYSHARE	Frontiere nere	ogit ogiti	940 940	36,4 3065 5864	3000 5000	3363	36,4 3365	3000 3000	36,2 5365	150 180	970 1004	3064 3064	700	768
	GTN GDG/FN	mg/mgN mgES/mgPV	3,67 3,54	2,07	1,07 1,71	2,87 7,75	3,08 6,17	3.00 8.27	3,08 6,27	558 5534	3,96 30,36	3434 3434	1013	X,80 30,80
	104/N 200 to MANS 50 704/EA	40	0,18 0,61	0,30 0,00	0.30 0.01	0,50 0,00	613 603 604	011 011	6 13 600 604	034 003	6/17 6/01	027 021 034	0.80 0.00	6,38 6,00 6,04
Services (1)	Deal Migrary		9,66	600	602 600	8,02	602	01L 01L	602	900	600	034	964	6,00
	Chiller 500 to MMS Wellbarden		5,44	3,50 28,74	A100 3674	25,70 25,70	3,50 3674	3534	3,59 30,74	450 BEI	4,90 30,02	6.43 34,39	4930	40.00
MT(More)	Donk-High by Market by	- 1	46,55 17,44 5,65	20,79 30,79	30.76 30.76	30,78 30,79 8,89	3070 3070	3030	30,76 30,76	5671 430	3(7) 4,30	3533 641	1656 639	33,39 6,39
	Christian SCV 15 VIVIS VICTORISA	3	M	.00	N	20	30	80	30	30	N	N)	20	20
The sale	Sent digritor	*	30 50 50	30 30 30	30 80 30	20 20 20	30 30 30	30 80 80	20 20 20	30	20 20	30 80 80	20 20 20	30 80 80
anticome christia	Si wino www.) Whitewards Dealt-Hamba	4/4 4/4 2/	500 500 500	500 500 500	500 500 500	500 500	500 500	900 900 900	500 500	940 940 940	500 500	900 900 900	90 90 90	500 500 500
	King or things	46/48	0,70	900 0,75	500 0.75	300 0,60	0.79	0.76	980 079	900 0.76 600	980	900 0.75 6.90	073	300 0,80
Total anau otrosole	Street Plant Ser	7777	6,00 1,25 0,75	6,00 2,25 0,75	6,00 1,15 4,75	8,00 2,25 6,75	£00 2,25 675	£30 1,25 0,75	6(00 2,25 6/75	600 3,25 9,75	6,00 2,25 6,75	£30 1,25 0,76	600 1,15 075	6,00 2,29 9,79
	SCIO SCIO	244	40,10	5,07 74,64	507 74,71	87,54	94,98	18,90	5,07 73,40	900 51,14	54,94	0.04 M.71	4006	2000 2000
feetinednesste	Gred Gred WCG	SAL SAL SAL	41,60	6.06 64,03 6.00	607	0,07 70,38	607 66,12	95.86 75.86	6/09 64/70	006 47.94	6/40 44/40	0.04 M_41	608 6039	5,04 M,78
recovering title	900 900 900	6 AL.	0,00 0,30 0,64	0.00 0.56 0.05	0:00 0:40 0:00	0,00 0,00 0,00	0,00 0,61 0,00	0.00 0.60 0.00	6,00 6,38 6,00	0,00 0,00 0,00	0,00 0,12 0,00	0.90 1,94 0.90	3,69 000	0,00 1,09 6,00
	1908 179	oprefe oprefe grand/s Brandon	30,30	1,65	4,50 345,37	36,10	2,07	1.52 861,77	2,34 941/08	3.30 808,74 609	2,74 866,70 6,60	6.17 77,66	100	7,27 84,18 6,37
	Shifterin Shifterin	e-tof-state bloods	3,06	6,50 6,00	630	8,12	650	619	633	600	600	686	666	600 600
are transmissing on "Not	509/090-908	\$40,47/4 \$040408 \$1008,47/4 \$40,47/4 \$4008	270 9'00 4'09	6.00 2.01	630 1,19	8,67 8,68 1,59	600 500 232	0.00 0.00 1,20	600 2,00	904 900 304	600 170	0.00 0.00	0.00 1,00	3,79
	Destroyers	Entertained Entertained	100	6/4 3/47	4:15 1,10	2,66	141	0.50 1.49	6,55 3,49	0,40	100	0.70	0.86	AVALUE
	None SCH MINES	\$000 n30	0,00	0,00	000	5,00 3,43	000	000	600	000	600	000	000	-1,0
And Employed and Table	Order Physician	#W-00100 #W-00100	5,1L 0,40	5,34 540	633	8,79 0,79	615	0.36	634	038 044	0.18 0.40	638	0.00	AVAILUR
Militarpresence	Garage Car	#000Fit-20	40,06	0,00 vi(06	600	4,00	40.00	40.05	600 4656	40,06	408	0.00 V(RE	0:00 Wells	1,0
	1000	16000	200000	200000	200000	2000,00	200000	1900,00	200000	1800.00	2000.00	1900,00	180000	2000,00

Your P.O. #: OL-1183515 Your Project #: MEADOWBANK DIVISION Your C.O.C. #: N-A

Attention: Thomas Genty

Agnico Eagle Mines Limited Meadowbank Meadowbank Keewatin, NU CANADA POX 0A1

> Report Date: 2022/12/21 Report #: R2814981 Version: 2 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C263575 Received: 2022/11/09, 09:00

Sample Matrix: Surface Water #Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Total Alkalinity (pH end point 4.5)	3	N/A	2022/11/09	STL SOP-00038	SM 23 2320-8 m
Anions in water	3	N/A	2022/11/24	STL SOP-00014	MA.300-lons 1.3 R6 m
Biochemical Oxygen Demand (5 days) (2)	3	2022/11/16	2022/11/21	STL SOP-00008	MA315-DBO 1.1 R3 m
Weak Acid Dissociable Cyanides	3	2022/11/10	2022/11/24	STL SOP-00035	MA300-CN 1.2 R4 m
Total Cyanide	3	2022/11/10	2022/11/11	STL SOP-00035	MA300-CN 1.2 R4 m
Chemical Oxygen Demand	1	2022/11/15	2022/11/15	STL SOP-00009	MA315-DCO 1.1 R4 m
Chemical Oxygen Demand	2	2022/11/16	2022/11/16	STL SOP-00009	MA315-DCO 1.1 R4 m
Conductivity	3	N/A	2022/11/09	STL SOP-00038	SM 23 2510-8 m
Cyanates	3	N/A	2022/11/16	STL SOP-00010	MA.315-CNO 1.1 R3 m
Dissolved Organic Carbon (3)	3	2022/11/25	2022/11/25	STL SOP-00243	SM 23 5310-8 m
Fluoride	3	N/A	2022/11/09	STL SOP-00038	SM 23 4500-F m
Total Suspended Solids	3	2022/11/12	2022/11/14	STL SOP-00015	MA.104-S.S. 2.0 m
Dissolved Metals (Low DL) site filtered	3	N/A	2022/11/25	STL SOP-00062	MA.200-Mét. 1.2 R7 m
Total Extractable Metals by ICP	1	2022/11/10	2022/11/15	STL SOP-00062	MA.200-Mét. 1.2 R7 m
Total Extractable Metals by ICP	2	2022/11/11	2022/11/15	STL SOP-00062	MA.200-Mét. 1.2 R7 m
Ammonia Nitrogen	3	N/A	2022/11/19	STL SOP-00040	MA.300-N 2.0 R2 m
Nitrates(NO3-), Nitrites(NO2-)-water	3	N/A	2022/11/10	STL SOP-00014	MA.300-lons 1.3 R6 m
pH in water	3	N/A	2022/11/09	STL SOP-00038	MA.100-pH 1.1 R3 m
Ortho Phosphate	3	N/A	2022/11/09	STL SOP-00003	MA.303-P 1.1 R2 m
Total Dissolved Solids	1	2022/11/10	2022/11/11	STL SOP-00050	MA.115-S.D. 1.0 R4 m
Total Dissolved Solids	2	2022/11/13	2022/11/14	STL SOP-00050	MA.115-S.D. 1.0 R4 m
Thiocyanates	3	N/A	2022/11/16	STL SOP-00010	MA.304-lons 1.1 R1 m
Total Thiosalts + Thiosalt Species (1)	3	N/A	N/A		
Thiosulfates	3	N/A	2022/11/17	STL SOP-00010	MA.304-lons 1.1 R1 m
Total Organic Carbon (4)	3	N/A	2022/11/21	STL SOP-00243	SM 23 5310-8 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as COME, MELCC, EPA, APHA.

Your P.O. #; OL-1183515 Your Project #; MEADOWBANK DIVISION Your C.O.C. #; N-A

Attention: Thomas Genty

Agnico Eagle Mines Limited Meadowbank Meadowbank Keewatin, NU CANADA POX 0A1

> Report Date: 2022/12/21 Report #: R2814981 Version: 2 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C263575

Received: 2022/11/09, 09:00

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Note: RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

- (1) This test was performed by SGS Canada Inc Lakefield, 185 Concession St , Lakefield, ON, KOL2H0
- (2) Please note that in the event a biochemical oxygen demand analysis cannot begin within the 48-hours holding time required (for a sample preserved at 4°C), sample will be frozen, unless otherwise specified by a regulation, to maintain it's integrity.
- (3) DOC present in the sample should be considered as non-purgeable DOC
- (4) TOC present in the sample should be considered as non-purgeable TOC

Note: All parameters included in the present certificate are accredited by the MELCC unless stated otherwise.

Encryption Key

Josus Moran Project Hamager 21 Dec 2022 17:05:50

Please direct all questions regarding this Certificate of Analysis to: Touriya Naji, Project Manager

Email: touriya.naji@bureauveritas.com

Phone# (514) 448-9001

.....

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Aglaia Yannakis, General Manager responsible for Quebec Environmental laboratory operations.

DISSOLVED METALS (SURFACE WATER)

Bureau Veritas ID				LE4026	LE4027	LE4028		
Samulian Data				2022/11/07	2022/11/07	2022/11/07		
Sampling Date				11:00	11:00	18:00		
COC Number				N-A	N-A	N-A		
	Units	А	В	RAW WATER ST19 (JULY)	FEED MBBR	TREATED WATER	RDL	QC Batch
METALS ICP-MS						-		
Aluminum (Al) †	ug/L	100		<10	<10	39	10	2354380
Antimony (Sb)	ug/L	6	1100	15	8.7	7.7	1.0	2354380
Silver (Ag) †	ug/L	100	0.62	<0.10	<0.10	<0.10	0.10	2354380
Arsenic (As)	ug/L	0.3	340	76	2.8	3.5	0.30	2354380
Barium (Ba)	ug/L	1000	600	66	56	36	2.0	2354380
Beryllium (Be) †	ug/L		-	<0.40	<0.40	<0.40	0.40	2354380
Boron (B)	ug/L	5000	28000	270	270	170	20	2354380
Cadmium (Cd)	ug/L	5	1.1	4.3	<0.20	1.0	0.20	2354380
Chromium (Cr)	ug/L	50	-	0.55	<0.50	1.5	0.50	2354380
Copper (Cu)	ug/L	1000	7.3	440	1.3	8.2	0.50	2354380
Tin (Sn) †	ug/L		-	<1.0	<1.0	1.3	1.0	2354380
Iron (Fe)	ug/L		-	<60	<60	680	60	2354380
Lithium (Li) †	ug/L		-	<10	<10	<10	10	2354380
Manganese (Mn)	ug/L	50	2300	32	42	28	0.40	2354380
Molybdenum (Mo)	ug/L	40	29000	100	91	57	0.50	2354380
Mercury (Hg)	ug/L	1	0.0013	<0.10 (1)	<0.10(1)	<0.10 (1)	0.10	2354380
Nickel (Ni)	ug/L	70	260	720	100	61	1.0	2354380
Phosphorus	ug/L		-	<10	<10	640	10	2354380
Lead (Pb)	ug/L	5	34	<0.10	<0.10	0.77	0.10	2354380
Selenium (Se)	ug/L	10	62	170	160	31	1.0	2354380
Strontium (Sr) †	ug/L		-	1600	1500	1100	2.0	2354380
Thallium (TI) †	ug/L	÷	-	<2.0	<2.0	<2.0	2.0	2354380
Uranium (U)	ug/L	20	320	7.6	5.8	4.3	1.0	2354380
Titanium (Ti) †	ug/L		-	<10	<10	<10	10	2354380
Vanadium (V) †	ug/L			<2.0	<2.0	<2.0	2.0	2354380
Zinc (Zn)	ug/L	5000	67	<5.0	<5.0	120	5.0	2354380

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

[†] Parameter is not accreditable

⁽¹⁾ RDL exceeds criteria

TOTAL EXTRACTABLE METALS (SURFACE WATER)

Bureau Veritas ID				LE4026		LE4027		LE4028		
Sampling Date				2022/11/07		2022/11/07		2022/11/07		
Sampling Date				11:00		11:00		18:00		
COC Number				N-A		N-A		N-A		
	Units	А	В	RAW WATER ST19 (JULY)	QC Batch	FEED MBBR	QC Batch	TREATED WATER	RDL	QC Batch
METALS										
Aluminum (Al)	ug/L	100		<10	2352563	21	2352563	18	10	2352152
Antimony (Sb)	ug/L	6	1100	21	2352563	16	2352563	9.4	1.0	2352152
Silver (Ag)	ug/L	100	0.62	<1.0 (1)	2352563	<1.0 (1)	2352563	<1.0(1)	1.0	2352152
Arsenic (As)	ug/L	0.3	340	94	2352563	4.1	2352563	5.4	1.0	2352152
Barium (Ba)	ug/L	1000	600	78	2352563	70	2352563	45	2.0	2352152
Beryllium (Be)	ug/L	-	-	<2.0	2352563	<2.0	2352563	<2.0	2.0	2352152
Boron (B) †	ug/L	5000	28000	310	2352563	310	2352563	220	50	2352152
Cadmium (Cd)	ug/L	5	1.1	0.36	2352563	<0.20	2352563	0.69	0.20	2352152
Chromium (Cr)	ug/L	50	-	<5.0	2352563	<5.0	2352563	<5.0	5.0	2352152
Copper (Cu)	ug/L	1000	7.3	520	2352563	11	2352563	4.2	1.0	2352152
Tin (Sn)	ug/L	-		<2.0	2352563	<2.0	2352563	2.4	2.0	2352152
Iron (Fe)	ug/L	-	-	<60	2352563	110	2357843	1000	60	2352152
Lithium (Li) ††	ug/L	-	-	<10	2352563	<10	2352563	<10	10	2352152
Manganese (Mn)	ug/L	50	2300	34	2352563	59	2352563	37	1.0	2352152
Mercury (Hg)	ug/L	1	0.0013	0.10	2352563	<0.10(1)	2352563	<0.10 (1)	0.10	2352152
Molybdenum (Mo)	ug/L	40	29000	120	2352563	110	2352563	72	1.0	2352152
Nickel (Ni)	ug/L	70	260	810	2352563	130	2352563	70	2.0	2352152
Total phosphorous	ug/L	-	1000	<10	2352563	<10	2352563	1300	10	2352152
Lead (Pb)	ug/L	5	34	<0.50	2352563	<0.50	2352563	<0.50	0.50	2352152
Selenium (Se)	ug/L	10	62	190	2352563	190	2352563	87	3.0	2352152
Strontium (Sr) †	ug/L	-	-	1800	2352563	1800	2352563	1300	2.0	2352152
Thallium (TI)	ug/L	-		<2.0	2352563	<2.0	2352563	<2.0	2.0	2352152
Titanium (Ti) ++	ug/L	-		<10	2352563	<10	2352563	<10	10	2352152
Uranium (U) ++	ug/L	20	320	8.8	2352563	7.2	2352563	6.9	1.0	2352152
Vanadium (V)	ug/L		-	<2.0	2352563	<2.0	2352563	<2.0	2.0	2352152
Zinc (Zn)	ug/L	5000	67	<7.0	2352563	<7.0	2352563	55	7.0	2352152

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

[†] Parameter is not accredited

⁺⁺ Parameter is not accreditable

⁽¹⁾ RDL exceeds criteria

CONVENTIONAL PARAMETERS (SURFACE WATER)

Bureau Veritas ID				LE4026			LE4027		
Sampling Date				2022/11/07			2022/11/07		
Sampling Date				11:00			11:00		
COC Number				N-A			N-A		
	Units	А	В	RAW WATER ST19 (JULY)	RDL	QC Batch	FEED MBBR	RDL	QC Batch
CONVENTIONALS									
BOD5	mg/L	-	-	47	13	2354186	21	4.0	2354186
COD	mg/L	-	-	310	5.0	2354155	300	5.0	2354155
Conductivity	mS/cm	v	-	4.7	0.0010	2352014	4.7	0.0010	2352014
Cyanate (CNO-)	mg/L	-	-	1.6	0.050	2354099	1.5	0.050	2354099
Dissolved organic carbon †	mg/L	-	-	56	1.0	2358067	55	1.0	2358067
Fluoride (F)	mg/L	1.5	4	0.16	0.10	2351884	<0.10	0.10	2351884
Nitrate (N) and Nitrite(N)	mg/L	10	-	13	0.20	2352029	13	0.20	2352029
Nitrates (N-NO3-)	mg/L	-	300	12	0.20	2352029	12	0.20	2352029
Nitrites (N-NO2-)	mg/L	1	-	0.39	0.20	2352029	0.36	0.20	2352029
Nitrogen ammonia (N-NH4+ and N-NH3)	mg/L	0.05	-	50	0.10	2355682	51	0.10	2355682
Orthophosphate (P)	mg/L	-	-	<0.050	0.050	2352030	<0.050	0.050	2352030
рН	pН	~	-	7.86	N/A	2351876	8.03	N/A	2351876
Thiocyanate	mg/L	-	-	210	17	2354148	200	17	2354148
Thiosulfate	mg/L	-	-	<1.3	1.3	2354279	1.7	1.3	2354279
Total Cyanide (CN)	mg/L	-	-	0.022	0.0030	2352406	0.021	0.0030	2352406
Total Organic Carbon	mg/L	-	-	56	1.0	2356249	55	1.0	2356249
Weak Acid Dissociable Cyanide (CN-)	mg/L	0.2	0.022	0.016	0.015	2352405	0.015	0.015	2352405
Alkalinity Total (as CaCO3) pH 4.5 †	mg/L		-	140	1.0	2352016	98	1.0	2352016
Bromide (Br-)	mg/L	-	-	3.1	0.10	2357357	3.0	0.10	2357357
Chloride (CI)	mg/L	250	860	240	0.050	2357357	240	0.050	2357357
Sulfates (SO4)	mg/L	-	-	2400	5.0	2357357	2000	5.0	2357357
Total Dissolved Solids	mg/L	-	-	3700	10	2352337	3700	10	2353274
Total suspended solids (TSS)	mg/L	-	-	4.0	2.0	2353068	11	2.0	2353068

RDL = Reportable Detection Limit QC Batch = Quality Control Batch † Parameter is not accreditable

N/A = Not Applicable

CONVENTIONAL PARAMETERS (SURFACE WATER)

Bureau Veritas ID	l .			LE4028	LE4028		
Sampling Date				2022/11/07 18:00	2022/11/07 18:00		
COC Number				N-A	N-A		
	Units	А	В	TREATED WATER	TREATED WATER Lab-Dup	RDL	QC Batcl
CONVENTIONALS							
BOD5	mg/L	-	-	35	N/A	13	2354188
COD	mg/L	-	-	220	N/A	5.0	2353749
Conductivity	mS/cm	-	-	3.7	N/A	0.0010	2352014
Cyanate (CNO-)	mg/L	-	-	<0.050	N/A	0.050	2354099
Dissolved organic carbon †	mg/L	-	-	75	N/A	1.0	2358067
Fluoride (F)	mg/L	1.5	4	<0.10	N/A	0.10	235188
Nitrate (N) and Nitrite(N)	mg/L	10	-	<0.20	N/A	0.20	2352029
Nitrates (N-NO3-)	mg/L	-	300	0.022	N/A	0.020	235202
Nitrites (N-NO2-)	mg/L	1	-	<0.20	N/A	0.20	2352029
Nitrogen ammonia (N-NH4+ and N-NH3)	mg/L	0.05	-	2.4	2.3	0.020	2355682
Orthophosphate (P)	mg/L	-	-	<0.050	N/A	0.050	2352030
pH	pН	-	-	7.64	N/A	N/A	235187
Thiocyanate	mg/L	-	-	<0.17	N/A	0.17	2354033
Thiosulfate	mg/L	-	-	0.25	N/A	0.13	2354279
Total Cyanide (CN)	mg/L	-	-	0.021	N/A	0.0030	235240
Total Organic Carbon	mg/L	-	-	70	N/A	1.0	2356249
Weak Acid Dissociable Cyanide (CN-)	mg/L	0.2	0.022	0.0097	N/A	0.0030	2352409
Alkalinity Total (as CaCO3) pH 4.5 †	mg/L	-	-	330	N/A	1.0	2352018
Bromide (Br-)	mg/L	-	-	2.2	N/A	1.0	2357357
Chloride (CI)	mg/L	250	860	160	N/A	0.50	2357357
Sulfates (SO4)	mg/L	-	-	1600	N/A	5.0	235735
Total Dissolved Solids	mg/L		-	2900	N/A	10	235327
Total suspended solids (TSS)	mg/L	-	-	24	N/A	2.0	235306

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

† Parameter is not accreditable

GENERAL COMMENTS

pH in water: Holding time already past upon reception.: LE4026, LE4027, LE4028

A,B: Soil Criteria following appendix 2 of the "Guide d'intervention-Protection des sols et réhabilitation des terrains contaminés. MELCC, May 2021." entitled "Grille des critères génériques pour les sols". The soil criteria refer to the St. Lawrence Lowlands Geological Province.

Groundwater criteria A and B follow the appendix 7 entitled "Grille des critères de qualité des eaux souterraines" of the document mentionned above. The criterion A refers to "Drinking Water" and the criterion B refers to "Seepage into Surface Water".

These criteria references are shown for visual aid only, and should not be interpreted otherwise.

- = This parameter is not part of the regulation.

CONVENTIONAL PARAMETERS (SURFACE WATER)

Reported detection limits are multiplied by dilution factors used for sample analysis.

Thiosulfate: Detection limit raised due to matrix interference. LE4026, LE4027

TOC< DOC: Both values fall within acceptable RPD limits for duplicates and are likely equivalent.

Nitrate and Nitrite: Detection limit raised due to matrix interference.

Sample LE4027, Total Extractable Metals by ICP: Test repeated.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC						_	
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
2351876	ZLI	Spiked Blank	pH	2022/11/09		102	%
2351884	ZLI	Spiked Blank	Fluoride (F)	2022/11/09		98	%
2351884	ZLI	Method Blank	Fluoride (F)	2022/11/09	< 0.10		mg/L
2352014	ZLI	Spiked Blank	Conductivity	2022/11/09		102	%
2352014	ZLI	Method Blank	Conductivity	2022/11/09	0.0012, RDL=0.0010		mS/cr
2352016	ZLI	Spiked Blank	Alkalinity Total (as CaCO3) pH 4.5	2022/11/09		99	%
2352016	ZLI	Method Blank	Alkalinity Total (as CaCO3) pH 4.5	2022/11/09	<1.0		mg/l
2352029	CLO	Spiked Blank	Nitrate (N) and Nitrite(N)	2022/11/10		100	96
			Nitrates (N-NO3-)	2022/11/10		101	%
			Nitrites (N-NO2-)	Nitrites (N-NO2-) 2022/11/10			
2352029	CLO	Method Blank	Nitrate (N) and Nitrite(N)	2022/11/10	<0.020		mg/l
			Nitrates (N-NO3-)	2022/11/10	<0.020		mg/
			Nitrites (N-NO2-)	2022/11/10	<0.020		mg/l
2352030	CLO	Spiked Blank	Orthophosphate (P)	2022/11/09		99	%
2352030	CLO	Method Blank	Orthophosphate (P)	2022/11/09	<0.050		mg/l
2352152	MEM	Spiked Blank	Aluminum (Al)	2022/11/14		100	%
			Antimony (Sb)	2022/11/14		123 (1)	%
			Silver (Ag)	2022/11/14		116	%
			Arsenic (As)	2022/11/14		124(1)	96
			Barium (Ba)	2022/11/14		120	%
			Beryllium (Be)	2022/11/14		107	%
		Boron (B)	2022/11/14		111	96	
			Cadmium (Cd)	2022/11/14		116	96
			Chromium (Cr)	2022/11/14		117	96
			Copper (Cu)	2022/11/14		112	56
			Tin (Sn)	2022/11/14		122 (1)	96
			Iron (Fe)	2022/11/14		118	%
			Lithium (Li)	2022/11/14		96	96
			Manganese (Mn)	2022/11/14		116	%
			Mercury (Hg)	2022/11/14		136 (1)	96
			Molybdenum (Mo)	2022/11/14		120	%
			Nickel (Ni)	2022/11/14		114	96
			Total phosphorous	2022/11/14		112	96
			Lead (Pb)	2022/11/14		115	%
			Selenium (Se)	2022/11/14		117	%
			Strontium (Sr)	2022/11/14		120	%
			Thallium (TI)	2022/11/14		114	26
			Titanium (Ti)	2022/11/14		114	56
			Uranium (U)	2022/11/14		111	%
			Vanadium (V)	2022/11/14		117	%
			Zinc (Zn)	2022/11/14		113	%
352152	MEM	Method Blank	Aluminum (Ali)	2022/11/14	<10	210	ug/
		THE STREET STREET	Antimony (Sb)	2022/11/14	<1.0		ug/
			Silver (Ag)	2022/11/14	<1.0		ug/l
			Arsenic (As)	2022/11/14	<1.0		ug/l
			Barium (Ba)	2022/11/14	<2.0		ug/l
			Beryllium (Be)		<2.0		
				2022/11/14	<50		ug/l
			Boron (B)	2022/11/14	<0.20		ug/l
			Cadmium (Cd)	2022/11/14			ug/l
			Chromium (Cr)	2022/11/14	<5.0		ug/

Page 8 of 13 2022/12/21 15:15

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Copper (Cu)	2022/11/14	<1.0		ug/L
			Tin (Sn)	2022/11/14	<2.0		ug/L
			Iron (Fc)	2022/11/14	<60		ug/L
			Lithium (Lí)	2022/11/14	<10		ug/L
			Manganese (Mn)	2022/11/14	<1.0		ug/t
			Mercury (Hg)	2022/11/14	< 0.10		ug/l
			Molybdenum (Mo)	2022/11/14	<1.0		ug/l
			Nickel (Ni)	2022/11/14	<2.0		ug/l
			Total phosphorous	2022/11/14	<10		ug/l
			Lead (Pb)	2022/11/14	< 0.50		ug/l
			Selenium (Se)	2022/11/14	<3.0		ug/
			Strontium (Sr)	2022/11/14	<2.0		ug/
			Thallium (TI)	2022/11/14	<2.0		ug/
			Titanium (Ti)	2022/11/14	<10		ug/
			Uranium (U)	2022/11/14	<1.0		ug/
			Vanadium (V)	2022/11/14	<2.0		ug/
			Zinc (Zn)	2022/11/14	<7.0		ug/
352337	ZZH	Spiked Blank	Total Dissolved Solids	2022/11/11		91	94
352337	ZZH	Method Blank	Total Dissolved Solids	2022/11/11	<10	-	mg/
352405	DMI	Spiked Blank	Weak Acid Dissociable Cyanide (CN-)	2022/11/11	-20	99	96
352405	DMI	Method Blank	Weak Acid Dissociable Cyanide (CN-)	2022/11/11	< 0.0030		mg/
352406	DMI	Spiked Blank	Total Cyanide (CN)	2022/11/11	-0.0000	99	%
352406	DMI	Method Blank	Total Cyanide (CN)	2022/11/11	< 0.0030	33	mg/
352563	ZEO	Spiked Blank	Aluminum (Al)	2022/11/11	<0.0030	106	26
332303	LEO	Spikeu bialik	. ,			121 (1)	%
			Antimony (Sb)	2022/11/15		114	96
			Silver (Ag)	2022/11/15			%
			Arsenic (As)	2022/11/15		116	
			Barium (Ba)	2022/11/15		115	96
			Beryllium (Be)	2022/11/15		110	%
			Boron (B)	2022/11/15		113	%
			Cadmium (Cd)	2022/11/15		109	94
			Chromium (Cr)	2022/11/15		115	%
			Copper (Cu)	2022/11/15		107	96
			Tin (Sn)	2022/11/15		121 (1)	%
			Iron (Fe)	2022/11/15		114	%
			Lithium (Li)	2022/11/15		112	%
			Manganese (Mn)	2022/11/15		112	%
			Mercury (Hg)	2022/11/15		129 (1)	%
			Molybdenum (Mo)	2022/11/15		114	%
			Nickel (Ni)	2022/11/15		111	%
			Tetal phosphorous	2022/11/15		106	96
			Lead (Pb)	2022/11/15		112	%
			Selenium (Se)	2022/11/15		117	96
			Strontium (Sr)	2022/11/15		118	%
			Thallium (TI)	2022/11/15		113	%
			Titanium (Ti)	2022/11/15		114	%
			Uranium (U)	2022/11/15		111	%
			Vanadium (V)	2022/11/15		113	96
			Zinc (Zn)	2022/11/15		104	96
352563	ZEO	Method Blank	Aluminum (Al)	2022/11/15	<10		ug/
			Antimony (Sb)	2022/11/15	<1.0		ug/

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Silver (Ag)	2022/11/15	<1.0		ug/L
			Arsenic (As)	2022/11/15	<1.0		ug/L
			Barium (Ba)	2022/11/15	<2.0		ug/L
			Beryllium (Be)	2022/11/15	<2.0		ug/L
			Boron (B)	2022/11/15	<50		ug/L
			Cadmium (Cd)	2022/11/15	< 0.20		ug/L
			Chromium (Cr)	2022/11/15	<5.0		ug/L
			Copper (Cu)	2022/11/15	<1.0		ug/L
			Tin (Sn)	2022/11/15	<2.0		ug/L
			Iron (Fe)	2022/11/15	150,		ug/L
					RDL=60		
			Lithium (Li)	2022/11/15	<10		ug/L
			Manganese (Mn)	2022/11/15	1.0,		ug/L
					RDL=1.0		
			Mercury (Hg)	2022/11/15	< 0.10		ug/L
			Molybdenum (Mo)	2022/11/15	<1.0		ug/L
			Nickel (Ni)	2022/11/15	<2.0		ug/L
			Total phosphorous	2022/11/15	<10		ug/L
			Lead (Pb)	2022/11/15	<0.50		ug/L
			Selenium (Se)	2022/11/15	<3.0		ug/L
			Strontium (Sr)	2022/11/15	<2.0		ug/L
			Thallium (TI)	2022/11/15	<2.0		ug/L
			Titanium (Ti)	2022/11/15	<10		ug/L
			Uranium (U)	2022/11/15	<1.0		ug/L
			Vanadium (V)	2022/11/15	<2.0		ug/L
			Zinc (Zn)	2022/11/15	35,		ug/L
					RDL=7.0		
2353068	VKH	Spiked Blank	Total suspended solids (TSS)	2022/11/14		92	%
2353068	VKH	Method Blank	Total suspended solids (TSS)	2022/11/14	<2.0		mg/L
2353274	KME	Spiked Blank	Total Dissolved Solids	2022/11/14		100	36
2353274	KME	Method Blank	Total Dissolved Solids	2022/11/14	<10		mg/L
2353745	DY3	QC Standard	COD	2022/11/15		97	%
2353745	DY3	Spiked Blank	COD	2022/11/15		98	%
2353745	DY3	Spiked Blank DUP	COD	2022/11/15		106	%
2353745	DY3	Method Blank	COD	2022/11/15	<5.0		mg/L
2354033	GXL	Spiked Blank	Thiocyanate	2022/11/15		92	96
2354033	GXL	Method Blank	Thiocyanate	2022/11/15	< 0.17		mg/L
2354099	CLO	Spiked Blank	Cyanate (CNO-)	2022/11/16		108	96
2354099	CLO	Method Blank	Cyanate (CNO-)	2022/11/16	<0.050		mg/L
2354148	GXL	Spiked Blank	Thiocyanate	2022/11/16		93	96
2354148	GXL	Method Blank	Thiocyanate	2022/11/16	< 0.17		mg/L
2354155	DY3	QC Standard	COD	2022/11/16		104	16
2354155	DY3	Spiked Blank	COD	2022/11/16		105	%
354155	DY3	Spiked Blank DUP	COD	2022/11/16		102	16
2354155	DY3	Method Blank	COD	2022/11/16	<5.0		mg/L
2354186	SSF	Spiked Blank	BODS	2022/11/21		110	%
2354186	SSF	Spiked Blank DUP	BODS	2022/11/21		108	%
2354186	SSF	Method Blank	BODS	2022/11/21	<2.0	200	mg/L
2354186	SSF	Method Blank DUP	BODS	2022/11/21	<2.0		mg/L
2354279	GXL	Spiked Blank	Thiosulfate	2022/11/21	2.0	91	%
2354279	GXL	Method Blank	Thiosulfate		< 0.13	91	mg/L
2334279	GAL	MEDICO BIBLIX	rinosumace	2022/11/17	VU.13		mg/

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC	le it	OC Time	Parameter	Date healtened	Value	Bacaucc	Dete
Batch 2354380	Init	QC Type Spiked Blank		Date Analyzed 2022/11/25	Value	Recovery 91	Units %
2354380	ZEO	Spiked Blank	Aluminum (Al)			101	76 96
			Antimony (Sb)	2022/11/25		91	76 96
			Silver (Ag)	2022/11/25		94	76 96
			Arsenic (As)	2022/11/25		91	
			Barium (Ba)	2022/11/25			96
			Beryllium (Be)	2022/11/25		92	96
			Boron (B)	2022/11/25		102	%
			Cadmium (Cd)	2022/11/25		91	96
			Chromium (Cr)	2022/11/25		93	%
			Copper (Cu)	2022/11/25		88	96
			Tin (Sn)	2022/11/25		101	%
			tron (Fe)	2022/11/25		90	%
			Lithium (Li)	2022/11/25		90	%
			Manganese (Mn)	2022/11/25		93	%
			Molybdenum (Mo)	2022/11/25		97	96
			Mercury (Hg)	2022/11/25		105	%
			Nickel (Ni)	2022/11/25		90	%
			Phosphorus	2022/11/25		88	%
			Lead (Pb)	2022/11/25		89	26
			Selenium (Se)	2022/11/25		91	%
			Strontium (Sr)	2022/11/25		93	%
			Thallium (TI)	2022/11/25		95	%
			Uranium (U)	2022/11/25		88	%
			Titanium (Ti)	2022/11/25		92	%
			Vanadium (V)	2022/11/25		91	%
			Zinc (Zn)	2022/11/25		90	96
354380	ZEO	Method Blank	Aluminum (Al)	2022/11/25	<10		ug/
			Antimony (Sb)	2022/11/25	<1.0		ug/
			Silver (Ag)	2022/11/25	< 0.10		ug/
			Arsenic (As)	2022/11/25	< 0.30		ug/
			Barium (Ba)	2022/11/25	<2.0		ug/
			Beryllium (Be)	2022/11/25	<0.40		ug/
			Boron (B)	2022/11/25	<20		ug/
			Cadmium (Cd)	2022/11/25	< 0.20		ug/
			Chromium (Cr)	2022/11/25	< 0.50		ug/
			Copper(Cu)	2022/11/25	< 0.50		ug/
			Tin (Sn)	2022/11/25	<1.0		ug/
			Iron (Fe)	2022/11/25	<60		ug/
			Lithium (Lí)	2022/11/25	<10		ug/
			Manganese (Mn)	2022/11/25	< 0.40		ug/
			Molybdenum (Mo)	2022/11/25	<0.50		ug/l
			Mercury (Hg)	2022/11/25	<0.10		ug/
			Nickel (Ni)	2022/11/25	<1.0		ug/l
			Phosphorus	2022/11/25	<10		ug/l
			Lead (Pb)	2022/11/25	<0.10		ug/l
			Selenium (Se)	2022/11/25	<1.0		ug/l
			Strontium (Sr)	2022/11/25	<2.0		
							ug/l
			Thallium (TI)	2022/11/25	<2.0		ug/l
			Uranium (U)	2022/11/25	<1.0		ug/l
			Titanium (Ti)	2022/11/25	<10		ug/
			Vanadium (V)	2022/11/25	<2.0		ug

Page 11 of 13 2022/12/21 15:15

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Zinc (Zn)	2022/11/25	<5.0		ug/L
2355682	ESW	Spiked Blank	Nitrogen ammonia (N-NH4+ and N-NH3)	2022/11/19		104	96
2355682	ESW	Method Blank	Nitrogen ammonia (N-NH4+ and N-NH3)	2022/11/19	< 0.020		mg/L
2356249	HPA	Spiked Blank	Total Organic Carbon	2022/11/21		103	96
2356249	HPA	Method Blank	Total Organic Carbon	2022/11/21	< 0.20		mg/L
2357357	GXL	Spiked Blank	Bromide (Br-)	2022/11/24		100	96
			Chloride (CI)	2022/11/24		99	%
			Sulfates (SO4)	2022/11/24		110	%
2357357	GXL	Method Blank	Bromide (Br-)	2022/11/24	< 0.10		mg/L
			Chloride (CI)	2022/11/24	< 0.050		mg/L
			Sulfates (SO4)	2022/11/24	< 0.50		mg/L
2357843	MEM	Spiked Blank	Iron (Fe)	2022/11/26		105	%
2357843	MEM	Method Blank	Iron (Fe)	2022/11/26	<60		ug/L
2358067	HPA	Spiked Blank	Dissolved organic carbon	2022/11/25		102	%
2358067	HPA	Method Blank	Dissolved organic carbon	2022/11/25	0.26,		mg/L
					RDL=0.20		

RDL = Reportable Detection Limit

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

(1) Recovery or relative percent difference (RPD) for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Christina Ruffini, B.Sc., Chemist, Superviseur – traitement d'échantillons

adus (marcine)

Faouzi Sarsi, B.Sc. Chemist, Montréal, SR Analyst

ASILIFE COMES OF CORRECT CORRECTIONS

Lorena Di Benedetto, B.Sc., Chemist, Customer Service Specialist

(Marchan) M. Lugara

Michelina Cinquino, Analyst II

Mira El Masri 2001-087

Mira El Masri, M.Sc. Chemist, Montréal, Analyst II

Shu Yang 2008-014

Shu Yang, B.Sc. Chemist, Montreal, Analyst II

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by [0], [1] responsible for [2] [3] laboratory operations.

F.3. R1/P3

	Sen.	16	MAKE	MARK TO	200.07	41 2000	260,000	PR-SI	2000	2072	NO THE	20270	W. 61	2011	70 M 1,00 M 1,00 M	2027	20,000
Too .	Sec. Sec.	167	.00	973 4091	-50	180	183	100	1000	180	1000	H.S.	H3	.00	1200	129	56
	00 to 10 to	7/15 7/15 7/15 7/15 7/15	- 2	- 61	-13	- 15	- 15	- 12	- 10	- 0	18	10	- 6	- 0	10	- 12	-14
**	B. F. St. St.	210	1	-				700		=	- 3	12	- 2		- 13	-3-	- 2
	CONTROL CONTRO	- 12	- 0	-						- 5	- 2	- 17	- 0		- 20	9	
Minister	10 Pe 21	- 8	- 0	-0						- 8	- 2	-81	ě		\$1 10	- 2	=
	-	3400		-51						ű	- E	11	é		.00	- ii	
-	NUMBER OF	1975; 1975; 1975; 1975; 1975;	22 22 23	3000						33	9	10	9			5000	
	Series.	1410	GR.							9	10	- 10				- 01	
mag	20 (10 (10 (10 (10 (10 (10 (10 (10 (10 (1	- 6	100 100 100 100 100 100 100 100 100 100	# 50 80						8	10 10 10 10 10 10 10 10 10 10 10 10 10 1	7	961 961		-	(E) (E) (E) (E) (E)	
	Section	-	10	80						8	-00	- 60	N.		-01	- 5	
entuna.	E012001	100 100 100	=			=		- 01									- 44
**********	Sect:	959 959						107									
	920	10						BW									10.7
***	Market III	101															76(F
		100	- 02	- 55				-65		- 22		70	- 57				200 201
**	STREET, STREET,	1400	100	8		=		407		- 6		15	- 55				
	2000000	100	60	100				108		-		100	-				25 12
100	Services	195	60 02 03	0 0				er.		10 00 04		14	00 00 00 00				
	- 10	20	-	-	12	- 0	· ·	-		- 60		- 52	- 10				9
10	Section 1	100 100 100 100 100 100 100 100 100 100															- 52
	Section 1	35	W11	7,9				48		10	5.4	100	ex		2.9	-	W
ves.	Mary Street See Higher	16.00 16.00 16.00	#11 8.0 6.0 8.0 8.0 8.0	100 100 101 101					19	100	10.4 14	100 100 100 100 100	EU U U AA	100	63 (0 18	100 500 500 500 500 500 500 500 500 500	- 5
	Sect.	35	6.0	- 44	14	,CE		92	- 17	231100	-65		- AA	- 12	14	-1	-15
140	Single Spine	1951	100 100 200	10						9.8	10	6.4	127		N/A	100	2- 40000 - 0m2
	Marie St.	- 80	100	-	-	- 19	40	4.5		- 8	-0	-3-	2		- 25	-0-	- 69
***	Services Services Services Services Services		ä	8							10	12			12	å	27
	BATTER.	350	3	-0	- 0	- 18	- 62	- 00	- 52	- 2	- 13	-6	- 6	- 10	-6-	- 2	A2
	STATE OF THE PARTY	25	908 900 900 901	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0				200		00 00 00 00 00 00 00 00 00 00 00 00 00	100 100 100 200 200	0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	- 55				100 100 100 100 100 100 100 100 100 100
**	Secrets.	23	20	-50				61		- 10	- 22	- 55	- 6	10	-93	-8-	- 19
Saleston	Transition lies		200 241 240 200	2	7	- 22	4.0	- F	140	100 10 100 100	200 Al.	200 A	100 100 100 100	- E	200 20 200	200 200 200 200	- MH
	- 400	ž		100	-	128	107			10.0	100	120	15.0	100	168	128	139
	7	20	10 00 00	#2 #2	1	10	- 1	100	20	- 5	- 12	6	100	- 11	- 10 - 10 - 10	- 10	27
Substitute	Territorio del Territorio del Territorio del Territorio	20.		- 8	9	- 5	- 8	3	-	-	- 5	-1	- 5	- 2	- 0		-25
	100 100 100 100 100 100 100 100 100 100	52	ă	-8-	- 15	- 5	-	- 8	- 5	-5-	-5	- 15	-6	- 8	-15	-	- 12
Bringswill.	STATE OF	8	-8	- 8	- 12	-8	- 8	- 8	- 12	8	- 15	15	- 8	- 10	-14	- 8	-8
	Service Service	- 8	13	- 17	19.	CR.	10	16	19.	- 60	36	16	12	36	18.	13.	67
Release	2762		10	10	60	80	60	- 69	8-9 7-2	810	7/8	13	H	100	33	10	35
	STREET, STREET	-	1	-	-	-	7		-			-	-				
Ments	Secretary Secretary	- 1	1	-	-	ż	-	- 1	â	â	â	- 1	â	î	-	â	- 2
Artes and the same of the same	20 To 20	- 55	- 5	- FE	-3-	- 6	10	- C	9	10	- 1	- 5	10	- 10	- 5	- 12	- 5
No. or a large	Secretary Secretary	40	100 100	10 10	15	17.	10 10	12	100	- PA	10	14	10	100	14	100	10
- Arresta	Section 1	- 1	13	- 15	-15	-(4	- 15	- 15	-12	- 6	15	- 15	- 15	15	-15	- 12	- 15
	10h	950 850	52	60 54	10	50	50	400 100	100	810 55	19	43 13	30	10	13	50	55
Terrorient	- 8	- 65	19	- 15	- (8	- 69	- 6	- 10	- 10	- 6	- 19	- 12	- 9		1	- 0	- 13
	-	900	13	1.0 0.0	10	10	100	- 55	10	- 5	64	- 12	- 60	13	12	- 60	12
	A Park	15 0 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	60 60 60 60 60 60 60 60 60 60 60 60 60 6	i i	12	88.8	8	40.4	- 12	- 9	100	1	19	- 12		- 8	255
televelelen Di	20 No.	reference.	55	17	17	120	10	166	10	20 00	10	17	10 45 47	10		1/2	2003 15
	See Marin	recition	408	- C- - R-1	100	4.0	80	441.0	1.0	***	10	10	100	148	.10	1.0	ANU III
	20 x 10 x 10 x 10 x 10 x 10 x 10 x 10 x	NACODOS.	8	ä	18 18 18	58	8	15	100	- 10 - 10 - 10	18 18 10	15	8	i	10	8	150
meterocotype to	ENGLISH THE STATE OF THE STATE	ATTACABLE BY	(3 (3 (8)	- 2	100	- 55	10	10 10 20 20 20 20 20 20 20 20 20 20 20 20 20	- 12	0	10 10 40	10	9	- 0	100	- 0.	677 M
Marie and a second	1.64	4000	100	-	MET	460	180	100	ANN	200	-	par.	All	-	100	80	- 200

Your P.O. #: OL-1183515

Site Location: MEADOWBANK DIVISION

Your C.O.C. #: N-A

Attention: Thomas Genty

Agnico Eagle Mines Limited CSD 10200 route de Preissac Rouyn -Noranda, QC Canada JOY 1CO

> Report Date: 2023/01/18 Report #: R2820116 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C272617 Received: 2022/12/28, 10:00

Sample Matrix: Surface Water #Samples Received: 4

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Total Alkalinity (pH end point 4.5)	3	N/A	2022/12/28	STL SOP-00038	SM 23 2320-8 m
Anions in water	3	N/A	2022/12/29	STL SOP-00014	MA.300-lons 1.3 R6 m
Biochemical Oxygen Demand (5 days) (2)	4	2022/12/29	2023/01/03	STL SOP-00008	MA315-DBO 1.1 R3 m
Weak Acid Dissociable Cyanides	3	2022/12/28	2022/12/29	STL SOP-00035	MA300-CN 1.2 R4 m
Total Cyanide	3	2022/12/28	2022/12/28	STL SOP-00035	MA300-CN 1.2 R4 m
Chemical Oxygen Demand	2	2023/01/11	2023/01/11	STL SOP-00009	MA315-DCO 1.1 R4 m
Chemical Oxygen Demand	1	2023/01/12	2023/01/12	STL SOP-00009	MA315-DCO 1.1 R4 m
Conductivity	3	N/A	2022/12/28	STL SOP-00038	SM 23 2510-8 m
Cyanates	3	N/A	2022/12/30	STL SOP-00010	MA.315-CNO 1.1 R3 m
Dissolved Organic Carbon (3)	3	2022/12/29	2022/12/29	STL SOP-00243	SM 23 5310-B m
Fluoride	3	N/A	2023/01/06	STL SOP-00038	SM 23 4500-F m
Total Suspended Solids	3	2022/12/28	2022/12/29	STL SOP-00015	MA.104-S.S. 2.0 m
Dissolved Metals (Low DL)- lab filtered	1	N/A	2023/01/13	STL SOP-00062	MA.200-Mét. 1.2 R7 m
Dissolved Metals (Low DL) site filtered	2	N/A	2023/01/03	STL SOP-00062	MA.200-Mét. 1.2 R7 m
Total Extractable Metals by ICP	3	2022/12/29	2022/12/31	STL SOP-00062	MA.200-Mét. 1.2 R7 m
Ammonia Nitrogen	3	N/A	2023/01/05	STL SOP-00040	MA.300-N 2.0 R2 m
Nitrates(NO3-), Nitrites(NO2-)-water	3	N/A	2022/12/29	STL SOP-00014	MA.300-lons 1.3 R6 m
pH in water	3	N/A	2022/12/28	STL SOP-00038	MA.100-pH 1.1 R3 m
Ortho Phosphate	3	N/A	2022/12/28	STL SOP-00003	MA.303-P 1.1 R2 m
Total Dissolved Solids	3	2022/12/28	2022/12/29	STL SOP-00050	MA.115-S.D. 1.0 R4 m
Thiocyanates	3	N/A	2023/01/03	STL SOP-00010	MA.304-lons 1.1 R1 m
Total Thiosalts + Thiosalt Species (1)	3	N/A	N/A		
Thiosulfates	3	N/A	2023/01/04	STL SOP-00010	MA.304-lons 1.1 R1 m
Total Organic Carbon (4)	1	N/A	2023/01/03	STL SOP-00243	SM 23 5310-B m
Total Organic Carbon (4)	2	N/A	2023/01/04	STL SOP-00243	SM 23 5310-8 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as COME, MELCC, EPA, APHA.

Your P.O. #: OL-1183515

Site Location: MEADOWBANK DIVISION

Your C.O.C. #: N-A

Attention: Thomas Genty

Agnico Eagle Mines Limited CSD 10200 route de Preissac Rouyn -Noranda, QC Canada JOY 1CO

> Report Date: 2023/01/18 Report #: R2820116 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C272617

Received: 2022/12/28, 10:00

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Note: RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

- (1) This test was performed by SGS Canada Inc Lakefield, 185 Concession St , Lakefield, ON, K0L2H0
- (2) Please note that in the event a biochemical oxygen demand analysis cannot begin within the 48-hours holding time required (for a sample preserved at 4°C), sample will be frozen, unless otherwise specified by a regulation, to maintain it's integrity.
- (3) DOC present in the sample should be considered as non-purgeable DOC
- (4) TOC present in the sample should be considered as non-purgeable TOC

Note: All parameters included in the present certificate are accredited by the MELCC unless stated otherwise.

Encryption Key

Josus Moren Project Manager 16 Jan 2023 10:07:40

Please direct all questions regarding this Certificate of Analysis to: Josue Moran, Project Manager

Email: josue.moran@bureauveritas.com

Phone# (514) 448-9001

.......

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Aglaia Yannakis, General Manager responsible for Quebec Environmental laboratory operations.

Agnico Eagle Mines Limited Site Location: MEADOWBANK DIVISION Your P.O. #: OL-1183515

DISSOLVED METALS (SURFACE WATER)

Bureau Veritas ID				LJ0949	LJ0956		LJ0957		
Sampling Date				2022/12/21	2022/12/21		2022/12/21		
COC Number				N-A	N-A		N-A		
	Units	А	В	RAW WATER ST19 (AUGUST)	FEED MBBR	QC Batch	TREATED WATER	RDL	QC Batch
METALS ICP-MS									
Aluminum (Al) †	ug/L	100	-	13	<10	2367613	<10	10	2367581
Antimony (Sb)	ug/L	6	1100	14	14	2367613	11	1.0	2367581
Silver (Ag) †	ug/L	100	0.62	<0.10	<0.10	2367613	<0.10	0.10	2367581
Arsenic (As)	ug/L	0.3	340	84	3.5	2357513	2.7	0.30	2367581
Barium (Ba)	ug/L	1000	600	74	62	2357513	38	2.0	2367581
Beryllium (Be) †	ug/L	-	-	<0.40	<0.40	2367613	<0.40	0.40	2367581
Boron (B)	ug/L	5000	28000	320	310	2367613	240	20	2367581
Cadmium (Cd)	ug/L	5	1.1	6.7	1.6	2367613	1.0	0.20	2367581
Chromium (Cr)	ug/L	50	-	<0.50	<0.50	2367613	1.3	0.50	2367581
Copper (Cu)	ug/L	1000	7.3	44	<0.50	2367613	4.7	0.50	2367581
Tin (Sn) +	ug/L	-	-	<1.0	<1.0	2367613	3.3	1.0	2367581
Iron (Fe)	ug/L		-	<60	<60	2357513	68	60	2367581
Lithium (Li) †	ug/L	-	-	<10	<10	2367613	<10	10	2367581
Manganese (Mn)	ug/L	50	2300	18	28	2367613	6.2	0.40	2367581
Molybdenum (Mo)	ug/L	40	29000	120	110	2367613	82	0.50	2367581
Mercury (Hg)	ug/L	1	0.0013	0.17	<0.10 (1)	2357513	<0.10(1)	0.10	2367581
Nickel (Ni)	ug/L	70	260	350	12	2357513	21	1.0	2367581
Phosphorus	ug/L	-	-	40	<10	2367613	1300	10	2367581
Lead (Pb)	ug/L	5	34	<0.10	<0.10	2367613	<0.10	0.10	2367581
Selenium (Se)	ug/L	10	62	200	190	2367613	60	1.0	2367581
Strontium (Sr) †	ug/L	-	-	2000	1900	2367613	1500	2.0	2367581
Thallium (TI) †	ug/L	-	-	<2.0	<2.0	2367613	<2.0	2.0	2367581
Uranium (U)	ug/L	20	320	11	7.9	2367613	6.4	1.0	2367581
Titanium (Ti) †	ug/L	-	-	<10	<10	2357513	<10	10	2367581
Vanadium (V) †	ug/L		-	<2.0	<2.0	2367613	<2.0	2.0	2367581
Zinc (Zn)	ug/L	5000	67	<5.0	<5.0	2357513	15	5.0	2367581

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) RDL exceeds criteria

[†] Parameter is not accreditable

Agnico Eagle Mines Limited
Site Location: MEADOWBANK DIVISION
Your P.O. #: OL-1183515

TOTAL EXTRACTABLE METALS (SURFACE WATER)

Bureau Veritas ID				LJ0949	LJ0956		LI0957		
Sampling Date				2022/12/21	2022/12/21		2022/12/21		
COC Number				N-A	N-A		N-A		
	Units	А	В	RAW WATER ST19 (AUGUST)	FEED MBBR	QC Batch	TREATED WATER	RDL	QC Batch
METALS									
Aluminum (Al)	ug/L	100	-	21	<10	2367557	29	10	2367555
Antimony (Sb)	ug/L	6	1100	19	14	2367557	11	1.0	2367555
Silver (Ag)	ug/L	100	0.62	<1.0(1)	<1.0 (1)	2367557	<1.0 (1)	1.0	2367555
Arsenic (As)	ug/L	0.3	340	90	3.4	2367557	2.8	1.0	2367555
Barium (Ba)	ug/L	1000	600	71	57	2367557	38	2.0	2367555
Beryllium (Be)	ug/L	-	-	<2.0	<2.0	2367557	<2.0	2.0	2367555
Boron (B) †	ug/L	5000	28000	300	290	2367557	330	50	2367555
Cadmium (Cd)	ug/L	5	1.1	5.6	2.9	2367557	0.67	0.20	2367555
Chromium (Cr)	ug/L	50	-	<5.0	<5.0	2367557	<5.0	5.0	2367555
Copper (Cu)	ug/L	1000	7.3	45	2.3	2367557	3.4	1.0	2367555
Tin (Sn)	ug/L	-1		<2.0	<2.0	2367557	3.1	2.0	2367555
Iron (Fe)	ug/L	-	-	<60	<60	2367557	91	60	2367555
Lithium (Li) ++	ug/L			<10	<10	2367557	<10	10	2367555
Manganese (Mn)	ug/L	50	2300	17	28	2367557	7.6	1.0	2367555
Mercury (Hg)	ug/L	1	0.0013	<0.10 (1)	<0.10 (1)	2367557	<0.10 (1)	0.10	2367555
Molybdenum (Mo)	ug/L	40	29000	120	98	2357557	83	1.0	2367555
Nickel (Ni)	ug/L	70	260	340	17	2367557	21	2.0	2367555
Total phosphorous	ug/L		1000	11	<10	2367557	1200	10	2367555
Lead (Pb)	ug/L	5	34	<0.50	<0.50	2367557	<0.50	0.50	2367555
Selenium (Se)	ug/L	10	62	190	170	2367557	62	3.0	2367555
Strontium (Sr) †	ug/L	-	-	2000	1800	2367557	1500	2.0	2367555
Thallium (TI)	ug/L	-		<2.0	<2.0	2367557	<2.0	2.0	2367555
Titanium (Ti) ††	ug/L			<10	<10	2367557	<10	10	2367555
Uranium (U) ††	ug/L	20	320	12	9.0	2367557	8.5	1.0	2367555
Vanadium (V)	ug/L	-	-	<2.0	<2.0	2367557	<2.0	2.0	2367555
Zinc (Zn)	ug/L	5000	67	<7.0	<7.0	2367557	13	7.0	2367555

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

(1) RDL exceeds criteria

[†] Parameter is not accredited

^{††} Parameter is not accreditable

Agnico Eagle Mines Limited
Site Location: MEADOWBANK DIVISION

Your P.O. #: OL-1183515

CONVENTIONAL PARAMETERS (SURFACE WATER)

Bureau Veritas ID				LI0949		LI0956		
Sampling Date				2022/12/21		2022/12/21		
COC Number				N-A		N-A		
	Units	А	В	RAW WATER ST19 (AUGUST)	RDL	FEED MBBR	RDL	QC Batch
CONVENTIONALS								
BOD5	mg/L	-	-	<5.3	5.3	6.9	5.3	2367526
COD	mg/L	-	-	340	5.0	300	5.0	2369786
Conductivity	mS/cm	-	-	4.6	0.0010	4.6	0.0010	2367437
Cyanate (CNO-)	mg/L	-	-	37	0.50	12	0.050	2367824
Dissolved organic carbon †	mg/L	-	-	61	1.0	67	1.0	2367625
Fluoride (F)	mg/L	1.5	4	0.13	0.10	<0.10	0.10	2369016
Nitrate (N) and Nitrite(N)	mg/L	10	-	15	0.20	11	0.20	2367478
Nitrites (N-NO2-)	mg/L	1	-	0.36	0.20	2.7	0.20	2367478
Nitrogen ammonia (N-NH4+ and N-NH3)	mg/L	0.05	-	54	0.10	57	0.10	2368837
Orthophosphate (P)	mg/L	-	-	< 0.050	0.050	<0.050	0.050	2367459
рН	pН	-	-	7.84	N/A	7.83	N/A	2367436
Thiocyanate	mg/L	-	-	250	17	240	17	2367945
Thiosulfate	mg/L	-	-	<1.3	1.3	<1.3	1.3	2367981
Total Cyanide (CN)	mg/L		-	0.034	0.0030	0.030	0.0030	2367439
Total Organic Carbon	mg/L	-	-	65	1.0	60	1.0	2368042
Weak Acid Dissociable Cyanide (CN-)	mg/L	0.2	0.022	0.031	0.0030	0.035	0.0030	2367441
Alkalinity Total (as CaCO3) pH 4.5 †	mg/L	-	-	140	1.0	120	1.0	2367438
Bromide (Br-)	mg/L	-	-	3.0	1.0	3.0	1.0	2367492
Chloride (CI)	mg/L	250	860	240	0.50	240	0.50	2367492
Sulfates (SO4)	mg/L	-	-	2200	5.0	2200	5.0	2367492
Total Dissolved Solids	mg/L	-	-	4000	10	4000	10	2367418
Total suspended solids (TSS)	mg/L	-	-	<2.0	2.0	15	2.0	2367416

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

[†] Parameter is not accreditable

N/A = Not Applicable

Agnico Eagle Mines Limited
Site Location: MEADOWBANK DIVISION
Your P.O. #: OL-1183515

CONVENTIONAL PARAMETERS (SURFACE WATER)

Bureau Veritas ID				LI0957		LJ0962		
Sampling Date				2022/12/21		2022/12/21		
COC Number				N-A		N-A		
	Units	А	В	TREATED WATER	RDL	DENITRIFICATION EFFLUENT	RDL	QC Batch
CONVENTIONALS								
BOD5	mg/L	-		10	5.3	170	40	2367526
COD	mg/L	-	- <	76	5.0	N/A	N/A	2370063
Conductivity	mS/cm	-	-	4.5	0.0010	N/A	N/A	2367437
Cyanate (CNO-)	mg/L	-	-	<0.050	0.050	N/A	N/A	2367824
Dissolved organic carbon †	mg/L	-	-	11	0.20	N/A	N/A	2367625
Fluoride (F)	mg/L	1.5	4	<0.10	0.10	N/A	N/A	2369016
Nitrate (N) and Nitrite(N)	mg/L	10	-	0.91	0.20	N/A	N/A	2367478
Nitrites (N-NO2-)	mg/L	1	-	0.91	0.20	N/A	N/A	2367478
Nitrogen ammonia (N-NH4+ and N-NH3)	mg/L	0.05	-	7.3	0.020	N/A	N/A	2368837
Orthophosphate (P)	mg/L			0.75	0.25	N/A	N/A	2367459
pH	pН		-	7.71	N/A	N/A	N/A	2367436
Thiocyanate	mg/L	-	-	<0.17	0.17	N/A	N/A	2367945
Thiosulfate	mg/L	-		<0.13	0.13	N/A	N/A	2367981
Total Cyanide (CN)	mg/L	100		0.020	0.0030	N/A	N/A	2367439
Total Organic Carbon	mg/L		-	20	0.20	N/A	N/A	2368042
Weak Acid Dissociable Cyanide (CN-)	mg/L	0.2	0.022	0.013	0.0030	N/A	N/A	2367441
Alkalinity Total (as CaCO3) pH 4.5 †	mg/L		-	420	1.0	N/A	N/A	2367438
Bromide (Br-)	mg/L		-	2.4	1.0	N/A	N/A	2367492
Chloride (CI)	mg/L	250	860	190	0.50	N/A	N/A	2367492
Sulfates (SO4)	mg/L			2100	5.0	N/A	N/A	2367492
Total Dissolved Solids	mg/L	-	-	3900	10	N/A	N/A	2367418
Total suspended solids (TSS)	mg/L			17	2.0	N/A	N/A	2367416

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

† Parameter is not accreditable

Agnico Eagle Mines Limited

Site Location: MEADOWBANK DIVISION

Your P.O. #: OL-1183515

GENERAL COMMENTS

Biochemical Oxygen Demand (5 days): Holding time already past upon reception.: LIC949

pH in water: Holding time already past upon reception.: LJ0949

Nitrates(NO3-), Nitrites(NO2-)-water: Holding time already past upon reception.: LI0949

Ortho Phosphate: Holding time already past upon reception.: LJ0949

Biochemical Oxygen Demand (5 days): Holding time already past upon reception.: LI0956

pH in water: Holding time already past upon reception.: LJ0956

Nitrates(NO3-), Nitrites(NO2-)-water: Holding time already past upon reception.: LI0956

Ortho Phosphate: Holding time already past upon reception.: LJ0956

Biochemical Oxygen Demand (5 days): Holding time already past upon reception.: LI0957

Dissolved Organic Carbon: Holding time already past upon reception.: LJ0957

Thiocyanates: Insufficient preservative, pH adjusted upon receipt at the laboratory.: LI0957

Total Extractable Metals by ICP: Insufficient preservative, pH adjusted upon receipt at the laboratory.: LJ0957

pH in water: Holding time already past upon reception.: LI0957

Dissolved Metals (Low DL)- lab filtered: Holding time already past upon reception.: LJ0957 Nitrates(NO3-), Nitrites(NO2-)-water: Holding time already past upon reception.: LJ0957

Ortho Phosphate: Holding time already past upon reception.: LJ0957

Biochemical Oxygen Demand (5 days): Holding time already past upon reception.: LI0962

A,B: Soil Criteria following appendix 2 of the "Guide d'intervention-Protection des sols et réhabilitation des terrains contaminés. MELCC, May 2021." entitled "Grille des critères génériques pour les sols". The soil criteria refer to the St. Lawrence Lowlands Geological Province.

Groundwater criteria A and B follow the appendix 7 entitled "Grille des critères de qualité des eaux souterraines" of the document mentionned above. The criterion A refers to "Drinking Water" and the criterion B refers to "Seepage into Surface Water".

These criteria references are shown for visual aid only, and should not be interpreted otherwise.

- = This parameter is not part of the regulation.

DISSOLVED METALS (SURFACE WATER)

Sample LI0957 was filtered in the laboratory prior to analyzing for metals.

CONVENTIONAL PARAMETERS (SURFACE WATER)

Reported detection limits are multiplied by dilution factors used for sample analysis.

Thiocyanate: Insufficient preservative, pH adjusted upon receipt at the laboratory. LI0957

Thiosulfate: Detection limit raised due to matrix interference. LI0949, LI0956

TOC < DOC, Total Cyanide < Dissociable Cyanide: Both values fall within acceptable RPD limits for duplicates and are likely equivalent. LI0956

Results relate only to the items tested.

Agnico Eagle Mines Limited
Site Location: MEADOWBANK DIVISION

Your P.O. #: OL-1183515

QUALITY ASSURANCE REPORT

			QOALITT ASSOCIATED KI				
QA/QC	1.00	067	D	Date backered	Makes		Heater
Batch 2367416	Init	QC Type Spiked Blank	Parameter	Date Analyzed 2022/12/29	Value	Recovery 93	Units %
	HGU		Total suspended solids (TSS)		-20	93	
2367416 2367418	HGU	Method Blank Spiked Blank	Total suspended solids (TSS) Total Dissolved Solids	2022/12/29	<2.0	94	mg/L
				2022/12/29	-10	94	%
2367418	HGU	Method Blank	Total Dissolved Solids	2022/12/29	<10		mg/L
2367436	SF5	Spiked Blank	рн	2022/12/28		100	96
2367437	SFS	Spiked Blank	Conductivity	2022/12/28		95	96
2367437	SF5	Method Blank	Conductivity	2022/12/28	< 0.0010		m5/cm
2367438	SFS	Spiked Blank	Alkalinity Total (as CaCO3) pH 4.5	2022/12/28		101	%
2367438	SF5	Method Blank	Alkalinity Total (as CaCO3) pH 4.5	2022/12/28	<1.0		mg/L
2367439	DMI	Spiked Blank	Total Cyanide (CN)	2022/12/28		101	%
2367439	DMI	Method Blank	Total Cyanide (CN)	2022/12/28	<0.0030		mg/L
2367441	DMI	Spiked Blank	Weak Acid Dissociable Cyanide (CN-)	2022/12/29		110	%
2367441	DMI	Method Blank	Weak Acid Dissociable Cyanide (CN-)	2022/12/29	< 0.0030		mg/L
2367459	SF5	QC Standard	Orthophosphate (P)	2022/12/28		99	%
2367459	SF5	Spiked Blank	Orthophosphate (P)	2022/12/28		95	%
2367459	SF5	Method Blank	Orthophosphate (P)	2022/12/28	<0.050		mg/L
2367478	SF5	Spiked Blank	Nitrate (N) and Nitrite(N)	2022/12/29		103	%
			Nitrites (N-NO2-)	2022/12/29		102	%
2367478	SF5	Method Blank	Nitrate (N) and Nitrite(N)	2022/12/29	<0.020		mg/L
			Nitrites (N-NO2-)	2022/12/29	<0.020		mg/L
2367492	SF5	Spiked Blank	Bromide (Br-)	2022/12/29		103	%
			Chloride (CI)	2022/12/29		100	%
			Sulfates (SO4)	2022/12/29		102	%
2367492	SF5	Method Blank	Bromide (Br-)	2022/12/29	<0.10		mg/L
			Chloride (CI)	2022/12/29	< 0.050		mg/L
			Sulfates (SO4)	2022/12/29	< 0.50		mg/L
2367526	SSF	QC Standard	BOD5	2023/01/03		112	96
2367526	SSF	Spiked Blank	BOD5	2023/01/03		99	%
2367526	SSF	Spiked Blank DUP	BOD5	2023/01/03		96	96
2367526	SSF	Method Blank	BOD5	2023/01/03	<2.0		mg/L
2367526	SSF	Method Blank DUP	BOD5	2023/01/03	<2.0		mg/L
2367555	ZEO	Spiked Blank	Aluminum (Al)	2022/12/31		98	26
			Antimony (Sb)	2022/12/31		104	96
			Silver (Ag)	2022/12/31		100	96
			Arsenic (As)	2022/12/31		100	%
			Barium (Ba)	2022/12/31		100	%
			Beryllium (Be)	2022/12/31		97	96
			Boron (B)	2022/12/31		100	%
			Cadmium (Cd)	2022/12/31		99	96
			Chromium (Cr)	2022/12/31		97	%
			Copper (Cu)	2022/12/31		92	%
						104	26
			Tin (Sn)	2022/12/31		100	%
			Iron (Fe)	2022/12/31		87	% %
			Lithium (Li)	2022/12/31			
			Manganese (Mn)	2022/12/31		99	%
			Mercury (Hg)	2022/12/31		94	%
			Molybdenum (Mo)	2022/12/31		100	96
			Nickel (Ni)	2022/12/31		100	%
			Total phosphorous	2022/12/31		97	96
			Lead (Pb)	2022/12/31		98	%
			Selenium (Se)	2022/12/31		99	%
			Strontium (Sr)	2022/12/31		101	96

Agnico Eagle Mines Limited

Site Location: MEADOWBANK DIVISION

Your P.O. #: OL-1183515

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Unit
			Thallium (TI)	2022/12/31		98	%
			Titanium (Ti)	2022/12/31		100	%
			Uranium (U)	2022/12/31		97	%
			Vanadium (V)	2022/12/31		97	%
			Zinc (Zn)	2022/12/31		93	%
367555	ZEO	Method Blank	Aluminum (Al)	2022/12/31	<10		ug/l
			Antimony (Sb)	2022/12/31	<1.0		ug/l
			Silver (Ag)	2022/12/31	<1.0		ug/l
			Arsenic (As)	2022/12/31	<1.0		ug/l
			Barium (Ba)	2022/12/31	<2.0		ug/
			Beryllium (Be)	2022/12/31	<2.0		ug/l
			Boron (B)	2022/12/31	<50		ug/l
			Cadmium (Cd)	2022/12/31	< 0.20		ug/
			Chromium (Cr)	2022/12/31	<5.0		ug/l
			Copper (Cu)	2022/12/31	<1.0		ug/
			Tin (Sn)	2022/12/31	<2.0		ug/
			Iron (Fe)	2022/12/31	<60		ug/
			Lithium (Li)	2022/12/31	<10		ug/
			Manganese (Mn)	2022/12/31	<1.0		ug/
			Mercury (Hg)	2022/12/31	< 0.10		ug/
			Molybdenum (Mo)	2022/12/31	<1.0		ug/
	Nickel (Ni)	2022/12/31	<2.0		ug/		
	Total phosphorous	2022/12/31	<10		ug/		
			Lead (Pb)	2022/12/31	< 0.50		ug/
			Selenium (Se)	2022/12/31	<3.0		ug/
			Strontium (Sr)	2022/12/31	<2.0		ug/
			Thallium (TI)	2022/12/31	<2.0		ug/
			Titanium (Ti)	2022/12/31	<10		ug/
	Uranium (U)	2022/12/31	<1.0		ug/		
			Vanadium (V)	2022/12/31	<2.0		ug/
			Zinc (Zn)	2022/12/31	<7.0		ug/
367557	ZEO	Spiked Blank	Aluminum (Al)	2022/12/31		100	%
			Antimony (Sb)	2022/12/31		108	%
			Silver (Ag)	2022/12/31		104	96
			Arsenic (As)	2022/12/31		102	96
			Barium (Ba)	2022/12/31		100	%
			Beryllium (Be)	2022/12/31		102	96
			Boron (B)	2022/12/31		106	36
			Cadmium (Cd)	2022/12/31		103	96
			Chromium (Cr)	2022/12/31		98	36
			Copper (Cu)	2022/12/31		97	96
			Tin (Sn)	2022/12/31		107	96
			Iron (Fe)	2022/12/31		105	%
			Lithium (Li)	2022/12/31		92	%
			Manganese (Mn)	2022/12/31		103	26
						102	76 96
			Mercury (Hg)	2022/12/31		102	76 96
			Molybdenum (Mo)	2022/12/31			
			Nickel (Ni)	2022/12/31		103	%
			Total phosphorous	2022/12/31		97	%
			Lead (Pb)	2022/12/31		105	26
		Selenium (Se)	2022/12/31		104	96	

Agnico Eagle Mines Limited
Site Location: MEADOWBANK DIVISION

Your P.O. #: OL-1183515

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Thallium (TI)	2022/12/31		104	96
			Titanium (Ti)	2022/12/31		100	%
			Uranium (U)	2022/12/31		107	94
			Vanadium (V)	2022/12/31		99	26
			Zinc (Zn)	2022/12/31		99	94
367557	ZEO	Method Blank	Aluminum (AI)	2022/12/31	<10		ug/L
			Antimony (Sb)	2022/12/31	<1.0		ug/L
			Silver (Ag)	2022/12/31	<1.0		ug/L
			Arsenic (As)	2022/12/31	<1.0		ug/L
			Barium (Ba)	2022/12/31	<2.0		ug/L
			Beryllium (Be)	2022/12/31	<2.0		ug/L
			Boron (B)	2022/12/31	<50		ug/L
			Cadmium (Cd)	2022/12/31	< 0.20		ug/L
			Chromium (Cr)	2022/12/31	<5.0		ug/t
			Copper (Cu)	2022/12/31	<1.0		ug/t
			Tin (Sn)	2022/12/31	<2.0		ug/l
			Iron (Fe)	2022/12/31	<60		ug/l
			Lithium (Li)	2022/12/31	<10		ug/l
			Manganese (Mn)	2022/12/31	<1.0		ug/l
	Mercury (Hg)	2022/12/31	< 0.10		ug/l		
	Molybdenum (Mo)	2022/12/31	<1.0		ug/l		
	Nickel (Ni)	2022/12/31	<2.0		ug/l		
	Total phosphorous	2022/12/31	<10		ug/l		
			Lead (Pb)	2022/12/31	< 0.50		ug/l
			Selenium (Se)	2022/12/31	<3.0		ug/l
			Strontium (Sr)	2022/12/31	<2.0		ug/l
			Thallium (TI)	2022/12/31	<2.0		ug/l
			Titanium (Ti)	2022/12/31	<10		ug/l
			Uranium (U)	2022/12/31	<1.0		ug/l
			Vanadium (V)	2022/12/31	<2.0		ug/l
			Zinc (Zn)	2022/12/31	<7.0		ug/t
367581	ZEO	Spiked Blank	Aluminum (Al)	2023/01/04	<7.0	88	%
30/301	250	Spiked blank				101	26
			Antimony (Sb) Silver (Ag)	2023/01/04		99	%
			1 07	2023/01/04			
			Arsenic (As)	2023/01/04		102 97	%
			Barium (Ba)	2023/01/04			
			Beryllium (Be)	2023/01/04		98	94
			Boron (B)	2023/01/04		104	26
			Cadmium (Cd)	2023/01/04		97	94
			Chromium (Cr)	2023/01/04		104	%
			Copper(Cu)	2023/01/04		95	%
			Tin (Sn)	2023/01/04		100	%
			Iron (Fe)	2023/01/04		101	%
			Lithium (Li)	2023/01/04		102	%
			Manganese (Mn)	2023/01/04		100	24
			Molybdenum (Mo)	2023/01/04		104	%
			Mercury (Hg)	2023/01/04		95	%
			Nickel (Ni)	2023/01/04		101	%
			Phosphorus	2023/01/04		98	%
			Lead (Pb)	2023/01/04		94	%
			Selenium (Se)	2023/01/04		103	%
	Strontium (Sr)	2023/01/04		101	96		

Page 10 of 15 2023/01/18 09:08

Agnico Eagle Mines Limited
Site Location: MEADOWBANK DIVISION

Your P.O. #: OL-1183515

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
0.000		ac ipe	Thallium (11)	2023/01/04	10.00	94	%
			Uranium (U)	2023/01/04		86	96
			Titanium (Ti)	2023/01/04		103	%
			Vanadium (V)	2023/01/04		103	%
			Zinc (Zn)	2023/01/04		93	26
2367581	ZEO	Method Blank	Aluminum (Al)	2023/01/16	<10	-	ug/L
2007002		me me o o man	Antimony (Sb)	2023/01/16	<1.0		ug/L
			Silver (Ag)	2023/01/16	< 0.10		ug/L
			Arsenic (As)	2023/01/16	<0.30		ug/L
			Barium (Ba)	2023/01/16	<2.0		ug/L
			Beryllium (Be)	2023/01/16	< 0.40		ug/L
			Boron (B)	2023/01/16	<20		ug/L
			Cadmium (Cd)	2023/01/16	< 0.20		ug/L
			Chromium (Cr)	2023/01/16	<0.50		ug/L
			Copper (Cu)	2023/01/16	<0.50		ug/L
			Tin (Sn)	2023/01/16	<1.0		ug/L
			Iron (Fe)	2023/01/16	<60		ug/L
			Lithium (Li)	2023/01/16	<10		-
							ug/L
			Manganese (Mn)	2023/01/16	<0.40 <0.50		ug/L
			Molybdenum (Mo)	2023/01/16			ug/L
			Mercury (Hg)	2023/01/16	<0.10		ug/L
			Nickel (Ni)	2023/01/16			ug/L
			Phosphorus	2023/01/16	<10		ug/L
			Lead (Pb)	2023/01/16	<0.10		ug/L
			Selenium (Se)	2023/01/16	<1.0		ug/L
			Strontium (Sr)	2023/01/16	<2.0		ug/L
			Thailium (TI)	2023/01/16	<2.0		ug/L
			Uranium (U)	2023/01/16	<1.0		ug/L
			Titanium (Ti)	2023/01/16	<10		ug/L
			Vanadium (V)	2023/01/16	<2.0		ug/L
			Zinc (Zn)	2023/01/16	<5.0		ug/L
2367613	ZEO	Spiked Blank	Aluminum (Al)	2023/01/03		102	96
			Antimony (Sb)	2023/01/03		103	%
			Silver (Ag)	2023/01/03		101	56
			Arsenic (As)	2023/01/03		104	%
			Barium (Ba)	2023/01/03		99	%
			Beryllium (Be)	2023/01/03		98	%
			Boron (B)	2023/01/03		106	%
			Cadmium (Cd)	2023/01/03		100	%
			Chromium (Cr)	2023/01/03		105	%
			Copper (Cu)	2023/01/03		97	96
			Tin (Sn)	2023/01/03		102	%
			Iron (Fe)	2023/01/03		104	%
			Lithium (Li)	2023/01/03		104	%
			Manganese (Mn)	2023/01/03		101	%
			Molybdenum (Mo)	2023/01/03		104	%
			Mercury (Hg)	2023/01/03		101	%
			Nickel (Ni)	2023/01/03		102	%
			Phosphorus	2023/01/03		96	%
			Lead (Pb)	2023/01/03		97	%
			Selenium (Se)	2023/01/03		104	%
			Strontium (Sr)	2023/01/03		100	96

Agnico Eagle Mines Limited
Site Location: MEADOWBANK DIVISION

Your P.O. #: OL-1183515

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Thallium (TI)	2023/01/03		98	96
			Uranium (U)	2023/01/03		90	94
			Titanium (Ti)	2023/01/03		103	%
			Vanadium (V)	2023/01/03		103	96
			Zinc (Zn)	2023/01/03		96	96
367613	ZEO	Method Blank	Aluminum (AI)	2023/01/03	<10		ug/L
			Antimony (Sb)	2023/01/03	<1.0		ug/L
			Silver (Ag)	2023/01/03	< 0.10		ug/L
			Arsenic (As)	2023/01/03	< 0.30		ug/L
			Barium (Ba)	2023/01/03	<2.0		ug/L
			Beryllium (Be)	2023/01/03	< 0.40		ug/t
			Boron (B)	2023/01/03	<20		ug/L
			Cadmium (Cd)	2023/01/03	< 0.20		ug/L
			Chromium (Cr)	2023/01/03	< 0.50		ug/L
			Copper (Cu)	2023/01/03	<0.50		ug/L
			Tin (Sn)	2023/01/03	<1.0		ug/L
			Iron (Fe)	2023/01/03	<60		ug/L
			Lithium (Li)	2023/01/03	<10		ug/L
			Manganese (Mn)	2023/01/03	<0.40		ug/L
			Molybdenum (Mo)	2023/01/03	<0.50		ug/L
			Mercury (Hg)	2023/01/03	<0.10		ug/L
			Nickel (Ni)	2023/01/03	<1.0		ug/L
			Phosphorus		<10		ug/L
			Lead (Pb)	2023/01/03	<0.10		
				2023/01/03			ug/L
			Selenium (Se)	2023/01/03	<1.0		ug/L
			Strontium (Sr)	2023/01/03	<2.0		ug/L
			Thallium (TI)	2023/01/03	<2.0		ug/L
			Uranium (U)	2023/01/03	<1.0		ug/L
			Titanium (Ti)	2023/01/03	<10		ug/L
			Vanadium (V)	2023/01/03	<2.0		ug/L
			Zinc (Zn)	2023/01/03	<5.0		ug/L
367625	BAG	Spiked Blank	Dissolved organic carbon	2022/12/29		101	96
367625	BAG	Method Blank	Dissolved organic carbon	2022/12/29	<0.20		mg/L
367824	SF5	Spiked Blank	Cyanate (CNO-)	2022/12/30		105	%
367824	SF5	Method Blank	Cyanate (CNO-)	2022/12/30	< 0.050		mg/L
367945	GXL	Spiked Blank	Thiocyanate	2023/01/03		92	96
367945	GXL	Method Blank	Thiocyanate	2023/01/03	<0.17		mg/L
367981	GXL	Spiked Blank	Thiosulfate	2023/01/04		96	96
367981	GXL	Method Blank	Thiosulfate	2023/01/04	< 0.13		mg/L
368042	HPA	Spiked Blank	Total Organic Carbon	2023/01/03		105	96
368042	HPA	Method Blank	Total Organic Carbon	2023/01/03	0.20,		mg/L
					RDL=0.20		
368837	ESW	Spiked Blank	Nitrogen ammonia (N-NH4+ and N-NH3)	2023/01/05		113	96
368837	ESW	Method Blank	Nitrogen ammonia (N-NH4+ and N-NH3)	2023/01/05	< 0.020		mg/L
369016	SF5	Spiked Blank	Fluoride (F)	2023/01/06		102	96
369016	SF5	Method Blank	Fluoride (F)	2023/01/06	< 0.10		mg/L
369786	DY3	Spiked Blank	COD	2023/01/11		100	36
369786	DY3	Spiked Blank DUP	COD	2023/01/11		103	%
369786	DY3	Method Blank	COD	2023/01/11	<5.0	_00	mg/L
370063	SSF	Spiked Blank	COD	2023/01/12		94	%
370063	SSF	Spiked Blank DUP	cop	2023/01/12		90	%

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
2370063	SSF	Method Blank	COD	2023/01/12	<5.0		mg/L

RDL = Reportable Detection Limit

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Afifah Naila Bestari, B. Sc. Chemist, Montreal, Analyst II

460 1 h. 09

Alex Thibert

Alex Thibert, B.Sc., Chemist, Montréal, Analyst II, Chemist in Training

doug ()

Frédéric Arnau, B.Sc., Chemist, Montreal, Scientific Service Specialist

(D) LAID L

Jonathan Fauvel, B.Sc., Chemist, Montreal, Manager of Inorganics

Mayon Assayes (was some

Miryam Assayag, B.Sc. Chemist, Montréal, Team Leader

Mina El Masri 2021-087

Mira El Masri, M.Sc. Chemist, Montréal, Analyst II

Semanting and Control of the Control

Veronic Beausejour, B.Sc., Chemist, Supervisor

VALIDATION SIGNATURE PAGE(CONT'D)

The analytical data and all QC contained in this report were reviewed and validated by:

Shu Yang agoe old GAY CA

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by {0}, {1} responsible for {2} {3} laboratory operations.

Your P.O. #: OL-1183515 Your Project #: MEADOWBANK DIVISION Your C.O.C. #: N/A

Attention: Thomas Genty

Agnico Eagle Mines Limited CSD 10200 route de Preissac Rouyn -Noranda, QC Canada JOY 100

> Report Date: 2023/06/16 Report #: R2852975 Version: 2 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C324033 Received: 2023/05/26, 08:00

Sample Matrix: Surface Water # Samples Received: 7

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Total Alkalinity (end point 4.5)-waters	3	N/A	2023/05/27	STL SOP-00038	SM 23 2320-B m
Anions in water	7	N/A	2023/05/28	STL SOP-00014	MA.300-lons 1.3 R6 m
Weak Acid Dissociable Cyanides-waters	3	2023/06/02	2023/06/05	STL SOP-00035	MA300-CN 1.2 R4 m
Total Cyanide in waters	3	2023/06/02	2023/06/03	STL SOP-00035	MA300-CN 1.2 R4 m
Chemical Oxygen Demand	5	2023/06/01	2023/06/01	STL SOP-00009	MA315-DCO 1.1 R4 m
Conductivity in waters	3	N/A	2023/05/27	STL SOP-00038	SM 23 2510-B m
Cyanates in waters	5	N/A	2023/05/30	STL SOP-00010	MA.315-CNO 1.1 R3 m
Dissolved Organic Carbon (3)	2	2023/05/29	2023/05/30	STL SOP-00243	SM 23 5310-B m
Dissolved Organic Carbon (3)	1	2023/06/02	2023/06/05	STL SOP-00243	SM 23 5310-B m
Fluoride in waters	4	N/A	2023/05/30	STL SOP-00038	SM 23 4500-F m
Fluoride in waters	3	N/A	2023/06/07	STL SOP-00038	SM 23 4500-F m
Total Suspended Solids	3	2023/05/29	2023/05/30	STL SOP-00015	MA.104-S.S. 2.0 m
Dissolved Metals (Low LD)-Filtered at BV	1	N/A	2023/05/30	STL SOP-00062	MA.200-Mét. 1.2 R7 m
Dissolved Metals (Low DL) site filtered	2	N/A	2023/06/01	STL SOP-00062	MA.200-Mét. 1.2 R7 m
Total Extractable Metals	1	2023/05/31	2023/06/02	STL SOP-00062	MA.200-Mét. 1.2 R7 m
Total Extractable Metals	2	2023/05/31	2023/06/03	STL SOP-00062	MA.200-Mét. 1.2 R7 m
Ammonia Nitrogen in water	2	N/A	2023/05/29	STL SOP-00040	MA.300-N 2.0 R2 m
Ammonia Nitrogen in water	3	N/A	2023/06/01	STL SOP-00040	MA.300-N 2.0 R2 m
Ammonia Nitrogen in water	2	N/A	2023/06/02	STL SOP-00040	MA.300-N 2.0 R2 m
Nitrates(NO3-), Nitrites(NO2-)-water	7	N/A	2023/05/28	STL SOP-00014	MA.300-lons 1.3 R6 m
pH in water	3	N/A	2023/05/27	STL SOP-00038	MA.100-pH 1.1 R3 m
Ortho Phosphate-water	3	N/A	2023/05/27	STL SOP-00003	MA.303-P 1.1 R2 m
Total Dissolved Solids	3	2023/05/29	2023/05/30	STL SOP-00050	MA.115-S.D. 1.0 R4 m
Thiocyanates-water	2	N/A	2023/05/27	STL SOP-00010	MA.304-lons 1.1 R1 m
Thiocyanates-water	2	N/A	2023/05/28	STL SOP-00010	MA.304-lons 1.1 R1 m
Thiocyanates-water	1	N/A	2023/06/06	STL SOP-00010	MA.304-lons 1.1 R1 m
Total Thiosalts + Thiosalt Species (1)	3	N/A	N/A		
Thiosulfates-water	2	N/A	2023/05/27	STL SOP-00010	MA.304-lons 1.1 R1 m
Thiosulfates-water	1	N/A	2023/06/05	STL SOP-00010	MA.304-lons 1.1 R1 m
Tot. Kjeldah Nitrogen(calculation)-water	3	2023/05/30	2023/05/30	STL SOP-00077	MOE:TOTNUT-E3516v1.3

Your P.O. #: OL-1183515 Your Project #: MEADOWBANK DIVISION Your C.O.C. #: N/A

Attention: Thomas Genty

Agnico Eagle Mines Limited CSD 10200 route de Preissac Rouyn -Noranda, QC Canada JOY 100

> Report Date: 2023/06/16 Report #: R2852975 Version: 2 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C324033 Received: 2023/05/26, 08:00 Sample Matrix: Surface Water

Samples Received: 7

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Tot. Kjeldah Nitrogen(calculation)-water	3	2023/05/30	2023/05/31	STL SOP-00077	MOE:TOTNUT-E3516v1.3
Total Organic Carbon-water (4)	2	N/A	2023/05/30	STL SOP-00243	SM 23 5310-B m
Total Organic Carbon-water (4)	1	N/A	2023/06/02	STL SOP-00243	SM 23 5310-B m
Nitrogen (total available) (2)	3	2023/06/01	2023/06/02	AB SOP-00093	SM 24 4500-N C m
Nitrogen (total available) (2)	3	2023/06/02	2023/06/02	AB SOP-00093	SM 24 4500-N C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Note: RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

- (1) This test was performed by SGS Canada Inc Lakefield, 185 Concession St , Lakefield, ON, KOL2HO
- (2) This test was performed by Bureau Veritas Calgary, 4000 19 St NE , Calgary, AB, T2E 6P8
- (3) DOC present in the sample should be considered as non-purgeable DOC (4) TOC present in the sample should be considered as non-purgeable TOC

Note: All parameters included in the present certificate are accredited by the MELCC unless stated otherwise.

Your P.O. #: OL-1183515 Your Project #: MEADOWBANK DIVISION Your C.O.C. #: N/A

Attention: Thomas Genty

Agnico Eagle Mines Limited CSD 10200 route de Preissac Rouyn -Noranda, QC Canada JOY 100

> Report Date: 2023/06/16 Report #: R2852975 Version: 2 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C324033 Received: 2023/05/26, 08:00

Encryption Key

Jomie Moran Project Manager 16 Jun 2023 15:41:22

Please direct all questions regarding this Certificate of Analysis to:

Josue Moran, Project Manager

Email: josue.moran@bureauveritas.com

Phone# (514) 448-9001

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Aglaia Yannakis, General Manager responsible for Quebec Environmental laboratory operations.

DISSOLVED METALS (SURFACE WATER)

Bureau Veritas ID		LS9077	LS9078			LS9079		
Sampling Date		2023/05/23	2023/05/23			2023/05/25		
	Units	RAW WATER ST19(SEPT.)	FEED MBBR	RDL	QC Batch	TREATED WATER	RDL	QC Batch
METALS ICP-MS								
Aluminum (Al) †	ug/L	<10	<10	10	2404862	<10	10	2403829
Antimony (Sb)	ug/L	17	11	1.0	2404852	6.4	1.0	2403829
Silver (Ag) †	ug/L	<0.10	<0.10	0.10	2404852	<0.10	0.10	2403829
Arsenic (As)	ug/L	37	8.1	0.30	2404862	3.9	0.30	2403829
Barium (Ba)	ug/L	40	31	2.0	2404862	24	2.0	2403829
Beryllium (Be) †	ug/L	<0.40	< 0.40	0.40	2404852	< 0.40	0.40	2403829
Bismuth (Bi) +	ug/L	<0.25	< 0.25	0.25	2404852	< 0.25	0.25	2403829
Boron (B)	ug/L	260	250	20	2404862	220	20	2403829
Cadmium (Cd)	ug/L	<0.20	< 0.20	0.20	2404862	<0.20	0.20	2403829
Calcium (Ca)	ug/L	440000	390000	300	2404862	280000	300	2403829
Chromium (Cr)	ug/L	<0.50	<0.50	0.50	2404862	<0.50	0.50	2403829
Cobalt (Co)	ug/L	540	470	0.50	2404862	400	0.50	2403829
Copper (Cu)	ug/L	7.0	< 0.50	0.50	2404852	6.7	0.50	2403829
Tin (Sn) †	ug/L	<1.0	<1.0	1.0	2404852	5.5	1.0	2403829
Iron (Fe)	ug/L	<60	<60	60	2404862	<60	60	2403829
Lithium (Li) †	ug/L	<10	<10	10	2404852	<10	10	2403829
Magnesium (Mg)	ug/L	24000	24000	100	2404862	20000	100	2403829
Manganese (Mn)	ug/L	15	7.9	0.40	2404862	5.9	0.40	2403829
Molybdenum (Mo)	ug/L	110	84	0.50	2404862	69	0.50	2403829
Mercury (Hg)	ug/L	<0.10	< 0.10	0.10	2404852	0.12	0.10	2403829
Nickel (Ni)	ug/L	280	<1.0	1.0	2404852	4.8	1.0	2403829
Phosphorus	ug/L	<10	<10	10	2404862	660	10	2403829
Lead (Pb)	ug/L	0.17	<0.10	0.10	2404852	<0.10	0.10	2403829
Potassium (K) †	ug/L	180000	190000	100	2404852	160000	100	2403829
Selenium (Se)	ug/L	180	220	10	2404862	24	1.0	2403829
Silicon (Si) †	ug/L	3600	2500	100	2404862	2100	100	2403829
Strontium (Sr) †	ug/L	1600	1500	2.0	2404852	1200	2.0	2403829
Sodium (Na)	ug/L	480000	550000	100	2404852	720000	100	2403829
Thallium (TI) +	ug/L	<2.0	<2.0	2.0	2404862	<2.0	2.0	2403829
Uranium (U)	ug/L	9.1	6.0	1.0	2404852	2.3	1.0	2403829
Titanium (Ti) †	ug/L	<10	<10	10	2404862	<10	10	2403829
Vanadium (V) †	ug/L	<2.0	<2.0	2.0	2404862	<2.0	2.0	2403829
Zinc (Zn)	ug/L	15	<5.0	5.0	2404862	15	5.0	2403829
Zirconium (Zr) †	ug/L	<0.50	< 0.50	0.50	2404852	< 0.50	0.50	2403829

QC Batch = Quality Control Batch

† Parameter is not accreditable

DISSOLVED METALS (SURFACE WATER)

Bureau Veritas ID		LS9077	LS9078			LS9079		
Sampling Date		2023/05/23	2023/05/23			2023/05/25		
	Units	RAW WATER ST19(SEPT.)	FEED MBBR	RDL	QC Batch	TREATED WATER	RDL	QC Batch
Sulfur (S) †	ug/L	860000	890000	500	2404862	620000	500	2403829

RDL = Reportable Detection Limit QC Batch = Quality Control Batch † Parameter is not accreditable

TOTAL EXTRACTABLE METALS (SURFACE WATER)

Bureau Veritas ID		LS9077	LS9078		LS9079		
Sampling Date		2023/05/23	2023/05/23		2023/05/25		
	Units	RAW WATER ST19(SEPT.)	FEED MBBR	QC Batch	TREATED WATER	RDL	QC Batcl
METALS							
Aluminum (Al)	ug/L	15	<10	2404827	<10	10	2405001
Antimony (Sb)	ug/L	18	12	2404827	7.1	1.0	2405000
Silver (Ag)	ug/L	<1.0	<1.0	2404827	<1.0	1.0	2405003
Arsenic (As)	ug/L	40	9.2	2404827	4.8	1.0	240500
Barium (Ba)	ug/L	38	29	2404827	24	2.0	2405000
Beryllium (Be)	ug/L	<2.0	<2.0	2404827	<2.0	2.0	2405001
Bismuth (Bi) ++	ug/L	<1.0	<1.0	2404827	<1.0	1.0	2405001
Boron (B) †	ug/L	260	250	2404827	300	50	2405001
Cadmium (Cd)	ug/L	<0.20	< 0.20	2404827	< 0.20	0.20	2405001
Calcium (Ca) †	ug/L	430000	350000	2404827	300000	500	2405001
Chromium (Cr)	ug/L	<5.0	<5.0	2404827	<5.0	5.0	2405003
Cobalt (Co)	ug/L	540	450	2404827	410	1.0	2405003
Copper (Cu)	ug/L	12	2.4	2404827	9.0	1.0	2405003
Tin (Sn)	ug/L	<2.0	<2.0	2404827	6.4	2.0	2405001
Iron (Fe)	ug/L	<60	130	2404827	<60	60	2405001
Lithium (Li) ++	ug/L	<10	<10	2404827	<10	10	2405001
Magnesium (Mg) †	ug/L	20000	19000	2404827	22000	100	2405000
Manganese (Mn)	ug/L	15	12	2404827	6.3	1.0	2405000
Mercury (Hg)	ug/L	<0.10	<0.10	2404827	0.31	0.10	2405003
Molybdenum (Mo)	ug/L	110	85	2404827	70	1.0	2405003
Nickel (Ni)	ug/L	280	6.5	2404827	9.4	2.0	2405001
Total phosphorous	ug/L	22	20	2404827	1100	10	2405000
Lead (Pb)	ug/L	<0.50	<0.50	2404827	< 0.50	0.50	2405001
Potassium (K) †	ug/L	180000	170000	2404827	150000	500	2405001
Selenium (Se)	ug/L	180	170	2404827	58	3.0	2405000
Sodium (Na)	ug/L	470000	500000	2404827	750000	500	2405001
Sulphur (S) ††	ug/L	770000	720000	2404827	710000	1000	2405000
Strontium (Sr) †	ug/L	1900	1700	2404827	1200	2.0	2405003
Thallium (TI)	ug/L	<2.0	<2.0	2404827	<2.0	2.0	2405001
Titanium (Ti) ++	ug/L	<10	<10	2404827	<10	10	2405003
Uranium (U) ++	ug/L	9.0	6.0	2404827	3.6	1.0	240500
Vanadium (V)	ug/L	<2.0	<2.0	2404827	<2.0	2.0	240500
Zinc (Zn)	ug/L	12	<7.0	2404827	18	7.0	240500

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

† Parameter is not accredited

⁺⁺ Parameter is not accreditable

TOTAL EXTRACTABLE METALS (SURFACE WATER)

Bureau Veritas ID		LS9077	LS9078		LS9079		
Sampling Date		2023/05/23	2023/05/23		2023/05/25		
	Units	RAW WATER ST19(SEPT.)	FEED MBBR	QC Batch	TREATED WATER	RDL	QC Batch
Zirconium (Zr) ++	ug/L	<5.0	<5.0	2404827	<5.0	5.0	2405001

RDL = Reportable Detection Limit QC Batch = Quality Control Batch †† Parameter is not accreditable

CONVENTIONAL PARAMETERS (SURFACE WATER)

Bureau Veritas ID		LS9077		LS9078	LS9078		
Sampling Date		2023/05/23		2023/05/23	2023/05/23		
	Units	RAW WATER ST19(SEPT.)	QC Batch	FEED MBBR	FEED MBBR Lab-Dup	RDL	QC Batch
CONVENTIONALS							
COD	mg/L	270	2405627	310	N/A	5.0	2405627
Conductivity	mS/cm	4.8	2403498	4.8	4.8	0.0010	2403498
Cyanate (CNO-)	mg/L	4.8	2404201	4.4	N/A	0.050	2404201
Dissolved organic carbon †	mg/L	56	2403702	61	N/A	2.0	2403702
Fluoride (F)	mg/L	0.10	2407250	< 0.10	N/A	0.10	2407250
Nitrate (N) and Nitrite(N)	mg/L	12	2403573	13	N/A	0.20	2403573
Nitrates (N-NO3-)	mg/L	8.8	2403573	11	N/A	0.020	2403573
Nitrites (N-NO2-)	mg/L	3.0	2403573	1.5	N/A	0.20	2403573
Nitrogen ammonia (N-NH4+ and N-NH3)	mg/L	56	2405656	50	N/A	0.10	2404022
Orthophosphate (P)	mg/L	<0.050	2403561	<0.050	N/A	0.050	2403561
рН	pН	7.36	2403472	7.75	7.79	N/A	2403472
Thiocyanate	mg/L	220	2403324	230	N/A	8.5	2403324
Thiosulfate	mg/L	<1.3	2403323	<1.3	N/A	1.3	2403323
TKN Total Kjeldahl Nitrogen	mg/L	N/A	N/A	130	N/A	2.0	2404298
Total Cyanide (CN)	mg/L	0.059	2405921	0.077	N/A	0.0030	2405921
Total Organic Carbon	mg/L	56	2404244	59	N/A	1.0	2404244
Weak Acid Dissociable Cyanide (CN-)	mg/L	0.044	2405925	0.062	N/A	0.0030	2405925
Alkalinity Total (as CaCO3) pH 4.5 †	mg/L	100	2403499	66	67	1.0	2403499
Bromide (Br-)	mg/L	2.8	2403604	2.8	N/A	0.10	2403604
Chloride (CI)	mg/L	230	2403604	230	N/A	0.050	2403604
Sulfates (SO4)	mg/L	2000	2403604	2000	N/A	5.0	2403604
Total Dissolved Solids	mg/L	3700	2403759	3700	N/A	10	2403759
Total suspended solids (TSS)	mg/L	2.0	2403763	8.0	N/A	2.0	2403763

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

† Parameter is not accreditable

CONVENTIONAL PARAMETERS (SURFACE WATER)

Bureau Veritas ID		LS9079			LS9080		LS9081		
Sampling Date		2023/05/25			2023/05/23		2023/05/23		
	Units	TREATED WATER	RDL	QC Batch	R1-SCN REACTOR	RDL	R2-NIT REACTOR	RDL	QC Batch
CONVENTIONALS									
COD	mg/L	470	5.0	2405627	N/A	5.0	N/A	5.0	2405627
Conductivity	mS/cm	4.7	0.0010	2403498	N/A	0.0010	N/A	0.0010	2403498
Cyanate (CNO-)	mg/L	<0.050	0.050	2404201	1.0	0.050	1.2	0.050	2404201
Dissolved organic carbon †	mg/L	45	2.0	2405733	N/A	2.0	N/A	2.0	2405733
Fluoride (F)	mg/L	<0.10	0.10	2407250	<0.10	0.10	<0.10	0.10	2404089
Nitrate (N) and Nitrite(N)	mg/L	<0.20	0.20	2403573	<0.20	0.20	100	0.20	2403573
Nitrates (N-NO3-)	mg/L	<0.020	0.020	2403573	0.13	0.020	100	0.20	2403573
Nitrites (N-NO2-)	mg/L	<0.20	0.20	2403573	<0.20	0.20	<0.20	0.20	2403573
Nitrogen ammonia (N-NH4+ and N-NH3)	mg/L	<0.020	0.020	2404022	100	0.10	0.079	0.020	2406112
Orthophosphate (P)	mg/L	0.25	0.050	2403561	N/A	N/A	N/A	N/A	N/A
pH	pН	7.19	N/A	2403472	N/A	N/A	N/A	N/A	N/A
Thiocyanate	mg/L	<0.17	0.17	2405872	0.8	0.17	<0.17	0.17	2403562
Thiosulfate	mg/L	<0.13	0.13	2406337	N/A	N/A	N/A	N/A	N/A
TKN Total Kjeldahl Nitrogen	mg/L	4.2	0.40	2404298	110	2.0	<2.0	2.0	2404298
Total Cyanide (CN)	mg/L	0.064	0.0030	2405921	N/A	N/A	N/A	N/A	N/A
Total Organic Carbon	mg/L	180	20	2405762	N/A	N/A	N/A	N/A	N/A
Weak Acid Dissociable Cyanide (CN-)	mg/L	0.051	0.0030	2405925	N/A	N/A	N/A	N/A	N/A
Alkalinity Total (as CaCO3) pH 4.5 †	mg/L	290	1.0	2403499	N/A	N/A	N/A	N/A	N/A
Bromide (Br-)	mg/L	3.8	0.10	2403604	3.6	0.10	1.7	0.10	2403604
Chloride (CI)	mg/L	200	0.050	2403604	220	0.050	200	0.050	2403604
Sulfates (SO4)	mg/L	2000	5.0	2403604	2200	5.0	2100	5.0	2403604
Total Dissolved Solids	mg/L	3900	10	2403759	N/A	N/A	N/A	N/A	N/A
Total suspended solids (TSS)	mg/L	30	2.0	2403763	N/A	N/A	N/A	N/A	N/A

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

N/A = Not Applicable

† Parameter is not accreditable

CONVENTIONAL PARAMETERS (SURFACE WATER)

Bureau Veritas ID		LS9082	LS9083		
Sampling Date		2023/05/23	2023/05/23		
	Units	R3-DENIT REACTOR	R4-REOX REACTOR	RDL	QC Batch
CONVENTIONALS					
COD	mg/L	450	240	5.0	2405627
Fluoride (F)	mg/L	<0.10	<0.10	0.10	2404089
Nitrate (N) and Nitrite(N)	mg/L	<0.20	<0.20	0.20	2403573
Nitrates (N-NO3-)	mg/L	<0.020	<0.020	0.020	2403573
Nitrites (N-NO2-)	mg/L	<0.20	<0.20	0.20	2403573
Nitrogen ammonia (N-NH4+ and N-NH3)	mg/L	0.036	5.4	0.020	2405656
TKN Total Kjeldahl Nitrogen	mg/L	21	14	0.40	2404298
Bromide (Br-)	mg/L	2.2	2.2	0.10	2403604
Chloride (CI)	mg/L	180	190	0.050	2403604
Sulfates (SO4)	mg/L	1900	1900	5.0	2403604

SUBCONTRACTED ANALYSIS (SURFACE WATER)

					-					
Bureau Veritas ID		LS9078			LS9079			LS9080		
Sampling Date		2023/05/23			2023/05/25			2023/05/23		
	Units	FEED MBBR	RDL	QC Batch	TREATED WATER	RDL	QC Batch	R1-SCN REACTOR	RDL	QC Batch
CONVENTIONALS										
Nitrogen (N) †	mg/L	130	2.0	2406993	4.6	0.20	2406994	110	2.0	2406993
RDL = Reportable Detection	on Limit									
QC Batch = Quality Control Batch										
† Parameter is not accred	litable									

Bureau Veritas ID		LS9081			LS9082		LS9083				
Sampling Date		2023/05/23			2023/05/23		2023/05/23				
Units R2-NIT REACTOR RDL QC Batch R3-DENIT REACTOR RDL R4-REOX REACTOR RDL QC Batch									QC Batch		
CONVENTIONALS	CONVENTIONALS										
Nitrogen (N) † mg/L 110 2.0 2406993 25 1.0 15 0.20 2406994											
RDL = Reportable Detection Limit											
OC Batch = Quality Control Batch											

† Parameter is not accreditable

GENERAL COMMENTS

Nitrates(NO3-), Nitrites(NO2-)-water: Holding time already past upon reception.: LS9077

pH in water: Holding time already past upon reception.: LS9077

Ortho Phosphate-water: Holding time already past upon reception.: LS9077

Nitrates(NO3-), Nitrites(NO2-)-water: Holding time already past upon reception.: LS9078

pH in water: Holding time already past upon reception.: LS9078

Ortho Phosphate-water: Holding time already past upon reception.: LS9078

pH in water: Holding time already past upon reception.: LS9079

Nitrates(NO3-), Nitrites(NO2-)-water: Holding time already past upon reception.: LS9080, LS9081, LS9082, LS9083

DISSOLVED METALS (SURFACE WATER)

Reported detection limits are multiplied by dilution factors used for sample analysis.

Sample LS9079 was filtered in the laboratory prior to analyzing for metals.

CONVENTIONAL PARAMETERS (SURFACE WATER)

Reported detection limits are multiplied by dilution factors used for sample analysis.

pH: Délai d'analyse non respecté; LS9079.

Thiosulfate: Detection limit raised due to matrix interference. LS9077, LS9078

Thiocyanate: Insufficient preservative, pH adjusted upon receipt at the laboratory. LS9080, LS9081

Nitrites, Nitrate and nitrite: Detection limit raised due to matrix interference. (LS9079, LS9080, LS9081, LS9082, LS9083)

TOC < DOC: Both values fall within acceptable RPD limits for duplicates and are likely equivalent.

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

01/00							
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
2403323	GXL	Spiked Blank	Thiosulfate	2023/05/27	value	92	%
2403323	GXL	Method Blank	Thiosulfate	2023/05/27	<0.13	92	mg/L
2403323	GXL	Spiked Blank	Thiocyanate	2023/05/27	<0.13	99	mg/L %
2403324	GXL	Method Blank	Thiocyanate	2023/05/27	<0.17	99	mg/L
2403324	ZLI	Spiked Blank			0.17	101	%
2403472	ZLI	Spiked Blank	pH Conductivity	2023/05/27		97	96
			Conductivity	2023/05/27	-0.0010	97	
2403498 2403499	ZLI	Method Blank Spiked Blank	Conductivity	2023/05/27	<0.0010	95	mS/cm %
2403499		Method Blank	Alkalinity Total (as CaCO3) pH 4.5	2023/05/27	<1.0	95	
2403499	CLO		Alkalinity Total (as CaCO3) pH 4.5	2023/05/27	<1.0	99	mg/L %
		QC Standard	Orthophosphate (P)	2023/05/27		94	16
2403561	CLO	Spiked Blank	Orthophosphate (P)	2023/05/27		94	-
2403561	CLD	Method Blank	Orthophosphate (P)	2023/05/27	<0.050		mg/L
2403562	CLO	Spiked Blank	Thiocyanate	2023/05/28		101	%
2403562	CLO	Method Blank	Thiocyanate	2023/05/28	<0.17		mg/L
2403573	KIS	Spiked Blank	Nitrate (N) and Nitrite(N)	2023/05/27		102	96
			Nitrates (N-NO3-)	2023/05/27		103	56
			Nitrites (N-NO2-)	2023/05/27		102	%
2403573	KJ5	Method Blank	Nitrate (N) and Nitrite(N)	2023/05/27	<0.020		mg/L
			Nitrates (N-NO3-)	2023/05/27	<0.020		mg/L
			Nitrites (N-NO2-)	2023/05/27	<0.020		mg/L
2403604	KJS	Spiked Blank	Bromide (Br-)	2023/05/27		104	%
			Chloride (CI)	2023/05/27		103	96
			Sulfates (SO4)	2023/05/27		101	%
2403604	KJS	Method Blank	Bromide (Br-)	2023/05/27	< 0.10		mg/L
			Chloride (CI)	2023/05/27	<0.050		mg/L
			Sulfates (SO4)	2023/05/27	< 0.50		mg/L
2403702	BAG	Spiked Blank	Dissolved organic carbon	2023/05/29		101	%
2403702	BAG	Method Blank	Dissolved organic carbon	2023/05/29	< 0.20		mg/L
2403759	VTS	Spiked Blank	Total Dissolved Solids	2023/05/30		109	%
2403759	VTS	Method Blank	Total Dissolved Solids	2023/05/30	<10		mg/L
2403763	VTS	Spiked Blank	Total suspended solids (TSS)	2023/05/30		96	%
2403763	VTS	Method Blank	Total suspended solids (TSS)	2023/05/30	<2.0		mg/L
2403829	ST5	Spiked Blank	Aluminum (Al)	2023/05/30		83	%
			Antimony (Sb)	2023/05/30		106	96
			Silver (Ag)	2023/05/30		92	%
			Arsenic (As)	2023/05/30		99	96
			Barium (Ba)	2023/05/30		106	%
			Beryllium (Be)	2023/05/30		94	96
			Bismuth (Bi)	2023/05/30		100	%
			Boron (B)	2023/05/30		98	%
			Cadmium (Cd)	2023/05/30		99	%
			Calcium (Ca)	2023/05/30		91	%
			Chromium (Cr)	2023/05/30		97	%
			Cobalt (Co)	2023/05/30		98	%
			Copper (Cu)	2023/05/30		95	%
			Tin (Sn)	2023/05/30		103	%
			Iron (Fe)	2023/05/30		96	%
			Lithium (Li)	2023/05/30		96	96
			Magnesium (Mg)	2023/05/30		97	96
			Manganese (Mn)	2023/05/30		100	96
			Molybdenum (Mo)	2023/05/30		103	%

Page 13 of 22 2023/06/16 09:16

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Unit
			Mercury (Hg)	2023/05/30		91	%
			Nickel (Ni)	2023/05/30		98	%
			Phosphorus	2023/05/30		93	%
			Lead (Pb)	2023/05/30		101	%
			Potassium (K)	2023/05/30		96	%
			Selenium (Se)	2023/05/30		97	%
			Silicon (Si)	2023/05/30		86	%
			Strontium (Sr)	2023/05/30		104	%
			Sodium (Na)	2023/05/30		98	%
			Thallium (TI)	2023/05/30		101	%
			Uranium (U)	2023/05/30		102	%
			Titanium (Ti)	2023/05/30		99	%
			Vanadium (V)	2023/05/30		100	%
			Zinc (Zn)	2023/05/30		96	%
			Zirconium (Zr)	2023/05/30		102	%
			Sulfur (S)	2023/05/30		86	%
103829	ST5	Method Blank	Aluminum (Al)	2023/05/30	<10		ug/
			Antimony (Sb)	2023/05/30	<1.0		ug/
			Silver (Ag)	2023/05/30	< 0.10		ug/
			Arsenic (As)	2023/05/30	< 0.30		ug/
			Barium (Ba)	2023/05/30	<2.0		ug/
			Beryllium (Be)	2023/05/30	< 0.40		ug/
			Bismuth (Bi)	2023/05/30	< 0.25		ug/
		Boron (B)	2023/05/30	<20		ug/	
		Cadmium (Cd)	2023/05/30	< 0.20		ug/	
			Calcium (Ca)	2023/05/30	<300		ug/
			Chromium (Cr)	2023/05/30	< 0.50		ug/
			Cobalt (Co)	2023/05/30	< 0.50		ug/
			Copper (Cu)	2023/05/30	< 0.50		ug/
			Tin (Sn)	2023/05/30	<1.0		ug/
			Iron (Fe)	2023/05/30	<60		ug/
			Lithium (Li)	2023/05/30	<10		ug/
			Magnesium (Mg)	2023/05/30	<100		ug/
			Manganese (Mn)	2023/05/30	<0.40		ug/
			Molybdenum (Mo)	2023/05/30	<0.50		ug/
			Mercury (Hg)	2023/05/30	<0.10		ug/
			Nickel (Ni)	2023/05/30	<1.0		ug/
			Phosphorus	2023/05/30	<10		ug/
			Lead (Pb)	2023/05/30	<0.10		ug/
			Potassium (K)	2023/05/30	<100		ug/
			Selenium (Se)	2023/05/30	<1.0		ug/
			Silicon (Si)	2023/05/30	<100		ug/
			Strontium (Sr)	2023/05/30	<2.0		ug/
			Sodium (Na)	2023/05/30	<100		ug/
			Thallium (TI)				
			Uranium (U)	2023/05/30	<2.0		ug/
				2023/05/30	<1.0		ug/
			Titanium (Ti)	2023/05/30	<10		ug/
			Vanadium (V)	2023/05/30	<2.0		ug/
			Zinc (Zn)	2023/05/30	<5.0		ug/
			Zirconium (Zr) Sulfur (S)	2023/05/30	< 0.50		ug/

Page 14 of 22 2023/06/16 09:16

QUALITY ASSURANCE REPORT(CONT'D)

21/25							
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
2404022	HGU	Spiked Blank	Nitrogen ammonia (N-NH4+ and N-NH3)	2023/05/29		99	%
2404022	HGU	Method Blank	Nitrogen ammonia (N-NH4+ and N-NH3)	2023/05/29	< 0.020		mg/L
2404089	ZLI	Spiked Blank	Fluoride (F)	2023/05/30		94	%
2404089	ZLI	Method Blank	Fluoride (F)	2023/05/30	< 0.10		mg/L
2404201	ZZH	Spiked Blank	Cyanate (CNO-)	2023/05/30		113	%
2404201	ZZH	Method Blank	Cyanate (CNO-)	2023/05/30	< 0.050		mg/L
2404244	BAG	Spiked Blank	Total Organic Carbon	2023/05/30		101	%
2404244	BAG	Method Blank	Total Organic Carbon	2023/05/30	< 0.20		mg/L
2404298	SKL	Spiked Blank	TKN Total Kjeldahl Nitrogen	2023/05/31		104	96
2404298	SKL	Method Blank	TKN Total Kjeldahl Nitrogen	2023/05/30	< 0.40	201	mg/L
2404827	AT7	Spiked Blank	Aluminum (Al)	2023/06/03		87	96
2101021		op.iii.cu o.u.iii	Antimony (Sb)	2023/06/03		110	56
			Silver (Ag)	2023/06/03		110	96
			Arsenic (As)	2023/06/03		100	%
			Barium (Ba)	2023/06/03		98	96
			Beryllium (Be)	2023/06/03		101	%
			Bismuth (Bi)	2023/06/03		97	%
			Boron (B)	2023/06/03		111	96
			Cadmium (Cd)	2023/06/03		101	%
			Calcium (Ca)	2023/06/03		92	96
				2023/06/03		97	%
			Chromium (Cr) Cobalt (Co)			96	96
				2023/06/03			%
			Copper (Cu)	2023/06/03		91 109	76 96
			Tin (Sn)	2023/06/03			
			Iron (Fe)	2023/06/03		98	%
			Lithium (Li)	2023/06/03		103	%
			Magnesium (Mg)	2023/06/03		92	%
			Manganese (Mn)	2023/06/03		100	%
			Mercury (Hg)	2023/06/03		96	%
			Molybdenum (Mo)	2023/06/03		104	%
			Nickel (Ni)	2023/06/03		94	%
			Total phosphorous	2023/06/03		86	%
			Lead (Pb)	2023/06/03		95	%
			Potassium (K)	2023/06/03		94	96
			Selenium (Se)	2023/06/03		94	%
			Sodium (Na)	2023/06/03		90	96
			Sulphur (S)	2023/06/03		80	%
			Strontium (Sr)	2023/06/03		108	96
			Thallium (TI)	2023/06/03		97	%
			Titanium (Ti)	2023/06/03		104	%
			Uranium (U)	2023/06/03		97	96
			Vanadium (V)	2023/06/03		100	%
			Zinc (Zn)	2023/06/03		95	%
			Zirconium (Zr)	2023/06/03		106	56
2404827	AT7	Method Blank	Aluminum (AI)	2023/06/03	<10		ug/L
			Antimony (Sb)	2023/06/03	<1.0		ug/L
			Silver (Ag)	2023/06/03	<1.0		ug/L
			Arsenic (As)	2023/06/03	<1.0		ug/L
			Barium (Ba)	2023/06/03	<2.0		ug/L
			Beryllium (Be)	2023/06/03	<2.0		ug/L
			Bismuth (Bi)	2023/06/03	<1.0		ug/L

Page 15 of 22 2023/06/16 09:16

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC	007		Date 4 - 1 - 1	Malan		18.75
Batch Init	QC Type	Parameter Danie (D)	Date Analyzed	Value	Recovery	Unit
		Boron (B)	2023/06/03	<50		ug/l
		Cadmium (Cd)	2023/06/03	<0.20		ug/t
		Calcium (Ca)	2023/06/03	<500		ug/l
		Chromium (Cr)	2023/06/03	<5.0		ug/l
		Cobalt (Co)	2023/06/03	<1.0		ug/
		Copper (Cu)	2023/06/03	<1.0		ug/
		Tin (Sn)	2023/06/03	<2.0		ug/
		Iron (Fe)	2023/06/03	<60		ug/
		Lithium (Li)	2023/06/03	<10		ug/
		Magnesium (Mg)	2023/06/03	<100		ug/
		Manganese (Mn)	2023/06/03	<1.0		ug/
		Mercury (Hg)	2023/06/03	< 0.10		ug/
		Molybdenum (Mo)	2023/06/03	<1.0		ug/
		Nickel (Ni)	2023/06/03	<2.0		ug/
		Total phosphorous	2023/06/03	<10		ug/
		Lead (Pb)	2023/06/03	<0.50		ug/
		Potassium (K)	2023/06/03	<500		ug/
		Selenium (Se)	2023/06/03	<3.0		ug/
		Sodium (Na)	2023/06/03	<500		ug/
		Sulphur (S)	2023/06/03	<1000		ug/
		Strontium (Sr)	2023/06/03	<2.0		ug/
		Thallium (TI)	2023/06/03	<2.0		ug/
		Titanium (Ti)	2023/06/03	<10		ug/
		Uranium (U)	2023/06/03	<1.0		ug/
		Vanadium (V)	2023/06/03	<2.0		ug/
		Zinc (Zn)	2023/06/03	<7.0		ug/
		Zirconium (Zr)	2023/06/03	<5.0		ug/
04862 WWC	Spiked Blank	Aluminum (Al)	2023/06/01		95	%
		Antimony (Sb)	2023/06/01		99	%
		Silver (Ag)	2023/06/01		94	96
		Arsenic (As)	2023/06/01		100	%
		Barium (Ba)	2023/06/01		101	%
		Beryllium (Be)	2023/06/01		97	94
		Bismuth (Bi)	2023/06/01		94	26
		Boron (B)	2023/06/01		98	%
		Cadmium (Cd)	2023/06/01		96	94
		Calcium (Ca)	2023/06/01		96	26
		Chromium (Cr)	2023/06/01		97	%
		Cobalt (Co)	2023/06/01		96	96
		Copper (Cu)	2023/06/01		94	%
		Tin (Sn)	2023/06/01		96	94
		Iron (Fe)	2023/06/01		97	%
		Lithium (Li)	2023/06/01		107	96
		Magnesium (Mg)	2023/06/01		98	96
		Manganese (Mn)	2023/06/01		98	%
		Molybdenum (Mo)	2023/06/01		98	96
		Mercury (Hg)	2023/06/01		93	%
		Nickel (Ni)	2023/06/01		97	96
		Phosphorus	2023/06/01		94	96
		Lead (Pb)	2023/06/01		95	%
	Potassium (K)	2023/06/01		98	%	

Page 16 of 22 2023/05/16 09:16

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Selenium (Se)	2023/05/01		107	%
			Silicon (Si)	2023/05/01		90	%
			Strontium (Sr)	2023/06/01		100	96
			Sodium (Na)	2023/06/01		96	%
			Thallium (TI)	2023/06/01		95	%
			Uranium (U)	2023/06/01		95	%
			Titanium (Ti)	2023/06/01		99	%
			Vanadium (V)	2023/05/01		99	96
			Zinc (Zn)	2023/06/01		94	%
			Zirconium (Zr)	2023/06/01		99	96
			Sulfur (S)	2023/05/01		94	26
104862	wwo	Method Blank	Aluminum (AI)	2023/06/01	<10		ug/L
			Antimony (Sb)	2023/06/01	<1.0		ug/L
			Silver (Ag)	2023/06/01	< 0.10		ug/L
			Arsenic (As)	2023/06/01	< 0.30		ug/L
			Barium (Ba)	2023/06/01	<2.0		ug/t
			Beryllium (Be)	2023/06/01	< 0.40		ug/l
			Bismuth (Bi)	2023/05/01	< 0.25		ug/t
			Boron (B)	2023/05/01	<20		ug/l
			Cadmium (Cd)	2023/05/01	<0.20		ug/l
			Calcium (Ca)	2023/05/01	<300		ug/t
			Chromium (Cr)	2023/06/01	<0.50		ug/l
			Cobalt (Co)	2023/06/01	<0.50		ug/l
			Copper (Cu)	2023/06/01	<0.50		ug/l
			Tin (Sn)	2023/06/01	<1.0		ug/l
			Iron (Fe)	2023/06/01	<60		ug/l
			Lithium (Li)	2023/05/01	<10		ug/l
			Magnesium (Mg)	2023/05/01	<100		ug/t
			Manganese (Mn)	2023/06/01	< 0.40		ug/l
			Molybdenum (Mo)	2023/05/01	< 0.50		ug/l
			Mercury (Hg)	2023/06/01	< 0.10		ug/l
			Nickel (Ni)	2023/06/01	<1.0		ug/l
			Phosphorus	2023/05/01	<10		ug/l
			Lead (Pb)	2023/06/01	< 0.10		ug/l
			Potassium (K)	2023/05/01	<100		ug/l
			Selenium (Se)	2023/05/01	<1.0		ug/l
			Silicon (Si)	2023/06/01	<100		ug/l
			Strontium (Sr)	2023/06/01	6.2,		ug/t
					RDL=2.0		
			Socium (Na)	2023/05/01	<100		ug/l
			Thallium (TI)	2023/06/01	<2.0		ug/l
			Uranium (U)	2023/05/01	<1.0		ug/l
			Titanium (Ti)	2023/06/01	<10		ug/l
			Vanadium (V)	2023/05/01	<2.0		ug/l
			Zinc (Zn)	2023/05/01	<5.0		ug/l
			Zirconium (Zr)	2023/05/01	<0.50		ug/t
			Sulfur (S)	2023/06/01	<500		
06001	CTE	Snikad Black			<500	63	ug/t
05001	ST5	Spiked Blank	Aluminum (Al)	2023/05/02		93 109	%
			Antimony (Sb)	2023/06/02			94
			Silver (Ag)	2023/05/02		103	%
			Arsenic (As)	2023/05/02		102	%

Page 17 of 22 2023/06/16 09:16

QUALITY ASSURANCE REPORT(CONT'D)

Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Barium (Ba)	2023/06/02		108	%
			Beryllium (Be)	2023/06/02		89	96
			Bismuth (Bi)	2023/06/02		103	96
			Boron (B)	2023/06/02		118	%
			Cadmium (Cd)	2023/06/02		100	96
			Calcium (Ca)	2023/06/02		96	96
			Chromium (Cr)	2023/06/02		101	%
			Cobalt (Co)	2023/06/02		101	96
			Copper (Cu)	2023/06/02		98	%
			Tin (Sn)	2023/06/02		105	%
			Iron (Fe)	2023/06/02		98	96
			Lithium (Li)	2023/06/02		93	%
			Magnesium (Mg)	2023/06/02		104	%
			Manganese (Mn)	2023/06/02		101	%
			Mercury (Hg)	2023/06/02		94	%
			Molybdenum (Mo)	2023/06/02		103	96
			Nickel (Ni)	2023/06/02		102	96
			Total phosphorous	2023/06/02		93	96
			Lead (Pb)	2023/06/02		103	%
			Potassium (K)	2023/06/02		95	96
			Selenium (Se)	2023/06/02		105	96
			Sodium (Na)	2023/06/02		97	%
			Sulphur (S)	2023/06/02		95	96
			Strontium (Sr)	2023/06/02		105	26
			Thallium (TI)	2023/06/02		102	96
			Titanium (Ti)	2023/06/02		101	96
			Uranium (U)	2023/06/02		105	%
			Vanadium (V)	2023/06/02		103	%
			Zinc (Zn)	2023/06/02		96	26
			Zirconium (Zr)	2023/06/02		105	96
05001	STS	Method Blank	Aluminum (Al)	2023/06/02	<10	100	ug/l
	0.0	THE STATE OF	Antimony (Sb)	2023/06/02	<1.0		ug/l
			Silver (Ag)	2023/06/02	<1.0		ug/l
			Arsenic (As)	2023/06/02	<1.0		ug/
			Barium (Ba)	2023/06/02	<2.0		ug/
			Beryllium (Be)	2023/06/02	<2.0		ug/
			Bismuth (Bi)	2023/06/02	<1.0		ug/
			Boron (B)	2023/06/02	<50		ug/l
			Cadmium (Cd)	2023/06/02	<0.20		ug/l
			Calcium (Ca)	2023/06/02	<500		ug/
			Chromium (Cr)	2023/06/02	<5.0		ug/
			Cobalt (Co)	2023/06/02	<1.0		ug/l
			Copper (Cu)	2023/06/02	<1.0		ug/l
			Tin (Sn)	2023/06/02	<2.0		ug/l
			Iron (Fe)	2023/06/02	<60		ug/i
			Lithium (Li)	2023/06/02	<10		ug/l
			Magnesium (Mg)	2023/06/02	<100		
			Manganese (Mn)		<1.0		ug/l
				2023/06/02	<0.10		ug/l
			Mercury (Hg)	2023/06/02			ug/l
	Molybdenum (Mo)	2023/06/02	<1.0		ug/l		

Page 18 of 22 2023/05/16 09:16

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Total phosphorous	2023/06/02	<10		ug/L
			Lead (Pb)	2023/06/02	<0.50		ug/L
			Potassium (K)	2023/06/02	<500		ug/L
			Selenium (Se)	2023/06/02	4.0,		ug/L
					RDL=3.0		
			Sodium (Na)	2023/06/02	<500		ug/L
			Sulphur (S)	2023/06/02	<1000		ug/L
			Strontium (Sr)	2023/06/02	<2.0		ug/L
			Thallium (TI)	2023/06/02	<2.0		ug/L
			Titanium (Ti)	2023/06/02	<10		ug/L
			Uranium (U)	2023/06/02	<1.0		ug/L
			Vanadium (V)	2023/06/02	<2.0		ug/L
			Zinc (Zn)	2023/06/02	<7.0		ug/L
			Zirconium (Zr)	2023/06/02	<5.0		ug/L
2405627	DA3	Spiked Blank	COD	2023/06/01		98	96
2405627	DY3	Spiked Blank DUP	COD	2023/06/01		98	96
2405627	DY3	Method Blank	COD	2023/06/01	<5.0		mg/l
2405656	HGU	Spiked Blank	Nitrogen ammonia (N-NH4+ and N-NH3)	2023/06/01		98	96
2405656	HGU	Method Blank	Nitrogen ammonia (N-NH4+ and N-NH3)	2023/06/01	< 0.020		mg/l
2405733	BAG	Spiked Blank	Dissolved organic carbon	2023/06/05		100	96
2405733	BAG	Method Blank	Dissolved organic carbon	2023/06/05	< 0.20		mg/
2405762	BAG	Spiked Blank	Total Organic Carbon	2023/06/02		100	%
2405762	BAG	Method Blank	Total Organic Carbon	2023/06/02	< 0.20		mg/l
2405872	ESW	Spiked Blank	Thiocyanate	2023/06/05		103	%
2405872	ESW	Method Blank	Thiocyanate	2023/06/05	< 0.17		mg/l
2405921	CYU	Spiked Blank	Total Cyanide (CN)	2023/06/03		90	%
2405921	CYU	Method Blank	Total Cyanide (CN)	2023/06/03	< 0.0030		mg/l
2405925	CYU	Spiked Blank	Weak Acid Dissociable Cyanide (CN-)	2023/06/05		88	%
2405925	CYU	Method Blank	Weak Acid Dissociable Cyanide (CN-)	2023/06/05	< 0.0030		mg/l
2406112	HGU	Spiked Blank	Nitrogen ammonia (N-NH4+ and N-NH3)	2023/06/02		93	96
2406112	HGU	Method Blank	Nitrogen ammonia (N-NH4+ and N-NH3)	2023/06/02	< 0.020		mg/l
2406337	ESW	Spiked Blank	Thiosulfate	2023/06/05		96	96
2406337	ESW	Method Blank	Thiosulfate	2023/06/05	< 0.13		mg/l
2406993	CTU	Matrix Spike	Nitrogen (N)	2023/06/02		NC	%
2406993	CTU	QC Standard	Nitrogen (N)	2023/06/02		96	%
2406993	CTU	Spiked Blank	Nitrogen (N)	2023/06/02		97	%
406993	CTU	Method Blank	Nitrogen (N)	2023/06/02	< 0.020		mg/l
2406994	CTU	Matrix Spike	Nitrogen (N)	2023/06/02		NC	%
2406994	CTU	QC Standard	Nitrogen (N)	2023/06/02		98	26
2406994	CTU	Spiked Blank	Nitrogen (N)	2023/06/02		113	96
2406994	CTU	Method Blank	Nitrogen (N)	2023/06/02	<0.020		mg/l
2407250	ZLI	Spiked Blank	Fluoride (F)	2023/06/07		104	%

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
2407250	ZLI	Method Blank	Fluoride (F)	2023/06/07	<0.10		mg/L

RDL = Reportable Detection Limit

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Ghayasuddin Khan, M.Sc., P.Chem., QP, Scientific Specialist, Inorganics

Frédéric Arnau, B.Sc., Chemist, Montreal, Scientific Service Specialist

Faouzi Sarsi, B.Sc. Chemist, Montréal, SR Analyst

Jonathan Fauvel, B.Sc., Chemist, Montreal, Scientific Specialist

Michelina Cinquino, Analyst II

Mira El Masri, M.Sc. Chemist, Montréal, Analyst II

Veronic Beausejour, B.Sc., Chemist, Supervisor

VALIDATION SIGNATURE PAGE(CONT'D)

The analytical data and all QC contained in this report were reviewed and validated by:

Shu Yang S.Sc. Chemist, Montreal, Analyst II

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by [0], [1] responsible for [2] [3] laboratory operations.

F.4. R1/P4

								RATHADAN					
Bree .	Sare Tour	78 78	MO-D-D Londo Per	NO-D-D NORWAY	300-0-0 L0000**	2023-03-30 2023-03-30	3023-03-23 30-30-30 mar	232-0-36	3504010	300+00-00	390-9-34	2021120	207-07-01 87448 10400
Ned	Not the	40/4	0.000757	\$20,00 0,00079	£0071	534,00 6,0001)	0.00713	0.000723	0.0007239	9400 60003	\$4000 6,000%)	\$94,90 6,000TTS	6-000(T)
	Total New York	ar arts ar arts	0.76 8.70	134 134	679	6.0	69	4.79	0.79 0.70	69	639	6.77 6.06	677
14	SCO -0 WORD WHENCHAS SHARRINGS	on years on years	736 676 734	794 73 737	176 78				731		734 746 756	735 7,45 4,36	
	Manage	24,000	- 61	- US	6.10				6,10		8.64	T30	1,00
	Seed Seed	No.	10.3	30	10.1				50.5 20.2		10.4	10.5	
Brootes	Silvero Walls Shiftyriba Sash Rights	FG FG	21. 20.9 21,1	20A 20A	2014 2015 21,1				20,6		30,4 38,9 30,3	30.0 30.5 30.6	
	Statement	Pile:	30.2	20.0	30,1				10.0		M/T	20	
	544 544 9(4 to 954)	Fig. (Sp.)		1,00	714						7.86	16.1 4.35 7.69	
90	Uniformity David Physics	Pagitalia.		506 506 407	1,66 1,66						1,54 1,67 0,41	638	
	State 410 h	Inglish:		6,00	5,0						4.36	0.41/4.40	
	504 to 14400		90.0 70.0	100	37 51,7				46.3 54.5		67	95,4 35,4	
OF sales	Sent Plants		961	045 433 k	- 9623				100		100,1 40,2	481	
	Naverb L	1490	A.7	-66.6	14,1				-45.1		11.1	-368	4038
	SCHOOL SERVICE SIN PROPERTY Contact Property	1-14/1/d 1-14/1/d											-
Orthodroser*	South Migration Management	14670											40.09
	Sept.	146 P/41 146 P/41 146 P/41											HE
	904 15 9940			_				_					
009	Sherwitz	Heght Heght Heght		_									400 200
	Name of the Control o	THE STATE OF	135,96	34,87	28,0	23634			200,07		340,46	30199	270,00
MN.	SCHOOL SERVICE SECRETARISM	PARTICION I	0.00 0.00	5476	2.95	634			10,09		0.86	0.86	
		Ingritish	-069	410	633	-093			179		4,81	6.60	46,17
	Total Total SON IN MINE	Ingerold	34.40	1610	14,44	100			45.60		11/9	4008 41,00	46,11
904	Un Physics Druh Physics	144 Vil. 145 Vil. 145 Vil.	5.25 0.08 0.09	009 025	601 601	0.00 0.00			300 130 130		0.40 0.06	6.54 6.07 6.00	=
		ing Will	407	419	6.06	4.8			1,16		0.09	6.07	10,04
	Non- Year Silve to Welst Wit Plantin Conti Plantin	1440	-co	CII	CIII	-01	-CII	-CII	- CF	CIII	-00	a	40
cw	Springston Springston	149											
	Special Control of Con	14 VI											46.67
		1444	49,33 914,36	4047 7140	90,00	HUM.			70.00		46,77 36,86	40.10 96.50	14,50
***	Granding Co.	19870	607 637 140 447	600 600 608	9046 6/06 6/13	1,4/1 0,31 0,31			70.00 30.00 0.00		1,8 013	104 1,06	ALM?
	Spr. Test	14.00 14.00 14.00	198	396	3,31	1,30	134		9,0	34,30	0.H	A,67 4,60 31,40	100
	SCR 10 MINO Mr Playson Contr Playson	14 VIII 14 VIII 14 VIII	1,17	130	1.40 201/6	4,90 68,00 6,00	100 60-65 100		1,33 (4,30 1,30	137	80,30 80,30	18,50	- 100
****	Spok Marcho Margariton	1991	830 800	730 360	3,13 0.06	4,00	100	6.00	3.39	10	1,60	11.79	40,10
	Total	19870	£80	1,00	3,84	- 0	104			6.0	1,64	11,79 13,96	0.80
vwe:	SCH -> M-SH-S SH-PROFILE SH-SH-PROFILE	16/01	0.86	90 08 08	3	63	04L 135 361		1/3 1/3	1,40 1,2 0,3	1,07 0,9	3.5 Ura	
***	Security	1999	0.00	200	638 638	611	34	538 363	139	41	81	6.03	40,00
	Total .	1970	10.40	18.10	111,0°	10%			91,00 100,90		180.00	10731 10731	18,40
14	SCH - O MINES WITH PROPERTY CONTRACTOR	44) 44)	111.50 94.13 30.70 10.40	30,9 38.9 03 1/5	10.0 101 638	200, 12 30, 75			100,00 100,00 10,00		101.46 67.04	DATE	
	Name and a Name Name and a Name a Na Name a Name a Name a Name Name Na Na Name Na Na Na Na Na Na Na Na Na Na Na Na Na	18/90				147			1.00		1.0	10.00	15,00
Subspecture.	Proprieto neus	4/	2000	100	1000	2000 200	2000 200	1000	2000 200	2000	2000	200	2000
margarium.	1400	46000	200 2000 1120	1330	20000 11236	2000 20000 15230	2000 1200	230 2000 11230	200 2000 11230	1230	2200	2200	2000 20000 20000
	10,000	90/5 90/5	96.0 76.0	64.5	ETO WA	9.0 9.0	360	36.5	16.1	161	27.3	17.3	353 363
	Faccinate neu Turk UF	***	96.0 96.1 96.0	10.4 30.4 36.2 700	98.4 98.3 98.3	No.0 26.0 26.0	460 961 960 460	60.1 30.3 30.5 608	90,1	908 960 367	903 903 903	90.1 30.1	306.7 34.0 34.0
State Section 1	Proprieto resa Sacie	46004	750 947	760	7%		40	600	56.0 600			700	700
	000/V	reformer reformer	130	104 104 104	100	800 3,21 8,61	146 208 EAI	137 137	137 137	2,07 C(8)	700 3,16 7,16	1,00	780 2,80 7,80
	FOUND SCHOOL HARDS SERRESSON	40	0.36 0.00 0.04	6.00 600 604	6.18 6.61 6.64	0.34 0.03 0.04	034 003 004	0.56 0.05	0.34 0.03 0.04	0.9 0.0	0.14 0.01 0.04	0.36	6.04 6.00 6.04
Seriousiane (i)	On Mayoba On the Mayoba Mayoration	2 2	694	894	694	694 694	104	134	534 534	694	0.04 0.04	694	639 637 638
		2	0.00	800	6,61	606	- 004	- 6/6	0.00	608	0,00	0.00	
em(mon)	SCHOOL WARD WITH PROPERTY OF	-	6+0 54,04 5810	941 943 943	941 9139 9239	H/9	5947 3947	4.96 (4.07	4.14 34.87 20.38	HIT	4.95 H-07	11,00 11,00	1,49 11,48
23,400	Sangerion Carffer		440	66	641	100	20H	3030 4.39	4,18	2000 6.00	3038	640	5.00
	909 IN WINE	3	All No	30	30	30	N N	M M	30	20	20	20	20
myes	Grah Migrilia Seat Migrilia	*	30 30	N N	30 30	50 50	N N	No.	30 30	30 30	N R	A)	2) 2)
anteneno medi	SCHOOL WARD	40/40	100	100 140	500	500	10 58	500	500 500	500	500	500	500 500
	Sea Marina Sea erica	4/4	500	100	500 500 6.75	100	10	500 500 1,75	500	500 500	500	500	800
Marie streets	SCHOOL SERVICE	77	675 630	675 630	4.00	6.75 6.00	675 630	636	6,50 6,50	6.00	630 630	630 630	6.00 6.00
94444	Shot March 1 Shot with 1	2 2	1.15 1.75 0.74	1,10 675 606	1.33 0.75 0.04	1.15 0.75 0.04	135	125	120	1.8	1.15 075 076	1,15 0.75 0.96	£,19 6,19
	K/V	46.60	45,33	4500	44,37	43,17	100	0.00	44,30	60	41,04	47.04	80,30
Perthadignos	914 914	44/	35.48 0.00	2736 000	0.04 (6.00 0.00	2736 2736	10	0.00 0.00	0.00 30.00 0.00	60	0.04 30.33 0.00	275M 0:00	40.00
	904 904	490	0.00	677	1.06	1.00	130		0.00	0192 0192 37943	1,47	0.04	
	VOII PN	alea)	1,41 66,69	230 0744	2,61 04,69	2.34	1.6 1.6	0.50 0.50	30,54 90,56	1794 9649 676	01L 1LM N.4 1.0 00L 0.0 0.0 0.0	17.42	6,00 30,07 30,07 301,48 674,5,01
	SCHOOL HOL GERGES	#16/10/2 (00/00) #16/10/2 (00/00) #16/10/2 (00/00)	656 655 630 630	88	681	661	500	636	03K	606	601	655	AND LOS
1 2 2 2 2 2 222	Sect March	PRINTINGS PRINTINGS	0.00 1,10	000 000 UB	604 600 131	000 000	000 000 010	19	100	6-0 6-0 6-3	000 110	0.00 0.00 1,111	6/45P
And the transition displayeds " Not	VI-PIUM	grafing/street	0.10	6,66	0.34	638	001	9,01	0,27	0.08	0.11	0.10	MARKE
	See March	£4/49/408	0.75	998	196	0.04	100	0.00	989	49	0.07	0.00	AN AN
	ICe o sept	estimate however	038	634 635	647	544 534	004 001	034 034	0.60 0.00	68	GH H3	636	MALE:
And the trend turble site 184	On the Military Street	# 10 miles (max) # 10 miles (max) # 10 miles (max) # 10 miles (max)	130	- CM - CM	6-61 6-00	6.07 6.00	- 00	19	139	68 68	040 040	0.00 0.00	MALO:
Hildrynana	Egin Car	ng Krish	478 238	100	408	4,8	4018 2300	40.18	1100	406	110000	406	5380 2380
			-	-	-				-		1000		

Your P.O. #: OL-1183515

Site Location: MEADOWBANK DIVISION

Your C.O.C. #: N/A

Attention: Thomas Genty

Agnico Eagle Mines Limited CSD 10200 route de Preissac Rouyn -Noranda, QC Canada JOY 100

> Report Date: 2023/02/15 Report #: R2825650

Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C304330 Received: 2023/02/02, 08:45

Sample Matrix: Surface Water # Samples Received: 6

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Total Alkalinity (pH end point 4.5)	3	N/A	2023/02/03	STL SOP-00038	SM 23 2320-B m
Anions in water	3	N/A	2023/02/02	STL SOP-00014	MA.300-lons 1.3 R6 m
Weak Acid Dissociable Cyanides	3	2023/02/03	2023/02/09	STL SOP-00035	MA300-CN 1.2 R4 m
Total Cyanide	3	2023/02/03	2023/02/03	STL SOP-00035	MA300-CN 1.2 R4 m
Chemical Oxygen Demand	1	2023/02/15	2023/02/15	STL SOP-00009	MA315-DCO 1.1 R4 m
Chemical Oxygen Demand	3	2023/02/08	2023/02/08	STL SOP-00009	MA315-DCO 1.1 R4 m
Conductivity	3	N/A	2023/02/03	STL SOP-00038	SM 23 2510-B m
Cyanates	5	N/A	2023/02/07	STL SOP-00010	MA.315-CNO 1.1 R3 m
Dissolved Organic Carbon (2)	3	2023/02/03	2023/02/07	STL SOP-00243	SM 23 5310-B m
Fluoride	3	N/A	2023/02/03	STL SOP-00038	SM 23 4500-F m
Total Suspended Solids	3	2023/02/06	2023/02/06	STL SOP-00015	MA.104-S.S. 2.0 m
Dissolved Metals (Low DL)- lab filtered	1	N/A	2023/02/03	STL SOP-00062	MA.200-Mét. 1.2 R7 m
Dissolved Metals (Low DL) site filtered	2	N/A	2023/02/06	STL SOP-00062	MA.200-Mét. 1.2 R7 m
Total Extractable Metals by ICP	1	2023/02/03	2023/02/07	STL SOP-00062	MA.200-Mét. 1.2 R7 m
Total Extractable Metals by ICP	2	2023/02/06	2023/02/06	STL SOP-00062	MA.200-Mét. 1.2 R7 m
Ammonia Nitrogen	3	N/A	2023/02/07	STL SOP-00040	MA.300-N 2.0 R2 m
Nitrates(NO3-), Nitrites(NO2-)-water	3	N/A	2023/02/02	STL SOP-00014	MA.300-lons 1.3 R6 m
pH in water	3	N/A	2023/02/03	STL SOP-00038	MA.100-pH 1.1 R3 m
Ortho Phosphate	3	N/A	2023/02/02	STL SOP-00003	MA.303-P 1.1 R2 m
Total Dissolved Solids	3	2023/02/07	2023/02/07	STL SOP-00050	MA.115-S.D. 1.0 R4 m
Thiocyanates	2	N/A	2023/02/02	STL SOP-00010	MA.304-lons 1.1 R1 m
Thiocyanates	1	N/A	2023/02/03	STL SOP-00010	MA.304-lons 1.1 R1 m
Total Thiosalts + Thiosalt Species (1)	3	N/A	N/A		
Thiosulfates	3	N/A	2023/02/03	STL SOP-00010	MA.304-lons 1.1 R1 m
Total Nitrogen	4	2023/02/07	2023/02/07	STL SOP-00077	MOE:TOTNUT-E3516v1.3
Total Nitrogen	1	2023/02/07	2023/02/08	STL SOP-00077	MOE:TOTNUT-E3516v1.3
Total Organic Carbon (3)	3	N/A	2023/02/08	STL SOP-00243	SM 23 5310-B m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau

Your P.O. #: OL-1183515

Site Location: MEADOWBANK DIVISION

Your C.O.C. #: N/A

Attention: Thomas Genty

Agnico Eagle Mines Limited CSD 10200 route de Preissac Rouyn -Noranda, QC Canada JOY 1CO

> Report Date: 2023/02/15 Report #: R2825650 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BUREAU VERITAS JOB #: C304330

Received: 2023/02/02, 08:45

Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

Note: RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

- (1) This test was performed by SGS Canada Inc Lakefield, 185 Concession St , Lakefield, ON, KOL2H0
- (2) DOC present in the sample should be considered as non-purgeable DOC
- (3) TOC present in the sample should be considered as non-purgeable TOC

Note: All parameters included in the present certificate are accredited by the MELCC unless stated otherwise.

Encryption Key

Josue Moran Project Kanager 16 Pab 2003 12:58:0

Please direct all questions regarding this Certificate of Analysis to: Josue Moran, Project Manager Email: josue.moran@bureauveritas.com

Phone# (514) 448-9001

.....

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Aglaia Yannakis, General Manager responsible for Quebec Environmental laboratory operations.

Agnico Eagle Mines Limited
Site Location: MEADOWBANK DIVISION

Your P.O. #: OL-1183515 Sampler Initials: AG

DISSOLVED METALS (SURFACE WATER)

Bureau Veritas ID		LK7024	LK7025		LK7026		
Sampling Date		2023/02/01	2023/02/01		2023/02/01		
	Units	RAW WATER ST19 (SEPT)	FEED MBBR	QC Batch	TREATED WATER	RDL	QC Batch
METALS ICP-MS							
Aluminum (AI) †	ug/L	<10	12	2375142	150	10	2374889
Antimony (Sb)	ug/L	18	12	2375142	8.8	1.0	2374889
Silver (Ag) †	ug/L	<0.10	<0.10	2375142	<0.10	0.10	2374889
Arsenic (As)	ug/L	320	7.0	2375142	5.9	0.30	2374889
Barium (Ba)	ug/L	53	42	2375142	46	2.0	2374889
Beryllium (Be) †	ug/L	<0.40	<0.40	2375142	<0.40	0.40	2374889
Boron (B)	ug/L	290	280	2375142	250	20	2374889
Cadmium (Cd)	ug/L	<0.20	<0.20	2375142	<0.20	0.20	2374889
Chromium (Cr)	ug/L	0.65	0.67	2375142	<0.50	0.50	2374889
Copper (Cu)	ug/L	15	6.3	2375142	1.3	0.50	2374889
Tîn (Sn) †	ug/L	<1.0	<1.0	2375142	7.8	1.0	2374889
Iron (Fe)	ug/L	<60	<60	2375142	170	60	2374889
Lithium (Li) +	ug/L	<10	<10	2375142	<10	10	2374889
Manganese (Mn)	ug/L	6.4	20	2375142	51	0.40	2374889
Molybdenum (Mo)	ug/L	100	88	2375142	76	0.50	2374889
Mercury (Hg)	ug/L	0.13	<0.10	2375142	<0.10	0.10	2374889
Nickel (Ni)	ug/L	230	1.6	2375142	2.3	1.0	2374889
Phosphorus	ug/L	<10	<10	2375142	63	10	2374889
Lead (Pb)	ug/L	<0.10	<0.10	2375142	<0.10	0.10	2374889
Selenium (Se)	ug/L	180	180	2375142	31	1.0	2374889
Strontium (Sr) †	ug/L	1800	1700	2375142	1800	2.0	2374889
Thallium (TI) †	ug/L	<2.0	<2.0	2375142	<2.0	2.0	2374889
Uranium (U)	ug/L	10	7.5	2375142	2.8	1.0	2374889
Titanium (Ti) †	ug/L	<10	<10	2375142	<10	10	2374889
Vanadium (V) †	ug/L	<2.0	<2.0	2375142	<2.0	2.0	2374889
Zinc (Zn)	ug/L	5.8	6.7	2375142	6.0	5.0	2374889

RDL = Reportable Detection Limit QC Batch = Quality Control Batch † Parameter is not accreditable

Agnico Eagle Mines Limited

Site Location: MEADOWBANK DIVISION

Your P.O. #: OL-1183515 Sampler Initials: AG

TOTAL EXTRACTABLE METALS (SURFACE WATER)

Bureau Veritas ID		LK7024	LK7025			LK7026		
Sampling Date		2023/02/01	2023/02/01			2023/02/01		
	Units	RAW WATER ST19 (SEPT)	FEED MBBR	RDL	QC Batch	TREATED WATER	RDL	QC Batch
METALS								
Aluminum (Al)	ug/L	15	11	10	2375110	18	10	2375043
Antimony (Sb)	ug/L	18	13	1.0	2375110	9.1	1.0	2375043
Silver (Ag)	ug/L	<1.0	<1.0	1.0	2375110	<1.0	1.0	2375043
Arsenic (As)	ug/L	320	8.3	1.0	2375110	6.8	1.0	2375043
Barium (Ba)	ug/L	55	44	2.0	2375110	40	2.0	2375043
Beryllium (Be)	ug/L	<2.0	<2.0	2.0	2375110	<2.0	2.0	2375043
Boron (B) †	ug/L	300	300	50	2375110	250	50	2375043
Cadmium (Cd)	ug/L	0.51	<0.20	0.20	2375110	<0.20	0.20	2375043
Chromium (Cr)	ug/L	<5.0	<5.0	5.0	2375110	<5.0	5.0	2375043
Copper (Cu)	ug/L	21(1)	2.2 (1)	2.1	2375110	2.7	1.0	2375043
Tin (Sn)	ug/L	<2.0	<2.0	2.0	2375110	<2.0	2.0	2375043
Iron (Fe)	ug/L	<60	<60	60	2375110	340	60	2375043
Lithium (Li) ++	ug/L	<10	<10	10	2375110	<10	10	2375043
Manganese (Mn)	ug/L	7.1	24	1.0	2375110	51	1.0	2375043
Mercury (Hg)	ug/L	<0.10	<0.10	0.10	2375110	<0.10	0.10	2375043
Molybdenum (Mo)	ug/L	110	94	1.0	2375110	73	1.0	2375043
Nickel (Ni)	ug/L	230	9.9	2.0	2375110	3.3	2.0	2375043
Total phosphorous	ug/L	<10	19	10	2375110	520	10	2375043
Lead (Pb)	ug/L	<0.50	<0.50	0.50	2375110	<0.50	0.50	2375043
Selenium (Se)	ug/L	190	190	3.0	2375110	40	3.0	2375043
Strontium (Sr) †	ug/L	1900	1800	2.0	2375110	1500	2.0	2375043
Thallium (TI)	ug/L	<2.0	<2.0	2.0	2375110	<2.0	2.0	2375043
Titanium (Ti) ++	ug/L	<10	<10	10	2375110	<10	10	2375043
Uranium (U) ††	ug/L	11	7.8	1.0	2375110	2.6	1.0	2375043
Vanadium (V)	ug/L	<2.0	<2.0	2.0	2375110	<2.0	2.0	2375043
Zinc (Zn)	ug/L	7.3	<7.0	7.0	2375110	52	7.0	2375043

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

[†] Parameter is not accredited

^{††} Parameter is not accreditable

⁽¹⁾ The detection limit was raised due to instrumentation.

Your P.O. #: OL-11835: Sampler Initials: AG

CONVENTIONAL PARAMETERS (SURFACE WATER)

Bureau Veritas ID		LK7024	LK7024	LK7025		
Sampling Date		2023/02/01	2023/02/01	2023/02/01		
	Units	RAW WATER ST19 (SEPT)	RAW WATER ST19 (SEPT) Lab-Dup	FEED MBBR	RDL	QC Batch
CONVENTIONALS						
COD	mg/L	360	N/A	340	5.0	2375603
Conductivity	mS/cm	5.0	N/A	5.1	0.0010	2374743
Cyanate (CNO-)	mg/L	17	N/A	13	0.050	2374830
Dissolved organic carbon †	mg/L	68	N/A	67	1.0	2374880
Fluoride (F)	mg/L	0.13	N/A	<0.10	0.10	2374956
Nitrate (N) and Nitrite(N)	mg/L	14	N/A	14	0.20	2374698
Nitrites (N-NO2-)	mg/L	0.29	N/A	0.36	0.20	2374698
Nitrogen ammonia (N-NH4+ and N-NH3)	mg/L	52	N/A	53	0.10	2375516
Orthophosphate (P)	mg/L	0.054	N/A	<0.050	0.050	2374702
pH	pН	7.89	7.86	7.76	N/A	2374733
Thiocyanate	mg/L	280	N/A	270	8.5	2374706
Thiosulfate	mg/L	<1.3	N/A	<1.3	1.3	2374832
TKN Total Kjeldahl Nitrogen	mg/L	N/A	N/A	140	4.0	2375424
Total Cyanide (CN)	mg/L	0.063	N/A	0.057	0.0030	2374925
Total Organic Carbon	mg/L	67	66	66	1.0	2375320
Weak Acid Dissociable Cyanide (CN-)	mg/L	0.040	N/A	0.038	0.0030	2374968
Alkalinity Total (as CaCO3) pH 4.5 †	mg/L	110	N/A	78	1.0	2374742
Bromide (Br-)	mg/L	2.5	N/A	2.6	1.0	2374599
Chloride (CI)	mg/L	220	N/A	220	0.50	2374699
Sulfates (SO4)	mg/L	2000	N/A	2100	5.0	2374699
Total Dissolved Solids	mg/L	4000	N/A	4000	10	2375488
Total suspended solids (TSS)	mg/L	2.0	N/A	8.0	2.0	2375176

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

† Parameter is not accreditable

Agnico Eagle Mines Limited
Site Location: MEADOWBANK DIVISION

Your P.O. #: OL-1183515 Sampler Initials: AG

CONVENTIONAL PARAMETERS (SURFACE WATER)

Bureau Veritas ID		LK7026	LK7027	LK7068		LK7069		
Sampling Date		2023/02/01	2023/02/01	2023/02/01		2023/02/01		
	Units	TREATED WATER	SCN REACTOR	NIT REACTOR	QC Batch	DENIT REACTOR	RDL	QC Batch
CONVENTIONALS								
COD	mg/L	200	N/A	N/A	2375603	480	5.0	2377179
Conductivity	mS/cm	4.9	N/A	N/A	2374743	N/A	0.0010	N/A
Cyanate (CNO-)	mg/L	<0.050	<0.050	<0.050	2374830	N/A	0.050	N/A
Dissolved organic carbon †	mg/L	27	N/A	N/A	2374880	N/A	0.40	N/A
Fluoride (F)	mg/L	<0.10	N/A	N/A	2374956	N/A	0.10	N/A
Nitrate (N) and Nitrite(N)	mg/L	<0.20	N/A	N/A	2374698	N/A	0.20	N/A
Nitrites (N-NO2-)	mg/L	<0.20	N/A	N/A	2374698	N/A	0.20	N/A
Nitrogen ammonia (N-NH4+ and N-NH3)	mg/L	12	N/A	N/A	2375516	N/A	0.020	N/A
Orthophosphate (P)	mg/L	<0.050	N/A	N/A	2374702	N/A	0.050	N/A
pH	pН	7.97	N/A	N/A	2374733	N/A	N/A	N/A
Thiocyanate	mg/L	<0.17	N/A	N/A	2374831	N/A	0.17	N/A
Thiosulfate	mg/L	<0.13	N/A	N/A	2374832	N/A	0.13	N/A
TKN Total Kjeldahl Nitrogen	mg/L	16	88	7.5	2375424	23	0.40	2375424
Total Cyanide (CN)	mg/L	0.038	N/A	N/A	2374925	N/A	0.0030	N/A
Total Organic Carbon	mg/L	50	N/A	N/A	2375320	N/A	1.0	N/A
Weak Acid Dissociable Cyanide (CN-)	mg/L	0.029	N/A	N/A	2374968	N/A	0.0030	N/A
Alkalinity Total (as CaCO3) pH 4.5 †	mg/L	310	N/A	N/A	2374742	N/A	1.0	N/A
Bromide (Br-)	mg/L	2.2	N/A	N/A	2374699	N/A	1.0	N/A
Chloride (CI)	mg/L	180	N/A	N/A	2374699	N/A	0.50	N/A
Sulfates (SO4)	mg/L	2100	N/A	N/A	2374699	N/A	5.0	N/A
Total Dissolved Solids	mg/L	3900	N/A	N/A	2375488	N/A	10	N/A
Total suspended solids (TSS)	mg/L	42	N/A	N/A	2375176	N/A	2.0	N/A

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

† Parameter is not accreditable

GENERAL COMMENTS

Cyanates: Arrived unpreserved, preserved upon reception at the laboratory.: LK7027
Total Nitrogen: Arrived unpreserved, preserved upon reception at the laboratory.: LK7027
Cyanates: Arrived unpreserved, preserved upon reception at the laboratory.: LK7068
Total Nitrogen: Arrived unpreserved, preserved upon reception at the laboratory.: LK7068

Chemical Oxygen Demand: Arrived unpreserved, preserved upon reception at the laboratory.: LK7069

Total Nitrogen: Arrived unpreserved, preserved upon reception at the laboratory.: LK7069

DISSOLVED METALS (SURFACE WATER)

Sample LK7026 was filtered in the laboratory prior to analyzing for metals.

CONVENTIONAL PARAMETERS (SURFACE WATER)

Reported detection limits are multiplied by dilution factors used for sample analysis.

Thiosulfate: Detection limit raised due to matrix interference. LK7024, LK7025

Nitrate and Nitrite: Due to the sample matrix, a better detection limit cannot be reported. LK7026

TOC<DOC: Both values fall within acceptable RPD limits for duplicates and are likely equivalent. LK7024, LK7025

Results relate only to the items tested.

Agnico Eagle Mines Limited

Site Location: MEADOWBANK DIVISION

Your P.O. #: OL-1183515 Sampler Initials: AG

QUALITY ASSURANCE REPORT

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
2374698	GXL	Spiked Blank	Nitrate (N) and Nitrite(N)	2023/02/02		101	%
			Nitrites (N-NO2-)	2023/02/02		91	96
2374698	GXL	Method Blank	Nitrate (N) and Nitrite(N)	2023/02/02	< 0.020		mg/L
			Nitrites (N-NO2-)	2023/02/02	<0.020		mg/L
2374699	GXL	Spiked Blank	Bromide (Br-)	2023/02/02		99	%
			Chloride (CI)	2023/02/02		95	%
			Sulfates (SO4)	2023/02/02		97	%
2374699	GXL	Method Blank	Bromide (Br-)	2023/02/02	< 0.10		mg/L
			Chloride (CI)	2023/02/02	< 0.050		mg/L
			Sulfates (SO4)	2023/02/02	< 0.50		mg/L
2374702	CLO	QC Standard	Orthophosphate (P)	2023/02/02		98	%
2374702	CLO	Spiked Blank	Orthophosphate (P)	2023/02/02		96	%
2374702	CLO	Method Blank	Orthophosphate (P)	2023/02/02	< 0.050		mg/L
2374706	GXL	Spiked Blank	Thiocyanate	2023/02/02		101	76
2374706	GXL	Method Blank	Thiocyanate	2023/02/02	< 0.17	202	mg/L
2374733	ZLI	Spiked Blank	pH	2023/02/03	40.27	101	%
2374742	ZLI	Spiked Blank	Alkalinity Total (as CaCO3) pH 4.5	2023/02/03		105	%
2374742	ZLI	Method Blank	Alkalinity Total (as CaCO3) pH 4.5	2023/02/03	<1.0	105	mg/L
2374743	ZLI	Spiked Blank			<1.0	95	%
2374743			Conductivity	2023/02/03	< 0.0010	95	
	ZLI	Method Blank	Conductivity	2023/02/03	<0.0010	100	mS/cn
2374830	GXL	Spiked Blank	Cyanate (CNO-)	2023/02/07	-0.000	109	%
2374830	GXL	Method Blank	Cyanate (CNO-)	2023/02/07	<0.050		mg/L
2374831	GXL	Spiked Blank	Thiocyanate	2023/02/03		99	96
2374831	GXL	Method Blank	Thiocyanate	2023/02/03	<0.17		mg/L
2374832	GXL	Spiked Blank	Thiosulfate	2023/02/03		99	%
2374832	GXL	Method Blank	Thiosulfate	2023/02/03	< 0.13		mg/L
2374880	BAG	Spiked Blank	Dissolved organic carbon	2023/02/03		105	96
2374880	BAG	Method Blank	Dissolved organic carbon	2023/02/03	<0.20		mg/L
2374889	CBO	Spiked Blank	Aluminum (Al)	2023/02/03		100	%
			Antimony (Sb)	2023/02/03		106	%
			Silver (Ag)	2023/02/03		93	%
			Arsenic (As)	2023/02/03		98	%
			Barium (Ba)	2023/02/03		110	%
			Beryllium (Be)	2023/02/03		102	%
			Boron (B)	2023/02/03		104	96
			Cadmium (Cd)	2023/02/03		100	96
	Chromium (Cr)	2023/02/03		105	96		
			Copper (Cu)	2023/02/03		101	%
			Tin (Sn)	2023/02/03		107	56
			Iron (Fe)	2023/02/03		102	96
			Lithium (Li)	2023/02/03		105	96
	Manganese (Mn)	2023/02/03		104	96		
	Molybdenum (Mo)	2023/02/03		105	%		
		Mercury (Hg)	2023/02/03		107	%	
		Nickel (Ni)	2023/02/03		103	96	
			Phosphorus	2023/02/03		94	%
			Lead (Pb)	2023/02/03		104	%
			Selenium (Se)	2023/02/03		103	%
			Strontium (Sr)	2023/02/03		107	16
			Thallium (TI)	2023/02/03		102	16
			manum (n)	2023/02/03		102	70

Page 8 of 14

2023/02/15 17:26

Your P.O. #: OL-1183515 Sampler Initials: AG

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Titanium (Ti)	2023/02/03		102	%
			Vanadium (V)	2023/02/03		105	94
			Zinc (Zn)	2023/02/03		100	26
374889	CBO	Method Blank	Aluminum (Al)	2023/02/03	<10		ug/L
			Antimony (Sb)	2023/02/03	<1.0		ug/L
			Silver (Ag)	2023/02/03	< 0.10		ug/L
			Arsenic (As)	2023/02/03	< 0.30		ug/L
			Barium (Ba)	2023/02/03	<2.0		ug/L
			Beryllium (Be)	2023/02/03	< 0.40		ug/L
			Boron (3)	2023/02/03	<20		ug/L
			Cadmium (Cd)	2023/02/03	< 0.20		ug/L
			Chromium (Cr)	2023/02/03	< 0.50		ug/L
			Copper(Cu)	2023/02/03	< 0.50		ug/L
			Tin (Sn)	2023/02/03	<1.0		ug/L
			Iron (Fe)	2023/02/03	<60		ug/L
			Lithium (Li)	2023/02/03	<10		ug/t
			Manganese (Mn)	2023/02/03	< 0.40		ug/l
			Molybdenum (Mo)	2023/02/03	< 0.50		ug/l
			Mercury (Hg)	2023/02/03	< 0.10		ug/l
			Nickel (Ni)	2023/02/03	<1.0		ug/l
			Phosphorus	2023/02/03	<10		ug/l
			Lead (Pb)	2023/02/03	< 0.10		ug/l
			Selenium (Se)	2023/02/03	<1.0		ug/l
			Strontium (Sr)	2023/02/03	<2.0		ug/l
			Thallium (TI)	2023/02/03	<2.0		ug/l
			Uranium (U)	2023/02/03	<1.0		ug/
			Titanium (Ti)	2023/02/03	<10		ug/l
			Vanadium (V)	2023/02/03	<2.0		ug/l
			Zinc (Zn)	2023/02/03	<5.0		ug/l
374925	DMI	Spiked Blank	Total Cyanide (CN)	2023/02/03		103	%
374925	DMI	Method Blank	Total Cyanide (CN)	2023/02/03	< 0.0030		mg/
374956	ZLI	Spiked Blank	Fluoride (F)	2023/02/03		94	%
74956	ZLI	Method Blank	Fluoride (F)	2023/02/03	< 0.10		mg/
74968	DMI	Spiked Blank	Weak Acid Dissociable Cyanide (CN-)	2023/02/09		99	96
74968	DMI	Method Blank	Weak Acid Dissociable Cyanide (CN-)	2023/02/09	< 0.0030		mg/
75043	STS	Spiked Blank	Aluminum (Al)	2023/02/07		91	94
			Antimony (Sb)	2023/02/07		101	24
			Silver (Ag)	2023/02/07		79 (1)	%
			Arsenic (As)	2023/02/07		94	%
			Barium (Ba)	2023/02/07		92	%
			Beryllium (Be)	2023/02/07		95	96
			Boron (B)	2023/02/07		97	%
			Cadmium (Cd)	2023/02/07		97	94
			Chromium (Cr)	2023/02/07		94	96
			Copper (Cu)	2023/02/07		88	%
			Tin (Sn)	2023/02/07		100	94
			Iron (Fe)	2023/02/07		100	%
			Lithium (Li)	2023/02/07		89	%
			Manganese (Mn)	2023/02/07		92	%
			Mercury (Hg)	2023/02/07		99	%
			Molybdenum (Mo)	2023/02/07		94	96

Page 9 of 14 2023/02/15 17:26

Your P.O. #: OL-1183515 Sampler Initials: AG

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Nickel (Ni)	2023/02/07		92	%
			Total phosphorous	2023/02/07		93	56
			Lead (Pb)	2023/02/07		93	%
			Selenium (Se)	2023/02/07		97	%
			Strontium (Sr)	2023/02/07		95	96
			Thallium (TI)	2023/02/07		89	56
			Titanium (Ti)	2023/02/07		89	56
			Uranium (U)	2023/02/07		90	%
			Vanadium (V)	2023/02/07		90	%
			Zinc (Zn)	2023/02/07		92	%
2375043	ST5	Method Blank	Aluminum (Al)	2023/02/07	<10		ug/L
			Antimony (Sb)	2023/02/07	<1.0		ug/L
			Silver (Ag)	2023/02/07	<1.0		ug/L
			Arsenic (As)	2023/02/07	<1.0		ug/L
			Barium (Ba)	2023/02/07	<2.0		ug/L
			Beryllium (Be)	2023/02/07	<2.0		ug/L
			Boron (B)	2023/02/07	<50		ug/L
			Cadmium (Cd)	2023/02/07	< 0.20		ug/L
			Chromium (Cr)	2023/02/07	<5.0		ug/L
			Copper (Cu)	2023/02/07	<1.0		ug/L
			Tin (Sn)	2023/02/07	<2.0		ug/L
			Iron (Fe)	2023/02/07	<60		ug/L
			Lithium (Li)	2023/02/07	<10		ug/L
			Manganese (Mn)	2023/02/07	<1.0		ug/L
			Mercury (Hg)	2023/02/07	< 0.10		ug/L
			Molybdenum (Mo)	2023/02/07	<1.0		ug/L
			Nickel (Ni)	2023/02/07	<2.0		ug/L
			Total phosphorous	2023/02/07	<10		ug/L
			Lead (Pb)	2023/02/07	18,		ug/L
			2220 (1.0)	2020,02,0	RDL=0.50		-01-
			Selenium (Se)	2023/02/07	<3.0		ug/L
			Strontium (Sr)	2023/02/07	<2.0		ug/L
			Thailium (TI)	2023/02/07	<2.0		ug/L
			Titanium (Ti)	2023/02/07	<10		ug/L
			Uranium (U)	2023/02/07	<1.0		ug/L
			Vanadium (V)	2023/02/07	<2.0		ug/L
			Zinc (Zn)	2023/02/07	10,		ug/L
			and family		RDL=7.0		-04-
2375110	ZEO	Spiked Blank	Aluminum (Al)	2023/02/06		99	%
			Antimony (Sb)	2023/02/06		99	%
			Silver (Ag)	2023/02/06		95	56
			Arsenic (As)	2023/02/06		96	96
			Barlum (Ba)	2023/02/06		95	%
			Beryllium (Be)	2023/02/06		98	%
			Boron (B)	2023/02/06		102	%
			Cadmium (Cd)	2023/02/06		96	%
			Chromium (Cr)	2023/02/06		96	56
			Copper (Cu)	2023/02/06		94	%
			Tin (Sn)	2023/02/06		98	%
			Iron (Fe)	2023/02/06		103	%
			mon (re)	2023/02/00		103	%

Page 10 of 14

2023/02/15 17:26

Your P.O. #: OL-1183515 Sampler Initials: AG

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
DUCCII	mit	QC Type	Manganese (Mn)	2023/02/06	Value	95	%
			Mercury (Hg)	2023/02/06		108	56
			Molybdenum (Mo)	2023/02/06		95	%
			Nickel (Ni)	2023/02/06		96	56
			Total phosphorous	2023/02/06		99	16
			Lead (Pb)	2023/02/06		97	56
			Selenium (Se)	2023/02/06		99	56
			Strontium (Sr)	2023/02/06		98	56
			Thallium (TI)	2023/02/06		97	56
			Titanium (Ti)	2023/02/06		95	56
			Uranium (U)	2023/02/06		97	%
			Vanadium (V)	2023/02/06		93	%
			Zinc (Zn)			96	56
375110	ZEO	Method Blank	Aluminum (Al)	2023/02/06	<10	96	ug/L
3/3110	200	Method blank			<1.0		
			Antimony (Sb)	2023/02/06			ug/L
			Silver (Ag)	2023/02/06	<1.0		ug/L
			Arsenic (As)	2023/02/06	<1.0		ug/L
			Barium (Ba)	2023/02/06	<2.0		ug/L
			Beryllium (Be)	2023/02/06	<2.0		ug/L
			Boren (B)	2023/02/06	<50		ug/L
			Cadmium (Cd)	2023/02/06	<0.20		ug/L
			Chromium (Cr)	2023/02/06	<5.0		ug/L
			Copper (Cu)	2023/02/06	<2.1		ug/L
			Tin (Sn)	2023/02/06	<2.0		ug/L
			Iron (Fe)	2023/02/06	<60		ug/L
			Lithium (Li)	2023/02/06	<10		ug/L
			Manganese (Mn)	2023/02/06	<1.0		ug/L
			Mercury (Hg)	2023/02/06	< 0.10		ug/L
			Molybdenum (Mo)	2023/02/06	<1.0		ug/L
			Nickel (Ni)	2023/02/06	<2.0		ug/L
			Total phosphorous	2023/02/06	<10		ug/L
			Lead (Pb)	2023/02/06	<0.50		ug/L
			Selenium (Se)	2023/02/06	<3.0		ug/L
			Strontium (Sr)	2023/02/06	<2.0		ug/l
			Thallium (TI)	2023/02/06	<2.0		ug/l
			Titanium (Ti)	2023/02/06	<10		ug/l
			Uranium (U)	2023/02/06	<1.0		ug/l
			Vanadium (V)	2023/02/06	<2.0		ug/l
			Zinc (Zn)	2023/02/06	<7.0		ug/l
375142	ZEO	Spiked Blank	Aluminum (Al)	2023/02/06		96	%
			Antimony (Sb)	2023/02/06		95	56
			Silver (Ag)	2023/02/06		90	%
			Arsenic (As)	2023/02/06		92	56
			Barium (Ba)	2023/02/06		91	%
			Beryllium (Be)	2023/02/06		93	%
			Boron (B)	2023/02/06		97	%
			Cadmium (Cd)	2023/02/06		92	56
			Chromium (Cr)	2023/02/06		91	%
			Copper (Cu)	2023/02/06		87	56
			Tin (Sn)	2023/02/06		94	56
			Iron (Fe)	2023/02/06		97	56

Page 11 of 14

2023/02/15 17:26

Your P.O. #: OL-1183515 Sampler Initials: AG

QUALITY ASSURANCE REPORT(CONT'D)

Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
			Lithium (Li)	2023/02/06		89	%
			Manganese (Mn)	2023/02/06		89	%
			Molybdenum (Mo)	2023/02/06		92	96
			Mercury (Hg)	2023/02/06		100	%
			Nickel (Ni)	2023/02/06		89	96
			Phosphorus	2023/02/06		95	96
			Lead (Pb)	2023/02/06		90	96
			Selenium (Se)	2023/02/06		95	96
			Strontium (Sr)	2023/02/06		93	96
			Thallium (TI)	2023/02/06		89	96
			Uranium (U)	2023/02/06		90	%
			Titanium (Ti)	2023/02/06		88	96
			Vanadium (V)	2023/02/06		89	96
			Zinc (Zn)	2023/02/06		91	96
375142	ZEO	Method Blank	Aluminum (Al)	2023/02/06	<10		ug/t
			Antimony (Sb)	2023/02/06	<1.0		ug/L
			Silver (Ag)	2023/02/06	< 0.10		ug/t
			Arsenic (As)	2023/02/06	< 0.30		ug/l
			Barium (Ba)	2023/02/06	<2.0		ug/t
			Beryllium (Be)	2023/02/06	< 0.40		ug/t
			Boron (B)	2023/02/06	<20		ug/l
			Cadmium (Cd)	2023/02/06	<0.20		ug/t
			Chromium (Cr)	2023/02/06	<0.50		ug/l
			Copper (Cu)	2023/02/06	<0.50		ug/I
			Tin (Sn)	2023/02/06	<1.0		ug/l
			Iron (Fe)	2023/02/06	<60		ug/t
			Lithium (Li)	2023/02/06	<10		ug/t
			Manganese (Mn)	2023/02/06	<0.40		ug/t
			Molybdenum (Mo)	2023/02/06	<0.50		-
					<0.10		ug/L
			Mercury (Hg)	2023/02/06	<1.0		ug/l
			Nickel (Ni)	2023/02/06			ug/L
			Phosphorus	2023/02/06	<10		ug/l
			Lead (Pb)	2023/02/06	<0.10		ug/l
			Selenium (Se)	2023/02/06	<1.0		ug/l
			Strontium (Sr)	2023/02/06	<2.0		ug/t
			Thallium (TI)	2023/02/06	<2.0		ug/l
			Uranium (U)	2023/02/06	<1.0		ug/l
			Titanium (Ti)	2023/02/06	<10		ug/I
			Vanadium (V)	2023/02/06	<2.0		ug/l
			Zinc (Zn)	2023/02/06	<5.0		ug/l
375176	HGU	Spiked Blank	Total suspended solids (TSS)	2023/02/06		98	%
75176	HGU	Method Blank	Total suspended solids (TSS)	2023/02/06	<2.0		mg/
75320	BAG	Spiked Blank	Total Organic Carbon	2023/02/07		108	%
375320	BAG	Method Blank	Total Organic Carbon	2023/02/07	0.22, RDL=0.20		mg/
75424	SKL	Spiked Blank	TKN Total Kjeldahl Nitrogen	2023/02/08		104	76
75424	SKL	Method Blank	TKN Total Kjeldahl Nitrogen	2023/02/07	< 0.40		mg/
75488	HGU	Spiked Blank	Total Dissolved Solids	2023/02/07		100	%
75488	HGU	Method Blank	Total Dissolved Solids	2023/02/07	<10		mg/
75516	CLO	Spiked Blank	Nitrogen ammonia (N-NH4+ and N-NH3)	2023/02/07		94	%
375516	CLO.	Method Blank	Nitrogen ammonia (N-NH4+ and N-NH3)	2023/02/07	< 0.020		mg/

Page 12 of 14

2023/02/15 17:26

Agnico Eagle Mines Limited

Site Location: MEADOWBANK DIVISION

Your P.O. #: OL-1183515 Sampler Initials: AG

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch Init QC Type Parameter Date Analyzed Value Recovery 2375603 DV3 QC Standard COD 2023/02/08 100 2375603 DV3 Spiked Blank COD 2023/02/08 103 2375603 DV3 Spiked Blank DUP COD 2023/02/08 5.0 2377179 DV3 Method Blank COD 2023/02/15 5.0 2377179 DV3 Spiked Blank COD 2023/02/15 98 2377179 DV3 Spiked Blank DUP COD 2023/02/15 90 2377179 DV3 Spiked Blank DUP COD 2023/02/15 5.0								
2375603 DY3 Spiked Blank COD 2023/02/08 103 2375603 DY3 Spiked Blank DUP COD 2023/02/08 104 2375603 DY3 Method Blank COD 2023/02/08 <5.0 2377179 DY3 QC Standard COD 2023/02/15 100 2377179 DY3 Spiked Blank COD 2023/02/15 98 2377179 DY3 Spiked Blank DUP COD 2023/02/15 100		Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
2375603 DY3 Spiked Blank DUP COD 2023/02/08 104 2375603 DY3 Method Blank COD 2023/02/08 <5.0	2375603	DY3	QC Standard	COD	2023/02/08		100	%
2375603 DY3 Method Blank COD 2023/02/08 <5.0	2375603	DY3	Spiked Blank	COD	2023/02/08		103	96
2377179 DY3 QC Standard COD 2023/02/15 100 2377179 DY3 Spiked Blank COD 2023/02/15 98 2377179 DY3 Spiked Blank DUP COD 2023/02/15 100	2375603	DY3	Spiked Blank DUP	COD	2023/02/08		104	%
2377179 DY3 Spiked Blank COD 2023/02/15 98 2377179 DY3 Spiked Blank DUP COD 2023/02/15 100	2375603	DY3	Method Blank	COD	2023/02/08	<5.0		mg/L
2377179 DY3 Spiked Blank DUP COD 2023/02/15 100	2377179	DY3	QC Standard	COD	2023/02/15		100	%
	2377179	DY3	Spiked Blank	COD	2023/02/15		98	%
2377179 DY3 Method Blank COD 2023/02/15 <5.0	2377179	DY3	Spiked Blank DUP	COD	2023/02/15		100	96
	2377179	DY3	Method Blank	COD	2023/02/15	<5.0		mg/L

RDL = Reportable Detection Limit

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

(1) Recovery or relative percent difference (RPD) for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Jonathan Fauvel, B.Sc., Chemist, Montreal, Manager of Inorganics

(Source) M. Crypties

Michelina Cinquino, Analyst II

Mina El Masri 2001 087

Mira El Masri, M.Sc. Chemist, Montréal, Analyst II

Shuryang Shuryang Shuryang Shuryang

Shu Yang, B.Sc. Chemist, Montreal, Analyst II

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by (0), (1) responsible for (2) (3) laboratory operations.

F.5. R1/P5

	_													100												
**	- lin	- 11	Mineral Minera Minera Minera Minera Minera Minera Minera Minera Minera Mineral	2000 to	304A	704	1000	700	NO.	NO-DAIL NO	NO.	NO.	NO-GO	NO.	8000	3040	NO.	NO NO	30400 WA	NO.	NOON.	704	700	3044 179	No.	2000 A
_	100	60	100	50076. 576	United (III	10076	100	Use/MI	127	LICH.	LINE NO.	10075	Leader Life	Uses:	17	5877	16.	18	100 P	16	LIBERTA EA	580-78 574	Marco G	1400°/A	1000	1.80mm 1.80 1.80
-	Service Service	12	85	ä		1				ı					ÿ				9000						8	- 14
Teramon.	Marian Marian Marian		1	10		ì				i i	ě				8				10				2002	ů.	(#) (0) (4)	
-	Street Con-	2584 2584 2684 2684	8	N- 123															1000						8,000	
	Alberton Laborator Laborator Laborator	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10	12 20 20 20 20 20 20		2 0				100 100 100 100 100 100 100 100 100 100	10 40 40 40				90 90 90 9				90 90 410 46				85 49 10	90 90	60 60 60 60	
in the Managhama P	ST COMMENT	200																								410
100	NAME OF TAXABLE PARTY.	200																								-
100	Marine Marine Service Service	253	100 100 101 101	13 00 07	60	98 98 07 07 04	50 M 00 00 00	10 10 10	3						*				50				108 08 08		#3 #	41/
rib.	Access Control of the Control of the	04500 04500 04500 04500 04500 04500 04500 04500 04500	100	22	- 12	62 54 9 9	73	20000	8						20				1000				2888		100	57
~	STATE OF THE PARTY									-					7.0											48
500	AND DESCRIPTION OF THE PERSON NAMED IN COLUMN 1	100 100 100 100 100 100 100 100 100 100	¥	10	7M	8	10	- N	9 5 5 5	9	12	ÿ	W	60 60 50 50	100 100 100	8	5	300	2000	8	e S	27 17 8	95 8	100 100 100 100 100 100 100 100 100 100	3000	18
***	District Control of the Control of t	100 M	10 85 17 17	55 55 75	1000	10 10 10 10 10 10 10 10 10 10 10 10 10 1	100 100 104 104	16 M	100	8	2	77	18 17 18 18		13 12 2 14	100	400 200 200	100 27 38	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Ÿ	100 17.8 17	900 000 27	E	d disc	4	-01
	25%	100 100 100 100 100 100 100 100 100 100	80	8,635	N 887.5	10 10 10 10 10	68 47 20 60 61	10 10 10 10	9	á	215	50	0.0	0011	8	26.5	0-6	9	50 50 50 50 50 50	SE FIR Se	ii.	15 27	5.556.5	200	0.00	
**	Marketon Ma		100	50 50 40	115 018 018 278		100 100 100 100 100 100 100 100 100 100	001 000 000 000 000 000	17 17 14	8	100 100 100 177 178	100	10 10 10 14		000 000 774 848	10 M	9	100	80	100	063 737 841	14	1000	100	10	46
there is two	-	20	4	å	å	-	å	4	è	à	- Aller	4	ă.	- Al-		ă.	- Aller	À	ä	dia.	à	ä	- A	-	ě,	4
States in Non	100 miles	200	a docenie et	200	22 20 20 20 20 20 20 20 20 20 20 20 20 2	III James S	30 30 mm 1	20 30 K K B B A	20 E0 400	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 10 10 10 10 10 10 10 10 10 10 10 10 1	200	22 20 30 50 5	97 JOSEPH 2	00 80 80 80 80 80 80 80 80 80 80 80 80 8	2 x 20 x 40 £ 5	0 a a c c c c c c c c c c c c c c c c c	20 Miles (20 Mil	20 20 20 20 20 20 20 20 20 20 20 20 20 2	10 40 10 10 10 10 10 10 10 10 10 10 10 10 10	22 40 50 50 80 50	22 23 26 20 20 20 20 20 20 20 20 20 20 20 20 20	22 40 10 10 10 10 10	00 00 00 00 00 00	87 87 87 17 77 88 88 18 14 48
Not retire to	STATE OF THE PARTY	- 1	22.22	33.33	1000 4	3	9333	1000	2000	2000		200	33.33	10.00	200	53333	51110	22.22	93333	9000	22.22	23333	2000 2	22	23333	200
	Street Control of Cont		- C	8% 100 200	004	8. 0	67L	554	6.	9	55	8.	0	- 5	2) 53	15	- 52	15 13	10		5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	12	15	10	- 15	- 55
	100 mm	1		â	ì	i	ã	ì	i	â	ì	i	ã	à	â	â	ì	÷	- 6	à	â	â	à	â	ã	i
-	Acres and a second	20	100	9	- 10	-	á	1000	i	É	9 2	-	30 3	- 0	-	300	2000	-	3133	-	-	300	300	-	9	- N
warm roads	100 (100)	1	10 44 30	80.0	0.0	8	50	0.0	000	0	9.0	8	0.0	0.0	0	1000000	83.6	0	0.0	9	0.0	3	903.6	8	- 02	1.00 1.00 1.00
	Bellinote District	4.	9	300	2	3	23	8	25	8	0	9	2	- 0	8	2	2	50	2	9	0	3	2	50	365.395	10
Perfections		200	25 25 25 25 25 25 25 25 25 25 25 25 25 2	02 100 200	X	# # # # # # # # # # # # # # # # # # #	10 10 10	9.00	\$1 8 8	95	×.	8	2000	0286	200			10	00.000.000	-	-	0.0	128 50	100 100 100	25 88 35	200 200 200
	1000	AND DESIGNATION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NAMED IN	-	- 68	- 0	9	0	-0	9	- 0	- 2	9	9	-	-63	- 8	-	- 11	9		- 8	8	9	-0	9	- 12
tra framericalispes 14	Shirter Shirter Shirter	Second Second Application Application Application	5 5 5	300000	0000	9 9 9	38.00	10 10 10	200000000000000000000000000000000000000	88 88 88 78		8 8	9	10 10 10	30.00	90	800.00	8	38355	8 8 9 5	8	900 91)	1000	9	90	10000 100 100 100 100 100 100 100 100 1
	-	eranne.			-		-	-			-			_		-	-		-	-		12	-	- 10	-	44
	MITTERS NO.	#1000000 #10000 #1000	1	1000	1000	10 10 10	10 10 10 10 10	10	- 12	8		200	10 10 10 10	-	# # #	1 1 100	10.0	900	11303	6	90	1 1 1 1 1 1	ii ii	10 10 10	1 N N N N N N N N N N N N N N N N N N N	TROOP 10 Au Au TROOP
Interpretar	100	100	10	100	- 15	10	100	- 15	10	1.5	- 15	10	15	- 15	100	100	- 15	105	15	- 15	10	100	- 15	10	15	100

0

H

0

0

Your P.O. #: OL-1183515 Your Project #: MEADOWBANK DIVISION Your C.O.C. #: n/a

Attention: Thomas Genty

Agnico Eagle Mines Limited CSD 10200 route de Preissac Rouyn -Noranda, QC Canada JOY 100

> Report Date: 2023/05/26 Report #: R2847093 Version: 2 - Partial

CERTIFICATE OF ANALYSIS - PARTIAL RESULTS

BUREAU VERITAS JOB #: C315520 Received: 2023/04/14, 08:10

Sample Matrix: Surface Water # Samples Received: 6

			_		
Analyses	Oursetitu	Date Extracted	Date Analyzed	Laboratory Method	Analytical Method
Total Alkalinity (end point 4.5)-waters	3	N/A		STL SOP-00038	SM 23 2320-B m
Anions in water	3	N/A		STL SOP-00014	MA.300-lons 1.3 R6 m
Weak Acid Dissociable Cyanides-waters	3			STL SOP-00035	MA300-CN 1.2 R4 m
Total Cyanide in waters	3			STL SOP-00035	MA300-CN 1.2 R4 m
Chemical Oxygen Demand	4	2023/04/20	2023/04/20	STL SOP-00009	MA315-DCO 1.1 R4 m
Conductivity in waters	3	N/A	2023/04/14	STL SOP-00038	SM 23 2510-B m
Cyanates in waters	5	N/A	2023/04/25	STL SOP-00010	MA.315-CNO 1.1 R3 m
Dissolved Organic Carbon (2)	3	2023/04/15	2023/04/16	STL SOP-00243	SM 23 5310-B m
Fluoride in waters	2	N/A	2023/04/14	STL SOP-00038	SM 23 4500-F m
Fluoride in waters	1	N/A	2023/04/17	STL SOP-00038	SM 23 4500-F m
Total Suspended Solids	3	2023/04/17	2023/04/19	STL SOP-00015	MA.104-S.S. 2.0 m
Dissolved Metals (Low LD)-Filtered at BV	1	N/A	2023/04/20	STL SOP-00062	MA.200-Mét. 1.2 R7 m
Dissolved Metals (Low DL) site filtered	2	N/A	2023/04/21	STL SOP-00062	MA.200-Mét. 1.2 R7 m
Total Extractable Metals	1	2023/04/20	2023/04/21	STL SOP-00062	MA.200-Mét. 1.2 R7 m
Total Extractable Metals	2	2023/04/20	2023/04/24	STL SOP-00062	MA.200-Mét. 1.2 R7 m
Ammonia Nitrogen in water	3	N/A	2023/04/20	STL SOP-00040	MA.300-N 2.0 R2 m
Nitrates(NO3-), Nitrites(NO2-)-water	3	N/A	2023/04/15	STL SOP-00014	MA.300-lons 1.3 R6 m
pH in water	3	N/A	2023/04/14	STL SOP-00038	MA.100-pH 1.1 R3 m
Ortho Phosphate-water	3	N/A	2023/04/14	STL SOP-00003	MA.303-P 1.1 R2 m
Total Dissolved Solids	3	2023/04/17	2023/04/18	STL SOP-00050	MA.115-S.D. 1.0 R4 m
Thiocyanates-water	3	N/A	2023/04/25	STL SOP-00010	MA.304-lons 1.1 R1 m
Thiosulfates-water	3	N/A	2023/04/26	STL SOP-00010	MA.304-lons 1.1 R1 m
Tot. Kjeldah Nitrogen(calculation)-water	5	2023/04/19	2023/04/19	STL SOP-00077	MOE:TOTNUT-E3516v1.3
Total Organic Carbon-water (3)	3	N/A	2023/04/16	STL SOP-00243	SM 23 5310-B m
Nitrogen (total available) (1)	1	2023/04/19	2023/04/19	AB SOP-00093	SM 24 4500-N C m
Nitrogen (total available) (1)	4	2023/04/19	2023/04/20	AB SOP-00093	SM 24 4500-N C m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as COME, MELCC, EPA, APHA.

Your P.O. #: OL-1183515 Your Project #: MEADOWBANK DIVISION Your C.O.C. #: n/a

Attention: Thomas Genty

Agnico Eagle Mines Limited CSD 10200 route de Preissac Rouyn -Noranda, QC Canada JOY 100

> Report Date: 2023/05/26 Report #: R2847093 Version: 2 - Partial

CERTIFICATE OF ANALYSIS - PARTIAL RESULTS

BUREAU VERITAS JOB #: C315520 Received: 2023/04/14, 08:10

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except blota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

(1) This test was performed by Bureau Veritas Calgary, 4000 19 St NE , Calgary, AB, T2E 6P8

(2) DOC present in the sample should be considered as non-purgeable DOC

(3) TOC present in the sample should be considered as non-purgeable TOC

Note: All parameters included in the present certificate are accredited by the MELCC unless stated otherwise.

Encryption Key

Josus Moran Project Manager 26 May 2023 09:48:20

Please direct all questions regarding this Certificate of Analysis to: Josue Moran, Project Manager

Email: josue.moran@bureauveritas.com

Phone# (514) 448-9001

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by Aglaia Yannakis, General Manager responsible for Quebec Environmental laboratory operations.

0

0

BILLE

0 0

0

Agnico Eagle Mines Limited Client Project #: MEADOWBANK DIVISION Your P.O. #: OL-1183515 Sampler Initials: AG

DISSOLVED METALS (SURFACE WATER)

Bureau Veritas ID		LP1613	LP1614			LP1615		
Sampling Date		2023/04/13	2023/04/13			2023/04/13		
COC Number		n/a	n/a			n/a		
	Units	RAW WATER ST19	FEED MBBR	RDL	QC Batch	TREATED WATER	RDL	QC Batch
Aluminum (Al) †	ug/L	<10	<10	10	2392196	<10	10	2390974
Antimony (Sb)	ug/L	18	13	1.0	2392196	6.1	1.0	2390974
Silver (Ag) †	ug/L	<0.10	<0.10	0.10	2392196	<0.10	0.10	2390974
Arsenic (As)	ug/L	210	6.1	0.30	2392196	5.4	0.30	2390974
Barlum (Ba)	ug/L	66	61	2.0	2392196	32	2.0	2390974
Beryllium (Be) †	ug/L	<0.40	< 0.40	0.40	2392196	<0.40	0.40	2390974
Bismuth (Bi) +	ug/L	< 0.25	< 0.25	0.25	2392196	<0.25	0.25	2390974
Boron (B)	ug/L	390	430	20	2392196	260	20	2390974
Cadmium (Cd)	ug/L	<0.20	< 0.20	0.20	2392196	<0.20	0.20	2390974
Calcium (Ca)	ug/L	520000	510000	300	2392196	350000	300	2390974
Chromium (Cr)	ug/L	<0.50	0.53	0.50	2392196	<0.50	0.50	2390974
Cobalt (Co)	ug/L	760	760	0.50	2392196	560	0.50	2390974
Copper (Cu)	ug/L	16	1.8	0.50	2392196	1.8	0.50	2390974
Tin (Sn) †	ug/L	<1.0	<1.0	1.0	2392196	2.1	1.0	2390974
Iron (Fe)	ug/L	<60	<60	60	2392196	<60	60	2390974
Lithium (Li) †	ug/L	<10	<10	10	2392196	<10	10	2390974
Magnesium (Mg)	ug/L	27000	28000	100	2392196	21000	100	2390974
Manganese (Mn)	ug/L	3.2	12	0.40	2392196	2.7	0.40	2390974
Molybdenum (Mo)	ug/L	130	110	0.50	2392196	80	0.50	2390974
Mercury (Hg)	ug/L	<0.10	< 0.10	0.10	2392196	<0.10	0.10	2390974
Nickel (Ni)	ug/L	220	1.3	1.0	2392196	1.1	1.0	2390974
Phosphorus	ug/L	<10	<10	10	2392196	1100	10	2390974
Lead (Pb)	ug/L	<0.10	< 0.10	0.10	2392196	<0.10	0.10	2390974
Potassium (K) †	ug/L	240000	250000	100	2392196	190000	100	2390974
Selenium (Se)	ug/L	210	210	1.0	2392196	44	10	2390974
Silicon (Si) †	ug/L	3400	2600	100	2392196	2200	100	2390974
Strontium (Sr) †	ug/L	2100	2100	2.0	2392196	1600	2.0	2390974
Sodium (Na)	ug/L	600000	680000	100	2392196	860000	100	2390974
Thallium (TI) †	ug/L	<2.0	<2.0	2.0	2392196	<2.0	2.0	2390974
Uranium (U)	ug/L	14	9.6	1.0	2392196	1.8	1.0	2390974
Titanium (Ti) †	ug/L	<10	<10	10	2392196	<10	10	2390974
Vanadium (V) †	ug/L	<2.0	<2.0	2.0	2392196	<2.0	2.0	2390974
Zinc (Zn)	ug/L	8.7	8.9	5.0	2392196	5.0	5.0	2390974
Zirconium (Zr) †	ug/L	<0.50	< 0.50	0.50	2392196	<0.50	0.50	2390974
RDL = Reportable Detect	ion Limit							

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

† Parameter is not accreditable

DISSOLVED METALS (SURFACE WATER)

Bureau Veritas ID		LP1613	LP1614			LP1615		
Sampling Date		2023/04/13	2023/04/13			2023/04/13		
COC Number		n/a	n/a			n/a		
	Units	RAW WATER ST19	FEED MBBR	RDL	QC Batch	TREATED WATER	RDL	QC Batch
Sulfur (S) †	ug/L	930000	950000	5000	2392196	770000	500	2390974

RDL = Reportable Detection Limit QC Batch = Quality Control Batch † Parameter is not accreditable 0

0

110

0 0

Ģ

ď

Agnico Eagle Mines Limited Client Project #: MEADOWBANK DIVISION Your P.O. #: OL-1183515 Sampler Initials: AG

TOTAL EXTRACTABLE METALS (SURFACE WATER)

Bureau Veritas ID		LP1613			LP1614		LP1615		
Sampling Date		2023/04/13			2023/04/13		2023/04/13		
COC Number		n/a			n/a		n/a		
	Units	RAW WATER ST19	RDL	QC Batch	FEED MBBR	RDL	TREATED WATER	RDL	QC Batch
Aluminum (AI)	ug/L	14	10	2392042	<10	10	<10	10	2392053
Antimony (Sb)	ug/L	18	1.0	2392042	14	1.0	5.9	1.0	2392053
Silver (Ag)	ug/L	<1.0	1.0	2392042	<1.0	1.0	<1.0	1.0	2392053
Arsenic (As)	ug/L	190	1.0	2392042	6.4	1.0	5.9	1.0	2392053
Barium (Ba)	ug/L	59	2.0	2392042	65	2.0	45	2.0	2392053
Beryllium (Be)	ug/L	<2.0	2.0	2392042	<2.0	2.0	<2.0	2.0	2392053
Bismuth (Bi) ††	ug/L	<1.0	1.0	2392042	<1.0	1.0	<1.0	1.0	2392053
Boron (B) †	ug/L	370	50	2392042	320	50	240	50	2392053
Cadmium (Cd)	ug/L	<0.20	0.20	2392042	<0.20	0.20	<0.20	0.20	2392053
Calcium (Ca) †	ug/L	460000	500	2392042	430000	500	330000	500	2392053
Chromium (Cr)	ug/L	<5.0	5.0	2392042	<5.0	5.0	<5.0	5.0	2392053
Cobalt (Co)	ug/L	720	1.0	2392042	760	1.0	620	1.0	2392053
Copper (Cu)	ug/L	16	1.0	2392042	5.5	1.0	4.1	1.0	2392053
Tin (Sn)	ug/L	<2.0	2.0	2392042	<2.0	2.0	3.0	2.0	2392053
Iron (Fe)	ug/L	<60	60	2392042	<60	60	<60	60	2392053
Lithium (Li) ††	ug/L	<10	10	2392042	<10	10	<10	10	2392053
Magnesium (Mg) †	ug/L	24000	100	2392042	26000	100	21000	100	2392053
Manganese (Mn)	ug/L	3.3	1.0	2392042	13	1.0	4.2	1.0	2392053
Mercury (Hg)	ug/L	<0.10	0.10	2392042	<0.10	0.10	<0.10	0.10	2392053
Molybdenum (Mo)	ug/L	120	1.0	2392042	110	1.0	86	1.0	2392053
Nickel (Ni)	ug/L	200	2.0	2392042	2.7	2.0	<2.0	2.0	2392053
Total phosphorous	ug/L	11	10	2392042	<10	10	1900	10	2392053
Lead (Pb)	ug/L	<0.50	0.50	2392042	<0.50	0.50	< 0.50	0.50	2392053
Potassium (K) †	ug/L	220000	500	2392042	220000	500	180000	500	2392053
Selenium (Se)	ug/L	200	3.0	2392042	220	30	110	3.0	2392053
Sodium (Na)	ug/L	600000	500	2392042	650000	500	850000	500	2392053
Sulphur(S) ++	ug/L	890000	1000	2392042	830000	10000	700000	10000	2392053
Strontium (Sr) †	ug/L	2100	2.0	2392042	2200	2.0	1700	2.0	2392053
Thallium (Tl)	ug/L	<2.0	2.0	2392042	<2.0	2.0	<2.0	2.0	2392053
Titanium (Ti) ++	ug/L	<10	10	2392042	<10	10	<10	10	2392053
Uranium (U) ††	ug/L	12	1.0	2392042	9.2	1.0	2.0	1.0	2392053
Vanadium (V)	ug/L	<2.0	2.0	2392042	<2.0	2.0	<2.0	2.0	2392053
Zinc (Zn)	ug/L	<7.0	7.0	2392042	7.3	7.0	11	7.0	2392053

RDL = Reportable Detection Limit QC Batch = Quality Control Batch †† Parameter is not accreditable † Parameter is not accredited

Page 5 of 20

TOTAL EXTRACTABLE METALS (SURFACE WATER)

Bureau Veritas ID		LP1613			LP1614		LP1615		
Sampling Date		2023/04/13			2023/04/13		2023/04/13		
COC Number		n/a			n/a		n/a		
	Units	RAW WATER ST19	RDL	QC Batch	FEED MBBR	RDL	TREATED WATER	RDL	QC Batch
Zirconium (Zr) ††	ug/L	<5.0	5.0	2392042	<5.0	5.0	<5.0	5.0	2392053

RDL = Reportable Detection Limit QC Batch = Quality Control Batch †† Parameter is not accreditable 0

0

Q

0

Agnico Eagle Mines Limited Client Project #: MEADOWBANK DIVISION Your P.O. #: OL-1183515 Sampler Initials: AG

CONVENTIONAL PARAMETERS (SURFACE WATER)

Bureau Veritas ID		LP1613	LP1614	LP1614		
Sampling Date		2023/04/13	2023/04/13	2023/04/13		
COC Number		n/a	n/a	n/a		
	Units	RAW WATER ST19	FEED MBBR	FEED MBBR Lab-Dup	RDL	QC Batch
COD	mg/L	370	340	N/A	5.0	2392047
Conductivity	mS/cm	5.1	5.4	N/A	0.0010	2390854
Cyanate (CNO-)	mg/L	0.75	4.2	N/A	0.050	2393049
Dissolved organic carbon †	mg/L	72	72	N/A	1.0	2390881
Fluoride (F)	mg/L	0.12	<0.10	N/A	0.10	2390864
Nitrate (N) and Nitrite(N)	mg/L	15	15	N/A	0.20	2390823
Nitrates (N-NO3-)	mg/L	15	15	N/A	0.20	2390823
Nitrites (N-NO2-)	mg/L	0.25	0.70	N/A	0.20	2390823
Nitrogen ammonia (N-NH4+ and N-NH3)	mg/L	57	60	N/A	0.10	2392139
Orthophosphate (P)	mg/L	< 0.050	<0.050	N/A	0.050	2390849
pH	pН	7.78	7.56	N/A	N/A	2390831
Thiocyanate	mg/L	280	290	N/A	8.5	2393051
Thiosulfate	mg/L	<1.3	<1.3	N/A	1.3	2393416
TKN Total Kjeldahl Nitrogen	mg/L	N/A	150	150	4.0	2391922
Total Cyanide (CN)	mg/L	0.12	0.12	N/A	0.0030	2391820
Total Organic Carbon	mg/L	68	68	N/A	1.0	2390868
Weak Acid Dissociable Cyanide (CN-)	mg/L	0.084	0.070	N/A	0.0030	2391819
Alkalinity Total (as CaCO3) pH 4.5 †	mg/L	110	65	N/A	1.0	2390855
Bromide (Br-)	mg/L	2.8	2.8	N/A	1.0	2390824
Chloride (CI)	mg/L	240	240	N/A	0.50	2390824
Sulfates (SO4)	mg/L	2100	2300	N/A	5.0	2390824
Total Dissolved Solids	mg/L	3900	4100	N/A	10	2390982
Total suspended solids (TSS)	mg/L	<2.0	3.0	N/A	2.0	2391178

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

† Parameter is not accreditable

CONVENTIONAL PARAMETERS (SURFACE WATER)

Bureau Veritas ID		LP1615	LP1615		LP1616	LP1617		
Sampling Date		2023/04/13	2023/04/13		2023/04/13	2023/04/13		
COC Number		n/a	n/a		n/a	n/a		
	Units	TREATED WATER	TREATED WATER Lab-Dup	RDL	R1 SCN REACTOR	R2 NIT REACTOR	RDL	QC Bat
COD	mg/L	170	N/A	5.0	N/A	N/A	5.0	239204
Conductivity	mS/cm	5.0	N/A	0.0010	N/A	N/A	0.0010	23908
Cyanate (CNO-)	mg/L	<0.050	N/A	0.050	3.7	<0.050	0.050	23930
Dissolved organic carbon †	mg/L	23	N/A	0.40	N/A	N/A	0.40	23908
Fluoride (F)	mg/L	<0.10	N/A	0.10	N/A	N/A	0.10	23908
Nitrate (N) and Nitrite(N)	mg/L	0.22	N/A	0.20	N/A	N/A	0.20	23908
Nitrates (N-NO3-)	mg/L	<0.20	N/A	0.20	N/A	N/A	0.20	23908
Nitrites (N-NO2-)	mg/L	0.22	N/A	0.20	N/A	N/A	0.20	23908
Nitrogen ammonia (N-NH4+ and N-NH3)	mg/L	2.2	N/A	0.020	N/A	N/A	0.020	23921
Orthophosphate (P)	mg/L	0.74	N/A	0.25	N/A	N/A	0.25	23908
pH	pН	7.56	7.62	N/A	N/A	N/A	N/A	23908
Thiocyanate	mg/L	<0.17	N/A	0.17	N/A	N/A	0.17	23934
Thiosulfate	mg/L	<0.13	N/A	0.13	N/A	N/A	0.13	23934
TKN Total Kjeldahl Nitrogen	mg/L	11	N/A	0.40	150	19	4.0	23919
Total Cyanide (CN)	mg/L	0.086	N/A	0.0030	N/A	N/A	N/A	23918
Total Organic Carbon	mg/L	35	N/A	1.0	N/A	N/A	N/A	23908
Weak Acid Dissociable Cyanide (CN-)	mg/L	0.056	N/A	0.0030	N/A	N/A	N/A	23918
Alkalinity Total (as CaCO3) pH 4.5 †	mg/L	380	380	1.0	N/A	N/A	N/A	23908
Bromide (Br-)	mg/L	2.3	N/A	1.0	N/A	N/A	N/A	23908
Chloride (CI)	mg/L	200	N/A	0.50	N/A	N/A	N/A	23908
Sulfates (SO4)	mg/L	2200	N/A	5.0	N/A	N/A	N/A	23908
Total Dissolved Solids	mg/L	4000	N/A	10	N/A	N/A	N/A	23909
Total suspended solids (TSS)	mg/L	22	N/A	2.0	N/A	N/A	N/A	23911

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

N/A = Not Applicable

Ģ

† Parameter is not accreditable

Ģ

Agnico Eagle Mines Limited Client Project #: MEADOWBANK DIVISION Your P.O. #: OL-1183515 Sampler Initials: AG

CONVENTIONAL PARAMETERS (SURFACE WATER)

Bureau Veritas ID		LP1618		
Sampling Date		2023/04/13		
COC Number		n/a		
	Units	R3 DENIT REACTOR	RDL	QC Batch
COD	mg/L	530	5.0	2392047
TKN Total Kjeldahl Nitrogen	mg/L	25	0.40	2391922
RDL = Reportable Detection Limit QC Batch = Quality Control Batch				

Bureau Veritas Job #: C315520 Report Date: 2023/05/26 Agnico Eagle Mines Limited Client Project #: MEADOWBANK DIVISION Your P.O. #: OL-1183515 Sampler Initials: AG

SUBCONTRACTED ANALYSIS (SURFACE WATER)

Bureau Veritas ID		LP1614			LP1615			LP1616		
Sampling Date		2023/04/13			2023/04/13			2023/04/13		
COC Number		n/a			n/a			n/a		
	Units	FEED MBBR	RDL	QC Batch	TREATED WATER	RDL	QC Batch	R1 SCN REACTOR	RDL	QC Batch
Nitrogen (N) †	mg/L	130	2.0	2392833	11	0.20	2392834	130	2.0	2392833

RDL = Reportable Detection Limit QC Batch = Quality Control Batch † Parameter is not accreditable

Bureau Veritas ID		LP1617			LP1618	LP1618		
Sampling Date		2023/04/13			2023/04/13	2023/04/13		
COC Number		n/a			n/a	n/a		
	Units	R2 NIT REACTOR	RDL	QC Batch	R3 DENIT REACTOR	R3 DENIT REACTOR Lab-Dup	RDL	QC Batch
Nitrogen (N) †	mg/L	120	2.0	2392833	25	25	1.0	2392834

RDL = Reportable Detection Limit QC Batch = Quality Control Batch † Parameter is not accreditable

Bureau Veritas Job #: C315520 Report Date: 2023/05/26

Agnico Eagle Mines Limited Client Project #: MEADOWBANK DIVISION Your P.O. #: OL-1183515 Sampler Initials: AG

GENERAL COMMENTS

Thiocyanates-water: Arrived unpreserved, preserved upon reception at the laboratory.: LP1615

Cyanates in waters: Arrived unpreserved, preserved upon reception at the laboratory.: LP1616

Tot. Kjeldah Nitrogen(calculation)-water: Arrived unpreserved, preserved upon reception at the laboratory.: LP1616

Nitrogen (total available): Arrived unpreserved, preserved upon reception at the laboratory.: LP1616

Cyanates in waters: Arrived unpreserved, preserved upon reception at the laboratory.: LP1617

Tot. Kjeldah Nitrogen(calculation)-water: Arrived unpreserved, preserved upon reception at the laboratory.: LP1617

Nitrogen (total available): Arrived unpreserved, preserved upon reception at the laboratory.: LP1617 Chemical Oxygen Demand: Arrived unpreserved, preserved upon reception at the laboratory.: LP1618

Tot. Kjeldah Nitrogen(calculation)-water: Arrived unpreserved, preserved upon reception at the laboratory.: LP1618

Nitrogen (total available): Arrived unpreserved, preserved upon reception at the laboratory.: LP1618

DISSOLVED METALS (SURFACE WATER)

Reported detection limits are multiplied by dilution factors used for sample analysis.

Sample LP1615 was filtered in the laboratory prior to analyzing for metals.

TOTAL EXTRACTABLE METALS (SURFACE WATER)

Reported detection limits are multiplied by dilution factors used for sample analysis.

CONVENTIONAL PARAMETERS (SURFACE WATER)

Reported detection limits are multiplied by dilution factors used for sample analysis.

Nitrates: Due to the sample matrix, a better detection limit cannot be reported. LP1615

TOC < DOC: Both values fall within acceptable RPD limits for duplicates and are likely equivalent. LP1613, LP1614

Thiosulfate: Detection limit raised due to matrix interference. LP1613, LP1614

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

			QUALITY ASSURANCE I	REPORT			
QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
2390823	KUS	Spiked Blank	Nitrate (N) and Nitrite(N)	2023/04/15		101	%
			Nitrates (N-NO3-)	2023/04/15		100	%
	100		Nitrites (N-NO2-)	2023/04/15		102	%
2390823	KIS	Method Blank	Nitrate (N) and Nitrite(N)	2023/04/15	<0.020		mg/L
			Nitrates (N-NO3-)	2023/04/15	<0.020		mg/l
		- 2 - 1 - 1	Nitrites (N-NO2-)	2023/04/15	<0.020		mg/l
2390824	KIS	Spiked Blank	Bromide (Br-)	2023/04/15		102	%
			Chloride (CI)	2023/04/15		100	%
			Sulfates (SO4)	2023/04/15		99	%
2390824	KIS	Method Blank	Bromide (Br-)	2023/04/15	< 0.10		mg/
			Chloride (CI)	2023/04/15	<0.050		mg/
			Sulfates (SO4)	2023/04/15	< 0.50		mg/
2390831	ZLI	Spiked Blank	pH	2023/04/14		102	%
2390849	CLO	QC Standard	Orthophosphate (P)	2023/04/14		97	%
2390849	CLO	Spiked Blank	Orthophosphate (P)	2023/04/14		98	%
2390849	CLO	Method Blank	Orthophosphate (P)	2023/04/14	<0.050		mg/
2390854	ZLI	Spiked Blank	Conductivity	2023/04/14		102	%
2390854	ZLI	Method Blank	Conductivity	2023/04/14	< 0.0010		mS/c
2390855	ZLI	Spiked Blank	Alkalinity Total (as CaCO3) pH 4.5	2023/04/14		97	96
2390855	ZLI	Method Blank	Alkalinity Total (as CaCO3) pH 4.5	2023/04/14	<1.0		mg/
2390864	ZLI	Spiked Blank	Fluoride (F)	2023/04/14		99	96
2390864	ZLI	Method Blank	Fluoride (F)	2023/04/14	< 0.10		mg/
2390868	BAG	Spiked Blank	Total Organic Carbon	2023/04/15		105	96
2390868	BAG	Method Blank	Total Organic Carbon	2023/04/15	0.44.		mg/
				2023/04/25	RDL=0.20		
2390381	BAG	Spiked Blank	Dissolved organic carbon	2023/04/16		106	94
2390881	BAG	Method Blank	Dissolved organic carbon	2023/04/16	0.45, RDL=0.20		mg/
2390974	750	s-t-del-d	41	2022/04/20	NDL-0.20	114	24
2390974	ZEO	Spiked Blank	Aluminum (Al)	2023/04/20			%
			Antimony (Sb)	2023/04/20		113	%
			Silver (Ag)	2023/04/20		103	%
			Arsenic (As)	2023/04/20		106	96
			Barium (Ba)	2023/04/20		113	%
			Beryllium (Be)	2023/04/20		108	%
			Bismuth (Bi)	2023/04/20		103	%
			Boron (B)	2023/04/20		110	%
			Cadmium (Cd)	2023/04/20		106	%
			Calcium (Ca)	2023/04/20		108	%
			Chromium (Cr)	2023/04/20		101	%
			Cobalt (Co)	2023/04/20		101	%
			Copper (Cu)	2023/04/20		96	96
			Tin (Sn)	2023/04/20		111	96
			Iron (Fe)	2023/04/20		108	%
			Lithium (Li)	2023/04/20		103	96
			Magnesium (Mg)	2023/04/20		110	%
			Manganese (Mn)	2023/04/20		104	96
			Molybdenum (Mo)	2023/04/20		110	%
			Mercury (Hg)	2023/04/20		99	%
			Nickel (Ni)	2023/04/20		99	%
			Phosphorus	2023/04/20		110	26
			Lead (Pb)	2023/04/20		104	96

Page 12 of 20 2023/05/26 09:32

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC						_	
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Unit
			Potassium (K)	2023/04/20		110	%
			Selenium (Se)	2023/04/20		110	%
			Silicon (Si)	2023/04/20		105	%
			Strontium (Sr)	2023/04/20		109	%
			Sodium (Na)	2023/04/20		110	%
			Thallium (TI)	2023/04/20		106	%
			Uranium (U)	2023/04/20		108	%
			Titanium (Ti)	2023/04/20		105	%
			Vanadium (V)	2023/04/20		105	%
			Zinc (Zn)	2023/04/20		102	96
			Zirconium (Zr)	2023/04/20		111	96
			Sulfur (S)	2023/04/20		111	%
390974	ZEO	Method Blank	Aluminum (Al)	2023/04/20	<10		ug/
			Antimony (Sb)	2023/04/20	<1.0		ug/
			Silver (Ag)	2023/04/20	<0.10		ug/
			Arsenic (As)	2023/04/20	<0.30		ug/
			Barium (Ba)	2023/04/20	<2.0		ug/
			Beryllium (Be)	2023/04/20	<0.40		ug/
			Bismuth (Bi)	2023/04/20	< 0.25		ug/
			Boron (B)	2023/04/20	<20		ug/
			Cadmium (Cd)	2023/04/20	<0.20		ug/
			Calcium (Ca)	2023/04/20	<300		ug/
			Chromium (Cr)	2023/04/20	< 0.50		ug/
			Cobalt (Co)	2023/04/20	< 0.50		ug/
			Copper (Cu)	2023/04/20	< 0.50		ug/
			Tin (Sn)	2023/04/20	<1.0		ug/
			Iron (Fe)	2023/04/20	<60		ug/
			Lithium (Li)	2023/04/20	<10		ug/
			Magnesium (Mg)	2023/04/20	<100		ug/
			Manganese (Mn)	2023/04/20	<0.40		ug/
			Molybdenum (Mo)	2023/04/20	< 0.50		ug/
			Mercury (Hg)	2023/04/20	<0.10		ug/
			Nickel (Ni)	2023/04/20	<1.0		ug/
			Phosphorus	2023/04/20	<10		ug/
			Lead (Pb)	2023/04/20	< 0.10		ug/
			Potassium (K)	2023/04/20	<100		ug/
			Selenium (Se)	2023/04/20	<1.0		ug/
			Silicon (Si)	2023/04/20	<100		ug/
			Strontium (Sr)	2023/04/20	<2.0		ug/
			Sodium (Na)	2023/04/20	<100		ug/
			Thallium (TI)	2023/04/20	<2.0		ug/
			Uranium (U)	2023/04/20	<1.0		ug/
			Titanium (Ti)	2023/04/20	<10		ug/
			Vanadium (V)	2023/04/20	<2.0		ug/
			Zinc (Zn)	2023/04/20	<5.0		ug/
			Zirconium (Zr)	2023/04/20	<0.50		ug/
			Sulfur (S)	2023/04/20	5600,		ug/
			and fal	2023/04/20	RDL=500		ugj
390982	кме	Spiked Blank	Total Dissolved Solids	2023/04/18		103	94
390982	KME	Method Blank	Total Dissolved Solids	2023/04/18	<10	103	mg/
391178	VKH	Spiked Blank	Total suspended solids (TSS)	2023/04/19	>40	100	96

Page 13 of 20 2023/05/26 09:32

Bureau Veritas Job #: C315520 Report Date: 2023/05/26

Agnico Eagle Mines Limited Client Project #: MEADOWBANK DIVISION Your P.O. #: CL-1183515 Sampler Initials: AG

QUALITY ASSURANCE REPORT(CONT'D)

			QUALITY ASSURANCE REPOR	I(CONTD)			
QA/QC	1-10	067		Pote technol	Malua	B	I to be
Batch 2391178	Init VKH	QC Type Method Blank	Parameter Total suspended solids (TSS)	Date Analyzed	Value <2.0	Recovery	Unit
				2023/04/19	<2.0	05	mg/
2391819	ANB	Spiked Blank	Weak Acid Dissociable Cyanide (CN-)	2023/04/19	-0.0020	95	96
2391819	ANB	Method Blank	Weak Acid Dissociable Cyanide (CN-)	2023/04/19	<0.0030	***	mg/
2391820	CYU	Spiked Blank	Total Cyanide (CN)	2023/04/20		103	%
2391820	CYU	Method Blank	Total Cyanide (CN)	2023/04/20	<0.0030		mg
2391922	SKL	Spiked Blank	TKN Total Kjeldahi Nitrogen	2023/04/19		102	%
2391922	SKL	Method Blank	TKN Total Kjeldahl Nitrogen	2023/04/19	<0.40		mg
2392042	AT7	Spiked Blank	Aluminum (Al)	2023/04/21		98	%
			Antimony (Sb)	2023/04/21		108	36
			Silver (Ag)	2023/04/21		105	96
			Arsenic (As)	2023/04/21		100	%
			Barium (Ba)	2023/04/21		103	94
			Beryllium (Be)	2023/04/21		105	96
			Bismuth (Bi)	2023/04/21		99	%
			Boron (B)	2023/04/21		112	94
			Cadmium (Cd)	2023/04/21		103	36
			Calcium (Ca)	2023/04/21		102	96
			Chromium (Cr)	2023/04/21		103	96
			Cobalt (Co)	2023/04/21		101	%
			Copper (Cu)	2023/04/21		94	94
			Tin (Sn)	2023/04/21		107	96
			Iron (Fe)	2023/04/21		104	96
			Lithium (Li)	2023/04/21		104	96
			Magnesium (Mg)	2023/04/21		100	96
			Manganese (Mn)	2023/04/21		104	%
			Mercury (Hg)	2023/04/21		107	96
			Molybdenum (Mo)	2023/04/21		103	36
			Nickel (Ni)	2023/04/21		100	96
			Total phosphorous	2023/04/21		99	96
			Lead (Pb)	2023/04/21		100	%
				2023/04/21		98	96
			Potassium (K)				
			Selenium (Se)	2023/04/21		101	96
			Sodium (Na)	2023/04/21		103	%
			Sulphur (S)	2023/04/21		90	%
			Strontium (Sr)	2023/04/21		106	%
			Thallium (11)	2023/04/21		101	%
			Titanium (Ti)	2023/04/21		103	96
			Uranium (U)	2023/04/21		99	%
			Vanadium (V)	2023/04/21		104	94
			Zinc (Zn)	2023/04/21		98	96
			Zirconium (Zr)	2023/04/21		107	%
2392042	AT7	Method Blank	Aluminum (Al)	2023/04/21	<10		ug/
			Antimony (Sb)	2023/04/21	<1.0		ug/
			Silver (Ag)	2023/04/21	<1.0		ug/
			Arsenic (As)	2023/04/21	<1.0		ug/
			Barium (Ba)	2023/04/21	<2.0		ug/
			Beryllium (Be)	2023/04/21	<2.0		ug/
			Bismuth (Bi)	2023/04/21	<1.0		ug/
			Boron (B)	2023/04/21	<50		ug/
			Cadmium (Cd)	2023/04/21	<0.20		ug/
			Calcium (Ca)	2023/04/21	<500		ug/

Page 14 of 20 2023/05/26 09:32

Agnico Eagle Mines Limited Client Project #: MEADOWBANK DIVISION Your P.O. #: OL-1183515

Sampler Initials: AG

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Uni
			Chromium (Cr)	2023/04/21	<5.0		ug/
			Cobalt (Co)	2023/04/21	<1.0		ug,
			Copper (Cu)	2023/04/21	<1.0		ug,
			Tin (Sn)	2023/04/21	<2.0		ug,
			Iron (Fe)	2023/04/21	<60		ug,
			Lithium (Li)	2023/04/21	<10		ug
			Magnesium (Mg)	2023/04/21	<100		ug,
			Manganese (Mn)	2023/04/21	<1.0		ug
			Mercury (Hg)	2023/04/21	< 0.10		ug,
			Molybdenum (Mo)	2023/04/21	<1.0		ug
			Nickel (Ni)	2023/04/21	<2.0		ug,
			Total phosphorous	2023/04/21	<10		ug
			Lead (Pb)	2023/04/21	< 0.50		ug,
			Potassium (K)	2023/04/21	<500		ug,
			Selenium (Se)	2023/04/21	<3.0		ug
			Sodium (Na)	2023/04/21	<500		ug,
			Sulphur (S)	2023/04/21	<1000		ug
			Strontium (Sr)	2023/04/21	<2.0		ug.
			Thallium (TI)	2023/04/21	<2.0		ug
			Titanium (Ti)	2023/04/21	<10		ug
			Uranium (U)	2023/04/21	<1.0		ug
			Vanadium (V)	2023/04/21	<2.0		ug
			Zinc (Zn)	2023/04/21	<7.0		ug
			Zirconium (Zr)	2023/04/21	<5.0		ug
392047	DY3	QC Standard	COD	2023/04/20	-5.0	100	9/
392047	DY3	Spiked Blank	COD	2023/04/20		98	20
392047	DY3	Spiked Blank DUP	COD	2023/04/20		103	90
2392047	DY3	Method Blank	COD	2023/04/20	<5.0	200	mg
392053	AT7	Spiked Blank	Aluminum (Al)	2023/04/24	45.0	93	%
2332033	~17	эрикей башк	Antimony (Sb)	2023/04/24		110	90
			Silver (Ag)	2023/04/24		100	%
						101	90
			Arsenic (As)	2023/04/24			24
			Barium (Ba)	2023/04/24		113	
			Beryllium (Be)	2023/04/24		81	96
			Bismuth (Bi)	2023/04/24		104	%
			Boron (B)	2023/04/24		94	96
			Cadmium (Cd)	2023/04/24		98	26
			Calcium (Ca)	2023/04/24		96	56
			Chromium (Cr)	2023/04/24		98	96
			Cobalt (Co)	2023/04/24		98	96
			Copper (Cu)	2023/04/24		97	90
			Tin (Sn)	2023/04/24		110	26
			Iron (Fe)	2023/04/24		102	%
			Lithium (Li)	2023/04/24		93	%
			Magnesium (Mg)	2023/04/24		95	96
			Manganese (Mn)	2023/04/24		99	%
			Mercury (Hg)	2023/04/24		104	%
			Molybdenum (Mo)	2023/04/24		103	76
			Nickel (Ni)	2023/04/24		100	%
			Total phosphorous	2023/04/24		91	96
			Lead (Pb)	2023/04/24		105	%

Page 15 of 20

2023/05/26 09:32

Bureau Vertas Bureau Vertas 889 Montée de L'esse, VIIIe St-Laurent, Québec, Canada H4T 1/25 Tel: (514) 448-9001 Fax: (514) 448-9199 Ligne sans frais : 1-677-462-9926

QUALITY ASSURANCE REPORT(CONT'D)

			QUALITY ASSURANCE REPORT	(CONT.D)			
QA/QC	i - ir	A4.7		Boso Applicant	Makas		Unite
Batch	Init	QC Type	Parameter Potassium (K)	Date Analyzed 2023/04/24	Value	Recovery 96	Units %
						107	96
			Selenium (Se)	2023/04/24			
			Sodium (Na)	2023/04/24		97	%
			Sulphur (S)	2023/04/24		97	96
			Strontium (Sr)	2023/04/24		108	%
			Thallium (TI)	2023/04/24		106	%
			Titanium (Ti)	2023/04/24		95	%
			Uranium (U)	2023/04/24		107	%
			Vanadium (V)	2023/04/24		99	%
			Zinc (Zn)	2023/04/24		96	%
			Zirconium (Zr)	2023/04/24		102	%
392053	AT7	Method Blank	Aluminum (Al)	2023/04/24	<10		ug/l
			Antimony (Sb)	2023/04/24	<1.0		ug/l
			Silver (Ag)	2023/04/24	<1.0		ug/l
			Arsenic (As)	2023/04/24	<1.0		ug/l
			Barium (Ba)	2023/04/24	<2.0		ug/
			Beryllium (Be)	2023/04/24	<2.0		ug/l
			Bismuth (Bi)	2023/04/24	<1.0		ug/
			Boron (B)	2023/04/24	<50		ug/
			Cadmium (Cd)	2023/04/24	< 0.20		ug/
			Calcium (Ca)	2023/04/24	<500		ug/
			Chromium (Cr)	2023/04/24	<5.0		ug/l
			Cobalt (Co)	2023/04/24	<1.0		ug/l
			Copper (Cu)	2023/04/24	<1.0		ug/l
			Tin (5n)	2023/04/24	<2.0		ug/
			Iron (Fe)	2023/04/24	<60		ug/
			Lithium (Li)	2023/04/24	48,		ug/l
			Littlidin (Li)	2023/04/24	RDL=10		ug/i
			Magnesium (Mg)	2023/04/24	<100		ug/l
							-
			Manganese (Mn)	2023/04/24	<1.0		ug/l
			Mercury (Hg)	2023/04/24	<0.10		ug/l
			Molybdenum (Mo)	2023/04/24	<1.0		ug/l
			Nickel (Ni)	2023/04/24	<2.0		ug/
			Total phospherous	2023/04/24	<10		ug/
			Lead (Pb)	2023/04/24	< 0.50		ug/
			Potassium (K)	2023/04/24	<500		ug/
			Selenium (Se)	2023/04/24	<3.0		ug/
			Sodium (Na)	2023/04/24	<500		ug/l
			Sulphur (5)	2023/04/24	5200,		ug/l
					RDL=1000		
			Strontium (Sr)	2023/04/24	<2.0		ug/
			Thailium (TI)	2023/04/24	<2.0		ug/
			Titanium (Ti)	2023/04/24	<10		ug/l
			Uranium (U)	2023/04/24	<1.0		ug/l
			Vanadium (V)	2023/04/24	<2.0		ug/l
			Zinc (Zn)	2023/04/24	<7.0		ug/l
			Zirconium (Zr)	2023/04/24	<5.0		ug/l
392139	HGU	Spiked Blank	Nitrogen ammonia (N-NH4+ and N-NH3)	2023/04/20		109	96
392139	HGU	Method Blank	Nitrogen ammonia (N-NH4+ and N-NH3)	2023/04/20	< 0.020		mg/
392196	AT7	Spiked Blank	Aluminum (Al)	2023/04/21	-510-60	107	%
		-,	Antimony (Sb)	2023/04/21		110	%

Page 16 of 20 2023/05/26 09:32

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC						
Batch Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
		Silver (Ag)	2023/04/21		105	%
		Arsenic (As)	2023/04/21		105	96
		Barium (Ba)	2023/04/21		110	%
		Beryllium (Be)	2023/04/21		106	96
		Bismuth (Bi)	2023/04/21		107	%
		Boron (B)	2023/04/21		116	%
		Cadmium (Cd)	2023/04/21		109	%
		Calcium (Ca)	2023/04/21		111	%
		Chromium (Cr)	2023/04/21		103	%
		Cobalt (Co)	2023/04/21		101	%
		Copper (Cu)	2023/04/21		97	%
		Tin (Sn)	2023/04/21		109	56
		Iron (Fe)	2023/04/21		110	96
		Lithium (Li)	2023/04/21		102	%
		Magnesium (Mg)	2023/04/21		107	96
		Manganese (Mn)	2023/04/21		104	%
		Molybdenum (Mo)	2023/04/21		109	%
		Mercury (Hg)	2023/04/21		115	96
		Nickel (Ni)	2023/04/21		101	%
		Phosphorus	2023/04/21		104	96
		Lead (Pb)	2023/04/21		108	%
		Potassium (K)	2023/04/21		112	96
		Selenium (Se)	2023/04/21		104	%
		Silicon (Si)	2023/04/21		110	96
		Strontium (Sr)	2023/04/21		106	96
		Sodium (Na)	2023/04/21		105	%
					112	%
		Thallium (TI)	2023/04/21			
		Uranium (U)	2023/04/21		111	%
		Titanium (Ti)	2023/04/21		104	%
		Vanadium (V)	2023/04/21		103	%
		Zinc (Zn)	2023/04/21		100	%
		Zirconium (Zr)	2023/04/21		112	%
		Sulfur (S)	2023/04/21		116	%
392196 AT7	Method Blank	Aluminum (AI)	2023/04/21	<10		ug/
		Antimony (Sb)	2023/04/21	<1.0		ug/
		Silver (Ag)	2023/04/21	< 0.10		ug/
		Arsenic (As)	2023/04/21	< 0.30		ug/
		Barium (Ba)	2023/04/21	<2.0		ug/
		Beryllium (Be)	2023/04/21	< 0.40		ug/
		Bismuth (Bi)	2023/04/21	< 0.25		ug/
		Boron (B)	2023/04/21	<20		ug/
		Cadmium (Cd)	2023/04/21	< 0.20		ug/
		Calcium (Ca)	2023/04/21	<300		ug/
		Chromium (Cr)	2023/04/21	< 0.50		ug/
		Cobalt (Co)	2023/04/21	< 0.50		ug/
		Copper (Cu)	2023/04/21	< 0.50		ug/
		Tin (Sn)	2023/04/21	<1.0		ug/
		Iron (Fe)	2023/04/21	<60		ug/l
		Lithium (Li)	2023/04/21	<10		ug/
		Magnesium (Mg)	2023/04/21	<100		
		Manganese (Mn)	2023/04/21	<0.40		ug/l

Page 17 of 20 2023/05/26 09:32

Bureau Veritas Job #: C315520 Report Date: 2023/05/26 Agnico Eagle Mines Limited Client Project #: MEADOWBANK DIVISION Your P.O. #: OL-1183515 Sampler Initials; AG

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	Units
Daten	inic	сс туре	Molybdenum (Mo)	2023/04/21	<0.50	necovery	ug/L
			Mercury (Hg)	2023/04/21	<0.10		ug/L
			Nickel (Ni)	2023/04/21	<1.0		ug/t
			Phosphorus	2023/04/21	<10		ug/l
			Lead (Pb)	2023/04/21	<0.10		ug/
			Potassium (K)	2023/04/21	140,		ug/
			r otasswiii (K)	2020/04/21	RDL=100		ugj
			Selenium (Se)	2023/04/21	<1.0		ug/
			Silicon (Si)	2023/04/21	<100		ug/
			Strontium (Sr)	2023/04/21	<2.0		ug/
			Sodium (Na)	2023/04/21	<100		ug/
			Thallium (TI)	2023/04/21	<2.0		ug/
			Uranium (U)	2023/04/21	<1.0		ug/
			Titanium (Ti)	2023/04/21	<10		ug/
			Vanadium (V)	2023/04/21	<2.0		ug/
			Zinc (Zn)	2023/04/21	<5.0		ug/
			Zirconium (Zr)	2023/04/21	< 0.50		ug/
			Sulfur (S)	2023/04/21	4200,		ug/
					RDL=500		- 00
2392833	YL7	Matrix Spike	Nitrogen (N)	2023/04/20		NC	%
2392833	YL7	QC Standard	Nitrogen (N)	2023/04/20		106	%
2392833	YL7	Spiked Blank	Nitrogen (N)	2023/04/20		106	96
2392833	YL7	Method Blank	Nitrogen (N)	2023/04/20	< 0.020		mg/
2392834	CTU	Matrix Spike [LP1618-01]	Nitrogen (N)	2023/04/20		NC	%
2392834	CTU	QC Standard	Nitrogen (N)	2023/04/19		106	96
2392834	CTU	Spiked Blank	Nitrogen (N)	2023/04/19		103	%
2392834	CTU	Method Blank	Nitrogen (N)	2023/04/19	< 0.020		mg/
2393049	GXL	Spiked Blank	Cyanate (CNO-)	2023/04/25		112	96
2393049	GXL	Method Blank	Cyanate (CNO-)	2023/04/25	< 0.050		mg/
2393051	KIS	Spiked Blank	Thiocyanate	2023/04/25		95	96
2393051	KJS	Method Blank	Thiocyanate	2023/04/25	< 0.17		mg/
2393416	GXL	Spiked Blank	Thiosulfate	2023/04/26		83	%
2393416	GXL	Method Blank	Thiosulfate	2023/04/26	< 0.13		mg/
2393479	GXL	Spiked Blank	Thiocyanate	2023/04/25		93	%
2393479	GXL	Method Blank	Thiocyanate	2023/04/25	< 0.17		mg/

RDL = Reportable Detection Limit

Ģ

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

4

Ø

0

0

2

rtial/R

đ

Q

FILE

0/

0

Ď

Bureau Veritas Job #: C315520 Report Date: 2023/05/26 Agnico Eagle Mines Limited Client Project #: MEADOWBANK DIVISION Your P.O. #: OL-1183515 Sampler Initials: AG

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by:

Alex Th. 60

Alex Thibert

Alex Thibert, B.Sc., Chemist, Montréal, Analyst II, Chemist in Training

lang (

Frédéric Arnau, B.Sc., Chemist, Montreal, Scientific Service Specialist

(E) LAND I

Jonathan Fauvel, B.Sc., Chemist, Montreal, Scientific Specialist

Mapo Assage Wreen surpris

Miryam Assayag, B.Sc. Chemist, Montréal, Team Leader

(M. Lugara

Michelina Cinquino, Analyst II

Suwan (Sze Yeung) Fock, B.Sc., Scientific Specialist

Suwari (Sze rednig) Pock, B.Sc., Sciencific Specialise

Shu Yang 2008 on A

Shu Yang, B.Sc. Chemist, Montreal, Analyst II

VALIDATION SIGNATURE PAGE(CONT'D)

The analytical data and all QC contained in this report were reviewed and validated by:

Bureau Veritas has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation, please refer to the Validation Signatures page if included, otherwise available by request. For Department specific Analyst/Supervisor validation names, please refer to the Test Summary section if included, otherwise available by request. This report is authorized by [0], {1} responsible for {2} {3} laboratory operations.

110

ANNEXE G Données des suivis des essais de promotion de l'atténuation naturelle

G.1. Caractérisation initiale des effluents testés

Sampling Date		2023-07-09	2023-07-09		2023-07-09			2023-07-09		2023-07-09	
COC Number		n/a	n/a		n/a			n/a		n/a	
	Units	ST 17	ST 17 Lab-Dup	RDL	ST 19	RDL	QC Batch	ST 20	QC Batch	ST 20 REPEAT	RDL
CONVENTIONALS											
COD	mg/L	130	N/A	5.0	440	5.0	2423078	21	2423076	N/A	5.0
Conductivity	mS/cm	2.7	2.7	0.0010	5.7	0.0010	2420451	1.4	2420451	N/A	0.0010
Cyanate (CNO-)	mg/L	18	N/A	0.050	160	0.50	2421835	0.66	2421835	0.64	0.050
Dissolved organic carbon †	mg/L	24	N/A	1.0	82	1.0	2423337	6.7	2423337	N/A	0.20
Fluoride (F)	mg/L	0.24	N/A	0.10	0.18	0.10	2421896	0.26	2421896	N/A	0.10
Nitrate (N) and Nitrite(N)	mg/L	4.0	N/A	0.20	21	0.20	2420458	0.60	2420458	N/A	0.020
Nitrates (N-NO3-)	mg/L	4.0	N/A	0.020	21	0.20	2420458	0.23	2420458	N/A	0.020
Nitrites (N-NO2-)	mg/L	<0.20	N/A	0.20	0.28	0.20	2420458	0.37	2420458	N/A	0.020
Nitrogen ammonia (N-NH4+ and N-NH3)	mg/L	29	N/A	0.020	64	0.10	2423247	18	2423247	N/A	0.020
Orthophosphate (P)	mg/L	<0.050	N/A	0.050	0.051	0.050	2420673	<0.050	2420673	N/A	0.050
рН	рН	7.99	8.08	N/A	7.60	N/A	2420416	7.90	2420416	N/A	N/A
Thiocyanate	mg/L	93	N/A	3.4	330	8.5	2422200	14	2422200	N/A	0.85
Thiosulfate	mg/L	0.50	N/A	0.13	24	6.5	2421313	<0.13	2421313	N/A	0.13
TKN Total Kjeldahl Nitrogen	mg/L	51	N/A	0.40	160	4.0	2423074	21	2423074	N/A	0.40
Total Cyanide (CN)	mg/L	0.045	N/A	0.0030	0.15	0.060	2420700	0.033	2420700	N/A	0.0030
Weak Acid Dissociable Cyanide (CN-)	mg/L	0.036	N/A	0.0030	0.075	0.030	2420693	0.030	2420693	N/A	0.0030
Alkalinity Total (as CaCO3) pH 4.5 †	mg/L	110	120	1.0	86	1.0	2420452	71	2420452	N/A	1.0
Bromide (Br-)	mg/L	1.7	N/A	0.10	5.0	1.0	2420459	0.51	2420459	N/A	0.10
Chloride (CI)	mg/L	130	N/A	0.050	390	0.50	2420459	41	2420459	N/A	0.050
Sulfates (SO4)	mg/L	1000	N/A	5.0	2000	5.0	2420459	510	2420459	N/A	5.0
Total Dissolved Solids	mg/L	2100	N/A	10	4900	10	2421035	900	2421035	N/A	10
Total suspended solids (TSS)	mg/L	8.0	N/A	2.0	13	2.0	2420797	16	2420797	N/A	2.0
RDL = Reportable Detection Limit											
QC Batch = Quality Control Batch											
† Parameter is not accreditable											
N/A = Not Applicable											
Results relate only to the items test	ed.										

ว Num	ber: C3348	Clien	t Project #:	MEA	DOWBANK	DIVIS	ION
/08/0	2						
		Your	P.O. #: OL-	12489	940		
		Sam	oler Initials:	AG			
LS (SU	RFACE WAT	ΓER)					
	LY0785		LY0786		LY0787		
	2023-07-09		2023-07-09		2023-07-09		
	n/a		n/a		n/a		
Units	ST 17	RDL	ST 19	RDL	ST 20	RDL	QC Batch
ug/L	<10	10	18	10	23	10	2421827
ug/L	5.4	1.0	20	1.0	8.9	1.0	2421827
ug/L	0.29	0.10	4.2	0.10	<0.10	0.10	2421827
ug/L	24	0.30	160	0.30	240	0.30	2421827
ug/L	50	2.0	170	2.0	34	2.0	2421827
ug/L	<0.40	0.40	<0.40	0.40	<0.40	0.40	2421827
ug/L	<0.25	0.25	<0.25	0.25	<0.25	0.25	2421827
 	150	20	360	20	110	20	2421827
<u> </u>		0.20		0.20	<0.20	0.20	2421827
<u> </u>				1			2421827
<u> </u>							2421827
<u> </u>				1	-		2421827
<u> </u>				1			2421827
<u> </u>							2421827
<u> </u>				1		+	2421827
<u> </u>				1	-	+	2421827
-		_	_	-		<u> </u>	2421827
						-	2421827
<u> </u>			_	 		-	2421827
<u> </u>		-		1			2421827
		-				_	2421827
- ·				1		-	2421827
 		-		<u> </u>		<u> </u>	2421827
<u> </u>							1
							2421827 2421827
				1			1
<u> </u>						+	2421827
<u> </u>						+	2421827
l .						+	2421827
<u> </u>				<u> </u>		+	2421827
<u> </u>				<u> </u>		+	2421827
-					-	+	2421827
				1		+	2421827
				1		+	2421827
ug/L	<0.50			0.50			2421827
ug/L	340000	5000	920000	5000	200000	5000	2421827
Detec	tion Limit						
t accre	editable						
t accre ble	editable						
	Units Units UnjL Ug/L	LS (SURFACE WATE LY0785 2023-07-09 n/a Units ST 17 Ug/L 0.29 Ug/L 24 Ug/L 260000 Ug/L 260000 Ug/L 260000 Ug/L 24000 Ug/L 24000 Ug/L 260000 g/L 26000 Ug/L 26000 Ug/L 26000 Ug/L 26000 Ug/L 26000 Ug/L 270000 Ug/L 270000 Ug/L 270000 Ug/L 22.0 Ug/L 25.0 Ug/L 25.0 Ug/L 25.0 Ug/L 25.0 Ug/L 26.50 Ug/L	Number: C3348 Client C3348 Client C3348 Client C3348 Client C3348 Client C3348 Client C3348 Client C3348	Number: C3348 Client Project #: 1/08/02 Your P.O. #: OL- Sampler Initials: LY0785	Number: C3348 Client Project #: MEAN (708/02) Your P.O. #: OL-12489 Sampler Initials: AG LY0785	Number: C3348 Client Project #: MEADOWBANK 708/02	Sampler Initials: AG

			Agnic	o Eagle Mir	es Lim	ited		
Bureau Veritas Jo	b Num	ber: C33482	2 Client	Project #: I	MEADO	OWBANK DI	IVISION	J
Report Date: 2023	3/08/02	2						
•			Your	P.O. #: OL-1	24894	0		
			Samp	ler Initials:	AG			
TOTAL EXTRACTA	BLE MI	TALS (SURI	FACE W	/ATER)				
Bureau Veritas ID		LY0785		LY0786		LY0787		
Sampling Date		2023-07-09		2023-07-09		2023-07-09		
COC Number		n/a		n/a		n/a		
	Units	ST 17	RDL	ST 19	RDL	ST 20	RDL	QC Batcl
METALS								
Aluminum (Al)	ug/L	110	10	160	10	210	10	2422199
Antimony (Sb)	ug/L	5.4	1.0	19	1.0	8.5	1.0	2422199
Silver (Ag)	ug/L	<1.0	1.0	3.3	1.0	<1.0	1.0	2422199
Arsenic (As)	ug/L	84	1.0	170	1.0	240	1.0	2422199
Barium (Ba)	ug/L	50	2.0	160	2.0	35	2.0	2422199
Beryllium (Be)	ug/L	<2.0	2.0	<2.0	2.0	<2.0	2.0	2422199
Bismuth (Bi) ++	ug/L	<1.0	1.0	<1.0	1.0	<1.0	1.0	2422199
Boron (B) †	ug/L	150	50	360	50	110	50	2422199
Cadmium (Cd)	ug/L	<0.20	0.20	0.55	0.20	<0.20	0.20	2422199
Calcium (Ca) †	ug/L	240000	500	570000	500	120000	500	2422199
Chromium (Cr)	ug/L	<5.0	5.0	<5.0	5.0	<5.0	5.0	2422199
Cobalt (Co)	ug/L	180	1.0	610	1.0	160	1.0	2422199
Copper (Cu)	ug/L	1400	1.0	8400	10	7.6	1.0	2422199
Tin (Sn)	ug/L	<2.0	2.0	<2.0	2.0	<2.0	2.0	2422199
Iron (Fe)	ug/L	960	60	390	60	420	60	2422199
Lithium (Li) ††	ug/L	<10	10	<10	10	<10	10	2422199
Magnesium (Mg) †	ug/L	23000	100	19000	100	7000	100	2422199
Manganese (Mn)	ug/L	420	1.0	57	1.0	75	1.0	2422199
Mercury (Hg)	ug/L	<0.10	0.10	<0.10	0.10	<0.10	0.10	2422199
Molybdenum (Mo)	ug/L	77	1.0	130	1.0	47	1.0	2422199
Nickel (Ni)		450	2.0	890	2.0	43	2.0	2422199
· · ·	ug/L	36	10	<10	10	18	10	2422199
Total phosphorous	ug/L		-		<u> </u>	+		1
Lead (Pb)	ug/L	2.5	0.50	2.3	0.50	0.54	0.50	2422199
Potassium (K) †	ug/L	83000	500	220000	500	49000	500	2422199
Selenium (Se)	ug/L	69	3.0	280	3.0	19	3.0	2422199
Sodium (Na)	ug/L	260000	500	580000	500	97000	500	2422199
Sulphur (S) ++	ug/L	390000	10000	900000	10000	180000	10000	1
Strontium (Sr) †	ug/L	1300	2.0	3300	20	380	2.0	2422199
Thallium (TI)	ug/L	<2.0	2.0	<2.0	2.0	<2.0	2.0	2422199
Titanium (Ti) ††	ug/L	<10	10	<10	10	<10	10	2422199
Uranium (U) ††	ug/L	14	1.0	12	1.0	6.3	1.0	2422199
Vanadium (V)	ug/L	<2.0	2.0	<2.0	2.0	<2.0	2.0	2422199
Zinc (Zn)	ug/L	<7.0	7.0	28	7.0	<7.0	7.0	2422199
Zirconium (Zr) ††	ug/L	<5.0	5.0	<5.0	5.0	<5.0	5.0	2422199
RDL = Reportable	Detect	ion Limit						
QC Batch = Qualit	y Conti	rol Batch						
† Parameter is no	t accre	dited						
†† Parameter is n	ot accr	editable						
N/A = Not Applica	ble							

Bureau Veritas Job Number: C334828				
Report Date: 2023/08/02				
CONVENTIONAL PARAMETERS (SURFA	CE WAT	ΓER)		
Bureau Veritas ID		LY0785	LY0786	LY0787
Sampling Date		2023-07-09	2023-07-09	2023-07-09
COC Number		n/a	n/a	n/a
	Units	ST 17	ST 19	ST 20
CONVENTIONALS				
COD	mg/L	130	440	21
Conductivity	mS/cm	2.7	5.7	1.4
Cyanate (CNO-)	mg/L	18	160	0,66
Dissolved organic carbon †	mg/L	24	82	6.7
Fluoride (F)	mg/L	0.24	0.18	0.26
Nitrate (N) and Nitrite(N)	mg/L	4.0	21	0.60
Nitrates (N-NO3-)	mg/L	4.0	21	0.23
Nitrites (N-NO2-)	mg/L	<0.20	0.28	0.37
Nitrogen ammonia (N-NH4+ and N-NH3)	mg/L	29	64	18
Orthophosphate (P)	mg/L	<0.050	0.051	<0.050
рН	рН	7.99	7.60	7.90
Thiocyanate	mg/L	93	330	14
Thiosulfate	mg/L	0.50	24	<0.13
TKN Total Kjeldahl Nitrogen	mg/L	51	160	21
Total Cyanide (CN)	mg/L	0.045	0.15	0.033
Weak Acid Dissociable Cyanide (CN-)	mg/L	0.036	0.075	0.030
Alkalinity Total (as CaCO3) pH 4.5 †	mg/L	110	86	71
Bromide (Br-)	mg/L	1.7	5.0	0.51
Chloride (CI)	mg/L	130	390	41
Sulfates (SO4)	mg/L	1000	2000	510
Total Dissolved Solids	mg/L	2100	4900	900
Total suspended solids (TSS)	mg/L	8.0	13	16
RDL = Reportable Detection Limit				
QC Batch = Quality Control Batch				
† Parameter is not accreditable				
N/A = Not Applicable				
TYTE TOUT PPROCESSION				
Results relate only to the items tested				

			Agnico Eagle	Mine	es Limited						
Bureau Veritas .	lob Νι	ımber: C334	Client Project	#: N	1EADOWBA	NK D	IVISION				
Report Date: 20	23/08	/02									
			Your P.O. #: 0)L-12	248940						
			Sampler Initia	als: A	\G						
SUBCONTRACTE	D AN	ALYSIS (SUR	FACE WATER)								
Bureau Veritas ID		LY0785	LY0785		LY0786			LY0787	LY0787		
Sampling Date		2023-07-09	2023-07-09		2023-07-09			2023-07-09	2023-07-09		
COC Number		n/a	n/a		n/a			n/a	n/a		
	Units	ST 17	ST 17 Lab-Dup	RDL	ST 19	RDL	QC Batch	ST 20	ST 20 Lab-Dup	RDL	QC Batch
CONVENTIONALS											
Nitrogen (N) †	mg/L	60	5 9	2.0	260	4.0	2424873	17	17	0.20	2424874
RDL = Reportab	le Det	ection Limit									
QC Batch = Qua	lity Co	ntrol Batch									
† Parameter is r	not acc	creditable									
N/A = Not Appli	cable										
		the items t									

G.2. Essai A1

	Parameter	unit	Initial effluent (2023-07-09)	2023-07-10	2023-07-11	2023-07-12	2023-07-13	2023-07-14	2023-07-15	2023-07-16	2023-07-17	2023-07-18	2023-07-19	2023-07-20	2023-07-21	2023-07-25		2023-08-04		2023-08-06	2023-08-07	2023-08-08	2023-08-09	
			0	1	2	3	4	5	6	7	8	9	10	11	12	16	19	26	27	28	29	30	31	32
	pH		8,27	8,22	8,21	8,12	8,14	8,16	8,07	8,09	7,98	8,07	8,14	8,11	8,12	7,93	7,86	7,88	7,86	7,89	7,77	7,72	7,73	7,79
	ORP	mV/ENH	222	178	235	268	162	187	190	210								96	51	-124	-57	-8		
	EC	mS/cm	2676	2675	2750	2697	2707	2740	2739	2759	2784	2774	2812	2844	2866	2945	3422	3588	3586	3605	3631	3661	3694	3689
	T DO	°C	12,1	12,3	17,4 8.08	15,5	12,4 8.96	12,0 8.76	19,4	15,8 7.64	21,6	19,4	14,7	14,8	15,82	18,84	20,25	24,66	18,52	14,77	19,07	22,09	21,44	18,28
	DO SCN-	mg/L	9,21 21.78	8,81	8,08	9,01	8,96	8,76	8,16	7,64	7,65	7,33	7,36	8,02	7,76	8,06	7,26	1,12	0,71		1,46	2,46	2,9	3,3
	SCN-	mg N/L mg N	22432.68					_		22488.2				_	23,205.0		16182.0	10658.5						3882.7
	SCN- SCN- removal	mg N/m ²	0.00							55.6					772.3		-6250.7	-11774.2						-18550.0
	N-NH ₃		20		19			20		20			20	-	20.8		27	37			37			36.2
		mg N/L																						
	N-NH ₂	mg N	20600		19190			20400		20200			19600	_	20280		25110	32560			32190			31132
On-site	N-NH ₃ removal	mg N/m ²	0		-1410			-200		-400			-1000		-320		4510	11960			11590			10532
	NO ₂	mg N/L	0,11		0,12			0,13		0,13			0,14											_
	NO2-	mg N	110,21		120,19			132,60		134,33			137,20											_
	NO2- removal	mg N/m2	0,00		9,98			22,39		24,12			26,99	_										
	NO ₃	mg N/L	4,4		15,0			7,8		14,0			12,4				13,9	3,2			3,9			4
	NO3-	mg N	4532,0		15150,0			7956,0		14140,0			12152,0				12927	2816			3393			\vdash
	NO3- removal	mg N/m ²	0,0		10618,0			3424,0		9608,0			7620,0				8395	-1716			-1139			-
	TN	mg N/L	46,3	0,0	34,1	0,0	0,0	27,9	0,0	56,4	0,0	0,0	32,5	0,0	44,6	0,0	58,3	52,3	0,0	0,0	40,9	0,0	0,0	40,7
	PO4*	mg/L	0,6		1,5			1,5		1,4			1,7				1,23				1,25			4
	PO ₄ 3	mg	638,6		1464,5			1479,0		1414,0			1666,0				1139,25				1087,5			
	Turbidity	FAU	24		27		21	23		16	15	17	20	20				4	2	5	3	2		-
	Effluent volume (init 1030)	L	1030	1030	1010	1010	1020	1020	1010	1010	1000	995	980	980	975	950	930	880	880	870	870	870	870	860
	Alkalinity	mg/L	110							118					126			153						140
	PO ₄ 3	mg/L	-																					4
l	SCN ⁻	mg N/L																						4
	CNO ⁻	mg N/L																						1
UQAT	N-NH ₂	mg N/L								20,6					20,8		26,6	36,2						36,2
l	NO ₂	mg N/L																						
l	NO ₃	mg N/L																						$\overline{}$
	TN	mg N/L	0	0	0	0	0	0	0	20,6	0	0	0	0										

G.3. Essai A2

Conventionnals	Parameter	unit	Initial effluent (2023-07-09)	2023-07-10	2023-07-11	2023-07-12	2023-07-13	2023-07-14	2023-07-15	2023-07-16	2023-07-17	2023-07-18	2023-07-19	2023-07-20	2023-07-21	2023-07-25	2023-07-28	2023-08-04	2023-08-05	2023-08-06	2023-08-07	2023-08-08	2023-08-09	2023-08-10
	pH		8,26	8,17	8,15	8,15	8,12	8,13	8,07	8,09	8,01	8,07	8,13	8,12	8,14	7,95	7,86	7,93	7,85	7,87	7,8	7,88	8,4	8,44
i i	ORP	mV/ENH	221,90	222	224,6	247	151	191	183	205								108	66	-84	-49	29		
i i	EC	mS/cm	2676,00	2674	2747	2662	2706	2744	2735	2760	2776	2767	2806	2833	2850	2932	3402	3556	3554	3578	3599	3629	3634	3632
l [т	°C	11,95	12,33	17,12	14,99	12,11	11,91	18,66	15,55	20,88	19,19	14,64	15,1	15,3	18,19	19,4	23,61	18,35	14,58	19,07	21,16	20,34	17,85
	DO	mg/L	9,68	9,53	8,57	9,32	9,01	8,94	8,39	8,05	8,09	7,67	7,73	8,2	8,56	8,44	6,83	4,76	0,56	0,65	1,4	4,62	12,14	10,01
	SCN-	mg N/L	22,06							17,8052215					22,211198			12,4564024						2,67
l .	SCN-	mg N	21614,87							17093,0127					20656,4141			10463,3781						2132,28
l .	SCN- removal	mg N/m2	0,00							-4521,859					-958,45761		-2483,8683	-11151,494						-19482,60
	N-NH3	mg N/L	20,00		20			20		21			21				24	36			36			38,2
	N-NH3	mg N	19600,00		19200			19400		20160			20160				21120	30240			29520			30560
On-site	N-NH3 removal	mg N/m2	0,00		-400			-200		560			560				1520	10640			9920			10960
Un-site	NO2-	mg N/L	0,11		0,123			0,132		0,137			0,14											
	NO2-	mg N	104,86		118,08			128,04		131,52			134,4											
	NO2- removal	mg N/m2	0,00		13,22			23,18		26,66			29,54											
	NO3-	mg N/L	4,40		12,9			8,7		9,8			12,2				16,3	5,5			4,3			
	NO3-	mg N	4312,00		12384			8439		9408			11712				14344	4620			3526			
	NO3- removal	mg N/m2	0,00		8072			4127		5096			7400				10032	308			-786			
	TN	mg N/L	46,56299154	0	33,023	0	0	28,832	0	48,7422215	0	0	33,34	0	22,211198	0		53,9564024	0	0	40,3	0	0	40,8653438
	PO ₄ ³	mg/L	0,62		2,18			3,35		2,85			3,5				3,6				3,25			
	PO ₄ ³	mg	607,60		2088,00			3249,5		2736			3360				3168				2665			
	Turbidity	FAU	24,00		26		21	23		19	15	17	18	19				5	5	5	5	11		
	Effluent volume (init 980)	L	980,00	980	960	960	975	970	960	960	965	970	960	935	930	905	880	840	830	830	820	820	810	800
	Alkalinity	mg/L	110							116					131			156						110
l i	PO ₄ ³	mg/L																						
	SCN	mg N/L																						
l î	CNO.	mg N/L																						
UQAT	N-NH ₃	mg N/L								20,3					21,3		26,3	36,4						38,2
	NO ₂	mg N/L																						
	NO ₂	mg N/L																						
1 1	TN	mg N/L	0	0	0	0	0	0	0	20,3	0	0	0	0										

G.4. Essai A3

	Parameter	unit	Initial effluent (2023-07-09)	2023-07-10	2023-07-11	2023-07-12	2023-07-13	2023-07-14	2023-07-15	2023-07-16	2023-07-17	2023-07-18	2023-07-19	2023-07-20	2023-07-21	2023-07-25	2023-07-28	2023-08-04	2023-08-05	2023-08-06	2023-08-07	2023-08-08	2023-08-09	2023-08-10
	pH		8,25	8,11	8,11	8,12	8,1	8,11	8,05	8,08	8	8,07	8,13	8,12	8,14	7,96	7,92	7,95	7,87	7,85	7,93	8,41	8,96	9,02
	ORP	mV/ENH	219,90	229,8	213,1	187	179	191	179	203								127	98	-46	-5	78		
	EC	mS/cm	2673,00	2682	2752	2678	2710	2747	2744	2766	2785	2774	2814	2842	2859	2950	3421	3581	3579	3603	3637	3644	3606	3602
	T	°C	12,28	12,34	17,46	15,01	12,21	12,06	19,21	15,6	21,2	19,25	14,88	15,43	15,31	18,44	19,65	24,19	18,46	14,55	19,45	21,41	20,83	18,04
	DO	mg/L	9,69	9,69	8,53	9,22	8,93	8,85	8,39	8,19	8,2	7,77	8,03	8,72	8,36	8,73	6,72	6,52	6,78	1,05	2,58	11,69	15	15
	SCN-	mg N/L	21,92							22,3562507					20,9057235		23,2446986	11,150928						1,75876425
	SCN-	mg N	22356,00							22468,0319					20278,5518		21385,1227	9812,8166						1512,53725
	SCN- removal	mg N/m2	0,00							112,031469					-2077,4487		-970,87775	-12543,184						-20843,463
	N-NH3	mg N/L	20,00		21			23		19			21				24	36			42			35,9
	N-NH3	mg N	20400,00		21000			23230		19095			20475				22080	31680			36540			30874
On-site	N-NH3 removal	mg N/m2	0,00		600			2830		-1305			75				1680	11280			16140			10474
On-site	NO2-	mg N/L	0,11		0,13			0,13		0,133			0,137											
	NO2-	mg N	109,14		130			131,3		133,665			133,575											\vdash
	NO2- removal	mg N/m2	0,00		20,86			22,16		24,525			24,435											\vdash
	NO3-	mg N/L	4,40		11,7			10,4		21,7			9,2				19,3	4,8			1,7			\vdash
	NO3-	mg N	4488,00		11700			10504		21808,5			8970				17756	4224			1479			\vdash
	NO3- removal	mg N/m2	0,00		7212			6016		17320,5			4482				13268	-264			-3009			
	TN	mg N/L	46,42464751	0	32,83	0	0	33,53	0	63,1892507	0	0	30,337	0	20,9057235	0	66,5446986	51,950928	0	0	43,7	0	0	37,6587642
	PO ₄ 3	mg/L	0,62		5,7			4,8		4,3			5,45				5,35				4,55			-
	PO ₄ ³	mg	632,40		5700			4848		4321,5			5313,75				4922				3958,5			
	Turbidity	FAU	24,00		28		22	24		24	17	18	18	18				9	3	10	11	35		
	Effluent volume (init 1020)	L	1020,00	1020	1000	1000	1010	1010	1005	1005	990	985	975	970	970	945	920	880	880	870	870	865	860	860
	Alkalinity	mg/L	110							118					126			121						120
	PO ₄ ²	mg/L																						
	SCN ⁻	mg N/L																						
	CNO.	mg N/L																						
UQAT	N-NH ₂	mg N/L								20.9					21.8		26.1	37.1						35.9
	NO.	mg N/L															- 7							
	NO ₃	mg N/L																						
	TN	mg N/L	0	0	0	0	0	0	0	20,9	0	0	0	0										\vdash

G.5. Essai A4

	Parameter	unit	Initial effluent (2023-07-09)		2023-07-11		2023-07-13						2023-07-19				2023-07-28			2023-08-06			2023-08-09	2023-08-10
			0,00	1,00	2,00	3,00	4,00	5,00	6,00	7,00	8,00	9,00	10,00	11,00	12,00	16,00	19,00	26,00	27,00	28,00	29,00	30,00	31,00	32,00
	рН		8,13	8,02	7,99	8	7,9	7,93	7,81	7,95	7,92	8,02	8,14	8,17	8,3	8,15	8,19	8,25	8,37	8,46	8,37	8,39	8,43	8,49
	ORP	mV/ENH	221,50	210,4	205,6	182	195	190	189	207								198	223	216	208	174		
	EC	mS/cm	5620,00	5632	5763	5598	5670	5746	5732	5769	5796	5785	5869	5923	5951	6126	7099	7281	7277	7303	7350	7384	7460	7446
	тт	°C	11,59	11,78	16,89	14,79	12,01	11,58	18,67	15,37	21,37	19,17	14,1	14,76	14,01	18,09	19,63	23,83	18,16	14,54	19,7	21,61	21,03	18,21
	DO	mg/L	8,67	8,73	7,88	8,67	8,56	8,27	7,56	7,55	7,79	8,02	8,35	9,17	9,42	9,21	9,05	7,39	8,53	8,63	8,06	8,26	8,64	8,18
	SCN-	mg N/L	80,2							74,8					75,4274151		78,9086804							86,0887901
	SCN-	mg N	80239,5							73653,1					70901,7702		71017,8124	72279,771						72314,5837
	SCN- removal	mg N/m2	0,0							-6586,5					-9337,7689		-9221,7268	-7959,7681						-7924,9554
	N-NH3	mg N/L	15,00		13			13		12			14				22	25			30			34,2
	N-NH3	mg N	15000,00		12740			12870		11820			13440				19800	22000			25800			28728
On-site	N-NH3 removal	mg N/m2	0,00		-2260			-2130		-3180			-1560				4800	7000			10800			13728
Oli-site	NO2-	mg N/L	0,13		0,184			0,148		0,153			0,146											
	NO2-	mg N	130,00		180,32			146,52		150,705			140,16											
	NO2- removal	mg N/m2	0,00		50,32			16,52		20,705			10,16											
	NO3-	mg N/L	22,50		38,5			28,5		29			46,5				57,5	35			65			_
	NO3-	mg N	22500,00		37730			28215		28565			44640				51750	30800			55900			
	NO3- removal	mg N/m2	0,00		15230			5715		6065			22140				29250	8300			33400			
	TN	mg N/L	117,8695391	0	51,684	0	0	41,648	0	115,927678	0	0	60,646	0	75,4274151	0	158,40868	142,136103	0	0	95	0	0	120,28879
	PO ₄ ³	mg/L	0,76		1,55			1,8		1,35			1,9				1,5				2,1			
	PO ₄ ³	mg	760,00		1519			1782		1329,75			1824				1350				1806			
	Turbidity	FAU	3,00				8	4				7						9		3	13			
	Effleunt volume (init 1000)	L	1000,00	1000	980	980	995	990	985	985	975	975	960	950	940	925	900	880	860	855	860	850	840	840
	Alkalinity	mg/L	86							101					106			171						220
	PO ₄ ²	mg/L																						1
	SCN ⁻	mg N/L																						
UOAT	CNO ⁻	mg N/L																						
OUAI	N-NH ₃	mg N/L								12,8					15,3		20,7	25,5						34,2
	NO ₂	mg N/L																						
	NO ₂	mg N/L																						
	TN	mg N/L	0	0	0	0	0	0	0	12,8	0	0	0	0										

G.6. Essai A5

	Parameter	unit	Initial effluent (2023-07-09)	2023-07-10	2023-07-11	2023-07-12	2023-07-13	2023-07-14	2023-07-15	2023-07-16	2023-07-17	2023-07-18	2023-07-19	2023-07-20	2023-07-21	2023-07-25	2023-07-28	2023-08-04	2023-08-05	2023-08-06	2023-08-07	2023-08-08	2023-08-09	2023-08-10
	pH		8.13	7.94	7.96	7.96	7.89	7.91	7.85	7.91	7.87	7.94	8.04	8.03	8.1	7.87	8.06	8.07	8.21	8.34	8.29	8.33	8.42	8.51
	ORP	mV/ENH	213.80	213.9	208.1	188	213	180	201	208	.,		0,01			.,	-,	184	216	212	199	167		- 0,02
	EC	m\$/cm	5629,00	5638	5770	5604	5678	5746	5718	5765	5793	5773	5858	5910	5940	6109	7060	7235	7227	7263	7295	7349	7380	7383
	т	°C	11,46	11,69	16,43	14,58	11,85	11,44	18,28	15,26	20,85	19,06	13,99	14,69	14,14	17,74	18,99	23,15	17,85	14,37	19,03	21,19	21,03	17,88
	DO	mg/L	8,65	8,54	7,86	8,75	8,55	8,38	7,85	7,87	8,01	7,73	8,53	8,97	9,21	9,3	9,23	8,01	9,55	9,23	8,89	8,67	8,89	8,6
	SCN-	mg N/L	81,39							74,5933619					76,6603632		79,4526281	82,2086298						84,7470524
	SCN-	mg N	78537,31							70863,6938					70144,2323			68644,2059						69492,583
	SCN- removal	mg N/m2	0,00							-7673,6208					-8393,0823		-8221,7387	-9893,1087						-9044,7316
	N-NH3	mg N/L	15,00		13			11		12			14				17	22			28			33,8
	N-NH3	mg N	14475,00		12350			10560		11400			13020				15045	18370			23100			27716
On-site	N-NH3 removal	mg N/m2	0,00		-2125			-3915		-3075			-1455				570	3895			8625			13241
On-site	NO2-	mg N/L	0,13		0,161			0,189		0,168			0,172											_
	NO2-	mg N	125,45		152,95			181,44		159,6			159,96											_
	NO2- removal	mg N/m2	0,00		27,5 48			55,99 26		34,15 51.5			34,51 51.5				58.5	42			51.5			\vdash
	NO3-	mg N/L mg N	21712.50		45600.00			24960.00		48925.00			47895				51772.5	35070			42487 5			-
	NO3- NO3- removal	mg N/m2	0.00		23887 50			3247.50		27212.50			4/895 26182.5	-			30060	13357.5			20775			_
	TN	mg N/L	119.0158182	0	61.161	0		37.189	0	138.261362	0	0	65.672	0	76.6603632	0	154.952628	146.20863	0	0	79.5	0	0	118.547052
	PO, ²	mg/L	0.76		3.6	0	0	3,45	- 0	3.25	- 0	- 0	4.25	- "	70,0003032	0	3.45	140,20003	- 0		3.7	0	0	110,347032
	PO _A ²	me	733.40		3420			3312		3087 5			3952.5				3053.25				3052.5			-
	Turbidity	FAU	3.00		13		4	3		19	18	9	10	4			3033,23	11	15	2	12			_
	Effluent volume (init 965)	L	965,00	965	950	950	960	960	950	950	940	940	930	925	915	905	885	835	845	830	825	825	825	820
	Alkalinity	mg/L	86							99					106			152						230
	PO ₄ ³	mg/L																						
	SCN ⁻	mg N/L																						
	CNO.	mg N/L																						
UQAT	N-NH ₂	mg N/L								12,8					13,3		17,3	23,2						33,8
	NO ₂	mg N/L																						
	NO ₃	mg N/L																						
	TN	mg N/L	0	0	0	0	0	0	0	12,8	0	0	0	0										

G.7. Essai A6

	Parameter	unit	Initial effluent (2023-07-09)	2023-07-10	2023-07-11	2023-07-12	2023-07-13	2023-07-14	2023-07-15	2023-07-16	2023-07-17	2023-07-18	2023-07-19	2023-07-20	2023-07-21	2023-07-25	2023-07-28	2023-08-04	2023-08-05	2023-08-06	2023-08-07	2023-08-08	2023-08-09	2023-08-10
	pH		8,06	7,81	7,89	7,93	7,87	7,89	7,84	7,9	7,84	7,92	8,01	7,97	8,01	7,79	7,94	8,13	8,27	8,35	8,26	8,25	8,28	8,34
	ORP	mV/ENH	213,20	224,6	211,7	182	199	192	204	193								210	236	230	213	221		4
	EC	mS/cm	5632,00	5636	5773	5606	5670	5749	5717	5766	5801	5781	5889	5933	5954	6134	7080	7264	7259	7271	7312	7354	7432	7419
	T	°C	11,46	11,61	16,31	14,26	11,86	11,47	18,44	15,15	20,85	18,93	13,84	14,55	14	17,65	18,75	23,12	17,68	14,33	18,9	20,76	19,86	17,78
	DO	mg/L	8,53	9,03	8,08	9,03	8,69	8,52	7,99	8,06	8,1	7,76	8,71	8,92	9,26	9,36	9,23	8,8	8,85	9,54	9,14	8,78	9,6	8,68
	SCN-	mg N/L	80,52							74,194467					76,7328896		79,5614176	83,0064198						85,6898951
	SCN-	mg N	79711,06							72710,5776					72128,9162		70809,6617	70555,4568						70265,714
	SCN- removal	mg N/m2	0,00							-7000,4873					-7582,1487		-8901,4032	-9155,6081						-9445,3509
	N-NH3	mg N/L	15,00		11			11		12			13				15	18			21			25,1
	N-NH3	mg N	14850,00		10670			10835		11760			12480				13350	15300			17640			20582
On-site	N-NH3 removal	mg N/m2	0,00		-4180			-4015		-3090			-2370				-1500	450			2790			5732
Oli-site	NO2-	mg N/L	0,13		0,171			0,183		0,153			0,164											
	NO2-	mg N	128,70		165,87			180,255		149,94			157,44											
	NO2- removal	mg N/m2	0,00		37,17			51,555		21,24			28,74											
	NO3-	mg N/L	22,50		25,5			28,25		33			29,5				33,25	29,75			40,75			
	NO3-	mg N	22275,00		24735			27826,25		32340			28320				29592,5	25287,5			34230			
	NO3- removal	mg N/m2	0,00		2460			5551,25		10065			6045				7317,5	3012,5			11955			4
	TN	mg N/L	118,1462272	0	36,671	0	0	39,433	0	119,347467	0	0	42,664	0	76,7328896	0	127,811418	130,75642	0	0	61,75	0	0	110,789895
	PO ₄ 3	mg/L	0,76		5,35			6,85		5,1			4,75				5,7				4,6			4
	PO ₄ 2	mg	752,40		5189,5			6747,25		4998			4560				5073				3864			4
	Turbidity	FAU	3,00		11		4	3		12	7	10	2	1				10	15	4	12			4
	Effluent volume (init 990)	L	990,00	990	970	970	980	985	980	980	980	970	960	950	940	930	890	850	850	840	840	835	830	820
	Alkalinity	mg/L	86							98,2					106			131						200
	PO ₄ ²	mg/L																						1
	SCN'	mg N/L																						
	CNO.	mg N/L																						
UQAT	N-NH ₂	mg N/L								12.5					12.8		16.6	19.2						25.1
	NO.	mg N/L																						
	NO ₃	mg N/L																						
	TN	mg N/L	0	0	0	0	0	0	0	12,5	0	0	0	0										

G.8. Essai A7

	Parameter	unit	Initial effluent (2023-07-09)	2023-07-10	2023-07-11	2023-07-12	2023-07-13	2023-07-14	2023-07-15	2023-07-16	2023-07-17	2023-07-18	2023-07-19	2023-07-20	2023-07-21	2023-07-25	2023-07-28	2023-08-04	2023-08-05	2023-08-06	2023-08-07	2023-08-08	2023-08-09	2023-08-10
			0.00	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	11.00	12.00	16.00	19.00	26.00	27.00	28.00	29.00	30.00	31.00	32.00
	pH		8,21	8,23	8,48	8,8	9,37	9,53	10,36	10,24	10,14	10,1	10,31	10,14	9,99	10,08	10,24	10,06	10,2	10,37	10,18	10,15	10,2	9,71
	ORP	mV/ENH	215,30	164,2	146,9	100	68	84	72									125	37	-28	-30	23		
	EC	mS/cm	1331,00	1334	1358	1312	1291	1295	1279	1283	1297	1287	1305	1316	1320	1366	1585	1637	1630	1638	1649	1661	1676	1667
	T	°C	11,19	11,54	16,04	14,82	12,36	12,34	18,58	15,77	21,82	19,29	15,25	15,65	14,96	19,06	20,32	24,57	18,5	14,59	19,66	21,79	19,86	17,87
	DO	mg/L	10,20	10,11	10,41	15	15	15	15	15	15	15	15	15	15	15	14,57	13,19	13,31	12,63	13,39	12,89	13,37	11,29
	SCN-	mg N/L	3,38							0					0		0	0						0
	SCN-	mg N	3376,20							0					0		0	0						0
	SCN- removal	mg N/m2	0,00							-3376,203					-3376,203		-3376,203	-3376,203						-3376,2035
	N-NH3	mg N/L	18,00		14			11		9			6				3	2			1			1,17
	N-NH3	mg N	18000,00		13720			10780		8820			5820				2640	1680			820			936
On-site	N-NH3 removal	mg N/m2	0,00		-4280			-7220		-9180			-12180				-15360	-16320			-17180			-17064
On-site	NO2-	mg N/L	0,35		0,378			0,346		0,344			0,34											
	NO2-	mg N	350,00		370,44			339,08		337,12			329,8											
	NO2- removal	mg N/m2	0,00		20,44			-10,92		-12,88			-20,2											
	NO3-	mg N/L	2,80		3,7			4,6		2,9			3,7				4,5	5,2			3,2			
	NO3-	mg N	2800,00		3626			4508		2842			3589				3960	4368			2624			
	NO3- removal	mg N/m2	0,00		826			1708		42			789				1160	1568			-176			
	TN	mg N/L	24,52620346	0	18,078	0	0	15,946	0	12,244	0	0	10,04	0	0	0	7,5	7,2	0	0	4,2	0	0	1,17
	PO ₄ ³⁻	mg/L	0,71		1,55			0,65		1,15			0,6				0,8				0,9			
	PO ₄ 3-	mg	710,00		1519			637		1127			582				704				738			
	Turbidity	FAU	24,00		27		49	62		67	65	63	62	55				65	65	63	60	66		
	Effluent volume (init 1000)	L	1000,00	1000	980	980	970	980	980	980	975	970	970	940	935	915	880	840	825	820	820	820	805	800
	Alkalinity	mg/L	71							50,4					35,2			19,9						22
	PO ₄ ³⁻	mg/L																						
	SCN ⁻	mg N/L																						
	CNO.	mg N/L																						
UQAT	N-NH ₃	mg N/L								9,24					6,26		3,17	2,82						1,17
	NO ₂	mg N/L																						
1	NO ₃	mg N/L						1		l —						_								
1	TN	mg N/L	0	0	0	0	0	0	0	9,24	0	0	0	0										

G.9. Essai A8

	Parameter	unit	Initial effluent (2023-07-09)	2023-07-10	2023-07-11	2023-07-12	2023-07-13	2023-07-14	2023-07-15	2023-07-16	2023-07-17	2023-07-18	2023-07-19	2023-07-20	2023-07-21	2023-07-25	2023-07-28	2023-08-04	2023-08-05	2023-08-06	2023-08-07	2023-08-08	2023-08-09	2023-08-10
			0,00	1,00	2,00	3,00	4,00	5,00	6,00	7,00	8,00	9,00	10,00	11,00	12,00	16,00	19,00	26,00	27,00	28,00	29,00	30,00	31,00	32,00
	pH		8,21	8,13	8,14	8,79	9,39	9,59	10,35	10,24	10,1	10,12	10,21	10,16	9,97	10,07	10,19	10,09	10,26	10,45	10,25	10,21	10,28	9,98
	ORP	mV/ENH	219,90	179,6	157,9	99	66	74	66									149	42	-19	-15	34		
	EC	mS/cm	1331,00	1334	1360	1314	1290	1293	1281	1284	1296	1286	1304	1313	1320	1363	1580	1637	1633	1638	1651	1663	1677	1670
	Т	°c	11,11	11,57	15,93	14,65	12,47	12,36	18,24	15,94	22,06	19,56	15,13	15,85	15,09	19,29	20,44	24,63	18,6	14,62	19,86	22,03	19,88	17,94
	DO	mg/L	10,20	10,15	12,18	15	15	15	15	15	15	15	15	15	15	15	13,52	13,67	13,66	13,12	12,83	12,63	13,72	12,24
	SCN-	mg N/L	3,38							0					0		0	0						0
	SCN-	mg N	3376,20							0					0		0	0						0
	SCN- removal	mg N/m2	0,00							-3376,2035					-3376,2035		-3376,2035	-3376,2035						-3376,2035
	N-NH3	mg N/L	18,00		14			11		9			6				3	1			0			0,84
	N-NH3	mg N	18000,00		13720			10945		8910			5700				2670	840			0			688,8
On-site	N-NH3 removal	mg N/m2	0,00		-4280			-7055		-9090			-12300 0.366	_			-15330	-17160			-18000			-17311,2
Oil-Jac	NO2-	mg N/L	0,35		0,388			0,37		0,364				_										lacksquare
	NO2-	mg N	350,00		380,24 30.24			368,15		360,36		_	347,7	_										-
	NO2- removal NO3-	mg N/m2	2.80					18,15		10,36				_							2.0			
	NO3-	mg N/L mg N	2,80		3,9 3822			2,5 2487.5		2,7 2673			3,9 3705	_			5,3 4717	4,5 3780			3,6 2988			
	NO3- removal	mg N/m2	0.00		1022			-312.5		-127			905	_			1917	980			2988 188			
	NU3- removal TN	mg N/m2	24.52620346	0	18.288	0	0	13.87	0	12.064	0	0	10.266	0	0	0	8.3	5.5	0	0	3.6	0	0	0.84
	PO _A ³			U	4.55	U	U	2.15	U	12,064	- 0	U		0	U	- 0		5,5	U	U	-70	- 0	U	0,84
		mg/L	0,71										1,35	_			1,15				0,75			lacksquare
	PO ₄ ³	mg	710,00		4459			2139,25		1039,5			1282,5	-			1023,5				622,5			-
	Turbidity	FAU	24,00		29		52	62		60	55	54	52	49				67	62	62	61	66		lacksquare
	Effluent volume (init 1000)	L	1000,00	1000	980	980	1000	995	990	990	985	970	950	945	940	920	890	840	840	830	830	830	820	820
	Alkalinity	mg/L	71							44,1					35,2			18,0						15
	PO ₄ ³	mg/L																						
	SCN	mg N/L																						
	CNO ⁻	mg N/L																						1 !
UQAT	N-NH ₂	mg N/L								8,74					5,19		3,03	1,69						0,84
	NO ₂	mg N/L																						
	NO ₃	mg N/L																						
	TN	mg N/L	0	0	0	0	0	0	0	8,74	0	0	0	0										

G.10. Essai A9

	Parameter	unit	Initial effluent (2023-07-09)	2023-07-10	2023-07-11	2023-07-12	2023-07-13	2023-07-14	2023-07-15	2023-07-16	2023-07-17	2023-07-18	2023-07-19	2023-07-20	2023-07-21	2023-07-25	2023-07-28	2023-08-04	2023-08-05	2023-08-06	2023-08-07	2023-08-08	2023-08-09	2023-08-10
			0,00	1,00	2,00	3,00	4,00	5,00	6,00	7,00	8,00	9,00	10,00	11,00	12,00	16,00	19,00	26,00	27,00	28,00	29,00	30,00	31,00	32,00
	pН		8,18	8,01	8,41	8,8	9,39	9,6	10,24	10,19	10,01	9,98	10,12	10,12	9,92	9,93	9,98	9,92	10,11	10,31	10,08	10,03	10,08	
	ORP	mV/ENH	222,70	196,5	170,5	105	59	76	67									174	58	-65	-16	-37		
	EC	mS/cm	1333,00	1337	1632	1342	1290	1292	1274	1281	1294	1286	1297	1312	1320	1361	1582	1636	1631	1643	1651	1661	1676	
	T	°C.	11,09	11,64	16,1	14,62	12,5	12,41	18,72	15,93	22,42	19,67	15,2	15,84	15,7	19,59	21,16	25,17	18,86	14,7	20,44	22,63	21,04	
	DO	mg/L	10,16	10,14	12,08	14,47	15	15	15	15	15	15	15	15	15	15	11,52	12,87	12,97	13,04	13,14	11,62	12,92	9 32,00 8 9,99 5 1673 4 18,24 2 11,69 0 0 3345,0136 1,23 1,045,5 -1,7854,5
	SCN-	mg N/L	3,38							0				_	0		0	0						
	SCN-	mg N	3545,01							0				_	0		0	0						32,00 9,89 1673 18,24 11,69 0 0 -3545,0136 1,23 1045,5 -17854,5
	SCN- removal	mg N/m2	0,00							-3545,0136				_	-3545,0136		-3545,0136	-3545,0136						
	N-NH3 N-NH3	mg N/L mg N	18,00 18900.00		16 16480			11 11440		8280			6930	_	5,51 5399.8		3 2760	880			1 855			88 9,89 9,89 9,89 9,89 9,89 9,89 9,89 9
On-site		mg N/m2	0.00		-2420			-7460		-10620					-13500.2			-18020						
On-site	N-NH3 removal NO2-	mg N/m2	0,00		0.39			0.368		0.358			-11970 0.36	_	-13500,2		-16140	-18020			-18045			32,00 9,89 1673 18,24 11,69 0 0 0 3545,013 3545,013 1045,5 -17854,5
	NO2-	mg N	367.50		401.7			382.72		370.53			356.4	_										-
	NO2- removal	mg N/m2	0.00		34.2			15.22		3.03			-11.1											-
	NO3-	mg N/L	2.80		4.1			2		3,03			3.3				4.3	4.3			3.5			_
	NO3-	mg N	2940.00		4223			3120		3105			3267				3956	3784			2992.5			
	NO3- removal	mg N/m2	0.00		1283			180		165			327				1016	844			52.5			
	TN	mg N/L	24.52620346	0	20.49	0	0	14.368	0	11.358	0	0	10.66	0	5.51	0	7.3	5.3	0	0	4.5	0	0	1.23
	PO.3	mg/L	0,71		5,95			2,7		0,45			1,25				1,4				0,9			
	PO. ²	mg	745.50		6128.5			2808		465.75			1237.5				1288				769.5			
	Turbidity	FAU	24,00		29		51	64		68	64	56	57	58				60	68	59	57	63		9,89 1673 18,24 11,69 0 0 -3545,0136 1,23 1045,5 -17854,5
	Effluent volume (init 1050)	L	1050,00	1050	1030	1030	1030	1040	1035	1035	1000	1000	990	985	980	950	920	880	860	860	855	855	850	850
	Alkalinity	mg/L	71							40,3					30,2			14,2						13
	PO ₄ 3	mg/L																						
	SCN ⁻	mg N/L								0					0		0	0						0
	CNO.	mg N/L																						
UQAT	N-NH ₃	mg N/L								9,76					5,51		3,12	1,92						1,23
l	NO ₂	mg N/L																						
l	NO ₃	mg N/L																						
	TN	mg N/L	0	0	0	0	0	0	0	9,76	0	0	0	0										

G.11. Caractérisations finales

COD Conductivity Cyanate (CNO-)	A1	A2	A3	A4	A5	A6	A7	A8	A9
Conductivity Cyanate (CNO-)	21	63	73	500	480	480	130	120	110
	3,23	3,13	3,13	6,45	6,23	6,25	1,45	1,46	1,47
	<0,25	<0,50	<0,50	3,3	6,1	<1,0	0,39	<0,25	0,46
Dissolved organic carbon †	6,4	6,7	10	140	160	88	21	20	20
Fluoride (F)	0,30	0,28	0,29	0,19	0,18	0,18	0,34	0,34	0,33
Nitrate (N) and Nitrite(N)	<0,10 <0,10	<0,10	<0,10	22,9	21,7	21,8 21,6	0,42	0,50	0,51
Nitrates (N-NO3-) Nitrites (N-NO2-)	<0,10	<0,10	<0,10	0,166	0,204	0,229	0,052	0,32	0,198
Nitrites (N-NO2-) Nitrogen ammonia (N-NH4+ and N-NH3		43	41	68	71	72	0,032	0,180	1,0
Orthophosphate (P)	0,021	0,073	0,70	0,30	0,74	0,80	0,16	0,32	0,73
pH	7,73	8,57	8,67	8,37	8,68	8,52	7,05	7,07	7,06
Thiocyanate	12	10	<0,20	360	370	390	16	17	17
Total N (calculated)	44,9	45,4	41	178,8	184,0	187,9	5,2	5,4	5,8
Thiosulfate	<1,0	<0,40	<0,20	<20	<20	<20	<1,0	<1,0	<1,0
TKN Total Kjeldahl Nitrogen	45	43	47	260	330	160	8,4	7,5	7,4
Total Cyanide (CN)	0,0269	0,00422	0,0159	0,0336	0,0369	0,0337	0,113	0,0997	0,113
Weak Acid Dissociable Cyanide (CN-)	0,0071	0,0014	0,0031	0,0096	0,012	0,0054	0,094	0,078	0,090
Nitrogen (N) †	45	43	47	280	350	180	8,8	8,0	7,9
Alkalinity Total (as CaCO3) pH 4,5 †	140	110	120	220	230	200	22	15	13
Bromide (Br-) Chloride (Cl)	1,8	2,0 160	2,2 160	5,0 720	4,9 690	4,8 710	<1,0 56	<1,0 57	<1,0 57
Sulfates (SO4)	1400	1400	1400	2400	2400	2400	620	620	620
Total Dissolved Solids	2260	2260	2220	5440	5380	5460	1040	1010	1060
Total suspended solids (TSS)	7	33	32	5	7	26	57	42	37
Aluminum (AI) †	6,5	6.9	7,5	<15	<15	<15	8,8	7,7	7,6
Antimony (Sb)	5,6	5,8	5,8	20,9	20,4	20,1	9,04	8,97	9,20
Silver (Ag) †	<0,040	<0,040	<0,040	<0,10	<0,10	0,34	<0,020	<0,020	<0,020
Arsenic (As)	71,5	71,6	67,9	194	192	185	302	311	307
Barium (Ba)	49,2	49,8	48,8	169	165	163	34,7	31,8	27,3
Beryllium (Be) †	<0,20	<0,20	<0,20	<0,50	<0,50	<0,50	<0,10	<0,10	<0,10
Bismuth (Bi) †	<2,0	<2,0	<2,0	<5,0	<5,0	<5,0	<1,0	<1,0	<1,0
Boron (B)	166	163	165	408	401	442	121	123	125
Cadmium (Cd)	<0,020	<0,020	<0,020	0,473	0,341	0,214	<0,010	<0,010	<0,010
Calcium (Ca)	305	309	312	739	732	748	155	155	156
Chromium (Cr)	<2,0 146	<2,0 169	<2,0 166	<5,0 733	<5,0 690	<5,0 692	<1,0 157	<1,0 156	<1,0 163
Cobalt (Co)			_	1200	645	703			
Copper (Cu)	29,4 <10	36,4 <10	27,5 <10	<25	<25	<25	5,41 <5,0	5,74 <5,0	6,88 <5,0
Tin (Sn) †	30	30	20	<25	<25	<25	<5,0	<5,0	<5,0
Iron (Fe) Lithium (Li) †	4,3	4,1	4,2	<10	<10	<10	4,0	4,0	4,0
Magnesium (Mg)	27,0	27,0	27,4	24,2	23,7	23,6	9,24	9,07	9,49
Manganese (Mn)	339	429	386	54,2	51,0	50,1	20,4	28,2	24,4
Molybdenum (Mo)	85,1	85,1	87,7	144	140	142	53,1	51,8	57,8
Mercury (Hg)	<0,00010	<0,00001	<0,00001	<0,00010	<0,00010	<0,00010	<0,00010	<0,00010	<0,00010
Nickel (Ni)	341	353	336	982	970	968	38,7	38,8	40,4
Phosphorus									
Lead (Pb)	<0,40	<0,40	<0,40	<1,0	<1,0	<1,0	<0,20	<0,20	<0,20
Potassium (K) †	97,2	97,9	97,8	263	254	258	61,3	61,8	62,9
Selenium (Se)	72,4	72,3	71,6	302	315	322	19,2	19,5	19,8
Silicon (Si) †	2670	2650	2690	3070	2980	3010	2800	1560	874
Strontium (Sr) †	1470	1430	1480	3920	3800	3870	472	461	465
Sodium (Na)	308	311	313	757	728	744	118	120	123
Thallium (TI) †	<0,020	<0,020	<0,020	<0,050	<0,050	<0,050	0,014	0,013	0,013
Uranium (U)	<10 16.0	<10 16,0	<10 15,9	<25 10.6	<25 12,8	<25 12,7	<5,0 0,52	<5,0 0,66	<5,0 0,68
Titanium (Ti) † Vanadium (V) †	<10	<10	<10	<25	<25	<25	<5,0	<5,0	<5,0
Zinc (Zn)	<10	<10	<10	<25	<25	<25	<5,0	<5,0	7.4
Zirconium (Zr) †	<0,20	<0,20	<0,20	<0.50	<0,50	<0,50	<0.10	<0,10	<0,10
	502	483	488	-,			-, -		
Sultur (S) T	0,0341			1090	1040	1060	227	230	
Sulfur (S) † Aluminum (Al)	0,0341	0,0123	0,0144	0,040		1060 0,094	0,111	230 0,0300	236 0,0556
Sulfur (S) † Aluminum (AI) Antimony (Sb)	0,0048	0,0123	0,0144		1040				236
Aluminum (Al)				0,040	1040 0,097	0,094	0,111	0,0300	236 0,0556
Aluminum (Al) Antimony (Sb)	0,0048	0,0049	0,0049	0,040 0,0166	1040 0,097 0,0166	0,094 0,0171	0,111 0,00781	0,0300 0,00794	236 0,0556 0,00797
Aluminum (Al) Antimony (Sb) Silver (Ag) Arsenic (As) Barium (Ba)	0,0048 <0,000040 0,0729 0,0434	0,0049 <0,000040 0,0638 0,0427	0,0049 <0,000040 0,0587 0,0424	0,040 0,0166 0,00052 0,159 0,136	1040 0,097 0,0166 0,00055 0,169 0,143	0,094 0,0171 0,00070 0,169 0,146	0,111 0,00781 <0,000020 0,268 0,0291	0,0300 0,00794 <0,000020 0,277 0,0294	236 0,0556 0,00797 <0,000020 0,271 0,0252
Aluminum (Al) Antimony (Sb) Silver (Ag) Arsenic (As) Barium (Ba) Beryllium (Be)	0,0048 <0,000040 0,0729 0,0434 <0,00020	0,0049 <0,000040 0,0638 0,0427 <0,00020	0,0049 <0,000040 0,0587 0,0424 <0,00020	0,040 0,0166 0,00052 0,159 0,136 <0,00050	1040 0,097 0,0166 0,00055 0,169 0,143 <0,00050	0,094 0,0171 0,00070 0,169 0,146 <0,00050	0,111 0,00781 <0,000020 0,268 0,0291 <0,00010	0,0300 0,00794 <0,000020 0,277 0,0294 <0,00010	236 0,0556 0,00797 <0,000020 0,271 0,0252 <0,00010
Aluminum (AI) Antimony (Sb) Silver (Ag) Arsenic (As) Barium (Ba)	0,0048 <0,000040 0,0729 0,0434	0,0049 <0,000040 0,0638 0,0427	0,0049 <0,000040 0,0587 0,0424	0,040 0,0166 0,00052 0,159 0,136	1040 0,097 0,0166 0,00055 0,169 0,143	0,094 0,0171 0,00070 0,169 0,146	0,111 0,00781 <0,000020 0,268 0,0291	0,0300 0,00794 <0,000020 0,277 0,0294	236 0,0556 0,00797 <0,000020 0,271 0,0252
Aluminum (AI) Antimony (5b) Silver (Ag) Arsenic (As) Barium (Ba) Beryllium (Be) Bismuth (Bi) †† Boron (B) †	0,0048 <0,000040 0,0729 0,0434 <0,00020 <0,0020	0,0049 <0,000040 0,0638 0,0427 <0,00020 <0,0020 0,13	0,0049 <0,000040 0,0587 0,0424 <0,00020 <0,0020 0,13	0,040 0,0166 0,00052 0,159 0,136 <0,00050 <0,0050 0,28	1040 0,097 0,0166 0,00055 0,169 0,143 <0,00050 <0,0050	0,094 0,0171 0,00070 0,169 0,146 <0,00050 <0,0050 0,30	0,111 0,00781 <0,000020 0,268 0,0291 <0,00010 <0,0010	0,0300 0,00794 <0,000020 0,277 0,0294 <0,00010 <0,0010	236 0,0556 0,00797 <0,000020 0,271 0,0252 <0,00010 <0,0010
Aluminum (Al) Antimony (Sb) Silver (Ag) Arsenic (As) Barium (Ba) Beryllium (Be) Bismuth (Bi) †† Boron (B) † Cadmium (Cd)	0,0048 <0,000040 0,0729 0,0434 <0,00020 <0,0020 0,13 <0,000020	0,0049 <0,000040 0,0638 0,0427 <0,00020 <0,0020 0,13 <0,000020	0,0049 <0,000040 0,0587 0,0424 <0,00020 <0,0020 0,13 <0,000020	0,040 0,0166 0,00052 0,159 0,136 <0,00050 <0,0050 0,28 0,000359	1040 0,097 0,0166 0,00055 0,169 0,143 <0,00050 <0,0050 0,30 0,000328	0,094 0,0171 0,00070 0,169 0,146 <0,00050 <0,0050 0,30 0,000328	0,111 0,00781 <0,000020 0,268 0,0291 <0,00010 <0,0010 0,095 <0,00010	0,0300 0,00794 <0,000020 0,277 0,0294 <0,00010 <0,0010 0,099 <0,000010	236 0,0556 0,00797 <0,000020 0,271 0,0252 <0,00010 <0,0010 0,101 <0,000010
Aluminum (Al) Antimony (Sb) Silver (Ag) Arsenic (As) Barium (Ba) Beryllium (Be) Bismuth (Bi) †† Boron (B) † Cadmium (Cd) Calcium (Ca) †	0,0048 <0,000040 0,0729 0,0434 <0,00020 <0,0020 0,13 <0,000020 254	0,0049 <0,000040 0,0638 0,0427 <0,00020 <0,0020 0,13 <0,00020 249	0,0049 <0,000040 0,0587 0,0424 <0,00020 <0,0020 0,13 <0,000020 261	0,040 0,0166 0,00052 0,159 0,136 <0,00050 <0,0050 0,28 0,000359	1040 0,097 0,0166 0,00055 0,169 0,143 <0,00050 <0,0050 0,30 0,000328 611	0,094 0,0171 0,00070 0,169 0,146 <0,00050 <0,0050 0,30 0,000328 615	0,111 0,00781 <0,000020 0,268 0,0291 <0,00010 <0,0010 0,095 <0,00010	0,0300 0,00794 <0,000020 0,277 0,0294 <0,00010 <0,0010 0,099 <0,000010 128	236 0,0556 0,00797 <0,000020 0,271 0,0252 <0,00010 <0,0010 0,101 <0,000010 129
Aluminum (Al) Antimony (Sb) Silver (Ag) Arsenic (As) Barium (Ba) Beryllium (Be) Bismuth (Bi) †† Boron (B) † Cadmium (Cd) Calcium (Ca) † Chromium (Cr)	0,0048 <0,000040 0,0729 0,0434 <0,00020 <0,0020 0,13 <0,000020 254 <0,0020	0,0049 <0,00040 0,0638 0,0427 <0,00020 <0,0020 0,13 <0,000020 249 <0,0020	0,0049 <0,00040 0,0587 0,0424 <0,0020 <0,0020 0,13 <0,00020 261 <0,0020	0,040 0,0166 0,00052 0,159 0,136 <0,00050 <0,0050 0,28 0,000359 556 <0,0050	1040 0,097 0,0166 0,00055 0,169 0,143 <0,00050 <0,300 0,000328 611 <0,0050	0,094 0,0171 0,00070 0,169 0,146 <0,00050 0,30 0,000328 615 <0,0050	0,111 0,00781 <0,000020 0,268 0,0291 <0,00010 0,095 <0,00010 127 0,0014	0,0300 0,00794 <0,000020 0,277 0,0294 <0,00010 <0,0010 0,099 <0,000010 128 <0,0010	236 0,0556 0,00797 <0,000020 0,271 0,0252 <0,00010 <0,0010 0,101 <0,000010 129 <0,0010
Aluminum (Al) Antimony (Sb) Silver (Ag) Arsenic (As) Barlum (Ba) Beryilium (Be) Bismuth (Bi) † Boron (B) † Cadmium (Cd) Calcium (Ca) † Chromium (Cr) Cobalt (Co)	0,0048 <0,000040 0,0729 0,0434 <0,00020 <0,0020 0,13 <0,000020 254 <0,0020 0,138	0,0049 <0,00040 0,0638 0,0427 <0,00020 <0,0020 0,13 <0,000020 249 <0,0020 0,147	0,0049 <0,00040 0,0587 0,0424 <0,0020 <1,0020 0,13 <0,000020 261 <0,0020 0,146	0,040 0,0166 0,00052 0,159 0,136 <0,00050 <0,0050 0,28 0,000359 556 <0,0050 0,578	1040 0,097 0,0166 0,00055 0,169 0,143 <0,00050 <0,0050 0,30 0,000328 611 <0,0050 0,589	0,094 0,0171 0,00070 0,169 0,146 <0,00050 <0,0050 0,30 0,000328 615 <0,0050 0,613	0,111 0,00781 <0,000020 0,268 0,0291 <0,00010 <0,0010 0,095 <0,000010 127 0,0014 0,151	0,0300 0,00794 <0,000020 0,277 0,0294 <0,00010 <0,0010 0,099 <0,00010 128 <0,0010 0,150	236 0,0556 0,00797 <0,000020 0,271 0,0252 <0,00010 <0,0010 129 <0,0010 0,152
Aluminum (AI) Antimony (Sb) Silver (Ag) Arsenic (As) Barium (Ba) Beryllium (Be) Bismuth (Bi) †† Boron (B) † Cadmium (Cd) Calcium (Ca) † Chromium (Cr) Cobalt (Co) Copper (Cu)	0,0048 <0,000040 0,0729 0,0434 <0,00020 <0,0020 0,13 <0,000020 254 <0,0020 0,138 0,100	0,0049 <0,00040 0,0638 0,0427 <0,00020 <0,0020 0,13 <0,00020 249 <0,0020 0,147 0,0588	0,0049 <0,00040 0,0587 0,0424 <0,0020 <1,0020 0,13 <0,000020 261 <0,0020 0,146 0,0595	0,040 0,0166 0,00052 0,159 0,136 <0,00050 <0,00050 0,28 0,000359 556 <0,00050 0,578 1,92	1040 0,097 0,0166 0,00055 0,169 0,143 <0,00050 <0,0050 0,30 0,000328 611 <0,0050 0,589 1,57	0,094 0,0171 0,00070 0,169 0,146 <0,00050 <0,0050 0,30 0,000328 615 <0,0050 0,613 2,14	0,111 0,00781 <0,000020 0,268 0,0291 <0,00010 <0,0010 127 0,00010 0,0014 0,151 0,00787	0,0300 0,00794 <0,000020 0,277 0,00010 <0,0010 <0,0010 0,099 <0,000010 128 <0,0010 0,150 0,00870	236 0,0556 0,00797 <0,000020 0,271 0,0252 <0,00010 <0,001 <0,0010 129 <0,0010 0,152 0,00972
Aluminum (Al) Antimony (Sb) Silver (Ag) Arsenic (As) Barium (Ba) Beryllium (Be) Bismuth (Bi) †† Boron (B) † Cadmium (Cd) Calcium (Ca) † Chromium (Cr) Cobalt (Co) Copper (Cu) Tin (Sn)	0,0048 <0,000040 0,0729 0,0434 <0,00020 <0,0020 0,13 <0,000020 254 <0,0020 0,138 0,100 <0,0100	0,0049 <0,000040 0,0638 0,0427 <0,00020 <0,0020 0,13 <0,00002 249 <0,0020 0,147 0,0588 <0,010	0,0049 <0,00040 0,0587 0,0424 <0,00020 <0,0020 0,13 <0,000020 261 <0,0020 0,146 0,0595 <0,010	0,040 0,0166 0,00052 0,159 0,136 <0,00050 <0,00050 <0,00050 556 <0,00050 0,28 0,000359 556 <0,00050 1,92 <0,0055	1040 0,097 0,0166 0,00055 0,169 0,143 <0,00050 <0,0050 0,30 0,000328 611 <0,0050 0,589 1,57 <0,025	0,094 0,0171 0,00070 0,169 0,146 <0,00050 <0,0050 0,30 0,000328 615 <0,0050 0,613 2,14 <0,025	0,111 0,00781 <0,000020 0,268 0,0291 <0,00010 <0,0010 0,095 <0,00010 127 0,0014 0,151 0,00787 <0,0050	0,0300 0,00794 <0,000020 0,277 0,0294 <0,00010 0,099 <0,00010 128 <0,0010 0,150 0,00870 <0,0050	236 0,0556 0,00797 <0,000020 0,271 0,00252 <0,00010 0,101 <0,00010 129 0,0010 0,152 0,00972 <0,0050
Aluminum (Al) Antimony (Sb) Silver (Ag) Arsenic (As) Barium (Ba) Beryfilium (Be) Bismuth (Bi) † Boron (B) † Cadmium (Cd) Calcium (Ca) † Chromium (Cr) Cobalt (Co) Copper (Cu) Tin (Sn) Iron (Fe)	0,0048 <0,000040 0,0729 0,0434 <0,00020 <0,0020 0,13 <0,000020 254 <0,0020 0,138 0,100	0,0049 <0,00040 0,0638 0,0427 <0,00020 <0,0020 0,13 <0,00020 249 <0,0020 0,147 0,0588	0,0049 <0,00040 0,0587 0,0424 <0,0020 <1,0020 0,13 <0,000020 261 <0,0020 0,146 0,0595	0,040 0,0166 0,00052 0,159 0,136 <0,00050 <0,00050 0,28 0,000359 556 <0,00050 0,578 1,92	1040 0,097 0,0166 0,00055 0,169 0,143 <0,00050 <0,0050 0,30 0,000328 611 <0,0050 0,589 1,57	0,094 0,0171 0,00070 0,169 0,146 <0,00050 <0,0050 0,30 0,000328 615 <0,0050 0,613 2,14	0,111 0,00781 <0,000020 0,268 0,0291 <0,00010 <0,0010 127 0,00010 0,0014 0,151 0,00787	0,0300 0,00794 <0,000020 0,277 0,00010 <0,0010 <0,0010 0,099 <0,000010 128 <0,0010 0,150 0,00870	236 0,0556 0,00797 <0,000020 0,271 0,0252 <0,00010 <0,0010 <0,0010 129 <0,0010 0,152 0,00972
Aluminum (Al) Antimony (Sb) Silver (Ag) Arsenic (As) Barium (Ba) Beryllium (Be) Bismuth (Bi) †† Boron (B) † Cadmium (Cd) Calcium (Ca) † Chromium (Cr) Cobalt (Co) Copper (Cu) Tin (Sn)	0,0048 <0,000040 0,0729 0,0434 <0,00020 <0,0020 0,13 <0,000020 254 <0,0020 0,138 0,100 0,100 <0,010 0,181	0,0049 <0,00040 0,0638 0,0427 <0,00020 <0,0020 0,13 <0,00020 249 <0,0020 0,147 0,0588 <0,010 0,068	0,0049 <0,000040 0,0587 0,0424 <0,00020 <0,0020 0,13 <0,00020 261 <0,0020 0,146 0,0595 <0,010 0,048	0,040 0,0166 0,00052 0,159 0,136 <0,00050 <0,00050 0,28 0,00050 0,00050 0,00050 0,578 1,92 <0,0025 0,076	1040 0,097 0,0166 0,00055 0,169 0,143 <0,0050 <0,0050 0,30 0,000328 6111 <0,0050 0,589 1,57 <0,025 0,204	0,094 0,0171 0,00070 0,169 0,146 <0,00050 <0,0050 0,30 0,30 615 <0,0050 0,613 2,14 <0,025 0,191	0,111 0,00781 <0,000020 0,268 0,0291 <0,00010 <0,0010 127 0,0014 0,151 0,00787 <0,0050 0,212	0,0300 0,00794 <0,000020 0,277 0,0294 <0,00010 <0,0010 0,099 <0,00010 128 <0,0010 0,150 0,150 0,00870 <0,0044	236 0,0556 0,00797 <0,000020 0,271 <0,0010 <0,0010 <0,0011 <0,00010 129 <0,0010 0,152 <0,0010 0,0552 <0,0050 0,099
Aluminum (AI) Antimony (Sb) Silver (Ag) Arsenic (As) Barium (Ba) Beryflium (Be) Bismuth (Bi) †† Boron (B) † Cadmium (Cd) Calcium (Ca) † Chromium (Cr) Cobalt (Co) Copper (Cu) Tin (Sn) Iron (Fe) Lithium (Li) ††	0,0048 <0,000040 0,0729 0,0434 <0,00020 <1,000000 0,13 <0,00000 254 <0,00020 0,138 0,100 <0,0010 0,181 <0,0040	0,0049 <0,00040 0,0638 0,0427 <0,00020 <1,00020 0,13 <0,000020 249 <0,0020 0,147 0,0588 <0,010 0,068 <0,0040	0,0049 <0,000040 0,0587 0,0424 <0,00020 <0,13 <0,00020 261 <0,0020 0,146 0,0595 <0,010 0,048 <0,0040	0,040 0,0166 0,00052 0,159 0,136 <0,00050 0,28 0,000359 556 40,00050 0,578 1,92 <0,005 <0,076 <0,010	1040 0.097 0,0166 0,00055 0,169 0,143 <0,00050 0,30 0,000328 611 <0,0050 0,589 1,57 <0,025 0,204 <0,010	0,094 0,0171 0,00070 0,169 0,146 <0,00050 0,30 0,000328 615 <0,0050 0,613 2,14 <0,025 0,191 <0,010	0,111 0,00781 <0,00020 0,268 0,0291 <0,00010 0,095 <0,00010 0,095 <0,00010 127 0,0011 127 0,0014 0,151 0,00787 <0,0050 0,212 0,0029	0,0300 0,00794 <0,000020 0,277 0,0294 <0,00010 <0,0010 128 <0,0010 0,150 0,00870 <0,0050 0,044 0,0028	236 0,0556 0,00797 <0,000020 0,271 0,0252 <0,00010 <0,0010 129 <0,0010 0,152 0,0097 0,0099 0,0030
Aluminum (Al) Antimony (Sb) Silver (Ag) Arsenic (As) Barium (Ba) Beryllium (Be) Bismuth (Bi) †† Boron (B) † Cadmium (Cd) Calcium (Ca) † Chromium (Cr) Cobalt (Co) Copper (Cu) Tin (Sn) Iron (Fe) Lithium (Li) †† Magnesium (Mg) †	0,0048 <0,000040 0,0729 0,0434 <0,00020 <0,0020 <1,000020 254 <0,00020 0,138 0,100 <0,010 0,181 <0,00040 22,5	0,0049 -0,000040 -0,0688 -0,0020 -0,0020 -0,0020 -0,13 -0,000020 -0,147 -0,0588 -0,010 -0,068 -0,0040 -22,5	0,0049 <0,000040 0,0587 0,0424 <0,00020 <0,0020 <0,00020 261 <0,00020 0,146 0,0595 <0,010 0,048 <0,00040 22,2	0,040 0,0166 0,00052 0,159 0,136 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,000	1040 0,097 0,0166 0,00055 0,169 0,143 -(0,00050 -(0,0005	0,094 0,0171 0,00070 0,169 0,146 <-0,00050 0,30 0,00050 0,30 0,000328 615 <-0,0050 0,613 2,14 <-0,025 0,191 19,4	0,111 0,00781 <0,000020 0,268 0,0291 <0,00010 0,095 <0,00010 127 0,00014 0,0151 0,00787 <0,0050 0,212 0,0050 7,86	0,0300 0,00794 <0,000020 0,277 0,0294 <0,00010 0,099 <0,00010 128 <0,00010 0,150 0,00870 <0,0005 0,0044 0,0005 7,62	236 0,0556 0,00797 0,00797 0,0252 0,00010 0,101 0,0010 129 0,0010 0,152 0,00972 0,0099 0,0030 0,758
Aluminum (AI) Antimony (Sb) Silver (Ag) Arsenic (As) Barium (Ba) Beryflium (Be) Bismuth (Bi) †† Boron (B) † Cadmium (Cd) Calcium (Ca) † Chromium (Cr) Cobalt (Co) Copper (Cu) Tin (Sn) Iron (Fe) Lithium (Li) †† Magnesium (Mg) † Manganese (Mn)	0,0048 <0,000040 0,0729 0,0434 <0,00020 <0,0020 <1,000020 254 <0,00020 0,138 0,100 <0,010 0,181 <0,00040 22,5	0,0049 -0,000040 -0,0688 -0,0020 -0,0020 -0,0020 -0,13 -0,000020 -0,147 -0,0588 -0,010 -0,068 -0,0040 -22,5	0,0049 <0,000040 0,0587 0,0424 <0,00020 <0,0020 <0,00020 261 <0,00020 0,146 0,0595 <0,010 0,048 <0,00040 22,2	0,040 0,0166 0,00052 0,159 0,136 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,00050 <0,000	1040 0,097 0,0166 0,00055 0,169 0,143 -(0,00050 -(0,0005	0,094 0,0171 0,00070 0,169 0,146 <-0,00050 0,30 0,00050 0,30 0,000328 615 <-0,0050 0,613 2,14 <-0,025 0,191 19,4	0,111 0,00781 <0,000020 0,268 0,0291 <0,00010 0,095 <0,00010 127 0,00014 0,0151 0,00787 <0,0050 0,212 0,0050 7,86	0,0300 0,00794 <0,000020 0,277 0,0294 <0,00010 0,099 <0,00010 128 <0,00010 0,150 0,00870 <0,0005 0,0044 0,0005 7,62	236 0,0556 0,00797 0,00797 0,0252 0,00010 0,101 0,0010 129 0,0010 0,152 0,00972 0,0099 0,0030 0,758
Aluminum (Al) Antimony (Sb) Silver (Ag) Arsenic (As) Barium (Ba) Beryllium (Be) Bismuth (Bi) †† Boron (B) † Cadmium (Cd) Calcium (Ca) † Chromium (Cr) Cobalt (Co) Copper (Cu) Tin (Sn) Iron (Fe) Lithium (Li) †† Magnesium (Mg) † Manganese (Mn) Mercury (Hg)	0,0048 <0,000040 0,0729 0,0434 <0,00020 0,13 <0,00020 254 <0,00020 0,138 0,00020 0,138 <0,00040 255 0,138 0,000 0,138 <0,00040 0,138 <0,0010 0,181 <0,0040	0,0049 <0,000040 0,0638 0,0638 0,0427 <0,00020 <0,00020 <0,00020 0,13 <0,000020 249 <0,00020 0,147 0,00020 0,147 0,0588 <0,010 0,068 <0,0040 22,5 0,374	0,0049 -0,000040 -0,000040 -0,0587 -0,0424 -0,00020 -0,033 -0,00020 -0,13 -0,00020 -0,146 -0,0020 -0,146 -0,00595 -0,010 -0,048 -0,0040 -2,2,2 -0,375	0,040 0,0160 0,0160 0,0160 0,159 0,139 0,136 -40,00050 -40,00050 0,28 -40,00050 0,28 -40,00050 0,578 1,92 -40,005 -40,0050 0,578 1,92 -40,010 18,5 0,0445	1040 0,097 0,0166 0,00055 0,169 0,143 <0,00050 <0,00050 0,300 0,000328 611 <0,00050 0,589 1,57 <0,025 <0,025 0,001 18,8 0,0489	0.094 0.0171 0.00771 0.00070 0.169 0.146 0.00050 0.30 0.00000 0.30 0.000328 615 0.00050 0.613 2.14 0.0025 0.191 0.0096 0.0098 0.0098 0.0098 0.0098 0.0098 0.0098 0.0098 0.0098 0.0098 0.0098 0.0098 0.0098 0.0098 0.0098 0.0098 0.0098 0.0098	0,111 0,00781 <-0,000020 0,268 0,0291 <-0,00010 0,095 <-0,000010 0,095 <-0,00010 0,0014 0,151 0,0017	0,0300 0,00794 <0,000020 0,277 0,0294 <0,00010 0,099 <0,00010 0,150 0,0001 0,150 0,00870 <0,0000 0,004 0,004 0,004 0,004 0,004 0,005 0,00870 <0,0002 0,002 0,002 0,002 0,003 0,003 0,003 0,004 0,003 0	236 0,0556 0,00797 <0,000020 0,271 0,0252 <0,00010 0,101 <0,00010 0,101 129 <0,0010 0,152 0,0097 0,0097 0,0097 0,0097 0,0099 0,0030 7,58
Aluminum (Al) Antimony (Sb) Silver (Ag) Arsenic (As) Barium (Ba) Beryllium (Be) Bismuth (Bi) †† Boron (B) † Cadmium (Cd) Calcium (Ca) † Chromium (Cr) Cobalt (Co) Copper (Cu) Tin (Sn) Iron (Fe) Lithium (Li) †† Magnaesium (Mg) † Manganese (Mn) Mercury (Hg) Molybdenum (Mo)	0,0048 -0,000040 -0,00729 -0,0434 -0,00020 -0,0022 -0,0020 -0,13 -0,000020 -0,13 -0,000020 -0,13 -0,000020 -0,13 -0,0010 -0,13 -0,0010 -0,13 -0,0010 -0,010	0,0049 <0,000040 0,0638 0,0427 <0,00020 <0,00020 <0,00020 249 <0,00020 249 <0,00020 0,147 0,0588 <0,010 0,068 <0,00040 22,5 0,374 0,0741	0,0049 -0,000040 -0,000040 -0,0587 -0,0424 -0,00020 -0,13 -0,00020 -0,13 -0,00020 -0,146 -0,0020 -0,048 -0,010 -0,048 -0,010 -0,048 -0,010 -0,048 -0,0020 -0,0728	0,040 0,0166 0,0166 0,00052 0,159 0,136 -0,00050 -0,0050 0,28 0,000359 556 0,000359 1,92 -0,0050 0,578 1,92 -0,005 0,075 -0,005 0,	1040 0,097 0,0166 0,00055 0,169 0,163 0,00050 0,163 0,00050 0,30 0,000328 611 0,00050 0,589 1,57 0,0005 0,204 0,0005 0,204 0,0010 18,8 0,0489	0,094 0,0171 0,0070 0,169 0,146 0,146 0,0000 0,169 0,146 0,00000 0,000000 0,000000 0,0000000 0,000000	0.111 0,00781 (4,0,00020 0,268 0,2291 (4,0,00010 (4,0,0010 0,095 (4,0,0010 127 0,0014 0,151 0,00787 (4,0,0050 0,212 0,0050 0,212 0,00296	0,0300 0,00794 <0,000020 0,277 0,2294 <0,00010 <0,0010 0,099 <0,00010 128 <0,0010 0,0820 <0,0050 0,00870 <0,0050 0,0044 0,0023 1,622 0,00312	236 0,0556 0,00797 0,00797 0,0252 -0,00010 0,101 -0,00010 0,152 0,00972 -0,0050 0,00972 -0,0050 0,00972 -0,0050 0,00972 -0,0050 0,00978
Aluminum (AI) Antimony (Sb) Silver (Ag) Arsenic (As) Barium (Ba) Beryflium (Be) Bismuth (Bi) †† Boron (B) † Cadmium (Cd) Calcium (Ca) † Chromium (Cr) Cobalt (Co) Copper (Cu) Tin (Sn) Iron (Fe) Lithium (Li) †† Magnesium (Mg) † Manganese (Mn) Mercury (Hg) Molydenum (Mo) Nickel (Ni) Total phosphorous Lead (Pb)	0,0048 -0,000040 -0,00729 -0,0434 -0,00020 -0,00220 -0,00	0,0049 -(0,000040 -(0,000040 -(0,0638 -(0,0427 -(0,00020	0,0049 40,000040 0,0587 0,0424 40,00020 40,00020 40,00020 261 40,00020 261 40,00020 0,146 40,00020 0,146 40,0010 0,048 40,0010 0,048 40,0010 0,048 40,0010 1,00728 0,375	0,040 0,0166 0,01065 0,136 -0,00052 -0,00050 -0,0050 0,28 0,00050 0,28 0,00050 0,578 1,92 -0,0055 0,076 -0,005 0,076 -0,005 0,076 -0,005 0,076 -0,005 0,076 -0,005 0,076 -0,005 0,076 -0,005 0,076 -0,005 0,076 -0,005 0,076 -0,005 0,076 -0,005 0,076 -0,005 0,076 -0,005 0,076 -0,005 0,076 -0,005 0,076 -0,005 0,076 -0,005 0,076 -0,005 0,076 -0,005 0,07	1040 0.097 0.0166 0.00055 0.169 0.163 0.00055 0.169 0.163 0.00050 0.30 0.000328 611 0.00050 0.589 1.57 0.0050 0.204 0.0050 0.204 0.0050 0.204 0.0050 0.204 0.0050 0.204 0.0050 0.204 0.0050 0.205 0.204 0.0050 0.205 0.204 0.0050 0.205 0.204 0.0050 0.205 0.204 0.0050 0.205 0.204 0.0050 0.205 0.204 0.0050 0.205 0.204 0.0050 0.205 0.204 0.0050 0.205 0.204 0.0050 0.205 0.205 0.205 0.204 0.205 0	0,094 0,0171 0,00771 0,00070 0,169 0,146 40,00050 40,0050 40,0050 0,30 0,000328 615 2,14 40,0050 0,613 2,14 40,010 1,91 40,010 0,118 0,0496	0.111 0.00781 0.00781 0.00781 0.000020 0.268 0.0291 0.00010 0.0001 0.0001 127 0.00010 0.0011 0.00787 0.000787 0.00029 0.212 0.0029 0.212 0.0029 0.212 0.0029 0.212 0.0029 0.212 0.0030 0.212 0.0030 0.212 0.0030 0.212 0.0030 0.212 0.0030 0.212 0.0030 0.212 0.0030 0.212 0.0030 0.212 0.0030 0.212 0.0030	0,0300 0,00794 (4,000022) 0,277 0,0294 (4,00010 (4,00010 (4,00010 0,099 (4,00010 0,150 0,00870 (4,0000 0,00028 7,62 0,0312 0,044 0,0312 0,0481 0,0374 1,1	236 0,0556 0,00797 -0,000020 0,271 -0,00010 -0,0010 -0,0010 -0,0010 -0,0010 -0,0010 -0,0072 -0,000010 -0,152 -0,0099 -0,0030 -7,58 -0,0278 -0,0477 -0,0372 -1,55 -0,0477
Aluminum (AI) Antimony (Sb) Silver (Ag) Arsenic (As) Barium (Ba) Beryfilum (Be) Bismuth (Bi) †† Boron (B) † Cadmium (Cd) Calcium (Ca) † Chromium (Cr) Cobalt (Co) Copper (Cu) Tin (Sn) Iron (Fe) Lithium (Li) †† Magnesium (Mg) † Manganese (Mn) Mercury (Hg) Molybdenum (Mo) Nickel (Ni) Total phosphorous Lead (Pb) Potassium (K) †	0,0048 -0,000040 -0,0729 -0,0734 -0,00020 -0,0020 -0,13 -0,00020 -254 -0,00020 -0,13 -0,100 -0,010 -0,110 -0,010 -0,181 -0,0040 -0,225 -0,0040 -0,374 -0,0745 -0,294 -0,0040 -0,374	0,0049 -(-0,000040 -(-0,000040 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00040 -(0,0049 -(0,000040 -(0,000040 -(0,000040 -(0,00020 -(0,00	0,040 0,0166 0,01069 0,1159 0,136 0,0050 0,136 0,0050 0,28 0,0050 0,28 0,0050 0,28 0,0050 0,28 0,0050 0,28 0,0050 1,192 0,00578 0,005 0,78 0,0010 1,8,5 0,0045 0,0445 0,0455 0,0445	1040 0,097 0,0166 0,00055 0,169 0,169 0,143 -0,00050 0,30 0,00328 6511 -0,0050 0,589 1,57 -0,025 0,204 -0,010 1,8,8 0,016 0,0489 0,116 0,089 0,80 0,80 0,80 0,80	0,094 0,0171 0,00771 0,00070 0,169 0,146 40,00050 40,0050 0,30 0,00028 615 40,0050 0,613 2,14 40,0050 0,191 40,010 19,4 0,0496 0,0496 0,0418 0	0.111 0.00781 0.00781 0.00781 0.00600 0.268 0.0291 0.00010 0.0010 0.0010 0.0010 127 0.0014 0.0151 0.00787 0.0050 0.212 0.0029 7.86 0.0296 0.0374 0.43 0.43 0.43	0,0300 0,00794 (4,0,00022) 0,277 0,0294 (4,0,0010 0,099 (40,0010 0,099 (40,0010 0,059 (40,0010 0,050 0,050 0,050 0,050 0,040 0,0312 0,0312 0,0314 1,1 0,00374 1,1	236 0,0556 0,0556 0,00797 -0,000020 0,271 -0,00010 -0,0010 -0,101 -0,00010 0,152 -0,00010 0,152 -0,0099 0,0039 7,58 0,0278 -0,0477 0,0372 1,5 -0,0010 0,0372 1,5 -0,0010
Aluminum (Al) Antimony (Sb) Silver (Ag) Arsenic (As) Barium (Ba) Beryllium (Be) Bismuth (Bi) †† Boron (B) † Cadmium (Cd) Calcium (Ca) † Chromium (Cr) Cobalt (Co) Copper (Cu) Tin (Sn) Iron (Fe) Lithium (Hi) †† Magnesium (Mg) † Manganese (Mn) Mercury (Hg) Molybdenum (Mo) Nickel (Ni) Total phosphorous Lead (Pb) Potassium (K) † Selenium (Se)	0,0048 -0,000040 -0,00729 -0,0434 -0,00020 -0,0020 -0,0020 -0,13 -0,00020 -0,13 -0,00020 -0,138 -0,0020 -0,138 -0,0020 -0,138 -0,0020 -0,138 -0,0040 -0,120 -0,131 -0,0040 -0,121 -0,0040 -0,131 -0,0040 -0,131 -0,0040 -0,131 -0,0040 -0,131 -0,0040 -0,0040 -0,0040 -0,0040 -0,0058	0,0049 -(0,000040 -(0,000040 -(0,00020 -(0,00020 -(0,00020 -(0,00020 -(0,00020 -(0,00020 -(0,00020 -(0,00020 -(0,00020 -(0,00020 -(0,00020 -(0,00020 -(0,00020 -(0,00020 -(0,00040 -(0,000	0,0049 -0,000040 -0,000040 -0,0587 -0,0424 -0,00020 -0,0020 -0,0020 -0,133 -0,00020 -0,146 -0,0020 -0,146 -0,0020 -0,146 -0,0595 -0,010 -0,048 -0,0040 -22,2 -0,0728 -0,375 -0,312 -1,4 -0,00040 -0,312 -1,4 -0,00040 -0,317	0,040 0,0166 0,0165 0,136 0,136 0,00050 0,139 0,136 0,00050 0,005	1040 0,097 0,0166 0,00055 0,169 0,169 0,169 0,169 0,169 0,30 0,30 0,000328 611 <0,0050 0,589 1,57 <0,025 0,204 0,0489 0,0489 0,116 0,803 0,803 0,803 0,803 0,803 0,803 0,803 0,804	0,094 0,0171 0,00070 0,169 0,146 0,00070 0,169 0,146 0,00050 0,30 0,000328 615 0,00050 0,613 2,14 0,0050 0,911 0,0096 0,118 0,813 1,4 0,0118 0,813 1,4 0,0010	0.111 0.00781 0.00781 0.00781 0.000781 0.000781 0.268 0.0291 0.00010 0.0014 0.0010 0.0014 0.151 0.00787 0.0050 0.212 0.0029 7.86 0.0296 0.0296 0.0374 0.0468 0.0374 0.0468 0.0374 0.0468 0.0374 0.0468 0.0374 0.0468 0.0374 0.045 0.	0,0300 0,00794 (40,000020 0,277 0,0294 (40,00010 (40,0010 (40,0010 0,099 (40,00010 0,150 0,00870 0,00870 0,00870 0,00870 0,008870	236 0,0556 0,00797 <0,000020 0,271 0,00252 <0,00010 0,101 <0,000010 1129 <0,00010 0,152 <0,00075 0,0097 <0,0050 0,0097 <0,00758 0,0078 0,0078 0,0078 0,0077 0,0077 0,0077 0,0077 1,55 <0,00020
Aluminum (AI) Antimony (Sb) Silver (Ag) Arsenic (As) Barium (Ba) Beryflium (Be) Bismuth (Bi) †† Boron (B) † Cadmium (Cd) Calcium (Ca) † Chromium (Cr) Cobalt (Co) Copper (Cu) Tin (Sn) Iron (Fe) Lithium (Li) †† Magnesium (Mg) † Manganese (Mn) Mercury (Hg) Molydenum (Mo) Nickel (Ni) Total phosphorous Lead (Pb) Potassium (K) † Selenium (Se) Sodium (Na)	0,0048 -0,000040 -0,00729 -0,0434 -0,00020 -0,	0,0049 -(0,000040 -(0,000040 -(0,600040 -(0,60020 -(0,002	0,0049 -(0,000040 -(0,000040 -(0,000040 -(0,000000 -(0,00000000000000000000000	0,040 0,0166 0,0169 0,159 0,136 0,00052 0,159 0,136 0,00050 0,28 0,00050 0,28 0,00050 0,578 1,92 0,00050 0,076 -0,010 1,8,5 0,0445 0,0445	1040 0,097 0,0166 0,00055 0,169 0,143 -0,00050 0,30 0,000328 611 -0,00050 0,000328 1,57 -0,0050 1,589 1,57 -0,0050 1,589 1,57 -0,0050 0,000328 -0,00030 0,000328 -0,00030 0,000328 -0,00050 0,000328 -0,00050 0,000328 -0,00050 0,000328 -0,00050 0,000328 -0,00050 0,00030 0,	0,094 0,0171 0,00771 0,00070 0,169 0,146 40,00050 40,0050 0,30 0,000328 615 2,14 40,0050 0,613 2,14 40,010 40,010 1,94 0,019 1,94 0,0496 0,118 0,813 1,4 4,0010 223 1,24 6,0010 223 0,243 6601	0.111 0.00781 0.00781 0.00781 0.000020 0.268 0.0291 0.0010 0.0014 0.011 127 0.0014 0.151 0.00787 0.0029 0.212 0.0029 0.212 0.0029 0.212 0.0029 0.212 0.0029 0.212 0.0029 0.212 0.0050 0.212	0,0300 0,00794 4(0,000020 0,277 0,0294 4(0,00010 4(0,00110 0,099 4(0,00010 0,150 0,00870 4(0,0010 0,00870 4(0,0010 0,00312 0,0044 0,0028 7,62 0,00312 0,044 1,1 0,00374 1,1 0,00025 51,5 1,5 0,00168 96,5	236 0,0556 0,00797 <0,000020 0,271 0,0252 <0,00010 0,101 <0,00010 129 <0,0010 0,152 0,0097 <0,0050 0,007 7,58 0,007 0,007 1,57 0,007 1,7
Aluminum (Al) Antimony (Sb) Silver (Ag) Arsenic (As) Barium (Ba) Beryllium (Be) Bismuth (Bi) †† Boron (B) † Cadmium (Cd) Calcium (Ca) † Chromium (Cr) Cobalt (Co) Copper (Cu) Tin (Sn) Iron (Fe) Lithium (Li) †† Manganese (Mn) Mercury (Hg) Molybdenum (Mo) Nickel (Ni) Total phosphorous Lead (Pb) Potassium (K) † Selenium (Se) Sodium (Na)	0,0048 -0,000040 -0,00729 -0,0434 -0,00020 -0,0020 -0,0020 -0,0020 -254 -0,00020 -0,138 -0,100 -0,010 -0,181 -0,0040 -22,5 -0,0745 -0,0294 -0,19 -0,0040 -0,0040 -0,0040 -0,0040 -0,0058 -0,0058	0,0049 -(-0,000040 -(-0,000040 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00040 -(0,0049 -0,000040 -0,000040 -0,0587 -0,0424 -0,00020 -0,00020 -0,00020 -0,00020 -0,00020 -0,00020 -0,00020 -0,00020 -0,048 -0,0048 -0,0040 -0,0048 -0,0040 -0,0048 -0,0040 -0,0048 -0,0040 -0,0048 -0,0040 -0,0048 -0,0040 -0,0048 -0,0040 -0,0048 -0,0048 -0,0048 -0,0048 -0,0048 -0,0048 -0,0048 -0,0048 -0,0048 -0,0048 -0,0058 -0,0	0,040 0,0166 0,01066 0,01066 0,10060 0,1159 0,136 0,00050 0,0050	1040 0,097 0,0166 0,00055 0,169 0,169 0,169 0,169 0,30 0,00050 0,30 0,000328 611 -0,0050 0,589 1,57 -0,005 0,204 -0,010 1,8,8 0,0489 0,116 0,803 0,808 -0,0010 219 0,244 584	0,094 0,0171 0,00070 0,169 0,166 <-0,00070 0,169 0,106 <-0,00050 0,000 0,0000 0	0.111 0.00781 0.00781 0.00781 0.000020 0.268 0.0291 0.00010 0.095 0.00010 0.095 0.00010 0.011 177 0.00010 0.051 0.00787 0.00050 0.212 0.0059 0.0029 7.86 0.00296 0.00468 0.00374 0.43 0.43 0.43 0.4000020 97.3 198	0,0300 0,00794 (<0,000020 0,277 0,0294 (<0,00010 (<0,0010 (<0,0010 0,099 (<0,00010 0,150 0,0000 0,150 0,0000 0,004 (<0,0037 1,11 0,00025 1,15 0,0168 96,5 1,159 0,0168	236 0.0556 0.00577 <0.000020 0.271 <0.000020 0.271 <0.00010 0.101 <0.00010 0.152 <0.0010 0.152 <0.0010 0.0552 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007 <0.0007
Aluminum (Al) Antimony (Sb) Silver (Ag) Arsenic (As) Barium (Ba) Beryllium (Be) Bismuth (Bi) †† Boron (B) † Cadmium (Cd) Calcium (Ca) † Chromium (Cr) Cobalt (Co) Copper (Cu) Tin (Sn) Iron (Fe) Lithium (Li) †† Magnesium (Mg) † Manganese (Mn) Mercury (Hg) Molybdenum (Mo) Nickel (Ni) Total phosphorous Lead (Pb) Potassium (K) † Selenium (Se) Sodium (Na) Sulphur (S) †† Strontum (St)	0,0048 -0,000040 -0,00729 -0,0434 -0,00020 -0,	0,0049 -(0,00040 -(0,00040 -(0,00040 -(0,00020	0,0049 -(0,00040 -(0,00040 -(0,00020	0,040 0,0166 0,0166 0,0166 0,136 -0,00050 0,139 -0,00050 0,028 0,00050 0,28 0,00050 0,578 1,92 -0,00050 0,578 1,92 -0,0010 18,5 -0,010 18,5 -0,011 0,114 0,755 0,0445 -0,114 0,755 1,16 0,029 0,0015 1,16 0,29 0,0015 1,16 0,231 1,567 1,584 1,584 1,585 1,584 1,585 1,5	1040 0,097 0,0166 0,00055 0,169 0,169 0,169 0,169 0,169 0,169 0,30 0,00050 0,30 0,000328 611 <0,0050 0,589 1,57 <0,025 0,204 <0,010 18,8 0,0489 0,0489 0,116 0,803 0,803 0,803 0,803 0,803 0,803 0,803 0,804 0,904 3,40	0,094 0,0171 0,00070 0,169 0,146 40,00050 0,30 0,00070	0.111 0.00781 0.00781 0.00781 0.000020 0.268 0.0291 0.00010 0.0014 0.0010 0.0014 0.0011 127 0.0017 0.0017 0.0017 0.0017 0.0017 0.00787 0.0029 0.112 0.0029 0.112 0.0029 0.124 0.0050 0.127 0.0050 0.117 0.00787 0.0050 0.117 0.00787 0.0050 0.117 0.00787 0.0050 0.117 0.00787 0.00787 0.00787 0.00787 0.00787 0.00787 0.00787 0.00796	0,0300 0,00794 (4,0,00002) 0,277 0,0294 (4,0,00010 0,279 (4,0,00010 128 (4,0,00010 0,150 0,00870 (4,0,0037 (4,0,00312 0,00870 (4,0,00312 0,008870 (4,0,00312 0,008870 (4,0,0055 0,00481 0,008870 (4,0,0055 0,008870 (4,0,0055 0,008870 (4,0,0055 0,008870 (4,0,0055 0,008870 (4,0,0055 0,008870 (4,0,0055 0,008870 (4,0,0055 0,008870 (4,0,0055 0,008870 (4,0,0055 0,008870 (4,0,0055 0,008870 (4,0,0055 0,008870 (4,0,0055 0,008870 (4,0,0055 0,008870 (4,0,00887	236 0,0556 0,00797 <0,00020 0,271 0,00252 <0,00010 0,101 <0,00010 0,152 <0,00010 0,152 <0,00010 0,1552 <0,00070 0,0037 <159 0,0037 7,58 0,00278 0,0037 0,0037 1,55 <0,00020 1,51 0,00174 95,5 199 0,0412
Aluminum (AI) Antimony (Sb) Silver (Ag) Arsenic (As) Barium (Ba) Beryflium (Be) Bismuth (Bi) †† Boron (B) † Cadmium (Cd) Calcium (Ca) † Chromium (Cr) Cobalt (Co) Copper (Cu) Tin (Sn) Iron (Fe) Lithium (Li) †† Magnesium (Mg) † Manganese (Mn) Mercury (Hg) Molydenum (Mo) Nickel (Ni) Total phosphorous Lead (Pb) Potassium (Sc) Sodium (Na) Sulphur (S) † Strontium (Sr) † Thallium (Ti)	0,0048 -0,000040 -0,000040 -0,0729 -0,0434 -0,00020 -0,0020 -0	0,0049 -(-0,000040 -(-0,000040 -(-0,00020 -(-0,000040 -(-0,000020 -(-0,000040 -(-0,000020 -(-0,0000040 -(-0,0000020 -(-0,000000000000000000000000000000000	0,0049 -(0,000040 -(0,000040 -(0,000040 -(0,00020 -(0,00004	0,040 0,0166 0,0169 0,1169 0,136 0,159 0,136 0,00052 0,159 0,00050 0,28 0,00050 0,28 0,000359 556 0,076 0,010 1,85 0,076 0,010 1,85 0,0445 0,0445 0,0445 0,0015 0,28 0,0015 0,75 0,0445 0,045 0,	1040 0,097 0,0166 0,00055 0,169 0,143 -0,00050 0,30 0,000328 611 -0,0050 0,589 1,57 -0,0050 0,204 -0,010 1,8,8 0,048 0,016 0,089 0,116 0,089 0,116 0,089 0,116 0,089 0,116 0,089 0,116 0,089 0,116 0,089 0,116 0,089 0,116 0,089 0,116 0,089 0,116 0,089 0,116 0,893 0,80 0,803 0,80 0,803 0,804 0,900 0,904 0,900 0,904 0,904 0,900 0,904 0,900 0,904 0,900 0,904 0,900 0,904 0,900 0,904 0,904 0,900 0,904 0,900 0,904 0,900 0,904 0,900 0,904 0,900 0,904 0,900 0,904 0,900 0,904 0,900 0,904 0,900 0,904 0,900 0,904 0,904 0,900 0,904 0,900 0,904 0,900 0,904 0,904 0,900 0,904 0,900 0,904 0,900 0,904 0,900 0,904 0,900 0,904 0,900 0,904 0,900	0,094 0,0171 0,0077 0,00070 0,169 0,146 40,00050 40,0050 0,30 0,000328 615 2,14 40,0050 0,613 2,14 40,019 40,019 40,019 1,94 0,0496 0,118 0,813 1,4 4,0010 223 0,243 661 0,243 661 0,243 67 67 67 67 67 67 67 67 67 67 67 67 67	0.111 0.00781 0.00781 0.00781 0.000020 0.268 0.0291 0.0010 0.0014 0.0010 0.0015 0.0010 0.0014 0.0151 0.00787 0.00296 0.00296 0.00296 0.00374 0.43 0.0374 0.43 0.0374 0.43 0.0468 0.0374 0.43 0.000001	0,0300 0,00794 4(0,00002) 0,277 0,0294 4(0,00010) 1,00010 0,099 4(0,0010) 0,150 0,00870 4(0,0010 0,00870 4(0,0010 0,00374 1,1 0,00374 1,1 0,00374 1,1 0,000015 1,5 1,5 0,0066 1,965 1,95 1,95 1,95 1,95 1,95 1,95 1,95 1,9	236 0,0556 0,00797 <0,000020 0,271 0,025 <0,00010 0,101 <0,00010 0,101 129 <0,0010 0,152 0,0099 0,0030 7,58 0,0077 0,0037 1,5 1,5 0,0077 0,0070 0,000000 0,00000000
Aluminum (AI) Antimony (Sb) Silver (Ag) Arsenic (As) Barium (Ba) Beryllium (Be) Bismuth (Bi) †† Boron (B) † Cadmium (Cd) Calcium (Ca) † Chromium (Cr) Cobalt (Co) Copper (Cu) Tin (Sn) Iron (Fe) Lithium (Li) †† Manganese (Mn) Mercury (Hg) Molybdenum (Mo) Nickel (Ni) Total phosphorous Lead (Pb) Potassium (Na) Sulphur (S) †† Selenium (Se) Sodium (Na) Sulphur (S) †† Strontum (Ti) ††	0,0048 -0,000040 -0,000040 -0,0729 -0,0434 -0,00020 -0,0020 -0,0020 -0,133 -0,00020 -0,138 -0,100 -0,010 -0,00040 -0,00	0,0049 -(-0,000040 -(-0,000040 -(-0,000020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00040 -(-0,00040 -(-0,00040 -(-0,00040 -(-0,00040 -(-0,00040 -(-0,00040 -(-0,00040 -(-0,00040 -(-0,00040 -(-0,00040 -(-0,00040 -(-0,00040 -(-0,00040 -(-0,00040 -(-0,00040 -(-0,00040 -(-0,000020 -(-0,0000020 -(-0,0000020 -(-0,0000020 -(-0,0000020 -(-0,0000020 -(-0,00000020 -(-0,000000000000000000000000000000000	0,0049 -0,000040 -0,000040 -0,0587 -0,0424 -0,00020 -0,000020 -0,000020 -0,000020 -0,000020 -0,000020 -0,000020 -0,000020 -0,000020 -0,000020 -0,000020 -0,000020 -0,000020 -0,000020 -0,000020 -0,000020 -0,000020 -0,000020 -0,000020 -0,0000020 -0,000	0,040 0,0166 0,01066 0,01066 0,10060 0,136 0,136 0,00050 0,139 0,00050 0,28 0,00050 0,28 0,000359 356 0,078 1,92 0,00050 1,92 0,0076 0,076 0,0114 0,755 0,29 0,0015 567 684 3,25 0,231 567 684 3,25	1040 0,097 0,0166 0,00055 0,169 0,169 0,169 0,169 0,169 0,30 0,00050 0,30 0,000328 611 -0,0050 0,589 1,57 -0,005 0,204 -0,001 18,8 0,0489 0,116 0,808 -0,001 0,808 -0,001 0,808 -0,001 0,808 -0,001 0,804 -0,001 0,804 -0,001 0,804 -0,001 0,804 -0,001 0,804 -0,001 0,804 -0,001 0,804 -0,0000000000000000000000000000000000	0,094 0,0171 0,00070 0,169 0,146 40,00050 0,30 0,00070 0,00070 0,00050 0,30 0,000328 615 2,14 40,0050 0,613 2,14 40,025 0,191 19,4 0,0496 0,118 0,813 1,4 40,0010 223 0,243 601 9025 3,42 40,00050 40,00050 40,00050 40,00050 40,00050	0.111 0.00781 0.00781 0.007020 0.268 0.0291 0.0091 0.00010 0.0055 0.00010 0.0014 0.151 0.00787 0.0050 0.0122 0.0029 0.0029 0.0034 0.0050 0.0034 0.0050 0.0037 0.00001	0,0300 0,00794 (4,0,00002) 0,277 0,0294 (4,0,00010) (4,0,0011 0,099 (4,0,00010 1128 (4,0,00010 0,150 0,0007 (4,0,000010 0,00087 (4,0,0000 0,00087 (4,0,0000 0,00087 (4,0,0000 0,00087 (4,0,0000 0,00087 (4,0,0000 0,00087 (4,0,0000 0,00087 (4,0,0000 0,00087 (4,0,0000 0,00088 (4,0,0000 0,00088 (4,0,0000 0,00088 (4,0,0000000 0,00088 (4,0,0000000000000000000000000000000000	236 0,0556 0,00797 -0,000020 0,271 -0,00010 0,0252 -0,00010 -0,0010 -0,0010 0,101 -0,00010 0,1552 -0,0055 0,0097 -0,0055 0,0097 -0,0056 0,0097 -0,0000000 -0,007 -0,00000000 -0,007 -0,0000000000
Aluminum (AI) Antimony (Sb) Silver (Ag) Arsenic (As) Barium (Ba) Beryllium (Be) Bismuth (Bi) †† Boron (B) † Cadmium (Cd) Calcium (Ca) † Chromium (Cr) Cobalt (Co) Copper (Cu) Tin (Sn) Iron (Fe) Lithium (I) †† Magnesium (Mg) † Manganese (Mn) Mercury (Hg) Molybdenum (Mo) Nickel (Ni) Total phosphorous Lead (Pb) Potassium (K) † Selenium (Se) Sodium (Na) Sulphur (S) †† Strontium (Ti) †† Uranium (II) ††	0,0048 -0,000040 -0,00729 -0,0434 -0,00020 -0,0000000 -0,0020 -0,0000000000	0,0049 -(0,000040 -(0,000040 -(0,000040 -(0,00020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,0000000000000000000000000000000000	0,0049 -(0,00040 -(0,00040 -(0,00040 -(0,00020	0,040 0,0166 0,0166 0,0166 0,00052 0,159 0,136 -0,00050 0,28 0,00059 556 0,028 0,000359 556 0,0075 0,076 -0,010 18,5 0,0445 0,0114 0,755 0,0445 0,015 216 0,29 0,0015 216 687 884 825 0,00055 887 884 0,00055	1040 0,097 0,0166 0,00055 0,169 0,169 0,169 0,169 0,169 0,169 0,169 0,00050 0,30 0,000328 611 -0,0050 0,589 1,57 -0,025 0,204 -0,0050 0,808 0,0489 0,116 0,803 0,803 0,803 0,803 0,803 0,803 0,803 0,804 0,0010 1219 0,244 3,40 0,244 3,40 0,0010 18,584	0,094 0,0171 0,0077 0,169 0,146 40,00050 40,00050 40,00050 615 40,00050 0,613 2,14 40,00050 19,4 0,001 19,4 0,0496 0,118 0,813 1,4 40,0010 223 0,0118 0,118 0,118 0,118 0,118 0,118 0,118 0,118 0,119 4,10010 1,14 4,14 4	0.111 0.00781 0.00781 0.007081 0.000020 0.268 0.0291 0.00010 0.0014 0.0011 127 0.0010 0.0014 0.151 0.00787 0.00020 0.212 0.0029 0.014 0.00518 0.00468 0.0374 0.43 0.400020 5.2,2 0.0050 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.4	0,0300 0,00794 (4,0,00022) 0,277 0,0294 (4,0,00012) 0,277 0,0294 (4,0,0010 0,099 (4,0,0010 0,150 0,0087 0,0087 0,0010 0,0087 0,0010 0,0087 0,0010 0,0087 0,0010 0,0087 0,0010 0,0087 0,0010 0,00881 0,	236 0,0556 0,0556 0,00797 -0,000020 0,271 -0,00010 -0,0010 -0,0010 -0,0010 -0,0050 -0,
Aluminum (Al) Antimony (Sb) Silver (Ag) Arsenic (As) Barium (Ba) Beryllium (Be) Bismuth (Bi) †† Boron (B) † Cadmium (Cd) Calcium (Ca) † Chromium (Cr) Cobalt (Co) Copper (Cu) Tin (Sn) Iron (Fe) Lithium (Li) †† Magnesium (Mg) † Manganese (Mn) Mercury (Hg) Molybdenum (Mo) Nickel (Ni) Total phosphorous Lead (Pb) Potassium (S) † Selenium (Se) Sodium (Na) Sulphur (S) †† Strontium (Sr) † Strontium (Sr) † Thallium (Ti) Titanium (Ti) Titanium (U) †† Vanadium (V)	0,0048 -0,000040 -0,000040 -0,0729 -0,0434 -0,00020 -0,13 -0,000020 -2,54 -0,00020 -0,138 -0,100 -0,010 -0,101 -0,101 -0,101 -0,745 -0,294 -0,00040 -0,745 -0,00040 -0,138 -0,00040 -0,138 -0,00040 -0,138 -0,00040 -0,138 -0,00040 -0,138 -0,00040 -0,138 -0,00040 -0,100 -0,00040 -0,000	0,0049 -(-0,000040 -(-0,000040 -(-0,000040 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00020 -(-0,00040 -	0,0049 -(0,000040 -(0,000040 -(0,000040 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,0000020 -(0,000000020 -(0,0000000000000000000000000000000000	0,040 0,0166 0,0169 0,159 0,136 0,00052 0,159 0,136 0,00050 0,	1040 0,097 0,0166 0,00055 0,169 0,169 0,143 -(0,00050 0,30 0,000328 611 -(0,0050 0,589 1,57 -(0,025 0,30 0,0011 1,57 -(0,025 0,0050 0,00050 0,	0,094 0,0171 0,00070 0,169 0,169 0,164 -(0,00050 0,30 0,000228 615 -(0,0050 0,613 2,14 -(0,0050 0,613 2,14 -(0,0050 0,191 1,94 -(0,0050 0,118 0,813 1,4 -(0,0000 0,813 1,4 -(0,0000 0,813 1,4 -(0,00000 0,813 1,4 -(0,00000 0,813 1,4 -(0,000000 0,813 1,4 -(0,0000000 0,0000000 0,000000000 0,000000	0.111 0.00781 0.00781 0.00781 0.000781 0.000001 0.268 0.0291 0.0010 0.095 0.0010 0.095 0.0014 0.0151 0.00787 0.0050 0.212 0.00296 0.00468 0.0374 0.43 0.0500 0.296 0.0167 97.3 198 0.407 0.0000011 0.00500 0.00518	0,0300 0,00794 4(0,00020) 0,277 0,0294 4(0,00010) 4(0,0011) 0,099 128 4(0,0010) 0,150 0,0010 0,150 0,00870 4(0,0010) 0,00374 1,1 0,00374 1,1 0,00374 1,1 0,00168 96,5 1,5 0,0168 96,5 1,5 0,000012 4(0,000012 4(0,000012 4(0,00050) 0,000479 1,00000000 1,0000000000000000000000000	236 0,0556 0,00797 -0,000020 0,271 0,0252 -0,00010 0,101 -0,000010 0,101 -0,000010 0,105 -0,0010 0,007 -0,0010 0,007 -0,0010 0,007 -0,0010 0,007 -0,0010 0,007 -0,0010 0,007 -0,0010 0,007 -0,0010 0,007 -0,0050 0,007 -0,007
Aluminum (Al) Antimony (Sb) Silver (Ag) Arsenic (As) Barium (Ba) Beryllium (Be) Bismuth (Bi) † Boron (B) † Cadmium (Cd) Calcium (Ca) † Chromium (Cr) Cobalt (Co) Copper (Cu) Tin (Sn) Iron (Fe) Lithium (L) † Magnesium (Mg) † Manganese (Mn) Mercury (Hg) Molybdenum (Mo) Nickel (Ni) Total phosphorous Lead (Pb) Potassium (K) † Selenium (Se) Sodium (Na) Sulphur (S) † Thallium (Ti) † Tranium (Ti) ††	0,0048 -0,000040 -0,00729 -0,0434 -0,00020 -0,0000000 -0,0020 -0,0000000000	0,0049 -(0,000040 -(0,000040 -(0,000040 -(0,00020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,000020 -(0,0000000000000000000000000000000000	0,0049 -(0,00040 -(0,00040 -(0,00040 -(0,00020	0,040 0,0166 0,0166 0,0166 0,00052 0,159 0,136 -0,00050 0,28 0,00059 556 0,028 0,000359 556 0,0075 0,076 -0,010 18,5 0,0445 0,0114 0,755 0,0445 0,015 216 0,29 0,0015 216 687 884 825 0,00055 887 884 0,00055	1040 0,097 0,0166 0,00055 0,169 0,169 0,169 0,169 0,169 0,169 0,169 0,00050 0,30 0,000328 611 -0,0050 0,589 1,57 -0,025 0,204 -0,0050 0,808 0,0489 0,116 0,803 0,803 0,803 0,803 0,803 0,803 0,803 0,804 0,0010 1219 0,244 3,40 0,244 3,40 0,0010 18,584	0,094 0,0171 0,0077 0,169 0,146 40,00050 40,00050 40,00050 615 40,00050 0,613 2,14 40,00050 19,4 0,001 19,4 0,0496 0,118 0,813 1,4 40,0010 223 0,0118 0,118 0,118 0,118 0,118 0,118 0,118 0,118 0,119 4,10010 1,14 4,14 4	0.111 0.00781 0.00781 0.007081 0.000020 0.268 0.0291 0.00010 0.0014 0.0011 127 0.0010 0.0014 0.151 0.00787 0.00020 0.212 0.0029 0.014 0.00518 0.00468 0.0374 0.43 0.400020 5.2,2 0.0050 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.4	0,0300 0,00794 (4,0,00022) 0,277 0,0294 (4,0,00012) 0,277 0,0294 (4,0,0010 0,099 (4,0,0010 0,150 0,0087 0,0087 0,0010 0,0087 0,0010 0,0087 0,0010 0,0087 0,0010 0,0087 0,0010 0,0087 0,0010 0,00881 0,	236 0,0556 0,0556 0,00797 -0,000020 0,271 -0,00010 -0,0010 -0,0010 -0,0010 -0,0050 -0,

Agnico Eagle Meadowbank Phytoplankton Grab Sample Aug 102023

Prenared for A onico Faol August 26 2023

Distribution list:
Arnaud Grimaultarnaud orimault@ugat &

A onico Faole Mines LimiteMeadowhank site (OR#6397\(Table K) ivallia District of Nunavut agnicoeagle cm

Phone: 250.769.5444 Email: heather@larratt.net

Agnico Eagle Phytoplankton Sample

August 10 2023

Nine 1L samples were collected from the Agnico Eagle Meadowbank site by AE staff for phytoplankton assessment. Samples were collected on 2023-08-10 and arrived at Larratt Aquatic Consulting on 2023-08-22 in acceptable condition at 23°C.

Samples were refrigerated until analysis where the samples were settled for 12-24 hours in Utermohl counting chambers at 55 mL volume for the low density samples and 10 mL for the algae bloom samples. Those results are reported here. Please refer to the table below for the cell count (cells/mL) data and algae cell dimensions measured from this sample set. Selected photographs are provided below the data table. Archived photography is available upon request.

GENERAL OBSERVATIONS:

- Samples A2 A3 A7 A8 A9 showed varying densities of a green algae bloom prominent enough to color the samples bright green.
- Samples A4 A5 A6 were almost empty and algae numbers were essentially nil. Crystals were observed in A5 and A6.
- Sample A1 showed a non-bloom abundance of taxa similar to A2 A3 A7 A8 A9, along with abundant aquatic bacteria
- Silt was rarely encountered in these samples, while organic detritus concentrations were evaluated as very low to common/dominant.

CYANOBACTERIA OBSERVATIONS

Cyanobacteria were observed in A1 (low), A2 (low), A3 (common), and A7 (common) samples. Cyanotoxicity risk posed by A1 and A2 is negligible, while samples A3 and A7 represent very low risk. Cyanobacteria occur in virtually every aquatic environment.

OTHER POTENTIALLY HARMFUL ALGAE

Only traces of *Chrysochromulin*a were detected in the A1, A2, and A3 samples at very low concentrations (7 – 154 cells/mL) density. *Chrysochromulina* toxicity risk in these samples is therefore negligible. Issues with toxicity only occur when this alga blooms (e.g. ~600,000 cells/mL).

Stephonio Butt

Yours Sincerely,

R.P. Bio., Aquatic Biologist

BIT., H. BSc, Taxonomist

Table 1: Algae densities and cell dimensions

Agnico Eagle	cell size						Meadow			
Aug 10 2023 Meadowbank	dimensions									
1L grab samples	in um									
Taxa		A1 55 ml	A2 10 ml	A3 10 ml	A4 55mL	A5 55mL	A6 55 mL	A7 10 mL	A8 10 mL	A9 10 mL
DIATOMS										
Navicula sp.	17 x 5									
Nitzschia sp. B cf. fonticola	25-44 x 2.5-4.5	56	616		7					
Nitzschia sp. A cf. frustulum	8-12.8 x 2.7-3.1									
CHRYSOPHYTES										
Chromulina nebulosa	4-5.0 X 4.0-7.4	14								
Chrysococcus sp.	7-12 dia		616	1232						
Chrysochromulina cf. parva	3-5 dia	7	154	77						
Ochromonas sp.	8 x 4.5							 		
Stichogloea cf. doederleinii	5 x 10									
Chrysamoeba sp.	8-10									
GREEN ALGAE										
Chlamydomonas sp. A Irg	8.5-15 X 14-21	49	4928	1848				1232	616	4928
Chlamydomonas sp. B sm	5.4-9.5 X 6.4-10.6		616							
Chlamydomonas palmelloid stage	4-7 dia									6776
Chlamydocapsa cf. planctonica	3.5-5 dia	224	45276	15400				7392	4928	7392
Chlorella cf. ellipsoidea	5 x 2	630								
Chlorella/Myconastes cf. homosph	5-8 dia	84	224840	64064				181720	109648	24024
Dunaliella spp. (+zygospores)	6 x 9	112	24640	6776	7			3080	3080	4312
Halomicronema excentricum	1 um dia	112						616	616	224
Picocystis salinarum	2-3 dia	168	215600	166320				23408	7392	12628
Nannochloropsis cf. oceanica	2 dia	3640	15400	11319				12320	1540	10395
Trachelomonas sp.	20.5 x 21	14	616							
BLUE-GREEN ALGAE cyanobacter	a									
Aphanothece sp.	1.5 x 3		70							
Anacystis sp.	1 dia	980	1848	18480				12320		
Planktolyngbya sp.	1.2 dia	168		770						
PROTOZOA										
Amoeba	10-25 dia		1848	1232				616	616	
Bodo saltans	4-6 L x 2-2.5	14	1155	616				616		1848
pico/nano-flagellates	3-4 dia	84	2464	5544					616	616
Large colorless flagellates	13-21 dia	63								
Ciliates several taxa	28 x 30							9240	616	616
OTHER										
bacteria - all types	1-3	D	С	С	VL	С	L-C	VL	L	L
detritus, organic		C-D	L	L				VL	VL	VL
filamentous bacteria 0.6-0.7 dia	<1 um							С	С	С
silt	20-200				P	P				
crystals	30-200 x 1-5				L	D	D			
SUM		6419	540687	293678	14	0	0	252560	129668	73759

OTHER

None = Not seen in any fields

V low = encountered occasionally

Low = encountered regularly but accounts for less than 5% of sample material

 $Common = encountered in most fields and accounts for 6-49\% of sample material \ Dominant = encountered in all fields and accounts for >50\% of sample material$

Figure 1: A1 (400x). Photo showing a modest green algae bloom with many cells above the plane of focus – this is a 10 mL settled sample

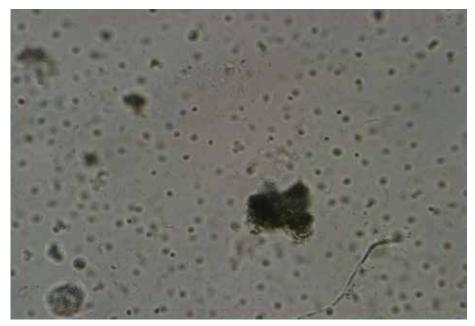
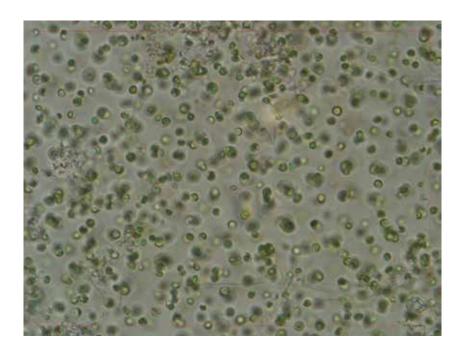



Figure 2: A3 (400x). Photo showing an intense green algae bloom with many cells above the plane of focus – this is a 10 mL settled sample

Figure 3: A7 (400x). Photo showing an intense green algae bloom with many cells above the plane of focus – this is a 10 mL settled sample

