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RÉSUMÉ 

Comme les ressources minérales superficielles sont presque épuisées, les mines 
existantes rencontrent des difficultés pour maintenir leur production. Une solution 
relativement économique consiste à trouver des corps minéralisés à proximité des 
propriétés minières. Ces corps sont souvent hors de la capacité de détection des 
méthodes de prospection conventionnelles de surface en raison de leur taille ou de 
leur profondeur. Les trous de forage et les galeries des mines fournissent d'excellents 
chemins d'accès pour les méthodes d'exploration en profondeur. Le but de ce projet 
est d’aider l'industrie minière à résoudre les problèmes rencontrés lors de 
l'exploration en profondeur. 

La méthode électromagnétique transitoire (TEM) dans les galeries pourrait aider 
l'industrie minière à atteindre les objectifs d’extension en profondeur. L’un des défis 
pour effectuer des mesures TEM dans les galeries est l’espace restreint, qui nous 
force à utiliser de petites boucles d’émetteur. Par conséquent, les signaux sont plus 
affectés par le bruit. Dans ce projet, nous avons caractérisé les sources de bruit 
potentielles dans un environnement minier profond. Ceci facilitera le traitement des 
données et améliora précision de l'interprétation des données électromagnétiques. 

La méthode électromagnétique transitoire en forage est devenue une pratique 
omniprésente dans l'exploration en profondeur grâce à sa capacité à détecter des 
cibles dans un rayon de plusieurs centaines de mètres autour du forage. Une 
combinaison des mesures dans les galeries et dans les trous de forage, permet de 
chercher des informations géologiques en trois dimensions. Afin d'améliorer le 
rapport signal sur bruit des signaux électromagnétiques mesurés, nous avons 
développé une méthodologie de débruitage en utilisant les fonctions de la transformée 
en ondelettes discrète dans la boîte à outils d'ondelettes de Matlab. Les résultats ont 
démontré que l’application de la transformée en ondelettes discrète seule peut 
effectivement réduire le niveau de bruit, mais dans certain cas, une méthode 
supplémentaire est nécessaire pour éliminer les résidus de petites perturbations. 
Ensuite, une méthode d'ajustement de courbe, plus d'analyse de corrélation se sont 
ajoutées dans la procédure de traitement de données.  

Mots clés : méthode électromagnétique transitoire en forage, bruit électromagnétique, 
débruitage en utilisant la transformée en ondelettes discrète, tunnels miniers 
souterrains profonds.   
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ABSTRACT 

As shallow located mineral resources are exhausting, existing mines face difficulties 
to maintain productions. One relatively cost-efficient solution is to find ore bodies 
near the mining properties. These ore bodies are often out of the detection capability 
of conventional ground prospecting methods due to the size of the ore bodies or their 
depth. Existing boreholes and tunnels at mining sites provide excellent access paths 
to deep exploration targets. This project is created to help the mining industry to 
solve problems encountered in deep exploration. 

In the project, we characterized potential noise sources for EM measurements in 
tunnels. The TEM method in tunnels is a potential way to help the mining industry on 
its deep extension. One of the challenges to carry out TEM measurements in tunnels 
is the limited space, which forces to use small transmitter loops. Consequently, 
signals are more vulnerable to noises. Characterizing EM noise sources in tunnels 
will certainly help facilitate data processing and improve interpretation of EM data 
accurately.  

The borehole transient electromagnetic (BHTEM) method has become pervasive in 
the deep exploration for its ability to detect targets around the borehole in a range up 
to hundreds of meters. The present PhD research focuses on improving the signal-to-
noise ratio of electromagnetic signals measured in boreholes. We have developed a 
denoising methodology using functions of discrete wavelet transform in the Wavelet 
toolbox. The results demonstrated that the application of the discrete wavelet 
transform alone can effectively reduce the noise level, but in some cases an additional 
method is needed to remove the small disturbance residues. As a result, a curve fitting 
method plus correlation analysis was added in the data processing procedure. 

Key words: borehole transient electromagnetic method, EM noise, denoising with 
discrete wavelet transform, deep underground mining tunnels. 
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CHAPTER I 

GENERAL INTRODUCTION 

1.1 Background 

Natural resources provide essential basic materials for the modernization and the 

development of human society. After centuries’ exploration and exploitation, the 

discovery of new resources becomes more difficult and mining development requires 

deep exploration. Despite innovations in exploration methods and improvements in 

data interpretation techniques, the average cost of the discovery of an economic 

mineral deposit has surged in the past decades. One way to reduce expenditures of the 

exploration is to find new ore bodies close to constructed infrastructure, and to 

increase the ability to delineate resources in three dimensions. Under this 

circumstance, the borehole transient electromagnetic method (BHTEM) has attracted 

the attention of exploration geophysicists for its effective cost performance. 

Compared with surface geophysical methods and borehole logging, the BHTEM has 

two major advantages. First because the sensor is placed in the borehole, 

measurements are less affected by overburden and shallow uneconomic conductors, 

and in most cases, the sensor is located closer to deep targets. Secondly, in the 

BHTEM measurement, one or multiple large transmitter loops are laid out near the 

collar of the borehole, which ensures a strong primary field to couple with the 

conductor (ore body). In addition, the range of influence of the BHTEM field around 

the borehole or, the detection distance in three dimensions increases significantly 
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with the advancement of technology, such as the appearance of three-component 

sensor and more advanced ADCs (24-bit, 36-bit). With these features, the BHTEM 

has the ability to detect deep and small conductors, in a range of hundreds of meters 

around or below the borehole, which are generally out of the detection capability of 

surface techniques. 

With the advantage in detecting deep conductors, the BHTEM has developed into an 

essential tool in the deep exploration for massive sulphide deposits (Lamontagne and 

Milkereit, 2007). In 1978, the Corporation Falconbridge Copper discovered a small 

off-hole copper sulphide ore body at a depth of 950 m using borehole transient EM 

method (Crone, 1986). In 1981, the Corporation Falconbridge Copper again using the 

BHTEM method detected a massive sulphide, copper, zinc deposit at a depth of 

1266m in the Noranda area of Quebec, Canada (Crone, 1986). King (1996) 

introduced the application of the BHTEM method to detect and define nickel-copper 

deposits in Sudbury Igneous Complex using the UTEM (Unversity of Toronto EM) 

system, which is a large loop, step response system with the ability to detect 

conductors up to 300m away from the borehole at a depth up to 3000m. In a mining 

area with a large number of boreholes, well-to-well electromagnetic measurement can 

help more accurately estimate mineral reserves. As targets based on earlier 

exploration strategy became exhausted in the Mount Isa Mine, which is an 

underground mine in Australia, the BHTEM method has been used as a part of a new 

exploration strategy to find further resources (Fallon et al., 1996).   

1.2 Introduction of the BHTEM systems 

One of the first application of the electromagnetic method to borehole was introduced 

in the thesis of Noakes (1951). The method is designed to detect massive sulfide 

deposits which are a certain distance away from the borehole. Since then numerous 

borehole electromagnetic systems have been developed. Crone Geophysics & 

Exploration built the first three-component commercial borehole electromagnetic 
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system in 1991 (PEM), consisting of two probes (one for the z component and one for 

x and y components). The Geonics BH43 system combines all three components into 

a single probe in 1994. Both systems measure components sequentially. In 2005, 

Lamontagne Géophysique ltée launched the UTEM system and EMIT's DigiAtlantis 

system (ElectroMagnetic Imaging Technology) appeared in 2010. The latter two use 

a fluxgate probe that measures the time derivative of the three magnetic components 

simultaneously. Recently, the ARMIT system represents a new generation of 

technology (Abitibi Royal Melbourne Institute of Technology) and it relies on a new 

sensor developed exclusively for Abitibi Geophysics by the team of Dr. James 

Macnae of the Royal Melbourne Institute of Technology. The novelty of the ARMIT 

system is that it simultaneously measures the time derivative of the secondary 

magnetic field B (dB/dt) and the secondary magnetic field (B). This latter possibility 

is innovative and sought around the world. This EM probe offers increased sensitivity 

to the entire spectrum of geological conductors that can be found in nature.  

In a typical BHTEM configuration, shown in Figure 1.1, there are a large transmitter 

loop, a winch and a receiver on the surface, and a sensor connected with the receiver 

through a cable, is lowered in the borehole.  



4 
 

 
 

 
Figure 1.1 Geoelectric cross section illustrating the application of the BHTEM in 

exploring deep targets (adapted from Dyck, 1981). 

The basic principles of the BHTEM are the same as surface time domain EM. A 

strong direct current is injected into the transmitter loop for a certain time until all 

turn-on transients have vanished, giving the primary electric field; then, the current 

through the transmitter loop is cut off, and the primary electric field has been changed 

abruptly. According to Faraday's law, the abrupt change will induce eddy currents in 

nearby conductors, because of ohmic losses these eddy currents dissipate gradually. 

The dissipation of these eddy currents, in turn, induces a decaying magnetic field 

which is the secondary magnetic field. It is the magnetic induction 𝐵 or its time rate 

𝑑𝐵 𝑑𝑡⁄  of the secondary magnetic field recorded by the receiver. At present all 

systems effectively perform 3-axis component measurements, one axial component 

(A) and two transverse components (U and V), as shown in Figure 1.2. 
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Figure 1.2 The three components (A, U, V) recorded by the sensor. A—parallel to 
the trajectory of the borehole (coaxial component), U—in the same 
vertical plane as A and perpendicular to A, V—perpendicular to A and 
U in a right-hand coordinate system. 

The BHTEM method shares the same principle with other TEM methods (airborne 

TEM, and ground TEM), however, challenges exist in processing BHTEM data 

because of the noise. Apart from common noises encountered airborne TEM and 

ground TEM, such as motion induced noise, cultural noise and sferics (Macnae et al., 

1984), the hostile environment in a borehole, especially in deep holes, there are some 

additional sources of noise as thermal noise at high temperature, flowing liquid in 

well, and the rotation of the sensor. These problems of BHTEM motivate us to 

develop an effective and efficient denoising method for BHTEM data. 

1.3 Objectives of research 

With the financial support of FRQNT (Fonds de recherche, Nature et Technologies 

du Québec), the main goal of this Ph.D. research is to develop an efficient denoising 

tool dedicated to BHTEM measurement for deep mine exploration. The research has 

been carried out in close collaboration with Abitibi Geophysics Inc. Therefore, our 

work is focused on providing an effective and easy to use tool for field geophysicists 
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to improve data quality, thus improve the accuracy of interpretation. Three specific 

objectives have been accomplished through this research: 

a) As everything can give an electromagnetic signal in response to an induced 

electromagnetic field, identify the main sources of noise in a typical deep 

mine environment is one of the objectives of this Ph.D. study.  

b) The second specific objective is to develop new noise elimination algorithms. 

A strategy for improving BHTEM data quality has been developed. The 

strategy involves denoise raw data by a discrete wavelet transform; moreover, 

distorted transients are identified by correlation analysis, and then these 

distorted transients are corrected. 

c) Develop an interface for denoising BHTEM raw data in the Matlab 

environment, in order to transfer the denoising tool to the industrial partner.  

1.4 Thesis outline 

This thesis has been divided into five chapters of which Chapter I is the general 

introduction. 

Chapter II summarizes the theory of the signal processing methods used in the frame 

of this Ph.D. research.  

Chapter III describes briefly on the data acquisition in tunnels of a deep mine. As an 

effort to investigate influences of the environment on EM measurements, the 

recordings are analyzed using both the Fourier and the wavelet transform integrating 

information from seismic records, blasting, fluctuation in powerlines. 

Chapter IV focus on the development of a new denoising method for BHTEM data 

based on DWT. Results of using the method to denoise synthetic and field BHTEM 

data are presented in detail.  

Chapter V draws conclusions and gives some recommendations for future work. 



7 
 

 
 

CHAPTER II 

METHODS AND THEORY 

2.1 Wavelet transform 

Basic concepts and theory of the wavelet transform (WT) described in this section 

mainly refer to Daubechies (1992), Chui (1992), Mallat (1999), Percival and Walden 

(2006).  

The wavelet transform (WT) has often been compared with the Fourier transform 

(FT) and can be considered as an improved, localized equivalent of it. They share the 

same principle, which is that all signals can be decomposed into a superposition of 

functions, called basis functions. These basis functions possess certain properties: 

simple, harmonic, symmetry, orthogonal. Therefore, the process of analysis based on 

the decomposition is simplified. After the processing, the signal can be reconstructed 

through a process called inverse transformation (IWT, and IFT). In the case of FT, the 

signal is decomposed into an integral or sum of trigonometric functions with different 

frequencies. Each trigonometric function represents a frequency component of the 

original signal. This facilitates the analysis of a signal in the frequency domain. It 

shows how much of the signal lies within a specific frequency, however, this is at the 

cost of time information. In other words, it does not tell us when an event occurs in 

the signal. The WT remedies the deficiency of the FT by changing the basis function 

from trigonometric- functions to mother wavelets, which are a waveform of limited 

duration, zero average value, and nonzero norm. The advantage of using wavelets as 
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the basis functions is that it enables one to study features of the signal locally with a 

detail matched to their scale (Kumar and Foufoula-Georgiou, 1994). In other words, 

the WT allows analyzing a time series at different scales without sacrificing time 

resolution. 

2.1.1 Continuous wavelet transform (CWT) 
Using FT to analyze the frequency content of a time series, the basis function is 

explicitly defined as the trigonometric function, which has an infinite duration as 

defined in equation (2.1).  

 ℱ𝑓(𝜔) =  
1

√2𝜋
∫ 𝑓(𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡

∞

−∞
. (2.1) 

The selection of trigonometric function as the basis function results in an inherent 

limitation of the FT: it provides high resolution in frequency without offering any 

time information about the signal. If the signal is stationary, which means the 

frequency content of the signal does not change over time, the FT would be a good 

choice. For non-stationary signals, whose frequency content changes over time, the 

FT does not provide enough information to characterize the signal. 

In order to provide time-localized information in the frequency domain, a windowing 

function is added to the Fourier transform (Gabor, 1946). It is called short-time 

Fourier transform (STFT): 

 𝑆𝑇𝐹𝑇𝑓(𝜔, 𝜏) = ∫ 𝑓(𝑡)𝑤(𝑡 − 𝜏)𝑒−𝑖𝜔𝑡𝑑𝑡
∞

−∞
. (2.2) 

The introduction of the windowing function, w(t), splits the signal that changes with 

time into small segments, and it assumes the signal is stationary in each segment. 

This technique has remedied the deficiency of the FT to a certain degree. However, 

once w(t) is chosen, the size of the window is fixed. This is the main disadvantage of 

the STFT in dealing with non-stationary processes, which requires varying window 

size to give reasonable resolution for both time- and frequency-localized events. This 
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is what exactly wavelet transform provides. The WT uses a wide window for low-

frequency events and a narrow window for high-frequency contents. Figure 2.1 

illustrates the time resolution difference as frequencies ascend for the Fourier 

transform and the wavelet transform. For the FT, the resolution uniform for all 

frequencies. However, in the WT, the time resolution increases with the increase of 

the frequency. 

 
Figure 2.1 Resolution difference in time between the STFT (left) and the WT 

(right): (a) uniform tiling; (b) scale adaptive tiling. 

The continous wavelet transform (CWT) of a time series with finite energy is defined 

as: 

 𝐶𝑊𝑓(𝑎, 𝑏) =  ∫ 𝑓(𝑡)𝜓𝑎,𝑏(𝑡)𝑑𝑡
∞

−∞
. (2.3) 

Here a and b are scale and translation parameters. The function ψa,b(t) is called the 

mother wavelet, which does not have a general formulation, but must meet the 

following two conditions: 

 ∫ 𝜓(𝑡)𝑑𝑡 = 0
∞

−∞
, (2.4) 

 𝐶𝜓 = ∫
|ℱ𝜓(𝜔)|2

𝜔

0

−∞
𝑑𝜔 = ∫

|ℱ𝜓(𝜔)|2

𝜔
𝑑𝜔

∞

0
< ∞. (2.5) 

The symbol ℱ  indicates the Fourier transform. The most important operation 

implemented in equation (2.3) is scaling and translating a mother wavelet with the 

help of the scale and translation parameters (a and b, respectively). A wavelet family 
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has wavelets of the same shape, but various dilation levels and positions defined as 

below: 

 𝜓𝑎,𝑏(𝑡) =
1

√𝑎
𝜓 (

𝑡−𝑏

𝑎
)       𝑎, 𝑏 ∈ 𝑅; 𝑎 > 0. (2.6) 

After the CWT, a set of coefficients is obtained. Processes, such as removing certain 

frequency contents from the signal, can be operated on these coefficients. Since the 

transform is isometric, i.e. it preserves the energy of the signal, the transformation is 

reversible. The reverse continuous wavelet transform (iCWT) is defined as: 

 𝑖𝐶𝑊𝑓(𝑡) =
1

𝐶𝜓
∫ ∫

1

𝑎2 𝐶𝑊𝑓(𝑎, 𝑏)𝜓𝑎,𝑏(𝑡)𝑑𝑎𝑑𝑏
∞

−∞

∞

−∞
. (2.7) 

In order to make a comparison between FT, STFT, and WT, two time series of 

signals are generated. One is a stationary signal (𝑠1) and another is a non-stationary 

signal (𝑠2). The 𝑠1  is a sinusoid signal consisted of three frequency components: 

30Hz, 50Hz, and 80Hz. The non-stationary signal 𝑠2 is composed of two frequency 

components: 50Hz and 80Hz. Except that the 50Hz component is present everywhere 

in the signal 𝑠2, the 80Hz component only occurs between 400ms and 600ms. Figure 

2.2 presents the two signals in time domain. 
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Figure 2.2 Stationary signal 𝑠1  (a) and non-stationary signal 𝑠2  (b) in the time 

domain. 

Those two signals were then processed by three transformations one by one, namely 

FT, STFT, and WT. Figure 2.3 presents the results of FT for the two signals. In both 

cases, the frequency components are identified successfully but it fails to show the 

time-varying features in the non-stationary signal 𝑠2, because all time information is 

last after the transformation. This is a severe weakness of the FT in dealing with non-

stationary signals. To overcome this weakness the STFT and WT are available. In 

Figure 2.4, we can see for the stationary signal both the STFT and WT have correctly 

detected the three frequency components in the signal; however, the STFT gives 

uniform resolution for all freqeuncy components, because the resolution is pre-

decided by the selection of the window size. Comparatively, the WT offers different 

resolution for different frequencies. Moreover, the WT provides much better time 

precision for non-stationary signals than the STFT.  
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These results (Figure 2.4) show that the WT is much better than the other two 

methods, especially for non-stationary signals. In reality, geophysical signals are 

often non-stationary.  

 
Figure 2.3 Frequency representations of 𝑠1 and 𝑠2by using the FT. 
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Figure 2.4 Spectrograms obtained by applying the STFT and WT on signals 𝑠1 

and 𝑠2. 

2.1.2 Discrete wavelet transform (DWT) 
Since the scale and translation parameters (a, b) are continuous, information provided 

by the CWT is highly redundant, which makes the CWT computationally inefficient. 

It is used usually for analytic purposes. To reduce the redundancy, parameters a and b 

are discretized, and often use dyadic values as below: 

 𝑎 = 2𝑗;𝑏 = 𝑘 ∙ 𝑎 = 𝑘 ∙ 2𝑗       𝑗, 𝑘 ∈ 𝑍. (2.8) 

Where j is called the decomposition level, which controls the dilation; k controls the 

translation. Substitute equation (2.8) into equation (2.6), the wavelet family becomes: 

 𝜓𝑗,𝑘(𝑡) =
1

√2𝑗
𝜓(

𝑡−𝑘∙2𝑗

2𝑗
). (2.9) 

Therefore, the DWT of a time serie funciton f(t) is: 
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Where j is called the decomposition level, which controls the dilation; k controls the 

translation. Substitute equation (2.8) into equation (2.6), the wavelet family becomes: 

 𝜓𝑗,𝑘(𝑡) =
1

√2𝑗
𝜓(

𝑡−𝑘∙2𝑗

2𝑗 ). (2.9) 

Therefore, the DWT of a time serie funciton f(t) is: 
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 𝐷𝑊𝑓(𝑗, 𝑘) = ∫ 𝑓(𝑡) ∙ 𝜓𝑗,𝑘(𝑡)𝑑𝑡
∞

−∞
= 〈𝑓, 𝜓𝑗,𝑘〉. (2.10) 

In DWT, the wavelet is selected to form an orthonormal basis for functions with 

finite energy. This implies that all such functions can be approximated by a linear 

combination of the wavelets (Kumar and Foufoula-Georgiou, 1994): 

 𝑓(𝑡) = ∑ ∑ 〈𝑓, 𝜓𝑗,𝑘〉𝜓𝑗,𝑘(𝑡)∞
𝑘=−∞

∞
𝑗=−∞ . (2.11) 

The two indices j and k indicate scale and position, respectively. Hence, DWT has the 

time-scale, or time-frequency, localization ability.  

Defining J as the decomposition level, the equation (2.11) can be broken into two 

parts: 

 𝑓(𝑡) = ∑ ∑ 〈𝑓, 𝜓𝑗,𝑘〉𝜓𝑗,𝑘(𝑡)∞
𝑘=−∞

𝐽
𝑗=−∞ + ∑ ∑ 〈𝑓, 𝜓𝑗,𝑘〉𝜓𝑗,𝑘(𝑡)∞

𝑘=−∞
∞
𝑗=𝐽+1 . (2.12) 

The first part is called details of the function. The second part is called the 

approximate of the function. 

To simplify the process the scale function 𝜙𝑗,𝑘(𝑡) is introduced, and it can be defined 

analogically to the wavelet function 𝜓𝑗,𝑘(𝑡) in equation 2.9: 

 𝜙𝑗,𝑘(𝑡) =
1

√2𝑗
𝜙(

𝑡−𝑘∙2𝑗

2𝑗
). (2.13) 

Details on finding the scale functions can be found in Mallat (1989). With the scale 

function, the second sum on the right side of the equation (2.12) can be rewritten as: 

 ∑ ∑ 〈𝑓, 𝜓𝑗,𝑘〉𝜓𝑗,𝑘(𝑡)∞
𝑘=−∞

∞
𝑗=𝐽+1 = ∑ 〈𝑓, 𝜙𝐽,𝑘〉𝜙𝐽,𝑘(𝑡)∞

𝑘=−∞ . (2.14) 

Therefore: 

 𝑓(𝑡) = ∑ ∑ 〈𝑓, 𝜓𝑗,𝑘〉𝜓𝑗,𝑘(𝑡)∞
𝑘=−∞

𝐽
𝑗=−∞ + ∑ 〈𝑓, 𝜙𝐽,𝑘〉𝜙𝐽,𝑘(𝑡)∞

𝑘=−∞ . (2.15) 

As a result of DWT, the signal is decomposed into detail (𝐷𝑗,𝑘) and approximate 

(𝐴𝑗,𝑘) coefficients at level j and time k, and they are defined in equation (2.16). 
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𝐷𝑗,𝑘 ≡ ∫ 〈𝑓, 𝜓𝑗,𝑘〉𝜓𝑗,𝑘(𝑡)𝑑𝑡

∞

−∞

𝐴𝑗,𝑘 ≡ ∫ 〈𝑓, 𝜙𝑗,𝑘〉𝜙𝑗,𝑘(𝑡)𝑑𝑡
∞

−∞

. (2.16) 

Please note that the equation (2.16) is used to calculate coefficients of single scale 

decomposition. To calculate wavelet coefficients for a certain decomposition level, 

multiple scale decomposition mechanism must be used. Figure 2.5 illustrates the 

DWT process for multiple decomposition levels: 

1. At first, the signal is fed to a highpass filter and a lowpass filter producing the 

level one detail coefficients and approximation coefficients, respectively. 

2. The detail coefficients are kept unchanged; the approximation coefficients are 

fed to another highpass filter and another lowpass filter producing level two 

detail coefficients and approximation coefficients. This process is repeated 

until the desired decomposition level is reached. 

3. The decomposition process is a down-sampling process by a factor of two. To 

reconstruct the signal the coefficients are upsampled. 

 
Figure 2.5 Implementation of the DWT in terms of filter banks (the downward 

arrow indicates down-sampling by a factor of two) (Percival and 
Walden, 2006). 
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Figure 2.6 is an example showing a signal is decomposed to level 3 with the DWT, 

which we can summerize as below.  

a) Detail coefficients (𝑐𝐷𝑖 ) store high-frequency features of the signal; and 

approximation coefficients ( 𝑐𝐴𝑖 ) show low-frequency components of the 

signal. 

b) Higher decomposition level means larger scale value; features extracted from 

the signal or the approximation coefficients of the previous level to the detail 

coefficients have lower frequencies, and vice-versa. 

 
Figure 2.6 A signal is decomposed to level 3 with the DWT. 

2.1.3 Selection of a wavelet 
There is a number of wavelet families, such as Haar, Daubechies, Symlets, Coiflets, 

Biorthogonal, Meyer, Gaussian, Mexican hat, Morlet, Shannon, Frequency B-Spline, 

Complex Morlet and Fejer-Korovkin wavelets (see wavlet Toolbox of MATLAB). 

Users have to decide first which wavelet is suitable for their application: CWT or 

DWT. If the goal of the application is to perform a detailed time-frequency analysis, 
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then the CWT is a good choice; however, if the application is about general 

denoising, compressing, or feature detecting, DWT is superior to CWT 

(https://www.mathworks.com/help/wavelet/gs/continuous-and-discrete-wavelet-

transforms.html). As already mentioned, the CWT provides a highly redundant 

representation of a signal, the cost of computing and storage of CWT coefficients is 

much greater than for the DWT. A detailed comparison between the CWT and the 

DWT can be found in the documentation of wavelet transform in Matlab. 

Unfortunately, there is no straightforward method to choose an appropriate wavelet. 

In fact, the characteristics of the signal and the purpose of the application influence 

which wavelet should be used. We summarized some general rules from the 

documentation of the wavelet toolbox in Matlab: 

a) In time-frequency analysis, analytic wavelets, such as generalized Morse 

wavelet, analytic Morlet wavelet, and bump wavelet, are a good choice.  

b) If the application requires preserving the energy of the signal, an orthogonal 

wavelet must be used, because orthogonal transforms preserve energy. In this 

case, wavelets like coiffet, daubechies, and haar are a good choice. 

c) Although orthogonal wavelets are most commonly used, the wavelet’s 

orthogonality restricts the type of decomposition and reconstruction filters. 

Non-orthogonal transforms, on the contrary, have fewer restrictions on the 

type of filters; therefore, filters with finer frequency resolution are available 

(Fargues et al., 1997). So if a high resolution in the frequency domain is 

needed for the application, non-orthogonal wavelets can be considered. 

d) To detect features, the support, which indicates the non-zero interval of a 

wavelet, must be chosen accordingly: small support for closely spaced 

features. Wavelets with large support can be used if features in the signal are 

sparsely spaced.  

https://www.mathworks.com/help/wavelet/gs/continuous-and-discrete-wavelet-transforms.html
https://www.mathworks.com/help/wavelet/gs/continuous-and-discrete-wavelet-transforms.html
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e) In case of compression, consider using biorthogonal wavelets. Biorthogonal 

wavelets are symmetric and have linear phases. They have two pairs of 

scaling function-wavelet: one pair is for analysis, and the other one is for 

synthesis. This feature of biorthogonal wavelets is very useful in compressing 

an object. 

f) If the application is to denoise signals, orthogonal wavelets are a good 

candidate. An orthogonal transform preserves energy and does not color white 

noise. 

Although the choice of basic wavelet types can be guided by these guidelines, there is 

no concrete criterion for us to choose a specific wavelet for a specific application. 

Proceeding by trials and errors is the only way. We tried a lot of wavelets in our 

study, such as the harr wavelet, the daubechies wavelet family, and the symlet 

wavelet family. Finally the ‘sym5’ wavelet of the symlet wavelet family is chosen in 

our study (details are discussed in Chapiter IV).  

2.2 Complementary methods  

Our denoising method development begins with synthetic signals and known noise. 

After using DWT to process the synthetic signal, in some cases we have observed 

that there are still residual perturbations remaimed. Since in a time-domain 

geophysical survey, as borehole transient electromangetic measurement (BHTEM), 

the secondary magnetic field (B) and/or its time rate (dB/dt) is recorded after the 

primary electric field disappeared, the decay of the secondary magnetic field is often 

estimated by an exponential function (Equation 2.17) (Nabighian and Macnae, 1991). 

The importance is that the decay time constant is reverse to the exponential decay 

constant. Larger decay constant (small time constant) makes the transient signal 

vanish much more rapidely than small decay constant (large time constant); and the 

time contant is one of important characteristics used in the mineral exploration to 

discrimining good or bad conductor. A stable decay can ensure a good estimation of 
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the time constant. Therefore, the residual perturbation in the signal can lead to 

misinterpretation of data. In order to further improve the data quality, we introduce a 

curve fitting method dedicated to simple date sets, perhaps mostly for theoritical tests 

purposes.  

For a practical time domain electromagnetic (TEM) survey, the measurement is often 

repeated many times at each survey point. The correlation method is therefore further 

developed to eliminate residual radom noises. Those two methods are described 

below.  

2.2.1 Curve fitting technique (CFT) 
Although the induced polarization (IP) effect is always present in all electromagnetic 

(EM) surveys when polarizable minerals, such as clays, massive and disseminated 

sulphides, are present; however, the IP signal is low and completely overlapped with 

the inductive effect. In addition, Smith and West (1989) pointed out that the in-loop 

EM system is the optimal configuration to excite the airborne IP response including 

negative transients in mid to late times over resistive grounds, from bodies of modest 

chargeability under condition of layered structure or homogenous half space. The fact 

that the most of borehole EM surveys use out-off loop EM system, and whole space 

and highly inhomogeneous milieu are involved. It is impossible to characterize the IP 

effect in borehole EM (personnal communication with senior geophysicists of 

companies), therefore, we ignore IP effect on exponential transient decay model in 

this study. We apply the exponential function below as our model to implement the 

fitting process to reduce the residual perturbation after DWT process. 

 𝑠(𝑡) = 𝛼𝑒−𝑡 𝜏⁄ , (2.17) 

where α and τ are parameters to be determined. They denote the gain parameter and 

the time constant of the conductor, respectively. They are calculated according to the 

linear least-squares criterion. Take the natural logarithm of both sides of Equation 

(2.17), we got: 
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 𝑙𝑛𝑠(𝑡) = 𝑙𝑛𝛼 +
1

−𝜏
𝑡. (2.18) 

Let 𝑦 = 𝑙𝑛𝑠(𝑡), 𝑝1 = 𝑙𝑛𝛼, and 𝑝2 =
1

−𝜏
, then we have 

 𝑦 = 𝑝1 + 𝑝2𝑡. (2.19) 

Suppose �̃� is the fitted data, then the residual of the ith (i=1,2,3,…,n) data is defined 

as 

 𝑟𝑖 = 𝑦𝑖 − �̃�𝑖 = 𝑦𝑖 − (𝑝1 + 𝑝2𝑡𝑖). (2.20) 

Sum the square of residuals of all data, we got 

 𝑆 = ∑ 𝑟𝑖
2𝑛

𝑖=1 = ∑ (𝑦𝑖 − (𝑝1 + 𝑝2𝑡𝑖))2𝑛
𝑖=1 . (2.21) 

Because the purpose of the least-square process is to minimize S, the parameters to be 

determined are solutions of the equation set formed by differentiating the Equation 

(2.21) with respect to each parameter, and setting the result to zero: 

 

𝜕𝑆

𝜕𝑝1
= −2 ∑ 𝑥𝑖(𝑦𝑖 − (𝑝1𝑥𝑖 + 𝑝2))𝑛

𝑖=1 = 0

𝜕𝑆

𝜕𝑝2
= −2 ∑ (𝑦𝑖 − (𝑝1𝑥𝑖 + 𝑝2))𝑛

𝑖=1 = 0
. (2.22) 

Solve equation set (2.22): 

 
𝑝1 =

𝑛 ∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1 −∑ 𝑥𝑖

𝑛
𝑖=1 ∑ 𝑦𝑖

𝑛
𝑖=1

𝑛 ∑ 𝑥𝑖
2𝑛

𝑖=1

   

𝑝2 =
1

𝑛
(∑ 𝑦𝑖

𝑛
𝑖=1 − 𝑝1 ∑ 𝑥𝑖

𝑛
𝑖=1 )

. (2.23) 

Therefore we get the two unknow parameters in Equation (2.17): 

 
𝛼 = 𝑒𝑝1

𝜏 = −
1

𝑝2

. (2.24) 
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To constrain the fitting result, perturbed segments in the data are identified and 

excluded from the fitting process. These segments are determined through the 

following steps: 

1. Find extrema. The perturbation of signal represents local peaks or valleys 

in the data. The first step is to determine the location of these extremes on 

the decay curve. 

2. The width of each peak and valley is then estimated by its half-

prominence. The prominence of a peak measures how much the peak 

stands out due to its intrinsic height and its location relative to other peaks 

(Source: Matlab). All these parameters can be easily obtained by using the 

built-in function findpeaks in Matlab. Figure 2.7 explains how to decide 

the prominence of a peak. 

 

Figure 2.7 Definition of the prominence of a peak. Vertical arrows indicate the 
prominence of the peak. (source: 
https://commons.wikimedia.org/wiki/File:Prominence_definition.svg) 

3. Exclude points from the fitting process. Points fall within the range of 

half-prominence of the peak are considered as being contaminated by 

residuals, thereby excluded from the fitting process and replaced later by 

values from the fitting result. 

https://commons.wikimedia.org/wiki/File:Prominence_definition.svg
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The following example shows how this method is implemented. Figure 2.8 presents 

the result of denoising with the DWT, but perturbations caused by noise residuals still 

exist in the result. In order to use the fitting method, we first find out the 

peaks/valleys in the denoised signal as shown in Figure 2.9. the width of these 

peaks/valleys can be estimated with the help of half-prominence. To reduce their 

impact on the fitting result, points fall in range of half-prominence around the 

peak/valley are excluded from the fitting process. Figure 2.10 shows the CFT 

smoothes the perturbations caused by noise residuals effectively.  

 
Figure 2.8 Perturbations exist in the result of denoising with the DWT 
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Figure 2.9 Peaks/valleys located in the DWT denoised signal. 

 
Figure 2.10 Comparison between the DWT denoised result and DWT+CFT 

processed result. 

2.2.2 Correlation analysis and stacking 
Generally, in a BHTEM field survey, the measurement is repeated many times at each 

survey point. Then, these measurements are stacked into one record in an effort to 

eliminate random noise. Since repeated measurements are at the same survey point, 
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they are basically recording signals from the same source. The response of geological 

bodies to primary electromagnetic fields will not change in repetitve measurements, 

but random noises will change. As we mentioned in section 1.3, during the 

measurement of BHTEM the sensor may rotate and/or vibrate because of the liquid 

flow or obstacles in the borehole. This rotation and/or vibration will be one type of 

source of noises to the measurement. Using conventional stacking methods one can 

reduce random noise, but when there is an acute noise signal, it can skew the 

neighboring data. This is why we first use DWT method to process the raw data, and 

then do correlation analysis in order to distinguish the geological response versus 

noises.  

Figure 2.11 illustrates a cycle of recording in TEM method. A cycle includes four 

transients: two on-time transients and two off-time transients. 

 
Figure 2.11 Basic principles of measurement of the TEM method. The red line 

indicates the current in the transmitter loop, and the blue line shows 
the signal recorded by the sensor. 

Based on this recording mechanism, we can use correlation to identify the distorted 

transients. The Pearson correlation coefficient is chosen because of its invariance, i.e., 

the coefficient is not affected by separate changes in the two variables in location and 
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scale. For example, if one variable X is changed to 𝛼𝑋 + 𝛽, and another variable Y is 

changed to 𝜆𝑌 + 𝛾, where 𝛼, 𝛽, 𝜆, and 𝛾 are constants, and 𝛼, 𝜆 > 0, the correlation 

coefficient will not be changed. The coefficient between two variables X and Y is 

calculated by the formula: 

 𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋,𝑌)

𝜎𝑋𝜎𝑌
, (2.18) 

where, 𝑐𝑜𝑣(𝑋, 𝑌) calculates the covariance between variables X and Y; σX and σY is 

the standard deviation of X and Y, respectively. 

The correlation coefficient calculated by equation (2.18) ranges from -1 to 1. The 

value of 1 means there is a perfect linear relationship between the two variables. The 

value of -1 implies that the two variables still have a linear relationship, but they 

change in an opposite direction, in other words, one variable decreases as the other 

one increases. When the correlation coefficient equals to zero, there is no linear 

correlation between the two variables. For example, if we have a five-transients 

record, and we compute the Peason coefficients between them. We will get a diagonal 

matrix shown in Table 2.1. From these values we can conclude that the transient-2 

has a bad correlation with other transients, it must be distorted. 

Table 2.1 Pearson coefficients between five transients. 
transient 1 2 3 4 5 
1 1.00 0.65 0.95 0.94 0.99 
2 0.65 1.00 0.68 0.70 0.64 
3 0.95 0.68 1.00 0.97 0.98 
4 0.94 0.70 0.97 1.00 0.92 
5 0.99 0.64 0.98 0.92 1.00 

After the distorted transient is identified with the help of correlation analysis, it is 

replaced by linear interpolation using other transients. Figure 2.12 shows the distorted 

transient (red line) is replaced by interpolation (dashed blue line). The interpolation is 

carried out sampling by sampling, i.e., we first take the first sampling of each 
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transient which is not distorted to do a linear interpolation to get the first sampling to 

replace the first sampling of the distorted transient. Then we repeat this process on 

other samplings until the entire distorted transient is replace.  

 
Figure 2. 12 Schematic diagram illustrating the process of replacing distorted 

transient with interpolation. 

2.2.3 Stacking 
Stacking is a fundamental and essential step in time series of geophysical data 

processing. The goal of stacking is to improve the signal-to-noise ratio. After decades 

of development many stacking techniques have been developed. The most simple one 

is the average stacking method. For each survey point, it adds up all isochronous 

values and the sum is then divided by the number of values to get the stacked results, 

as defined by Equation (2.19): 

 𝐴𝑡 =
1

𝑁
∑ 𝑎𝑖

𝑁
𝑘=1 . (2.19) 

𝐴𝑡  is the stacked result of channel time t. And 𝑎𝑖  is the sample value of the ith 

measurement of the corresponding channel. N is the total repeated measurement 

times. In this stacking method a uniform weight is used for all measurement. This 

makes the method very easy to understand and to use, but it cannot be used to deal 

with data with drift. To remove linear drift Mark Halverson developed a method 

called Halverson stacking in 1960s. Three half periods are engaged each time in the 

stacking process (Kingman et al., 2004), and weights for these three half periods are: 
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Weights for data set with more half periods can be obtained similarly. A general 

formula for weights when there are more than four half periods in the data set is 

below (Kingman et al., 2004): 

 [1,−3,4,−4,4,−4,⋯,4∙(−1)𝑛−3,3∙(−1)𝑛−2,1∙(−1)𝑛−1]

4∙(𝑛−2)
, (2.21) 

where, n is the total number of half periods in the data set. 

The Halverson stacking method is used in this study. To compare the results stacked 

from different raw data (original raw data, DWT denoised raw data, and DWT 

denoised plus distorted transients corrected raw data), we will use Halverson stacking 

in our study. 
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CHAPTER III 

CHARACTERISATION OF EM NOISES IN DEEP MINING TUNNELS 

3.1 Introduction 

Every geophysical datum consists of two parts: information related to the target, and 

all other regarded as noise. Commonly encountered noise sources in EM 

measurements can be categorized as man-made noise and natural noise. 

On surface, man-made noises come mainly from power distribution grid. The 

frequency of this kind of noise is usually highly stable and its features are easily 

determined. By contrast, the natural noise is much more complicated and difficult to 

remove. One major source is sferics, and it is not uniformly distributed throughout 

the measurement bandwidth but typically concentrated in the high frequency part 

(Macnae et al, 1984). Energy in the 5 Hz – 25k Hz range is primarily due to sferics, 

which are natural transients generated by lighting discharges; and the natural EM 

noise below about 6 Hz is mainly of geomagnetic and ionospheric origin. In addition, 

natural noise fields may change from place to place and from time to time, and 

therefore are more difficult to handle. Toward the Earth interior but near the surface, 

the conductive overburden in the survey area has a strong effect on the EM field 

(Macnae et al, 1984). It may greatly weaken the penetration of electromagnetic 

waves. Deep in underground tunnels, the shielding effect of the rock formation may 

reduce the noise effects of some electromagnetic fields on the ground; however, due 
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to the difficulty of entering the underground tunnel, there is a lack of understanding 

of the noise in such deep environment. Thanks to the financial support of the FRQNT 

(Fond de Recherche Naturel et Technologies du Québec), our industry partner 

(LaRonde Mine of Agnico Eagle) allowed us to install 5 electromagnetic signal 

recorders at 5 places in 3km deep underground tunnels. Those five places represent 

typical deep mining environment, quiet and noise-concentrated areas (detailed 

information in Table 3.1). This chapter aims at the characterization of underground 

recorded EM signals.  

3.2 A brief description of LaRonde Mine 

At about 47 kilometers east of Rouyn-Noranda City, the LaRonde Mine is an Au-rich 

volcanogenic massive sulfide (VMS) deposit. The deposit is a huge subvertical 

tabular of east-west orientation. It was first discovered in 1976 by Dumagami Mines 

Ltd., and first achieved commercial production in 1988. It is now fully owned by 

Agnico Eagle Ltd. Among the ten deepest mines in the world, the LaRonde deposit is 

one of the most important VMS deposits hosted in the Abitibi greenstone belt, and it 

is the largest Au deposit currently mined in Canada (Mercier-Langevin et al., 2007). 

The mine has produced more than 5 million ounces of gold along with valuable by-

products and still has 2.6 million ounces of gold in proven and 15 million tonnes 

grading 5.39 grams of gold per tonne probable reserves as of the end of 2017 (Agnico 

Eagle website). The production of the mine now mainly comes from deep ore bodies; 

and the exploration is directed toward great depth and the periphery as shown in 

Figure 3.2. 

https://www.agnicoeagle.com/English/operations-and-development-projects/operations/laronde/default.aspx
https://www.agnicoeagle.com/English/operations-and-development-projects/operations/laronde/default.aspx
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Figure 3.1 Geological map and location of the LaRonde mine (Source : modified 

from interactive carte of SIGEOM, MERNQ, 
http://sigeom.mines.gouv.qc.ca/signet/classes/I1108_afchCarteIntr ). 



31 
 

 
 

 
Figure 3.2 Composite longitudinal section of the LaRonde mine (Source : 

https://www.agnicoeagle.com/English/operations-and-development-
projects/operations/laronde/maps-and-surveys/default.aspx). 

3.3 Geological setting of LaRonde Mine 

The LaRonde mine is located near the southern boundary between the Abitibi Sub-

province and the Pontiac Sub-province, within the Superior Province of the Canadian 

Shield (Gosselin, 2005). It is about 4km in the north of an important regional 

geological structure – the Cadillac-Larder Lake Fault (CLLF), which is indicated as 

the broken red line in Figure 3.1.  

During late Archean orogenesis, accompanied by large-scale north-south compression 

and dextral transpression tectonic events (Card 1990), the lithological sequences near 

https://www.agnicoeagle.com/English/operations-and-development-projects/operations/laronde/maps-and-surveys/default.aspx
https://www.agnicoeagle.com/English/operations-and-development-projects/operations/laronde/maps-and-surveys/default.aspx
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the CLLF were sub-verticalized, dipping toward the south. From the north to the 

south three geological formations around the LaRonde Mine are: (1) the Kewagama 

Group formed by thick band of interbedded wacke; (2) Blake River Group, which is a 

volcanic assemblage and the host of all known economic mineralisation of the 

LaRonde mine; (3) the Cadillac Group which is made up of thick band of wacke 

interbedded with politic schist and minor iron formation (Gosselin, 2005).  

The key question for the futur development of the LaRonde Mine is: how much 

economic minerals remain unexploited under the depth of 3km? Where comes out the 

importance to do some geophysical surveys in order to estimate the mineral potential 

around known mineralization. Among conventional geophysical methods, the time 

domaine electromagnetic method is widely applied to explore volcanogene massive 

sulfides minerals. One of the important factors affecting the efficiency of this method 

is the ratio of the signal to noise. Several potential noise sources could exist in a deep 

mine, such as  Schumann remanence (7.83 Hz) ; VLF (Very low frequency) (3 – 30 

kHz); EM field resulted from coupling between machine vibration and EM field 

(attenuate quickly with distance) ; power lines (between 50 and 60 Hz) and 

communication cables (high frequency), but we lack of knowledge on them, 

especially in an active deep mining environment. We therefore decided first to record 

noises in deep tunnels of the LaRonde mine. 

3.4 Data acquisition 

3.4.1 Zonge Electromagnetic Network (ZEN) receiver 
The device we used to collect data in the tunnels of the LaRonde mine is Zonge 

Electromagnetic Network (ZEN) receiver (Figure 3.3), which is a product of Zonge 

International Inc. ZEN receiver is a broadband, high-resolution, and multi-function 

digital receiver for acquisition of controlled- and natural-source geo-electric and EM 

data. It has up to 6 channels and it is expandable. The frequency range of the receiver 

is from DC up to 1024 Hz. The device is small in size (27 × 24 × 13 𝑐𝑚) and very 
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light (3Kg with 6 channels, without battery and meter/connection panel) (source :. 

http://zonge.com/instruments-home/geophysical-data-acquisition-systems/distributed-

em-systems/). The magnetic sensor we used in this survey is ANT/6 of Zonge 

International Ltd. The sensor uses feedback amplifier technology and including 

carefully designed mu-metal cores. It is a multipurpose coil with low noise 

level:100 𝜇𝛾 (100 fT) per √𝐻𝑧 at 1 Hz, 100 𝜇𝛾 (100 fT) per √𝐻𝑧 nominal>1 Hz. The 

length of the sensor is 91.0 cm, and its diameter is 4.8 cm. The weight of the sensor is 

around 3.2 kg. The frequency range of the sensor is 0.1—10240 Hz (Source: 

http://www.zonge.com/legacy/MagSensors.html).  

 

Figure 3.3 The Zonge Electromagnetic Network (ZEN) receiver (Source: Zonge 
International Inc.). 

http://zonge.com/instruments-home/geophysical-data-acquisition-systems/distributed-em-systems/
http://zonge.com/instruments-home/geophysical-data-acquisition-systems/distributed-em-systems/
http://www.zonge.com/legacy/MagSensors.html
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3.4.2 Sites of recordings  
With the help from geologists of LaRonde Mine, five representative places have been 

chosen at 3000 m depth. They are: 1) in a relatively quiet area (site #1); 2) near a 

conveyor, and under a crusher, which crushes large minerals (site #2); 3) near the 

massive sulfide mineralization zone and a loading station (site #3); 4) under the 

power supply center (site #4); and 5) beside a drilling site (site #5). These sites are 

indicated as circled numbers in Figure 3.4. The characteristics of the sites are 

summarized in Table 3.1.  

Table 3.1 Description of all recording sites. The five sites are all located in the 
tunnels at 3000m depth. 

site description Start time 
(Apr 12, 2018) 

End time 
(Apr 13, 2018) 

Total 
recording 

time 

Sampling 
rate 

1 No mining 
activity 09:40AM 07:56AM 22h 16m 1024 

2 
Nearby a mineral 
conveyor 
Crusher above 

10:11AM 08:22AM 22h 11m 1024 

3 Nearby a loading 
station 10:51AM 08:56AM 22h 05m 1024 

4 Under a power 
station 11:29AM 09:19AM 21h 50m 1024 

5 
Nearby a drilling 
site (Less than 
50m) 

11:47AM 09:49AM 22h 02m 1024 
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Figure 3.4 Locations of the five data acquisition sites (scale: 1:2000). 

3.4.3 Recorded signals 
There are 6.11 gigabytes electromagnetic data recorded during more than 22 hours. 

For better associating changes in the EM signals with underground mining activities, 

the operation period of mining equipment (drilling, crusher, and convoyor etc.) is 

considered. Operation hours for the drilling site that is near the data acquisition site 

#5 are from 08:00:00 to 15:00:00 on April 12, 2018, and from 20:00:00 on April 12, 

2018 to 03:00:00 on April 13, 2018. In addition, Figure 3.5 tells the electrical current 

variations in the conveyor near the data acquisition site #2. All data acquisition sites 

were blocked for the measurement, therefore no traffic presented at all sites during 

the period of recording. Two blasting events took place between 17:43:28.992 and 

17:43:37.661, 05:19:24.873 and 05:19:34.437. The first blast happened near 380 m 

above site #2, while the 2nd is 50 m in the East-North of site #2. However, we do not 



36 
 

 
 

have GPS signal in the tunnels; therefore, all recordings are not synchronized. 

Consequently, not only did the five receiver start and end recording at different time, 

but each channel of a specific receiver had different start and end time. We have not 

yet found an appropriate way to locate such a short period of time in our recordings. 

These blasts are thus not considered as a noise source. 

 
Figure 3.5 The current in the conveyor varies with time. 

3.5 Recorded time series 

At each site, four components of electromagnetic field are recorded. They are: the 

horizontal electric field (Ex and Ey), and magnetic field (Hx and Hy). 

Figure 3.6 and Figure 3.7 present time series from all acquisition sites. The behavior 

of the electric components is a bit abnormal. Since noises are not polarizable, which 

means they are mostly random distributed (Gaussian distribution), the average value 

should be around zero, like we have observed in magnetic field components (Hx and 

Hy). In addition, the behavior of the Ex and Ey should be alike, as Hx and Hy, but it 

is not. The reason of these phenomena is not clear yet, they may caused by the self 

potential effect, which is usually a result of charge separation in some minerals, or 

natural flow of the conducting liquid through the rocks. In spite of these unusual 



37 
 

 
 

behaviors of Ex and Ey, we will still present analysis results of Ex and Hy in this 

chapter. But in future works, we will focus on the magnetic field components.  

 
Figure 3.6 Electric components (Ex and Ey) from five acquisition sites. From top 

to bottom: site #1, site #2, site #3, site #4, and site #5. 
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Figure 3. 7 Magnetic components (Hx and Hy) from five acquisition sites. From 

top to bottom: site #1, site #2, site #3, site #4, and site #5. 
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3.6 Data analysis 

From these time series in Figure 3.6 and Figure 3.7, it is obvious that measurements 

at different sites suffer from different noises. To better understand these noise, data 

analyses are carried out using the FT and CWT. The purpose of using the FT to 

analysis these data is to characterize the frequency bands of noises from the mining 

activities. We use the CWT in an effort to extract more information about when a 

specific frequency noise occurs. 

The computer used in the present study has a center processor unit of Intel Core i7-

3770, 3.40 GHz with 24 GB RAM; the OS is entreprise edition windows 7 of 64 bits; 

no discrete graphic card. During the analysis with the CWT, we found that when the 

data volum is bigger than one minute of data (60×1024) the computer crashes easily. 

Due to limited computer resources and also on consideration of resolutions, two 

minutes of data are chosen from each recording (Ex and Hy) for following analysis. 

One minute of data is from the period where no mining related activity was in 

operation, while the other one minute of data is chosen from the period where mining 

related activities were present. These two minutes are: from 18:00:00 to 18:01:00 on 

April 12, 2018 indicating quiet period in terms of EM noise, and from 23:00:00 to 

23:01:00 on April 12, 2018 indicating noisy period in terms of EM noise (see Figure 

3.5). The latter corresponds to the drilling and crushing periods. 

3.6.1 Analysis with the Fourier transform 
Results of acquisition site #1: there is no mining machine around, this site is quiet in 

terms of EM noise.  

For Ex, there is no significant difference in the FT results between the quite and noisy 

segments. But we have observed that the spectra of both segments decrease with 

frequency. For the magnetic field component Hy, apparent difference can be found in 

frequency range from 0.5 Hz to 20 Hz (circled out by a green ellipse in Figure 3.8). it 
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is impossible to guess the cause of this difference without witness. The 60 Hz signal 

is highlighted in both fields. 

 
Figure 3.8  FT results of the two segments of the electric field component Ex and 

the magnetic component Hy at site #1. 

Results of acquisition site #2: This site is near to a conveyor; and there is a crusher 

above. The noise level at this site should be affected by the operating status of the 

mining machine.  

For the electric component Ex, we can see, in Figure 3.9, no matter the machine is 

operating or not the 60 Hz peak presents. This is understandable, because there is 

always alternative current of 60 Hz in the powe lines no matter the machine is 
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operating or not. But when the machine is operating, in the spectrum segment of data 

corresponding to the time when the machine is operating, we observed another peak 

at around 7 Hz, indicated by the black arrow. And again, the spectra of both segments 

decrease with frequency. Again, the spectra decrease linear with frequency. 

For the magnetic field component, we have not observed apparent difference between 

the spectra of these two segments of data. But the spectrum amplitude of the noisy 

segment is slightly bigger than that of the quiet segment. And the 60 Hz peak is 

detected in both segments. 

  
Figure 3.9 FT results of the two segments of the electric field component Ex and 

the magnetic component Hy at site #2. 



42 
 

 
 

Results of acquisition site #3: The environment situation of site #3 is similar to that of 

the site #1. The 60 Hz peak is detected in both segments of both Ex and Hy (Figure 

3.10). The other apparent feature in Hy is the amplitude of the noisy segment is 

clearly bigger than that of the quiet segment. 

 
Figure 3.10 FT results of the two segments of the electric field component Ex and 

the magnetic component Hy at site #3. 

The acquisition site #4 is the noisiest site of the five acquisition sites. There is not 

only a peak at 60 Hz, its amplitude is larger than other sites. Although the power 

station above the acquisition site is always working, there are differences between the 

two segments of signal. We speculate that the difference is caused by the change of 
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the output power of the station. When there is no mining related activity, the mining 

apparatuses are shutdown; as a result the output power of the station is lower; on the 

contrary, the mining apparatuses are operating; consequently, the output power of the 

station is higher. The reason of the abrupt change around 4 Hz in the FT result of the 

magnetic component Hy of the noisy segment in Figure 3.11 is not clear yet. Neither 

can any rational speculation be made here. 

 
Figure 3.11 FT results of the two segments of the electric field component Ex and 

the magnetic component Hy at site #4. 

For the results of acquisition site #5, the electric field component Ex is very similar to 

the site #3. We can see that the amplitude of the spectrum of the segment (red line), 
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which represents the period where the drilling site is operating, is slightly higher than 

that of the other segment (blue line). While, for the magnetic field component Hy, 

there are some distinctive features: for frequency range from DC (0 Hz) to 3 Hz, the 

FT result of the quiet segment has higher amplitude; when frequency is higher than 3 

Hz, the FT result of the noisy segment has higher amplitude. This may imply the 

magnetic field component is more vulnerable to drilling activities. 

 
Figure 3.12 FT results of the two segments of the electric field component Ex and 

the magnetic component Hy at site #5. 

Due to the fact that the sampling rate of ZEN is 1024, the highest frequency can be 

recorded in our survey is 512 Hz, therefore, high frequency noises come from 
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communication cables should be absent from our data. From above FT results, it 

seems not only 60 Hz is important in the recording but its hamonics. Obviously there 

is a background noise of low frequencies, therefore, further processing has been 

performed to remove radom noises in order to better charaterize the main noises 

related to the mining activities. 

60 segments of length of one minute are randomly selected from both quiet and noisy 

period of measurement at site #2. The reason of choosing site #2 as an example is that 

the status of operation of the conveyor at this site is accurately recorded (see Figure 

3.5). Spectra of these segments are calculated first; and then the average spectrum and 

the variance of these spectra (Figure 3.13) are computed. 

Figure 3.13 shows that for the electric field component Ex when the frequency is 

lower than 6.5 Hz, the average spectrum of segments from quiet period is larger than 

that of segments from noisy period (the reason is not clear). In the average spectrum 

of noisy segments, the 60 Hz peak and its harmonics (120 Hz, 180 Hz, 240 Hz, 300 

Hz, 420 Hz) are very well defined. In addition, four low frequencies are apperent, 

such as 7.7 Hz, 15.5 Hz, 22.8 Hz and 34 Hz. This also applies to the magnetic field 

component Hy. 

Curves of variance prove that for both Ex and Hy the 60 Hz and some of its hamonics 

(180 Hz, 300 Hz, 420 Hz) are the most powerful noise sources in both quiet and noisy 

time. But for the noisy time, low frequency noises are detected in the two 

components. 
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Figure 3.13 Average spectra and variance of the electric field component Ex (left 

column) and the magnetic component Hy (right column) at site #2 
(blue line is the average spectrum of segments from quiet period of 
time; red line is the average spectrum of segments from quiet period of 
time). 

3.6.2 Analysis with the CWT 
We have chosen the CWT to analyze the two segments for its ability to do time-

frequency analysis. In this section we choose the Morlet wavelet, which is a 

symmetry wavelet formed by multiplying an exponential with a Gaussian window. 

Figure 3.14 shows the time-frequency representations of the two segments of electric 

field component Ex and magnetic field component Hy from site #1. In the frequency 

(vertical axis) and time (horizontal axis) systems, it clearly indicates when a signal at 

a certain frequency appears. For the electric field component Ex, only the event of 

0.01 Hz has been observed in both segments. However, more events can be found in 

the CWT results of the two segments of Hy. For the quiet segment, there are three 
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main events: 0.01 Hz, 0.03 Hz, and 60 Hz. The pattern is more complex for the noisy 

segment. We can see apart from some low frequency signals through time, many 

discontinuous signals can be found between 1 Hz and 60 Hz. The source for the 60 

Hz is the power lines, but to identify sources of other events, more field observations 

are needed. 

 
Figure 3.14 Time-frequency representation of the two segments of the electric field 

component Ex and the magnetic component Hy from site #1. 
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For the acquisition site #2, since there is a conveyor at this site, the 60 Hz alternative 

current flows in them, therefore 60 Hz event is recorded in both segments. We can 

see that when the conveyor is not working (Figure 3.15 (a) and Figure 3.15 (c)); there 

are events discontinuous in time in addition to the 60 Hz event. It could be as a result 

of passingby vehicles and other equipment used to load and unload rocks. When the 

conveyor is working ((Figure 3.15 (b) and Figure 3.15 (d)), additional features of the 

signal in time-frequency representation arise. For example, in Figure 3.15(d) there is 

an event of 50 Hz which does not exist in Figure 3.25(a). When the conveyor is 

operating the 60 Hz event becomes apparently more intense. It is not confirmed yet 

whether the vibration influences the signal. 

 
Figure 3.15 Time-frequency representation of the two segments of the electric field 

component Ex and the magnetic component Hy from site #2. 
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The environment situation of the acquisition site #3 is similar to that of site #1, 

therefore, the time-frequency representations for these two sites are basically similar. 

For site #3 in frequency domain we saw a peak at 60 Hz, however, that event is not 

shown in the time-frequency domain of the electric field component Ex for both 

segments. The reason is probably the energy of the 60 Hz event is relatively low so 

that the event is covered by other events. Whereas, for the magnetic field component, 

we only observe the 60 Hz event. 

 
Figure 3.16 Time-frequency representation of the two segments of the electric field 

component Ex and the magnetic component Hy from site #3. 
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At the acquisition site #4, main events in the two signal segments of Ex reflected in 

the time-frequency representation are quite similar, apart from the intensity. As we 

previously stated that this site is located under a power station. Although the station is 

always in operation, but the output power changes over time along with other 

machines’ operation status. Therefore, common points and differences between the 

two signal segments are understandable. The main features are: larger amplitude in 

the period from 23:00:00 to 23:01:00 while the conveyor and drilling are working, 

which implies larger output power of the station is. While for the period from 

18:00:00 to 18:01:00 both the conveyor and drilling are not working, with lower 

output power, and we have smaller wavelet coefficient amplitudes in the transform.  

 
Figure 3.17 Time-frequency representation of the two segments of the electric field 

component Ex and the magnetic component Hy from site #4. 
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The acquisition site #5 is located near a drilling site. For Ex, events are observed at 

0.01 Hz, 0.03 Hz, and 60 Hz in both segments; but for Hy, only the 60 Hz event is 

presented. Energy of events observed in noisy segment is higher than those observed 

in the quiet segment. 

 
Figure 3.18 Time-frequency representation of the two segments of the electric field 

component Ex and the magnetic component Hy from site #5. 
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3.7 Conclusion 

In this study we investigated influences of measurement environment on EM 

recordings. The five data acquisition sites are chosen to be representative of different 

environments allow to analyze the influence of different possible noise sources 

related to the mining activities. After applying both the Fourier transform and the 

CWT on data, we observe that the strongest noise source in the deep mining tunnels 

is the power supply system (power station, power lines). The mining machines are 

also a noise source which should be taken into consideration seriously during EM 

measurement. Not only do they affect the quality of measurement when they are in 

operation, the influence cannot be neglected even when they are shut off. Since the 

measurement took place in very deep underground tunnels, high frequency noise, 

such as sferics, cannot propagate to such a deep place. Furthermore, noises are 

location-dependent. The frequency bandwidth of most TEM measurement systems is 

usually very large, sampling rate up to 100 000. However, there is often a bandpass 

flter integrated in the receiver. By knowing the noise frequencies, one can choose the 

optimal parameters to prevent the incoming noise signals, or filter them. In the 

present, there is no study on typical frequencies that can characterize the 

mineralization. 

Speaking of the Fourier transform and the CWT, they are both useful tools in 

analyzing EM signals. The Fourier transform has great frequency resolution at the 

cost of losing time information. While the CWT provide a time-frequency 

representation of the signal, and the resolution can be adjusted by changing scales.  

We would mention a fact that there is no GPS signals in the deep underground 

tunnels; therefore, we were not able to synchronize the measurements. In addition, the 

data base is too large; even if we use a powerful server we can only process a 3-

minutes long data. More researches will be carried out in a post-doctoral program. 
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CHAPTER IV 

DENOISING THE BHTEM DATA WITH DISCRETE WAVELET TRANSFORM 
BASED METHOD  

4.1 Introduction 

The idea of wavelets first appeared in the doctoral dissertation of Alfred Haar in 

1909. The simplest wavelet family, the Haar wavelet, is a result of his research on 

orthogonal systems of functions. Jean Morlet, who developed the technique of scaling 

and translating the analysis window in processing seismic data, formalized the 

concept of wavelet transform in 1980’s. Since then, many researchers have further 

developed the method, both in theory and in applications (Stephane Mallat, Yves 

Meyer, Ingrid Daubechies, to name just a few). After decades of development, the 

wavelet transform has become a versatile tool in diverse scientific domains such as 

mathematics, physics, medicine, communication, signal processing, and geophysics. 

Applications of the wavelet transform within geophysics can be essentially 

summarized into two aspects. In one aspect, the wavelets are used as kernels to 

extract information from geophysical signal or process; in the other aspect, they are 

used as basis to characterize the process. Miao and Moon (1999) used wavelet 

transform to characterize and distinguish reflection and refraction events, coherent 

noises in reflection seismic signal. In their application, they choose Morlet wavelets, 

which are compactly supported non-orthogonal wavelets. Compared with compactly 

supported orthogonal wavelets, non-orthogonal wavelets will not distort the phase. 

Their results show that the signal-to-noise (S/N) ratio of the processed signal is 
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improved significantly. Sinha et al. (2005) applied the continuous wavelet transform 

(CWT) to analyze non-stationary seismic signals. They converted the time-scale map 

into a time-frequency map by implementing inverse Fourier transform on the inverse 

CWT. 

Field examples shown the potential of the wavelet transform method in reservoir 

characterization. Li et al. (2009) introduced the CWT into monitoring the situation of 

a structure in civil engineering. They proved that the wavelet transform is superior to 

the Fourier transform in identifying transient signals through the time-frequency map. 

Liu et al. (2016) presented the application of the empirical wavelet transform (EWT), 

which is a combination of the Fourier transform and the wavelet transform, in 

analyzing multichannel seismic data. According to them the EWT provides higher 

resolution than the CWT. Noise reduction techniques for seismic data were developed 

based on the wavelet transform by Kourouniotis et al. (1996). Techniques presented 

in their paper can effectively attenuate surface waves, airwaves, first breaks, and 

other types of seismic noise to facilitate the detection of weak events.  

In other geophysical fields, Martelet et al. (2001) developed an inversion scheme 

using 1-dimensional CWT for gravity data. Their results showed that the method can 

be used to estimate the geometry of the geological source. Xu et al. (2009) proposed 

using wavelet transform and spectrum analysis to separate the residual from the 

regional gravity anomaly. Singh and Singh (2017) investigated the use of the CWT 

and Euler deconvolution to characterize the source of the magnetic anomaly. The 

introduction of the wavelet transform to domain of EM came later than in seismic and 

in potential fields. However, nowadays the method has become pervasive in 

processing EM signals. Wang et al. (2013) proposed a wavelet-based method to 

correct the movement-induced baseline drift. Nenna and Pidlisecky (2013) used the 

continuous wavelet transform (CWT) to identify cultural noise and topographic 

features in an ATEM groundwater survey. Bouchedda et al. (2010) also used the 
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wavelet transform in ATEM data enhancement by reducing the sferics. For ground 

TEM, the effect of cultural noise, such as noise induced by the nearby building and 

power lines, and sferics becomes more apparent. Ji et al. (2016) combine the wavelet 

threshold method and stationary wavelet transform in removing background noise 

and random spikes for TEM data. As previously stated in section 1.2, the BHTEM 

data suffer from different noise sources, which leads to the need of a specific 

technique to suppress noises. In the following sections of this chapter, we present the 

procedure of implementing our methodology to denoise the BHTEM data. 

4.2 Using the DWT to denoise BHTEM data 

We introduce first the strategy of applying the discrete wavelet transform (DWT) to 

BTHEM data, and the process of choosing suitable wavelet and decomposition level. 

4.2.1 Strategy of applying the DWT to BTHEM data 
One of the most important features of the wavelet transform is its time-frequency 

localization ability. Through the DWT, two sorts of coefficients are generated: detail 

coefficients and approximate coefficients (detail in Chapter II). Denoising with the 

DWT is mainly implemented by comparing the detail coefficients with a threshold 

value (Donoho and Johnstone, 1994; Donoho, 1995; and Nagendra et al., 2013). If 

the absolute value of the coefficient is not smaller than the threshold, it is kept 

unchanged; otherwise, it will be changed as follow: set to zero (hard thresholding) or 

shrink towards zero (soft thresholding). Figure 4.1 illustrates the difference between 

them. The threshold in our case is determined according to the characteristic of the 

BHTEM signal, which decays rapidly while the power-off, and then slowly 

diminishes to zero. By combining this transient characteristic and the fact that detail 

coefficients in DWT represent the transient events, it is reasonable to hypothesize that 

there will be only a few non-zero detail coefficients corresponding to the duration of 

the fast decay process. Therefore, our thresholding strategy is: detail coefficients 

corresponding to the fast decay process are kept unchanged, and others are set to 
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zero. The key question is how many detail coefficients are needed to reconstruct the 

signal. 

 
Figure 4.1 Comparison of hard and soft thresholding techniques (Nagendra et al., 

2013). 

To solve this problem, a synthetic signal is generated (See Figure 4.4). A series of 

modeling has been implemented by using this signal, the results indicate that only the 

first eight coefficients are significantly necessary to reconstruct the signal in our case. 

Figure 4.2 shows that the signal reconstructed with only the first eight detail 

coefficients perfectly coincides with the original signal; however, if coefficients kept 

are less than eight, the reconstructed signal will be distorted, which is the result of 

insufficient information. 
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Figure 4.2 Comparison of the original signal and the reconstructed signals. 

4.2.2 Choice of suitable wavelet and decomposition level 
Before applying the DWT we have to decide the mother wavelet and the 

decomposition level. The way to find out these two parameters is an iterative 

comparison trial and error. We have tried many wavelets on a synthetic noisy signal 

to find out first the mother wavelet; and then with this mother wavelet we find the 

most appropriate decomposition level for our study.  

We generate a noise-free signal (Figure 4.4(a)) using Loki, a 3D modeling algorithm 

developed by the research group of Art Raiche at CSIRO, Australia (Raiche, Sugeng, 

and Soininen, 2003). The model used to produce the BHTEM signal is presented in 

Figure 4.3, which contains a prismatic conductor (5 ohm·m) in a homogeneous half-

space (3000 ohm·m). Then, three commonly encountered types of noise, which are 

random noise, noise induced by power line, and sferics (Figure 4.5) are added to the 

synthetic signal (Figure 4.4(b)). Except for the sferics, which is from field 

measurements, the other two kinds of noises are generated using Matlab. We would 

like to mention that the sferics present a type of noise varying with time, it doesn’t 

mean its existence in deep mine environment. We then denoise the noisy signal with 
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different wavelets. In this process, many wavelets were tested, such as the haar 

wavelet, daubechies wavelet family, coiflet wavelet family, and symlet wavelet 

family. Table 4.1 presents the signal-to-noise ratio (SNR), which is calculated by 

Equation (4.1). According to the results, the wavelet ‘sym5’ is selected. With ‘sym5’ 

we tried to denoise the noisy signal in Figure 4.4(b) with different decomposition 

level. Table 4.2 lists the SNR improvements of using various decomposition levels. 

The decomposition level of 10 gives the best result, therefore it is considered in our 

study. 

 𝑆𝑁𝑅 = 10 × log10
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
, (4.1) 

where, 𝑃𝑠𝑖𝑔𝑛𝑎𝑙 and 𝑃𝑛𝑜𝑖𝑠𝑒 are the power of signal and the power of noise, respectively. 

Given a signal 𝑠𝑛 , (𝑛 = 1,2,3, ⋯ , 𝑁 . N is the total amount of samples.), then the 

power of the signal is calculated as: 𝑃 =  
1

𝑁
∑ 𝑠𝑛

2𝑁
𝑛=1 .  

Table 4.1 Applying different wavelets on a noisy signal with an SNR of 15 dB 
with a decomposition level of 10. 

Wavelet sym1 sym2 sym3 sym4 sym5 sym6 sym7 

SNR(dB) 33.39 33.47 34.27 35.71 35.72 29.00 19.23 

Table 4.2 Trying different decomposition levels on a noisy signal with an SNR 
of 15 dB. 

Decomposition 
level 6 7 8 9 10 11 12 

SNR(dB) 26.89 27.97 32.79 35.17 35.72 35.71 35.39 
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Figure 4.3 The 3D model used to generate synthetic data. 

 
Figure 4.4 The BHTEM noise-free signal (a) generated by Loki from the model in 

Figure 4.3 and the corresponding noisy signal (b). 



60 
 

 
 

 
Figure 4.5 Three types of noise added to synthetic data. From top to bottom: 

random noise, sferics, and noise from the power line (50 and 60 Hz). 

4.3 Method validation 

To verify the efficiency and effectiveness of our methodology, we test it on both 

synthetic and field data.  

4.3.1 Application of DWT on synthetic data 
One way to verify the effectiveness of the denoising method is to apply it to a series 

of data at different noise levels. We observed when the original signal has an SNR 

larger than 20 dB, using the DWT alone can yield a satisfactory denoising result. 

Figures 4.6 (a) and (b) show the SNR increases from 30 dB to 52 dB, and from 25 dB 

to 47 dB (Figure 4.6 (c) and (d)) after the denoising with DWT. Whereas, when the 

quality of the signal is not good enough, using the DWT alone will not reduce the 
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noise to a satisfactory level (Figure 4.7 and Figure 4.8), especially for later time 

channels. There is a visible perturbation remained in processed data after the DWT. 

These noise residuals may affect the interpretation accuracy in future works. We 

therefore use the curve fitting technique (CFT) as a complementary method in dealing 

with the post-processing of simple data sets. Details of under what circumstances the 

curve fitting technique is used are explained in section 2.2.1. 

 
Figure 4.6 The synthetic noisy signals (a) and (c) at different noise level, the SNR 

after the DWT is increased from 30 dB to 52 dB (b), and from 25 dB 
to 47 dB (d), respectively. 
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Figure 4.7 The synthetic noisy signal (a) and the result obtained from the DWT 

(b). In this case the SNR is increased from 20 dB to 40 dB. Slight 
perturbations appear in the DWT processed result. 

 
Figure 4.8 The synthetic noisy signal (a) and the result obtained from the DWT 

(b). In this case the SNR is increased from 15 dB to 35 dB. As the 
noise level increases, the pertubation in the DWT processed result 
becomes more severe. 

To use the CFT to smooth the DWT denoised signal, we first locate the perturbations 

in the signal, and then exclude them by a fitting process as described in section 2.2.1. 

We take a noisy signal with an SNR of 15 dB as an example to show the 

effectiveness of the CFT as a complementary method. 
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Figure 4.9 Comparison of denoising results before and after curve fitting. 

Figure 4.9 shows that the residuals are removed by with CFT effectively. Apart from 

the SNR evaluation, two more statistic parameters are calculated. They are the 

relative error calculated by equation (4.2), and the mean squared error (MSE) 

calculated by equation (4.3). 

 𝜹𝒙𝒏 = |
𝒙𝒏−𝒙𝒏

,

𝒙𝒏
| , 𝒏 = 𝟏, 𝟐, 𝟑, ⋯ , 𝑵. (4.2) 

 𝑴𝑺𝑬(𝒙) =
𝟏

𝑵
∑ (𝒙𝒏 − 𝒙𝒏

, )𝟐𝑵
𝒏=𝟏 . (4.3) 

Variables 𝑥 and 𝑥′  represent the original noise-free signal and the denoised signal, 

respectively. 𝑁 is the total amount of samplings. The relative error curves are shown 

in Figure 4.10, and values of MSE and SNR are listed in Table 4.3. 
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Figure 4.10 Relative error curves, (a) the error curve of the noisy signal, (b) the 

error curve of the denoised signal when only DWT is used, (c) the 
error curve of the denoised signal after DWT and CFT. 

Table 4.3 Values of MSE and SNR of different signals. 

Signal MSE SNR(dB) 

Noisy signal 0.044 15.0 

Signal processed by DWT 3.702 × 10−4 35.7 

Signal processed by DWT 
and CFT 0.907 × 10−4 41.8 

According to the relative error curves and the MSE and SNR values listed in Table 

4.3, the DWT method can effectively remove the most part of the noise, and the CFT 

further eliminates residual noise. 
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4.3.2 Application on field data 
The denoising method has also been tested on field BHTEM data, provided by 

Abitibi Geophysics Inc. The measurement system is the SmarTem24, which is a 

product of ElectroMagnetic Imaging Technology (EMIT), and can simultaneously 

record three components, coaxial component A and two orthogonal components (U 

and V) as depicted in Figure 1.2. 

In the actual operation in the field, BHTEM measurement at each survey station is 

repeated for many times to improve data quality. In addition to the three types of 

noise considered in the synthetic data processing, other sorts of noise during the 

BHTEM measurement may come from the electronic instability and the movement of 

the sensor. Fortunately, the repeated measurement mechanism provides us with a way 

to identify the distorted signals and then correct them accordingly. Detailed steps of 

processing real BHTEM field data are as follows. 

1. Denoise raw data using the DWT. Every BHTEM measurement consists of 

four transients: two on-time transients and two off-time transients. All of 

those transients are denoised by the DWT. Since every transient could be 

affected differently by the noise, the advantage of denoising raw data instead 

of stacked data is that those distorted transients can be identified and corrected 

afterwards. This can reduce distortion and preserve useful information. 

2. Identify and correct distorted transients through correlation analysis. We take 

a certain percentage of the measurement, for example, 10% with the smallest 

mean values as distorted transients; and these distorted transients will be 

replaced by linear interpolation.  

3. Stacking processed data. Stacking is a fundamental and rudimentary process 

to reduce noise in TEM data processing. It is a process of averaging a series of 

transients. As it is a process of averaging, it has a limited effect on reducing 

non-random noise. Examples are presented later to demonstrate the advantage 



66 
 

 
 

of using denoised raw data to stack. In this study, Halverson stacking is 

chosen for its ability to remove linear drift (Kingman et al., 2004). 

Since the three components (A, U, and V) of BHEEM data may be affected 

differently by noise, three examples are presented separately below. These three 

example is not necessarily from the same survey point. They were chosen to represent 

a specific data set. For example the data set of component-A is chosen for its unique 

drift change phenomenon. Therefore, there is no direct connection between these 

examples. 

Component-A: There are 128 transients in the example recording (Figure 4.11). From 

the figure, it can be seen that the signal can be divided into two segments based on 

the drift situation. The first segment, which has no drift, is consisted of the first 34 

transients. The second segment, which drifts linearly, is composed of the last 94 

transients. Each segment is processed separately.  

Noise level in this data set is very low. There is no obvious difference between the 

raw data (Figure 4.11(a)) and those denoised by the DWT (Figure 4.11(b)). 

Nevertheless, the abrupt change of the drift situation causes the distortion of the 34th 

transient, as red arrows indicate in the Figure 4.11(a). The distortion is not corrected 

after the DWT denoising process (Figure 4.11(b)), but it is corrected by correlation 

analysis (Figure 4.11(c)).  



67 
 

 
 

 
Figure 4.11 Raw data of component-A. (a) Original raw data, (b) denoised raw 

data, (c) denoised raw data with distortion corrected. 

Figure 4.12 and Figure 4.13 show stacked signals for on-time transients and off-time 

transients, respectively. We can see that stacked on-time signals do not change over 

raw data sets. The reason is that the noise level is very low in this data set, and the 

only distortion occurs in off-time transients. However, for stacked off-time signals, 

big difference can be observed between the one stacked from denoised raw data with 

distortion corrected using correlation analysis. This example shows us that the 

distorted transient will significantly affect the stacked result. It proves the necessity to 

identify and correct the distorted transients properly. 
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Figure 4.12 Stacked on-time signals for component-A. 

 
Figure 4.13 Stacked off-time signals for component-A. 
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Component-U: There are 128 transients in this data set (Figure 4.14). The 

segmentation of this data set is much more complicated than the previous example. 

Since we are using the Halverson stacking method, and this method is efficient in 

suppressing linear drifting, we need to keep the drift in every segment as linear as 

possible. Based on this criterion, the data set is divided into five segments: (1) 

transients 1 to 12; (2) transients 13 to 44; (3) transients 45 to 60; (4) transients 61 to 

118; and (5) transients 119 to 128. Compared with the previous example, noise level 

in this data set is higher, and the distortion is more severe. After denoised by the 

DWT most noise is eliminated (compare 4.14(a) and (b)), whereas, distortions remain 

unchanged (Figure 4.14(b)). After the distorted transients in the data set are 

identified, they are corrected through correlation analysis (Figure 4.14(c)). 

 
Figure 4.14 Raw data of component-U. (a) Original raw data, (b) denoised raw 

data, (c) denoised raw data with distortion corrected. 
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Figure 4.15 and Figure 4.16 present stacked signals for on-time transients and off-

time transients, respectively. Applying the DWT on the data set certainly improves 

the quality, however, there is no apparent difference in the shape of the curve 

between stacking from original raw data and stacking from the DWT denoised raw 

data. After distortions are remedied, stacked curves become smoother and more 

reasonable. This example illustrates the impact of the distortions on the form of 

stacked curves. 

 
Figure 4.15 Stacked off-time signals for component-U 
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Figure 4.16 Stacked off-time signals for component-U. 

Component-V: Same as data sets in the two previous examples, there are 128 

transients in this data set (Figure 4.17). No obvious change in drift situation is 

observed, so the data set will be treated ensemble, i.e., no segmentation is needed.  

The most obvious feature of the data set we notice is that the noise level is 

moderately high, and the amount of distorted transients is small, but the distortion 

degree is very large. Similarly, after the application of DWT noise level is lowered a 

lot (compare 4.17(a) and (b)), distortions remain unchanged (Figure 4.17(b)). Only 

after the use of correlation analysis distorted transients in the data set are corrected 

effectively (Figure 4.17(c)). 
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Figure 4.17 Raw data of component-V. (a) Original raw data, (b) denoised raw 

data, (c) denoised raw data with distortion corrected. 

As presented in the two previous examples, the denoising process with the DWT does 

improve the SNR of the signal, whereas it is not able to reduce the influence of 

distorted transients on the result of stacking (Figure 4.18 and Figure 4.19). The 

correlation analysis is indispensable in improving data quality. 
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Figure 4.18 Stacked on-time signals for component-V. 

 
Figure 4.19 Stacked off-time signals for component-V. 
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4.4 Conclusion 

The presented wavelet-based technique combines the wavelet’s ability to detect 

transient events and the unique characteristics of the BHTEM signal. The application 

of our method is not limited by the nature of the noise, and there is no need to locate 

the noise in the signal. 

Applications on synthetic and field data show that using the DWT alone can 

considerably reduce the noise level, but the noise residual may still have negative 

influences on future interpretations. Different complementary measures are taken to 

reduce the residuals. For simple data sets, the residual is caused mainly by the noise 

retained in the unprocessed detail coefficients. In this case, we use the curve fitting 

method to smooth the signal. For field data with repeated measurements, the residual 

is mainly caused by distorted transients. Those distortions can be caused by the 

instability of the equipment and the oscillation of the sensor. To reduce its influence, 

the correlation analysis is implemented. Another potential way to reduce the 

influences of distorted transients in field data sets is to apply a scheme of weighted 

stacking, which means we apply a small weight to these identified distorted 

transients.  
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CHAPTER V 

GENERAL CONCLUSION 

The Ph.D project focused on solving practical problems encountered by exploration 

geophysicists in EM prospecting. The entire project has been planned and carried out 

in close collaboration with our mining industry partners. Unlike on the surface of the 

earth, limited space makes measurements underground more challenging; especially 

for EM measurements because the target’s response is proportional to the intensity of 

the primary electromagnetic field. This study is the first to analyze the noise 

characteristics of the deep underground mining environment. The investigation of 

influences of mining-related activities on EM measurements in deep ground galleries 

has been carried out. A methodology has then been developed to improve the data 

quality of the borehole transient electromagnetic (BHTEM) method. 

A preliminary analysis was done on five EM signal recordings at quiet and noisy 

places in deep underground galleries of LaRonde Mine. It showed that the electricity 

supply system is the most important noise source. The 60 Hz signal is constantly 

observed at all five places and is more visible in quiet environment. Mining activities, 

such as drilling and rock crushing, are associated with increased power, which 

amplified the noise level in measurements considerably. To improve the signal-to-

noise ratio of the BHTEM data, we developed methods based on the discrete wavelet 

transform (DWT) to denoise the raw data. After testing on both synthetic and field 

survey data, the proposed methodology is proven to be effective and efficient. 
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However, in some very noisy cases, the DWT alone is not sufficient. Therefore, 

complementary methods are introduced depending on the characteristics of the data to 

be processed. For relatively simple data sets, i.e. synthetic signals, a curve fitting 

method is enough to smooth the signal further after denoised by the DWT. In the 

fitting process, a widely used decay model for the EM signals is used. To constrain 

the fitting result, data points contaminated by residual noise are identified and 

excluded from the fitting process. For field data sets, which have a much more 

complicated data structure, we turn to correlation analysis of repeated BHTEM 

measurements at each survey point. The BHTEM measurements may suffer from 

distortions caused by electronic instability of the device, or the movement of the 

sensor, but geological noises are the same over time. Therefore, correlation analysis 

of measurements made at the same place at different times can separate random 

noises from geological noises. Reviewing work done in the frame of this Ph.D 

project, the following recommendations are made for further developments: 

 A more powerful computation facility or a re-write of the algorithm outside of 

Matlab is necessary, in order to process the full data set recorded in deep 

underground galleries with high temporal resolution.  

 To characterize the noises in the deep mining environment more accurately, 

vibrations due to heavy trucks and blasts should be taken into account. A 

detailed record of all underground mining activities is necessary.  

 In the survey in galleries at the LaRonde mine was carried out without 

synchronization. This makes it virtually impossible to locate very short-time-

duration events, because without synchronization every channel in one 

receiver starts at different time; and we do not know . In future work, it can be 

improved using 2.2 % ZEN GPS SYNC. (Zonge International). 

 Regarding the denoising method for BHTEM data, it was developed 

specifically for data collected by SmarTem 24. Whether it works on data 

collected by other BHTEM systems is to be tested. 
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 In the process of denoising BHTEM field data set we use the linear 

interpolation to correct the distorted transients. As we mentioned in Chapter 

IV another potential method is using weighted stacking method. This probably 

will speed up the calculation.  
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APPENDIX I 

RESULTS OF CHANNEL 2 (EY) AND CHANNEL 3 (HX)  

I.1 Results of acquisition site #1 

 
Figure I.1 FT results of the two segments of the electric field component Ey and 

the magnetic component Hx at site #1. 
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Figure I.2 Time-frequency representation of the two segments of the electric field 

component Ey and the magnetic component Hx from site #1. 
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I.2 Results of acquisition site #2 

 
Figure I.3 FT results of the two segments of the electric field component Ey and 

the magnetic component Hx at site #2. 
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Figure I.4 Time-frequency representation of the two segments of the electric field 

component Ey and the magnetic component Hx from site #2. 
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I.3 Results of acquisition site #3 

 
Figure I.5 FT results of the two segments of the electric field component Ey and 

the magnetic component Hx at site #3. 
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Figure I.6 Time-frequency representation of the two segments of the electric field 

component Ey and the magnetic component Hx from site #3. 
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I.4 Results of acquisition site #4 

 
Figure I.7 FT results of the two segments of the electric field component Ey and 

the magnetic component Hx at site #4. 
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Figure I.8 Time-frequency representation of the two segments of the electric field 

component Ey and the magnetic component Hx from site #4. 
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I.5 Results of acquisition site #5 

 
Figure I.9 FT results of the two segments of the electric field component Ey and 

the magnetic component Hx at site #5. 
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Figure I.10 Time-frequency representation of the two segments of the electric field 

component Ey and the magnetic component Hx from site #5. 
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APPENDIX II    

MATLAB PROGRAMS FOR ANALYZING DATA COLLECTED IN GALLERIES 
AT THE LARONDE MINE 

II.1 Main MATLAB program: LaRondeDataAnaly.m 

% This function is main Matlab program used to analyze the data collected  
% in the galleries at the LaRonde mine. 
 
 
clearvars; 
close all; 
clc;  
%% Read Zen data 
Files = dir('*.z3d'); 
Fs = 1024; 
ChNum = 1; 
[Site,Info] = Get_data(Files, ChNum); 
Time = cell(1,5); % generate time vectors for each site 
for k = 1:5 
    Time{k} = (0:1/Fs:(length(Site{k})-1)/Fs)'; 
end 
  
%% plot signal in time-domain 
figure 
axes('position',[0.1 0.86,0.85,0.13]) 
plot(Time{1}/10000,Site{1}*1000,'linewidth',1) 
axis tight 
axes('position',[0.1 0.68,0.85,0.13]) 
plot(Time{2}/10000,Site{2}*1000,'linewidth',1) 
axis tight 
axes('position',[0.1 0.5,0.85,0.13]) 
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plot(Time{3}/10000,Site{3}*1000,'linewidth',1) 
ylabel('Amplitud(mV/m)','fontsize',13) 
axis tight 
axes('position',[0.1 0.32,0.85,0.13]) 
plot(Time{4}/10000,Site{4}*1000,'linewidth',1) 
axis tight 
axes('position',[0.1 0.14,0.85,0.13]) 
plot(Time{5}/10000,Site{5}*1000,'linewidth',1) 
xlabel('Time(s\times10^{4})','fontsize',12) 
axis tight 
Filename = ['AllSites_',num2str(ChNum)]; 
print(Filename,'-dtiff','-r0') 
 
%% to select segment from each site for the analysis 
SiteStart = {'10:42:50','09:43:10','11:44:10','11:49:10','11:03:30'}; 
P1_Start = [18 00 00]; 
P1_End = [18 01 00]; 
P2_Start = [23 00 00]; 
P2_End = [23 01 00]; 
Section1 = cell(1,5); 
Section2 = cell(1,5); 
for k = 1:5 
    Hour = str2double(SiteStart{k}(1:2)); 
    Minute = str2double(SiteStart{k}(4:5)); 
    Second = str2double(SiteStart{k}(7:8)); 
    temp1 = Fs*((P1_Start(1)-Hour)*3600+(P1_Start(2)-Minute)*60+P1_Start(3)-
Second); 
    temp2 = Fs*((P1_End(1)-Hour)*3600+(P1_End(2)-Minute)*60+P1_End(3)-
Second); 
    Section1{k} = Site{k}(temp1:temp2); 
    temp1 = Fs*((P2_Start(1)-Hour)*3600+(P2_Start(2)-Minute)*60+P2_Start(3)-
Second); 
    temp2 = Fs*((P2_End(1)-Hour)*3600+(P2_End(2)-Minute)*60+P2_End(3)-
Second); 
    Section2{k} = Site{k}(temp1:temp2); 
  
end 
  
%% FFT analysis 
 
figure 
for k = 1:5 
    Y = fft(Section1{k}); 
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    L = length(Section1{k}); 
    P2 = abs(Y/L); 
    P1 = P2(1:L/2+1); 
    P1(2:end-1) = 2*P1(2:end-1); 
    Freq = Fs*(0:(L/2))/L; 
    clf; 
    axes('position',[0.2 0.3 0.7 0.6]) 
    loglog(Freq,P1) 
    xlim([0,512])    
    Y = fft(Section2{k}); 
    L = length(Section2{k}); 
    P2 = abs(Y/L); 
    P1 = P2(1:L/2+1); 
    P1(2:end-1) = 2*P1(2:end-1); 
    Freq = Fs*(0:(L/2))/L; 
    hold on 
    loglog(Freq,P1,'r-') 
    xlabel('Frequency(Hz)','fontsize',12) 
    ylabel('Amplitude','fontsize',12) 
    legend({'18:00:00-18:01:00','23:00:00-
23:01:00'},'box','off','location','northoutside','orientation','horizontal') 
    FileName = ['FFT_',num2str(k),'_CH',num2str(ChNum)]; 
    print(FileName,'-dtiff','-r0') 
end 
  
%% CWT analysis 
T0 = (P1_Start(1)-10)*3600+P1_Start(2)*60+P1_Start(3); 
T1 = (P1_End(1)-10)*3600+P1_End(2)*60+P1_End(3); 
Time1 = T0:1/Fs:T1; 
T0 = (P2_Start(1)-10)*3600+P2_Start(2)*60+P2_Start(3); 
T1 = (P2_End(1)-10)*3600+P2_End(2)*60+P2_End(3); 
Time2 = T0:1/Fs:T1;  
wname = 'morl'; 
f0 = centfrq(wname); 
 
% generate scale vector for CWT analysis 
 
scales = helperCWTTimeFreqVector(1e-4,500,f0,1/Fs,32); 
xticks1 = 
[Time1(1),Time1(1+15360),Time1(1+15360*2),Time1(1+15360*3),Time1(1+15360
*4)]; 
xticklabels1 = {'18:00:00','18:00:15','18:00:30','18:00:45','18:01:00'}; 
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xticks2 = 
[Time2(1),Time2(1+15360),Time2(1+15360*2),Time2(1+15360*3),Time2(1+15360
*4)]; 
xticklabels2 = {'23:00:00','23:00:15','23:00:30','23:00:45','23:01:00'}; 
figure 
for k = 1:5 
    clf 
    cwts = cwtft({Section1{k},1/Fs},'wavelet',wname,'scales',scales); 
    h1 = axes('position',[0.1 0.35 0.4 0.4]); 
    surf(Time1,cwts.frequencies,abs(cwts.cfs).^2,'edgecolor','none'); 
    view(0,90) 
    colormap jet 
    text(Time1(1),220,'(a)') 
    
set(h1,'XTick',xticks1,'XTickLabel',xticklabels1,'XTickLabelRotation',45,'yscale','log') 
    ylim([10^-4,100]) 
    ylabel('Frequency(Hz)') 
    xlabel('Time') 
     
    cwts = cwtft({Section2{k},1/Fs},'wavelet',wname,'scales',scales); 
    h2 = axes('position',[0.55 0.35 0.4 0.4]); 
    surf(Time2,cwts.frequencies,abs(cwts.cfs).^2,'edgecolor','none'); 
    view(0,90) 
    colormap jet 
    cb = colorbar; 
    set(cb,'location','north','position',[0.23 0.8 0.6 0.05]) 
    text(Time2(1),220,'(b)') 
    
set(h2,'XTick',xticks2,'YTick',[],'XTickLabel',xticklabels2,'XTickLabelRotation',45,'
YScale','log') 
    ylim([10^-4,100]) 
    xlabel('Time') 
    Filename = ['CWT_Site#',num2str(k),'_CH',num2str(ChNum)]; 

print(Filename,'-dtiff','-r0') 
 

end 

II.2 Functions 

II.2.1 Get_data.m 
function [Data,metadata]=Get_data(Files,ChNum) 
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% Function used to get data of a specific channel. 
FNumber = size(Files,1); 
  
for k = 1:FNumber 
    Ch = str2double(Files(k).name(9)); 
    if Ch == ChNum 
        switch Files(k).name(4:6) 
            case '123'             
                [Data{2},metadata{2}] = readZ3D(Files(k).name,1); 
            case '124' 
                [Data{1},metadata{1}] = readZ3D(Files(k).name,1); 
            case '125' 
                [Data{4},metadata{4}] = readZ3D(Files(k).name,1); 
            case '126' 
                [Data{5},metadata{5}] = readZ3D(Files(k).name,1); 
            case '127' 
                [Data{3},metadata{3}] = readZ3D(Files(k).name,1); 
        end 
    end 
end 
 

II.2.2 readZ3D.m 

function [TS_data,metadata] ... 
   = readZ3D(file,VFlag) 
 
% Function to read raw data from *.Z3D files. 
% inputs: 
%     file: filename of the *.Z3D file; 
%     VFlag: 0/1, 0-no unit, 1-the unit is volt. 
% outputs: 
%     TS_data: data read from the *.Z3D file; 
%     metadat: basic information about the measurement. 
% *note* this function is modified from a function provided by Wanjie Feng, 
% who works at Zonge Inc. 
     
  
tic 
error_status=0; 
Flag0=-1; 
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Flag1= 2147483647; 
Flag2=-2147483648; 
databytes=0; 
ADC_freq=2097152; %ADC speed 
AVr=2.048; 
TS_start = 1; 
TS_end = 0; 
  
% INITIALISATION  
  
 TS_data=[]; 
 TS_time=[]; 
 GPS=[]; 
 L_TS=[]; 
 
% READ Z3D FILE  
fid = fopen(file); 
 
% HEADER (512 bytes) ---Read the header information 
  
    header = fscanf(fid,'%c',512); 

HEADER=textscan(header,'%s','delimiter','\n;,&'); 
 

%Firmware 
    metadata.version=str2double(parsing(HEADER{1,1},'Version','=',2));  
%Firmware info 
     metadata.build_software=str2double(parsing(HEADER{1,1},'Main.hex','=',2));   
        
%Hardware info 
    metadata.build_hardware=str2double(parsing(HEADER{1,1},'fpga','=',2));       
 
    metadata.Serial=parsing(HEADER{1,1},'ChannelSerial','=',2);           %Ch SN. 
    metadata.channel=str2double(parsing(HEADER{1,1},'channel ','=',2));     %Ch NO. 
    metadata.ADfreq=str2double(parsing(HEADER{1,1},'rate','=',2));        %ADC rate 

metadata.gain=log2(str2double(parsing(HEADER{1,1},'gain','=',2)));   %Gain info 
 

%Period  
metadata.period=str2double(parsing(HEADER{1,1},'period','=',2));             
 

%Duty 
metadata.duty=str2double(parsing(HEADER{1,1},'duty','=',2));                 
 

%TX Freq 
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metadata.TXFreq=str2double(parsing(HEADER{1,1},'Tx.Freq','=',2));    
 
%TX Duty 
metadata.TXDuty=str2double(parsing(HEADER{1,1},'Tx.Duty','=',2)); 
 

    metadata.latitude=str2double(parsing(HEADER{1,1},'lat','=',2));          %GPS Lat 
    metadata.longitude=str2double(parsing(HEADER{1,1},'long','=',2))      %GPS Lon 
    metadata.altitude=str2double(parsing(HEADER{1,1},'alt','=',2));             %GPS Alt 

%NO. of Sat 
metadata.Nbsat=str2double(parsing(HEADER{1,1},'NumSats','=',2)) 
     

%GPS week 
    metadata.GPSweek=str2double(parsing(HEADER{1,1},'gpsweek','=',2));           
    metadata.AttenChannelsMask=parsing(HEADER{1,1},'box 
AttenChannelsMask','=',2);        %Ch mask. 
    metadata.Box_Nb=str2double(parsing(HEADER{1,1},'box 
number','=',2));        %Box NO. 
    [~,metadata.ch_hardware] = strtok(parsing(HEADER{1,1},'GPS 
Brd','Logfile',1));%GPS hardware info 
    metadata.ch_factor=str2double(parsing(HEADER{1,1},'Ch.Factor','=',2)); 
    metadata.TX_Freq=str2double(parsing(HEADER{1,1},'Tx.Freq','=',2)); 
    % Check if old Header version  %% 
    if isnan(metadata.channel) 
        metadata.channel=str2double(parsing(HEADER{1,1},'channel',':=',2)); 
    end 
    if isempty(metadata.Serial) 
        metadata.Serial=parsing(HEADER{1,1},'Serial',':=',2); 
    end 
    %Calculate Period information 
    metadata.Serial=metadata.Serial(3:end);           %Ch serieal number 
 
% CAlCULATE THE CALIBRATION KEY  
 
% METADATA & CALIBRATION (512 bytes) 
 startbytes=0;   
 fseek(fid,startbytes, 'bof'); 
 meta = fscanf(fid,'%c',8192); 
 META1=textscan(meta,'%s','delimiter','\n;,&'); 
 metadata.Date=parsing(META1{1,1},'Schedule.Date','=',2);     %Schedule date 
 metadata.Time=parsing(META1{1,1},'Schedule.Time','=',2);     %Schedule date 
 metadata.Sync=parsing(META1{1,1},'Schedule.Sync','=',2);     %Schedule sync 
 metadata.RXSTN=str2double(parsing(META1{1,1},'CH.STN','=',2)); 
 Frec=strfind(meta, 'GPS Brd339/Brd357 Metadata Record'); 
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 if ~isempty(Frec) 
     %if METADATA 
 META=''; 
 for i=1:length(Frec) 
    content=deblank(meta(Frec(i)+34:Frec(i)+507)); 
    META=strcat(META, content); 
 end 
  
    meta2=textscan(META,'%s','delimiter','|'); 
    metadata.CMP = parsing(meta2{1,1},'CH.CMP',',=',2); 
    metadata.TX = parsing(meta2{1,1},'TX.ID',',=',2); 
    metadata.RX = parsing(meta2{1,1},'RX.STN',',=',2); 
    metadata.STN_ANT = str2double(parsing(meta2{1,1},'CH.NUMBER','=,',2)); 
    metadata.A_spacing = str2double(parsing(meta2{1,1},'CH.VARASP',',=',2)); 
  
% CAL %%  
  
  CAL_BOARD=parsing(meta2{1,1},'CAL.SYS',',',2); 
  AA=~cellfun('isempty',strfind(lower(meta2{1,1}),lower('CAL.SYS'))); 
  if sum(AA)~=0 
    AAA=meta2{1,1}{AA,1}; 
    Z=textscan(AAA,'%s','delimiter',','); 
     
    Z4=zeros(size(Z{1,1},1)-2,4); 
        for i=3:size(Z{1,1},1) 
            Z3=textscan(Z{1,1}{i,1},'%f %s %f %f','delimiter',':'); 
            STRING=Z3{1,2}{1,1}; 
            STRING1=STRING(9:16); 
            ID1=uint64(hex2dec(STRING1)); 
            Z4(i-2,1)=ID1; 
            Z4(i-2,2)=Z3{1,1}; 
            Z4(i-2,3)=Z3{1,3}; 
            Z4(i-2,4)=(pi/180).*Z3{1,4}.*1000;  % phase degree --> milliradian 
        end 
  
        LOC_CAL= Z4(:,1)==hwklookup; 
        CAL_TABLE=Z4(LOC_CAL,2:4); 
        formatSpec = ' %f:%d:%d,'; 
        str = sprintf(formatSpec,CAL_TABLE(:,:)'); 
        metadata.CAL=['CAL.SYS,' CAL_BOARD ',' str(1:end-1)]; 
  else 
  metadata.CAL=['CAL.SYS,' metadata.Serial ',1,0']; 
  end 
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 else 
 
%if NO METADATA 
 metadata.TX=''; 
 metadata.RX=''; 
 metadata.STN_ANT=1; 
 metadata.CMP='Ex'; 
 metadata.A_spacing=1; 
 metadata.CAL=['CAL.SYS,' metadata.Serial ',1,0']; 
  
 end 
  
% GET OPTIMAL BUFFER SIZE %% 
tic 
% Get number of bytes of the file and length of the data reccord. 
 
java_call = java.io.File(file); 
bytes_size = length(java_call); 
  
clear A_spacing AA ADC_freq altitude Avr CAL CAL_BOARD content meta meta2 
clear duty Frec header HEADER META TX RX week coef FileName FilterIndex  
clear GPSweek latitude longitude PathName period Serial startbytes STN_ANT 
  
% Find first timestamp 
fseek(fid,0, 'bof'); 
  
if (bytes_size/4>2^15) 
    data=fread(fid,2^15,'uint8=>uint8'); 
else 
    data=fread(fid,'uint8=>uint8'); 
end 
  
    % Find first second 
     found=0;ii=0; 
     while found==0 
         ii=ii+1; 
         if data(ii,1)==255 && data(ii+1,1)==255 && data(ii+2,1)==255 && 
data(ii+3,1)==127 ... 
              && data(ii+4,1)==0 && data(ii+5,1)==0 && data(ii+6,1)==0 && 
data(ii+7,1)==128 
         found=1; 
         end 
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         if ii>bytes_size-10 
             error_status=1; 
             return; 
         end 
          
     end 
offset=ii-1;                %offset for the first second 
  
metadata.size=offset; 
  
%Calculate the data block size 
LL=floor(((bytes_size-databytes)-offset)/4) ;           
  
  
power_size = nextpow2(LL+1)-1; 
  
if power_size < 15 
   data_block=2^12;  % 4096 bytes  
elseif power_size >= 15 && power_size < 17   
    data_block=2^13; % 8182 bytes   
elseif power_size >= 17 && power_size < 20  
   data_block=2^15;  % 32768 bytes   
elseif power_size >= 20           
   data_block=2^16;  % 65536 bytes    
end   
  
%Define Nb of Buffer and size of the last buffer 
block_number=floor(LL/data_block);       % number of block 
residual=LL-block_number*data_block;     % residual bytes 
residualbytes=databytes+(LL-residual)*4; % residual bytes location 
databytes=offset; 
  
%READ DATA 
fseek(fid,0,'bof'); 
headerBIN = fread(fid,metadata.size); 
 
%try 
  
% Read buffer of data 
fseek(fid,offset,'bof'); 
TS_data=int32(zeros(LL,1)); 
for i=1:block_number 
    TS_data(data_block*(i-1)+1:data_block*(i),1)=fread ... 
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           (fid,data_block,'int32');     
end 
  
% Read residual 
fseek(fid,residualbytes+offset,'bof'); 
TS_data(LL-residual+1:LL,1)=fread(fid,residual,'int32'); 
  
L_TS_data=size(TS_data,1);                      %Size of TS data 
  
% Close file 
fclose(fid); 
  
% Display status % 
File_clock=toc; 
 
% ORGANIZE DATA 
%  Get GPS informations 
 
tic  
  i=0; 
   
  if metadata.build_software>=2828 
   
    GPS=uint32(zeros(ceil(L_TS_data/metadata.ADfreq)+16,2)); 
    for j=1:L_TS_data-2                                                         
        if TS_data(j)==Flag1 && TS_data(j+1)==Flag2                             
            i=i+1;                 % index increment 
            GPS(i,2)=TS_data(j+2); % GPS time                                   
            GPS(i,1)=j;            % Flag location (FF FF FF FF) 
        end   
    end 
    
 % Get GPS size 
    
    GPS=GPS(TS_start:i-TS_end,:); 
    L_GPS=size(GPS,1); 
  
    GPS(1:end-1,3)=GPS(2:end,1)-GPS(1:end-1,1)-17;                               
     
  else 
       
    GPS=uint32(zeros(ceil(L_TS_data/metadata.ADfreq)+9,2)); 
    for j=1:L_TS_data-1 
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        if TS_data(j)==Flag0 
            i=i+1;                 % index increment 
            GPS(i,2)=TS_data(j+1); % GPS time 
            GPS(i,1)=j;            % Flag location (FF FF FF FF) 
        end   
    end 
   
    % Get GPS size 
    GPS=GPS(TS_start:i-TS_end,:); 
    L_GPS=size(GPS,1); 
  
    % Generate GPS(:,3) = GPS(i+1,1)-GPS(i,1) (points between two GPS stamps) 
    GPS(1:end-1,3)=GPS(2:end,1)-GPS(1:end-1,1)-10; 
  
       
  end 
  
GPS(end,3)=L_TS_data-GPS(end,1); 
  
% Display status % 
GPS_infos_clock=toc; 
  
%% 
ts_clock=tic; 
  
  pos=0; coef=0; week=0; 
  TS_time=double(zeros(sum(GPS(1:L_GPS-1,3)+1),1)); 
  for i=1:L_GPS-1 
    pos=pos+1; 
     
    % Get GPS seconds 
    GPStime_v=GPS(i,2)./1024; 
    frac=(GPS(i,2)./1024-floor(GPS(i,2)./1024))*(1024/1000); 
      
    % CONDITION IF WEEK CHANGE  
    % If GPS second == 604800 (second in a week) then increment week 
    if round(GPStime_v)==604800 
    GPStime_v=0; 
    week=week+1; 
    coef=week*604800; 
    end 
    
    % If GPS second value is > 604800 
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    if round(GPStime_v)>604800 
    GPStime_v=GPStime_v-604800; 
    end 
    
     
  % Get GPS seconds 
    GPS(i,2)=(floor(GPStime_v)+frac)+coef; 
     
%   % Clean 0/2 second timestamp issue.   
%       if i>1  
%       if GPS(i,2)~=GPS(i-1,2)+1 
%          GPS(i,2)=GPS(i-1,2)+1; 
%       end 
%       end 
    
    % GENERATE TS_data & %  TS_time 
    if metadata.build_software>=2828 
        TS_data(pos:pos+GPS(i,3),1)=TS_data(GPS(i,1)+16:GPS(i+1,1)-1);   
    else 
        TS_data(pos:pos+GPS(i,3),1)=TS_data(GPS(i,1)+9:GPS(i+1,1)-1);    
    end 
  
    TS_time(pos:pos+GPS(i,3),1)=double(GPS(i,2))+(1/metadata.ADfreq)* ... 
                                double((0:GPS(i,3))');          
    pos=pos+GPS(i,3); 
  end 
   
  %added by Wanjie 
  pos=pos+1; 
  GPStime_v=GPS(end,2)./1024; 
  frac=(GPS(end,2)./1024-floor(GPS(end,2)./1024))*(1024/1000); 
  if round(GPStime_v)==604800 
    GPStime_v=0; 
    week=week+1; 
    coef=week*604800; 
  end 
  if round(GPStime_v)>604800 
    GPStime_v=GPStime_v-604800; 
  end 
  GPS(end,2)=(floor(GPStime_v)+frac)+coef; 
  if metadata.build_software>=2828 
        TS_data(pos:pos+GPS(end,3)-16,1)=TS_data(GPS(end,1)+16:GPS(end,1)+... 
            GPS(end,3));      
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  else 
        TS_data(pos:pos+GPS(end,3)-9,1)=TS_data(GPS(end,1)+9:GPS(end,1)+... 
            GPS(end,3));    
  end 
  
  TS_time(pos:pos+GPS(end,3)-16,1)=double(GPS(end,2))+(1/metadata.ADfreq)* ... 
                                double((0:GPS(end,3)-16)');          
 pos=pos+GPS(end,3)-16; 
   
   
   
       
       
  
    L_TS=pos; 
    TS_data=TS_data(1:L_TS); 
    if(VFlag==1) 
        TS_data=single(TS_data).*metadata.ch_factor; 
    else 
        TS_data=TS_data; 
    end 
   
% Display status %   
 
ts_clock=toc(ts_clock); 
 
%ERROR SUMMARY   
 
try 
  
    err1=find(GPS(TS_start+1:end-TS_end,3)~=metadata.ADfreq-1);  %% Block 
Error (sec.) 
  
    if ~isempty(err1) 
    err1(:,2)=GPS(err1(:,1),2)-floor(GPS(1,2)); %% Time from start 
    err1(:,3)=GPS(err1(:,1),2);      %% Time (GPS) 
    err1(:,4)=GPS(err1(:,1),3);      %% Number(s) of points in the Error block 
    err1(:,5)=-((metadata.ADfreq)-err1(:,4)); %% Less/Extra points 
    err1(:,6)=databytes+GPS(err1(:,1),1)*4+4; 
    b=err1(:,5)~=-1; 
    err=err1(b,:); 
    a=(err1(:,5)==-1);               %% Add the second part if +1 is needed. 
    err_minus=err1(a,:); 
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    else 
    err=[]; 
    err_minus=[]; 
    end 
  
  
    % TIMESTAMP ERROR 
  
    % Gps time check 
    delta=zeros((length(GPS)-1),1); 
    if size(GPS,1)>2 
        for i=1:length(GPS)-1 
            delta(i,1)=GPS(i+1,2)-GPS(i,2); 
        end 
         
% find where there is not a second between 2 bloc 
% and where timestamp value is twice the same. 
        err_t(:,1)=unique([find(delta~=1);find(round(GPS(:,2))~=GPS(:,2),2)]); 
        err_t(:,2)=GPS(err_t(:,1),2); 
        err_t(1:end-1,3)=GPS(err_t(1:end-1,1)+1,2); 
        if isempty(err_t)==0 
        if GPS(end,2)-GPS(err_t(end,1),2)==0 
        err_t(end,3)=NaN; 
        else 
        err_t(end,3)=GPS(err_t(end,1)+1,2); 
        end 
        end 
        err_t(:,4)=err_t(:,3)-err_t(:,2); 
        err_t(:,5)=(err_t(:,4)-1); 
        err_t(:,7)=err_t(:,5)./(1/metadata.ADfreq); 
        err_t(:,6)=databytes+GPS(err_t(:,1),1)*4+4; 
  
    end 
  
catch error 
    msg=['data_readZ3D Could not read (error in ERROR ANALYSIS) :' file]; 
    disp(error) 
    errordlg(msg,'File Error'); 
    error_status=1; 
    toc 
    return; 
end 
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II.2.3 helperCWTTimeFreqVector.m 

function scales = helperCWTTimeFreqVector(minfreq,maxfreq,f0,dt,NumVoices) 
 
%   scales = helperCWTTimeFreqVector(minfreq,maxfreq,f0,dt,NumVoices) 
%   minfreq = minimum frequency in cycles/unit time. minfreq must be 
%   positive. 
%   maxfreq = maximum frequency in cycles/unit time 
%   f0 - center frequency of the wavelet in cycles/unit time 
%   dt - sampling interval 
%   NumVoices - number of voices per octave 
% 
%   Note: This function used in an example in the wavelet toolbox in Matlab 
  
a0 = 2^(1/NumVoices); 
minscale = f0/(maxfreq*dt); 
maxscale = f0/(minfreq*dt); 
minscale = floor(NumVoices*log2(minscale)); 
maxscale = ceil(NumVoices*log2(maxscale)); 
scales = a0.^(minscale:maxscale).*dt; 

II.2.4 parsing.m 

function [ VARIABLE ] = parsing( CELL,STRING,DELIMITER,POSITION ) 
  
  A=~cellfun('isempty',strfind(lower(CELL),lower(STRING))); 
  if sum(A)~=0 
  AA=CELL{A,1}; 
  Z=textscan(AA,'%s','delimiter',DELIMITER); 
  if size(Z{1,1},1)<POSITION 
    VARIABLE=''; 
  else 
    VARIABLE=Z{1,1}{POSITION,1}; 
  end 
  else 
  VARIABLE=''; 
  end 
  
end 
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II.2.5 Fourier.m 

function [P, Freq] = Fourier(X,Fs) 
 
%  Function used to calculated the Fourier transform of a signal 
%  required inputs are: the signal (X) and the sampling frequency (Fs) 
%  outputs include the single sided spectrum (P) and the frequencies (Freq) 
 
    Y = fft(X); 
    L = length(X); 
    P2 = abs(Y/L); 
    P = P2(1:L/2+1); 
    P(2:end-1) = 2*P(2:end-1); 
    Freq = Fs*(0:(L/2))/L; 
  
end 
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APPENDIX III    

MATLAB PROGRAMS FOR VALIDATING THE DENOISING METHOD ON 
SYNTHETIC AND FIELD DATA 

III.1 Main MATLAB program: ValidationOnSyntheticData.m 

close all;  
clearvars;  
clc; 
 
% this program is used to test the effectiveness of the denoising method on 
% synthetic BHTEM signals 
%% Synthetic signal preparation 
 
fid = fopen('Data_10512.txt'); %%component order: z, x, y 
fgetl(fid); 
z = fscanf(fid,'%f',[47,91])'; 
DataZ = z(:,5:47); 
Stations = abs(z(:,4)); 
fgetl(fid); 
fgetl(fid); 
x = fscanf(fid,'%f',[47,91])'; 
DataX = x(:,5:47); 
fgetl(fid); 
fgetl(fid); 
y = fscanf(fid,'%f',[47,91])'; 
DataY = y(:,5:47); 
fclose(fid); 
figure 
subplot(3,1,1) 
for k = 1:1:43 
    plot(Stations,DataZ(:,k),'k-','linewidth',0.8) 
    hold on 
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end 
xlabel('Depth(m)');ylabel('nT/s'); 
title('A-component') 
subplot(3,1,2) 
for k = 1:1:43 
    plot(Stations,DataX(:,k),'k-','linewidth',0.8) 
    hold on 
end 
xlabel('Depth(m)');ylabel('nT/s'); 
title('U-component') 
subplot(3,1,3) 
for k = 1:1:43 
    plot(Stations,DataY(:,k),'k-','linewidth',0.8) 
    hold on 
end 
 
%% NOISE-FREE SIGNAL 
 
fid = fopen('ChIfor.chn');  % get channel information of the SmarTem 24 
fgetl(fid) 
fgetl(fid) 
fgetl(fid) 
CHInfor = fscanf(fid,'%f\r\n',[2,43]); 
fclose(fid); 
t_beg = CHInfor(1,:); 
t = linspace(0.01,1000,24000); 
m = size(DataX,1); 
SignalX = zeros(m,24000); 
SignalY = zeros(m,24000); 
SignalZ = zeros(m,24000); 
for k = 1:m 
    SignalZ(k,:) = interp1(t_beg,DataZ(k,:),t,'linear','extrap'); 
    SignalX(k,:) = interp1(t_beg,DataX(k,:),t,'linear','extrap'); 
    SignalY(k,:) = interp1(t_beg,DataY(k,:),t,'linear','extrap'); 
end 
Signal = -SignalX(51,:)*20+1; 
figure 
axes('position',[0.3,0.3,0.5,0.5]) 
loglog(t,Signal,'k-','linewidth',0.1) 
xlim([0,1000]) 
ylim([0.1,100]) 
xlabel('Time(ms)','fontsize',12) 
ylabel('nT/s','fontsize',12) 
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%% GENERATE NOISE 
% -----sferics noise-----% 
 
Sferics = load('Sferics.txt'); 
Sferics1 = Sferics(30,:)/200; 
Sferics2 = Sferics(200,:)/200; 
Sferics3 = Sferics(600,:)/200; 
Sferics4 = Sferics(700,:)/200; 
Mega30 = [0.326,1.02,2.105,3.32,4.08,4.275,4.427,4.622,4.883,5.208,5.599,... 
    6.076,6.641,7.292,8.073,9.028,10.2,11.632,13.325,15.451]; 
NoInter = 381; 
tSferics = linspace(0.13,16.667,NoInter); 
NoiseSF1 = interp1(Mega30,Sferics1,tSferics,'linear','extrap'); 
NoiseSF2 = interp1(Mega30,Sferics2,tSferics,'linear','extrap'); 
NoiseSF3 = interp1(Mega30,Sferics3,tSferics,'linear','extrap'); 
NoiseSF4 = interp1(Mega30,Sferics4,tSferics,'linear','extrap'); 
NoiseSF = zeros(1,24000); 
NoiseSF(200:200+NoInter-1) = NoiseSF(200:200+NoInter-1)+NoiseSF1; 
NoiseSF(8000:8000+NoInter-1) = NoiseSF(8000:8000+NoInter-1)+NoiseSF2; 
NoiseSF(16000:16000+NoInter-1) = NoiseSF(16000:16000+NoInter-1)+NoiseSF3; 
NoiseSF(20000:20000+NoInter-1) = NoiseSF(20000:20000+NoInter-1)+NoiseSF4; 
NoiseSF = NoiseSF/10; 
figure 
axes('position',[0.1,0.4,0.85,0.25]) 
plot(t,NoiseSF,'k-','linewidth',0.8) 
ylabel('nT/s','fontsize',10) 
title('Sferics') 
set(gca,'xticklabel',[]) 
 
% -----random noise-----% 
 
NoiseRND = randn(size(Signal))/2; 
axes('position',[0.1,0.7,0.85,0.25]) 
plot(t,NoiseRND,'k-','linewidth',0.8) 
ylim([-2,2]) 
title('Random noise') 
set(gca,'xticklabel',[]) 
 
% -----noise from power line (60 Hz and 50 Hz)-----% 
 
NoisePL = 0.1*(sin(2*pi*0.06*t)+sin(2*pi*0.05*t)); 
axes('position',[0.1,0.1,0.85,0.25]) 
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plot(t,NoisePL,'k-','linewidth',0.8) 
title('Noise induced by the power line') 
xlabel('Time(ms)','fontsize',10) 
 
%% GENERATE NOISY SIGNAL  
 
Noise = NoisePL+NoiseSF+NoiseRND; 
SNR = 25; % objective SNR for the noisy signal 
SignalNoisy = AddNoise(Signal, Noise, SNR); 
figure 
axes('position',[0.1,0.3,0.4,0.4]) 
loglog(t,SignalNoisy,'k-','linewidth',0.8) 
xlim([0,1000]) 
ylim([0.1,100]) 
xlabel('Time(ms)','fontsize',12) 
ylabel('nT/s','fontsize',12) 
title('Noisy signal') 
wname = 'sym5'; 
lvl = 10; 
WTDenoised = DWTDenoise(SignalNoisy, wname, 8, lvl); 
SNRWT = CalSNR(WTDenoised,Signal); 
axes('position',[0.58,0.3,0.4,0.4]) 
loglog(t,Signal,'r-','linewidth',1) 
hold on 
loglog(t,WTDenoised,'k-','linewidth',1) 
hold off 
legend({'Original signal','DWT processed 
signal'},'fontsize',8,'location',[0.73,0.63,0.18,0.05],'box','off') 
xlim([0,1000]) 
ylim([0.1,100]) 
xlabel('Time(ms)','fontsize',12); 
title('The DWT denoised result Vs the origianl signal') 
  
  
%% CURVE FIT DENOISE 
  
[Peaks, Valleys] = PeaksAndValleys(WTDenoised,0.03); 
NumPeaks = size(Peaks,1); 
tPeaks = t(Peaks(:,2)); 
tValleys = t(Valleys(:,2)); 
Newsignal = CurveFitting(WTDenoised,t,Peaks,Valleys); 
SNRF = CalSNR(Newsignal,Signal); 
figure 
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axes('position',[0.3,0.3,0.5,0.5]) 
loglog(t,Signal,'r-','linewidth',1) 
hold on 
loglog(t,WTDenoised,'k-','linewidth',1) 
loglog(t,Newsignal,'b-','linewidth',1) 
xlim([0,1000]) 
ylim([0.1,100]) 
title({'Demonstrating the effectiveness of', 'the curve fitting method'}) 
xlabel('Time(ms)','fontsize',12);ylabel('nT/s','fontsize',12) 
legend({'Original signal','DWT processed signal','CFT introduced'}... 
    ,'fontsize',8,'location',[0.55,0.71,0.2,0.05],'box','off') 
  
  
%% ERROR CURVE 
ErrorNoisy = abs((SignalNoisy-Signal)./Signal); 
ErrorWTD = abs((WTDenoised-Signal)./Signal); 
ErrorCFT = abs((Newsignal-Signal)./Signal); 
figure 
axes('position',[0.1 0.75 0.8 0.2]) 
plot(t,ErrorNoisy,'k','linewidth',0.8) 
xlabel('Time(ms)','fontsize',10) 
ylim([0 1]) 
title('Error curve of the noisy signal') 
axes('position',[0.1 0.425 0.8 0.2]) 
plot(t,ErrorWTD,'k','linewidth',0.8) 
ylim([0 1]) 
title('Error curve of the DWT denoised signal') 
xlabel('Time(ms)','fontsize',10) 
axes('position',[0.1 0.1 0.8 0.2]) 
plot(t,ErrorCFT,'k','linewidth',0.8) 
ylim([0 1]) 
xlabel('Time(ms)','fontsize',10) 
title('Error curve of signal obtained by the DWT+Curve fitting') 
MSEWTD = sum((WTDenoised-Signal).^2)/24000; 
MSECFT = sum((Newsignal-Signal).^2)/24000; 
MSENoisy = sum((SignalNoisy-Signal).^2)/24000; 

III.2 Main MATLAB program: ValidationOnFieldData.m 

% this program is used to process field data with the method. 
  
clearvars; 
close all; 
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clc; 
  
FileInfo = cell(96,1);  
wname = 'sym5'; 
lvl = 10; 
Point = 8; 
t = linspace(0,1000,24000); 
  
Filename = 
'15N014_12EA256_Lp12EA311_500x500_2turns_24Arpril2015_20150424_184408.
0000000_V_2_34.raw'; 
fid = fopen(Filename,'r'); 
  
%----------Get raw data from the file-----------% 
 
for kk = 1:96 
    FileInfo{kk} = fgetl(fid); 
    a = strfind(FileInfo{kk},'<'); 
    b = strfind(FileInfo{kk},'>'); 
    if strcmp(FileInfo{kk}(a(1)+1:b(1)-1),'ReadingNumber') 
        ReadingNumber = str2double(FileInfo{kk}(b(1)+1:a(2)-1)); 
    elseif strcmp(FileInfo{kk}(a(1)+1:b(1)-1),'SampleRate') 
        SampleRate = str2double(FileInfo{kk}(b(1)+1:a(2)-1)); 
    elseif strcmp(FileInfo{kk}(a(1)+1:b(1)-1),'Freq') 
        Freq = str2double(FileInfo{kk}(b(1)+1:a(2)-1)); 
    elseif strcmp(FileInfo{kk}(a(1)+1:b(1)-1),'DataFormat') 
        DataFormat = ['bit',FileInfo{kk}(b(1)+2:a(2)-10)]; 
    elseif strcmp(FileInfo{kk}(a(1)+1:b(1)-1),'scale') 
        Scale = str2double(FileInfo{kk}(b(1)+1:a(2)-1)); 
    elseif strcmp(FileInfo{kk}(a(1)+1:b(1)-1),'NullingVoltage') 
        NV = str2double(FileInfo{kk}(b(1)+1:a(2)-1)); 
    elseif strcmp(FileInfo{kk}(a(1)+1:b(1)-1),'volt_offset') 
        Volt_offset = str2double(FileInfo{kk}(b(1)+1:a(2)-1)); 
    elseif strcmp(FileInfo{kk}(a(1)+1:b(1)-1),'SysGain') 
        SysGain = str2double(FileInfo{kk}(b(1)+1:a(2)-1)); 
    elseif strcmp(FileInfo{kk}(a(1)+1:b(1)-1),'y_zero_volt_offset') 
        y_zero = str2double(FileInfo{kk}(b(1)+1:a(2)-1)); 
    end 
end 
fgetl(fid); 
  
Raw = fread(fid,DataFormat); 
Raw = 1000*(Raw*Scale-Volt_offset); 



111 
 

 
 

fclose(fid); 
L = length(Raw); 
Raw = reshape(Raw,[SampleRate,L/SampleRate]); 
  
%% Processing 
StackDepth = 0.5*L/SampleRate; 
Ontime = Raw(:,1:2:end); 
Offtime = Raw(:,2:2:end); 
DenoisedOntime = DWTDenoise(Ontime,wname,Point,lvl); 
DenoisedOfftime = DWTDenoise(Offtime,wname,Point,lvl); 
  
StackOntime = HalversonStack(Ontime,StackDepth); 
StackOfftime = HalversonStack(Offtime,StackDepth); 
StackRaw = [StackOntime,StackOfftime]; 
  
StackOntime = HalversonStack(DenoisedOntime,StackDepth); 
StackOfftime = HalversonStack(DenoisedOfftime,StackDepth); 
StackDenoised = [StackOntime,StackOfftime]; 
  
ImprovedOfftime = DenoisedOfftime; 
ImprovedOntime = DenoisedOntime; 
figure 
set(gcf,'units','normalized','outerposition',[0.1 0.1 0.7 0.8]) 
for kk = 1:StackDepth 
    plot(1+(2*kk-2)*24000:(2*kk-1)*24000,DenoisedOntime(:,kk),'r-') 
    hold on 
    plot(1+(2*kk-1)*24000:2*kk*24000,DenoisedOfftime(:,kk),'b-') 
    text((2*kk-1)*24000,min(DenoisedOfftime(:,kk)),num2str(kk)) 
end 
 
%% Correlation analysis 
 
Breaks = input('Please enter the break points (separate by space, return to finish):'); 
Percentage = input('Please enter the percentage of data to be improved (0.1 for 10%, 
return to finish):'); 
NB = length(Breaks); 
  
if NB == 0     
    ImprovedOfftime = CorrelationAnaly(ImprovedOfftime,Percentage); 
    ImprovedOntime = CorrelationAnaly(ImprovedOntime,Percentage); 
else 
    ImprovedOfftime(:,1:Breaks(1)) = 
CorrelationAnaly(ImprovedOfftime(:,1:Breaks(1)),Percentage); 
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    ImprovedOntime(:,1:Breaks(1)) = 
CorrelationAnaly(ImprovedOntime(:,1:Breaks(1)),Percentage); 
    ImprovedOfftime(:,Breaks(end)+1:end) = 
CorrelationAnaly(ImprovedOfftime(:,Breaks(end)+1:end),Percentage); 
    ImprovedOntime(:,Breaks(end)+1:end) = 
CorrelationAnaly(ImprovedOntime(:,Breaks(end)+1:end),Percentage); 
    if NB>=2 
        for kk = 2:NB 
            ImprovedOfftime(:,Breaks(kk-1)+1:Breaks(kk)) = 
CorrelationAnaly(ImprovedOfftime(:,Breaks(kk-1)+1:Breaks(kk)),Percentage); 
            ImprovedOntime(:,Breaks(kk-1)+1:Breaks(kk)) = 
CorrelationAnaly(ImprovedOntime(:,Breaks(kk-1)+1:Breaks(kk)),Percentage); 
        end 
    end 
end 
  
%% Save figures 
figure  
axes('position',[0.15,0.69,0.8,0.28]) 
for kk = 1:StackDepth 
    plot(1+(2*kk-2)*SampleRate:(2*kk-1)*SampleRate,Ontime(:,kk),'r-
','linewidth',0.8) 
    hold on 
    plot(1+(2*kk-1)*SampleRate:(2*kk)*SampleRate,Offtime(:,kk),'k-','linewidth',0.8) 
end 
axis tight 
xticklabels({}) 
  
axes('position',[0.15,0.395,0.8,0.28]) 
for kk = 1:StackDepth 
    plot(1+(2*kk-2)*SampleRate:(2*kk-1)*SampleRate,DenoisedOntime(:,kk),'r-
','linewidth',0.8) 
    hold on 
    plot(1+(2*kk-1)*SampleRate:(2*kk)*SampleRate,DenoisedOfftime(:,kk),'k-
','linewidth',0.8) 
end 
xticklabels({}) 
ylabel('mV','fontsize',12) 
axis tight 
  
  
axes('position',[0.15,0.104,0.8,0.28]) 
for kk = 1:StackDepth 
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    plot(1+(2*kk-2)*SampleRate:(2*kk-1)*SampleRate,ImprovedOntime(:,kk),'r-
','linewidth',0.8) 
    hold on 
    plot(1+(2*kk-1)*SampleRate:(2*kk)*SampleRate,ImprovedOfftime(:,kk),'k-
','linewidth',0.8) 
end 
legend({'On time','Off 
time'},'fontsize',8,'location',[0.7,0.96,0.2,0.05],'orientation','horizontal','box','off') 
xlabel('Samples','fontsize',12) 
axis tight 
text([0.03,0.03,0.03],[3,1.95,0.93],{'(a)','(b)','(c)'},'unit','normalized') 
idx = strfind(Filename,'_'); 
FNR = [Filename(idx(5)+1:idx(6)),Filename(idx(8)+1:end-4),'_RAW']; 
print(FNR,'-dtiff','-r0') 
  
StackOntime = HalversonStack(ImprovedOntime,StackDepth); 
StackOfftime = HalversonStack(ImprovedOfftime,StackDepth); 
StackImproved = [StackOntime,StackOfftime]; 
P0 = 1; 
figure 
axes('position',[0.15,0.2,0.7,0.7]) 
plot(t(P0:end),StackRaw(P0:end,2),'k-','linewidth',1)  
  
hold on 
plot(t(P0:end),StackDenoised(P0:end,2),'r-','linewidth',1) 
plot(t(P0:end),StackImproved(P0:end,2),'b-','linewidth',1) 
  
xlabel('Time(ms)','fontsize',12); 
ylabel('mV','fontsize',12) 
legend('Original raw data','DWT denoised raw data','DWT+correlation 
analysis','location','northoutside','box','off') 
FNSR = [Filename(idx(5)+1:idx(6)),Filename(idx(8)+1:end-4),'_OFF_STK']; 
print(FNSR,'-dtiff','-r0') 
  
figure 
axes('position',[0.15,0.2,0.7,0.7]) 
plot(t(P0:end),StackRaw(P0:end,1),'k-','linewidth',1)  
  
hold on 
plot(t(P0:end),StackDenoised(P0:end,1),'r-','linewidth',1) 
plot(t(P0:end),StackImproved(P0:end,1),'b-','linewidth',1) 
  
xlabel('Time(ms)','fontsize',12); 
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ylabel('mV','fontsize',12) 
legend('Original raw data','DWT denoised raw data','DWT+correlation 
analysis','location','northoutside','box','off') 
FNSR = [Filename(idx(5)+1:idx(6)),Filename(idx(8)+1:end-4),'_ON_STK']; 
print(FNSR,'-dtiff','-r0') 

III.3 Functions 

III.3.1 DWTDenoise.m 
function SigDenoised = DWTDenoise(signal, wname, Point, lvl) 
  
% This function is to implement the DWT denoising process. 
%   input:  
%       signal: the signal to be denoised; 
%       wname: the wavelet name chosen for the DWT decomposition; 
%       Point: the amount of detail coefficients to be kept unchanged; 
%       lvl: the decomposition level to which the signal is to be 
%       decomposed. 
%   output: 
%        SigDenoised: the denoised signal. 
  
[m,n] = size(signal); 
SigDenoised = zeros(m,n); 
NoM = min(m,n); 
  
for k = 1:NoM 
    if m>n 
        [coefs, longs] = wavedec(signal(:,k),lvl,wname); 
    else  
        [coefs, longs] = wavedec(signal(k,:),lvl,wname); 
    end 
    first = cumsum(longs)+1; 
    first = first(end-2:-1:1); 
    tmp = longs(end-1:-1:2);   
    last = first+tmp-1; 
     
    for kk = 1:lvl 
        cfs = coefs(first(kk):last(kk));         
        cfs(Point:end) = 0; 
        coefs(first(kk):last(kk)) = cfs;         
       
    end 
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    if m>n 
        SigDenoised(:,k) = waverec(coefs,longs,wname); 
    else 
        SigDenoised(k,:) = waverec(coefs,longs,wname); 
    end 
  
end 

III.3.2 CurveFitting.m 
function NewSignal = CurveFitting(Signal,t,Peaks,Valleys) 
 
% This function is used  to implement curve fitting process on signals 
% denoised by the DWT. 
% inputs: 
%   Signal: the signal denoised by the DWT; 
%   t: time series corresponding to Signal; 
%   Peaks/Valleys: the output of the function PeaksAndValleys.m. 
% output: 
%     NewSignal: the curve fitted result. 
  
NewSignal = Signal; 
Npts = length(Signal); 
PksVlys = [Peaks;Valleys]; 
PksVlys = sortrows(PksVlys,2); 
FSP = PksVlys(1,2)-round(PksVlys(1,3)); 
FEP = PksVlys(end,2)+round(PksVlys(end,3)); 
if FSP>10 
    FTime1 = t(FSP-10:FSP)'; 
    FValue1 = Signal(FSP-10:FSP)'; 
else 
    FTime1 = t(1:FSP)'; 
    FValue1 = Signal(1:FSP)'; 
end 
if (Npts-FEP)>10 
    FTime2 = t(FEP:FEP+10)'; 
    FValue2 = Signal(FEP:FEP+10)'; 
else 
    FTime2 = t(FEP:end)'; 
    FValue2 = Signal(FEP:end)'; 
end 
FTime3 = [t(Peaks(:,2))';t(Valleys(:,2))']; 
FTime = [FTime1;FTime3;FTime2]; 
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FValue3 = [Peaks(:,1)-0.5*Peaks(:,4);Valleys(:,1)+0.5*Valleys(:,4)];  
FValue = [FValue1;FValue3;FValue2]; 
FPoint = [FTime,FValue]; 
FModel = fit(FPoint(:,1),FPoint(:,2),'exp2'); 
SP = min([Peaks(:,2);Valleys(:,2)])-round(PksVlys(1,3)); 
EP = max([Peaks(:,2);Valleys(:,2)])+round(PksVlys(end,3)/2); 
NewSignal(SP:EP)  = FModel(t(SP:EP)); 
  
end 

III.3.3 PeaksAndValleys.m 
function [Peaks, Valleys] = PeaksAndValleys(y, value) 
 
% This function is used to find extrema and to estimate the witdth of 
% peaks/valleys. 
% inputs: 
%   y: the signal 
%   value: the minimum prominence value 
% outputs: 
%   Peaks/Valleys: two matrix of four columns:values, location, width, 
%                  and prominence values  
  
[pks1, locs1, width1, prominence1] = findpeaks(y,'minpeakprominence',value); 
Peaks = [pks1', locs1', width1', prominence1']; 
[pks2, locs2, width2, prominence2] = findpeaks(max(y)-
y,'minpeakprominence',value); 
pks2 = max(y)-pks2; 
Valleys = [pks2', locs2', width2', prominence2']; 
  
end 

III.3.4 CorrelationAnaly.m 
function Improved = CorrelationAnaly(Data, Percentage) 
 
% This function is used to carried out correlation analysis 
% inputs: 
%   Data: the data set to be analyzed 
%     Percentage: the percentage of transients to be considered as distorted. 
%  output: 
%     Improved: the data set with distortions corrected. 
  
Improved = Data; 
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[m,n] = size(Data); 
x = 1:n; 
x1 = x(1:2:end); 
x2 = x(2:2:end); 
coefs = corrcoef(Data(:,1:2:end)); 
ave1 = mean(coefs,1); 
coefs = corrcoef(Data(:,2:2:end)); 
ave2 = mean(coefs,1); 
if and(min(ave1)>0.9,min(ave2)>0.9) 
 
%     fprintf('No need to improve!\n') 
 
    return 
elseif min(ave1)>0.9 
    [~,index] = sort(ave2); 
    num = fix(Percentage*(length(x2)))+1; 
    idx = index(1:num); 
    xq2 = x2(idx); 
    x2(idx) = []; 
    Temp = Improved(:,2:2:end); 
    Temp(:,idx) = []; 
    for k = 1:m 
        v = Temp(k,:); 
        Improved(k,2*idx) = interp1(x2,v,xq2,'linear','extrap'); 
    end 
elseif min(ave2)>0.9 
    [~,index] = sort(ave1); 
    num = fix(Percentage*(length(x1)))+1; 
    idx = index(1:num); 
    xq1 = x1(idx); 
    x1(idx) = []; 
    Temp = Improved(:,1:2:end); 
    Temp(:,idx) = []; 
    for k = 1:m 
        v = Temp(k,:); 
        Improved(k,2*idx-1) = interp1(x1,v,xq1,'linear','extrap'); 
    end 
else 
    [~,index] = sort(ave1); 
    num = fix(Percentage*(length(x1)))+1; 
    idx = index(1:num); 
    xq1 = x1(idx); 
    x1(idx) = []; 
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    Temp = Improved(:,1:2:end); 
    Temp(:,idx) = []; 
    for k = 1:m 
        v = Temp(k,:); 
        Improved(k,2*idx-1) = interp1(x1,v,xq1,'linear','extrap'); 
    end 
     
    [~,index] = sort(ave2); 
    num = fix(Percentage*(length(x2)))+1; 
    idx = index(1:num); 
    xq2 = x2(idx); 
    x2(idx) = []; 
    Temp = Improved(:,2:2:end); 
    Temp(:,idx) = []; 
    for k = 1:m 
        v = Temp(k,:); 
        Improved(k,2*idx) = interp1(x2,v,xq2,'linear','extrap'); 
    end 
    
end 
  
end 
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Figure 2.6 is an example showing a signal is decomposed to level 3 with the DWT, 

which we can summerize as below.  

a) Detail coefficients (𝑐𝐷𝑖 ) store high-frequency features of the signal; and 

approximation coefficients ( 𝑐𝐴𝑖 ) show low-frequency components of the 

signal. 

b) Higher decomposition level means larger scale value; features extracted from 

the signal or the approximation coefficients of the previous level to the detail 

coefficients have lower frequencies, and vice-versa. 

 
Figure 2.6 A signal is decomposed to level 3 with the DWT. 

2.1.3 Selection of a wavelet 
There is a number of wavelet families, such as Haar, Daubechies, Symlets, Coiflets, 

Biorthogonal, Meyer, Gaussian, Mexican hat, Morlet, Shannon, Frequency B-Spline, 

Complex Morlet and Fejer-Korovkin wavelets (see wavlet Toolbox of MATLAB). 

Users have to decide first which wavelet is suitable for their application: CWT or 

DWT. If the goal of the application is to perform a detailed time-frequency analysis, 
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Figure 3.4 Locations of the five data acquisition sites (scale: 1:2000). 

3.4.3 Recorded signals 
There are 6.11 gigabytes electromagnetic data recorded during more than 22 hours. 

For better associating changes in the EM signals with underground mining activities, 

the operation period of mining equipment (drilling, crusher, and convoyor etc.) is 

considered. Operation hours for the drilling site that is near the data acquisition site 

#5 are from 08:00:00 to 15:00:00 on April 12, 2018, and from 20:00:00 on April 12, 

2018 to 03:00:00 on April 13, 2018. In addition, Figure 3.5 tells the electrical current 

variations in the conveyor near the data acquisition site #2. All data acquisition sites 

were blocked for the measurement, therefore no traffic presented at all sites during 

the period of recording. Two blasting events took place between 17:43:28.992 and 

17:43:37.661, 05:19:24.873 and 05:19:34.437. The first blast happened near 380 m 

above site #2, while the 2nd is 50 m in the East-North of site #2. However, we do not 
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Figure 3. 7 Magnetic components (Hx and Hy) from five acquisition sites. From 

top to bottom: site #1, site #2, site #3, site #4, and site #5. 
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is impossible to guess the cause of this difference without witness. The 60 Hz signal 

is highlighted in both fields. 

 
Figure 3.8  FT results of the two segments of the electric field component Ex and 

the magnetic component Hy at site #1. 

Results of acquisition site #2: This site is near to a conveyor; and there is a crusher 

above. The noise level at this site should be affected by the operating status of the 

mining machine.  

For the electric component Ex, we can see, in Figure 3.9, no matter the machine is 

operating or not the 60 Hz peak presents. This is understandable, because there is 

always alternative current of 60 Hz in the powe lines no matter the machine is 
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operating or not. But when the machine is operating, in the spectrum segment of data 

corresponding to the time when the machine is operating, we observed another peak 

at around 7 Hz, indicated by the black arrow. And again, the spectra of both segments 

decrease with frequency. Again, the spectra decrease linear with frequency. 

For the magnetic field component, we have not observed apparent difference between 

the spectra of these two segments of data. But the spectrum amplitude of the noisy 

segment is slightly bigger than that of the quiet segment. And the 60 Hz peak is 

detected in both segments. 

  
Figure 3.9 FT results of the two segments of the electric field component Ex and 

the magnetic component Hy at site #2. 
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Results of acquisition site #3: The environment situation of site #3 is similar to that of 

the site #1. The 60 Hz peak is detected in both segments of both Ex and Hy (Figure 

3.10). The other apparent feature in Hy is the amplitude of the noisy segment is 

clearly bigger than that of the quiet segment. 

 
Figure 3.10 FT results of the two segments of the electric field component Ex and 

the magnetic component Hy at site #3. 

The acquisition site #4 is the noisiest site of the five acquisition sites. There is not 

only a peak at 60 Hz, its amplitude is larger than other sites. Although the power 

station above the acquisition site is always working, there are differences between the 

two segments of signal. We speculate that the difference is caused by the change of 
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the output power of the station. When there is no mining related activity, the mining 

apparatuses are shutdown; as a result the output power of the station is lower; on the 

contrary, the mining apparatuses are operating; consequently, the output power of the 

station is higher. The reason of the abrupt change around 4 Hz in the FT result of the 

magnetic component Hy of the noisy segment in Figure 3.11 is not clear yet. Neither 

can any rational speculation be made here. 

 
Figure 3.11 FT results of the two segments of the electric field component Ex and 

the magnetic component Hy at site #4. 

For the results of acquisition site #5, the electric field component Ex is very similar to 

the site #3. We can see that the amplitude of the spectrum of the segment (red line), 
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which represents the period where the drilling site is operating, is slightly higher than 

that of the other segment (blue line). While, for the magnetic field component Hy, 

there are some distinctive features: for frequency range from DC (0 Hz) to 3 Hz, the 

FT result of the quiet segment has higher amplitude; when frequency is higher than 3 

Hz, the FT result of the noisy segment has higher amplitude. This may imply the 

magnetic field component is more vulnerable to drilling activities. 

 
Figure 3.12 FT results of the two segments of the electric field component Ex and 

the magnetic component Hy at site #5. 

Due to the fact that the sampling rate of ZEN is 1024, the highest frequency can be 

recorded in our survey is 512 Hz, therefore, high frequency noises come from 
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Figure 3.13 Average spectra and variance of the electric field component Ex (left 

column) and the magnetic component Hy (right column) at site #2 
(blue line is the average spectrum of segments from quiet period of 
time; red line is the average spectrum of segments from quiet period of 
time). 

3.6.2 Analysis with the CWT 
We have chosen the CWT to analyze the two segments for its ability to do time-

frequency analysis. In this section we choose the Morlet wavelet, which is a 

symmetry wavelet formed by multiplying an exponential with a Gaussian window. 

Figure 3.14 shows the time-frequency representations of the two segments of electric 

field component Ex and magnetic field component Hy from site #1. In the frequency 

(vertical axis) and time (horizontal axis) systems, it clearly indicates when a signal at 

a certain frequency appears. For the electric field component Ex, only the event of 

0.01 Hz has been observed in both segments. However, more events can be found in 

the CWT results of the two segments of Hy. For the quiet segment, there are three 
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The acquisition site #5 is located near a drilling site. For Ex, events are observed at 

0.01 Hz, 0.03 Hz, and 60 Hz in both segments; but for Hy, only the 60 Hz event is 

presented. Energy of events observed in noisy segment is higher than those observed 

in the quiet segment. 

 
Figure 3.18 Time-frequency representation of the two segments of the electric field 

component Ex and the magnetic component Hy from site #5. 
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Figure 4.3 The 3D model used to generate synthetic data. 

 
Figure 4.4 The BHTEM noise-free signal (a) generated by Loki from the model in 

Figure 4.3 and the corresponding noisy signal (b). 
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noise to a satisfactory level (Figure 4.7 and Figure 4.8), especially for later time 

channels. There is a visible perturbation remained in processed data after the DWT. 

These noise residuals may affect the interpretation accuracy in future works. We 

therefore use the curve fitting technique (CFT) as a complementary method in dealing 

with the post-processing of simple data sets. Details of under what circumstances the 

curve fitting technique is used are explained in section 2.2.1. 

 
Figure 4.6 The synthetic noisy signals (a) and (c) at different noise level, the SNR 

after the DWT is increased from 30 dB to 52 dB (b), and from 25 dB 
to 47 dB (d), respectively. 
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APPENDIX I 

RESULTS OF CHANNEL 2 (EY) AND CHANNEL 3 (HX)  

I.1 Results of acquisition site #1 

 
Figure I.1 FT results of the two segments of the electric field component Ey and 

the magnetic component Hx at site #1. 
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Figure I.2 Time-frequency representation of the two segments of the electric field 

component Ey and the magnetic component Hx from site #1. 
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I.2 Results of acquisition site #2 

 
Figure I.3 FT results of the two segments of the electric field component Ey and 

the magnetic component Hx at site #2. 
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Figure I.4 Time-frequency representation of the two segments of the electric field 

component Ey and the magnetic component Hx from site #2. 
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I.3 Results of acquisition site #3 

 
Figure I.5 FT results of the two segments of the electric field component Ey and 

the magnetic component Hx at site #3. 
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Figure I.6 Time-frequency representation of the two segments of the electric field 

component Ey and the magnetic component Hx from site #3. 
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I.4 Results of acquisition site #4 

 
Figure I.7 FT results of the two segments of the electric field component Ey and 

the magnetic component Hx at site #4. 
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Figure I.8 Time-frequency representation of the two segments of the electric field 

component Ey and the magnetic component Hx from site #4. 
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I.5 Results of acquisition site #5 

 
Figure I.9 FT results of the two segments of the electric field component Ey and 

the magnetic component Hx at site #5. 




