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Abstract: Sustainable management of boreal ecosystems involves the establishment of 

vigorous tree regeneration after harvest. However, two groups of understory plants 

influence regeneration success in eastern boreal Canada. Ericaceous shrubs are recognized 

to rapidly dominate susceptible boreal sites after harvest. Such dominance reduces 
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recruitment and causes stagnant conifer growth, lasting decades on some sites. 

Additionally, peat accumulation due to Sphagnum growth after harvest forces the roots of 

regenerating conifers out of the relatively nutrient rich and warm mineral soil into the 

relatively nutrient poor and cool organic layer, with drastic effects on growth. Shifts from 

once productive black spruce forests to ericaceous heaths or paludified forests affect forest 

productivity and biodiversity. Under natural disturbance dynamics, fires severe enough to 

substantially reduce the organic layer thickness and affect ground cover species are 

required to establish a productive regeneration layer on such sites. We succinctly review 

how understory vegetation influences black spruce ecosystem dynamics in eastern boreal 

Canada, and present a multi-scale research model to understand, limit the loss and restore 

productive and diverse ecosystems in this region. Our model integrates knowledge of 

plant-level mechanisms in the development of silvicultural tools to sustain productivity. 

Fundamental knowledge is integrated at stand, landscape, regional and provincial levels to 

understand the distribution and dynamics of ericaceous shrubs and paludification processes 

and to support tactical and strategic forest management. The model can be adapted and 

applied to other natural resource management problems, in other biomes. 

Keywords: Kalmia angustifolia; Rhododendron groenlandicum; Sphagnum; silviculture; 

mechanical site preparation; tactical and strategic forest management 

 

1. Introduction 

The sustainable management of boreal ecosystems requires the establishment of vigorous forest 

regeneration after harvest [1]. Moreover, the recent paradigm shift towards ecosystem-based 

management calls for the development of harvesting techniques that maintain the functions and 

structure of forest ecosystems [2,3]. The boreal forest of northeastern Canada is characterized by 

relatively dense stands mainly composed of boreal softwood species (black spruce, Picea mariana 

(Mill.) B.S.P.; balsam fir, Abies balsamea (L.) Mill.; and jack pine, Pinus banksiana Lamb.) and 

intolerant hardwoods (mainly white birch, Betula papyrifera Marsh.; and trembling aspen, Populus 

tremuloides Michx.). Fire and insect outbreaks are the major natural disturbances driving the forest 

succession in this region [4]. Because of these characteristics, careful logging around advance  

growth [5] or variants of the selection method [6] are seen as effective approaches to regenerate these 

sites, while maintaining essential ecosystem functions.  

Despite the use of these harvesting approaches, some regenerating stands of the boreal forest 

present low juvenile growth after major disturbances, which compromise sustainable and  

ecosystem-based forest management objectives. Two examples are of particular relevance to the 

context of boreal ecosystems of northeastern Canada. Both are related to the strong influence that 

understory vegetation can exert on stand dynamics [7]. 

First, the presence in the shrub layer of certain species from the Ericaceae family can slow forest 

succession to a point where ecosystem retrogression is induced [8]. Indeed, some ericaceous species 

induce a “growth check” on regenerating conifers that can last several decades [9]. Such shifts from 
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productive forest stands to ericaceous heaths have been documented in various ecosystems in  

Europe [10,11] and in western Canada [12]. In northeastern Canada, rapid dominance by the 

ericaceous shrubs Kalmia angustifolia L. and/or Rhododendron groenlandicum (Oeder) Kron & Judd, 

followed by long-lasting site domination, constitutes another well-documented example of this 

phenomenon [13,14] (Figure 1). 

Figure 1. Site dominance by ericaceous shrubs, such as Kalmia angustifolia and 

Rhododendron groenlandicum, after harvest has a significant impact for forest succession, 

ecosystem structure and functioning. 

 

Paludification is a second mechanism by which regenerating boreal forest stands are halted or 

limited through peat accumulation (mainly Sphagnum) initiated directly over a formerly mesic mineral 

soil [15] (Figure 2). Through this process, rooting zone temperatures, organic matter decomposition 

rates, microbial activity, and soil nutrient availability are reduced [16]. The alteration of these 

production factors leads to a decline in forest productivity [17], with significant impacts on forest 

management sustainability. 

Many studies have investigated the influence of understory vegetation (either ericaceous shrubs or 

Sphagnum species) on black spruce stand regeneration in northeastern Canada [16,18]. We have 

contributed to part of this literature by investigating the problem at various scales. Over time, our 

research efforts have been integrated within a multi-scale research model, where results from one scale 

are used into higher levels of research activities, and each level is associated with specific outcomes 

related to forest management. 
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Figure 2. Paludification reduces rooting zone temperatures, organic matter decomposition 

rates, microbial activity and soil nutrient availability and ultimately leads to a decline in 

forest productivity. 

 

Our objectives are to describe the research model we have implemented regarding boreal site 

productivity as affected by ericaceous shrubs dominance and peat accumulation. We aim at providing 

tangible examples of research activities related to forest management, summarizing key results 

obtained at the various scales of investigation, as well as enhancing some of the practical outcomes 

from our research model. We suggest that this research model is well adapted for large-scale 

ecological experiments with objectives and outcomes at various scales [19], and that it can be adapted 

and applied to other natural resource management problems, in other biomes. We did not aim at 

extensively reviewing the literature pertaining to ericaceous dominance and paludification of boreal 

sites, as other reviews have already been published on the subject [13,16]. 

2. A Multi-Scale Research Model  

We propose a multi-scale research model (Figure 3) elaborated to limit productivity and diversity 

losses in boreal ecosystems of northeastern Canada after site dominance by ericaceous species or 

paludification. Fundamental investigations of plant-plant and plant-soil interactions are carried out to 

provide insights into the mechanisms responsible for growth inhibition in conifers and site fertility 
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reduction. This new knowledge is used to develop innovative silvicultural approaches to both prevent 

either heath formation or paludification and bring back dominated sites to a productive state. We 

pursue research activities at the landscape level, so that silvicultural efforts might be oriented on the 

most responsive sites and to improve knowledge on how disturbances and permanent site conditions 

influence ericaceous and Sphagnum species. Along with the regional assessment of the problem, 

research results obtained at the stand and landscape levels have direct outcomes for tactical forestry 

planning and growth/yield modeling. Ultimately, regional understanding of either heath formation or 

paludification in interaction with site characteristics and natural dynamic processes is analyzed at the 

supra-regional and provincial (or biome) levels to fine-tune the provincial ecological classification 

system. At this level, biodiversity and productivity issues can be taken into account for strategic 

planning, e.g., in elaborating the provincial sustainable forest management strategy, or introducing 

adapted risk management approaches to annual allowable cut calculations. 

Figure 3. A multi-scale research model elaborated to limit productivity and diversity loss 

in boreal ecosystems of northeastern Canada after site dominance by ericaceous species  

or paludification. 

 

To provide the expected outcomes, research activities at the various scales (plant, stand, landscape, 

region and province/biome) overlap, so that knowledge gain at one level can be integrated into coarser 

scales. For example, fundamental knowledge at a fine scale about the relative competitive potential of 

Kalmia in the presence of black spruce is essential to develop adapted mechanical site preparation 

treatments. Furthermore, knowledge about how these competitive interactions vary with permanent site 

characteristics will help to manage or limit long-lasting dominance by ericaceous species. As a 

complement to the work at fine scales, both regional and provincial assessments of regeneration issues 

are essential for the development of a sustainable management strategy. The following sections further 

describe how this multi-scale approach is used to develop new knowledge and practical solutions to 

both the problem of ericaceous dominance (section 3) and of paludification (section 4) in black spruce 

forests in Québec, Canada. 
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3. Ericad Dominance 

3.1. The Tree and Plant Level  

A combination of mechanisms is thought to be responsible for the effects of Kalmia and related 

species on conifer establishment and growth. Peterson [20] was the first to demonstrate that dried 

leaves of Kalmia contain substances that hinder primary root development of black spruce through 

destruction of epidermal and cortical cells. This led to work by Mallik [21], who showed that Kalmia 

throughfall and Kalmia soil leachate significantly reduces the early growth of black spruce seedlings. 

Here, we describe some of our own contributions that further explored the mechanisms controlling 

these Kalmia-black spruce interactions.  

In a field trial in northwestern Québec, we used stable isotopes to investigate direct competition for 

nutrients and water between Kalmia and conifer seedlings [22]. Double-labeled 
15

N ammonium-nitrate 

was applied to plots containing both ericaceous shrubs and planted black spruce. We observed that 

most of the available nutrients were absorbed by the ericaceous shrubs, despite the fact that black 

spruce seedlings were more effective than either Kalmia (or Vaccinium) at absorbing N per unit of root 

biomass. In other words, this experiment demonstrated that Kalmia and black spruce compete for soil 

nutrients and that Kalmia’s competitive ability stems from its more extensive root systems 

compensating for its lower specific absorption efficiency. In another experiment on the same field site, 

LeBel et al. [23] showed that six consecutive years of Kalmia removal resulted in a four-fold increase 

of N mineralization rates in the forest floor. These results illustrate that, besides competing directly for 

soil nutrients, Kalmia also interferes indirectly with black spruce growth by modifying nutrient cycling 

and energy fluxes in the soil. The authors of that study went on to speculate that condensed tannins, 

assumed to be higher in Kalmia litter, were a source of interference to soil N cycling. We tested this 

hypothesis in a series of in vitro, microcosm and field experiments. For example, Joanisse et al. [24] 

demonstrated that Kalmia leaf litter could contain up to 23.5% tannins (dry wt. equivalent) and that 

these very tannins were responsible for inhibiting the activity of important soil enzymes involved in 

the cycling of N, P and C. Furthermore, Joanisse et al. [25] found that Kalmia tannins were efficient at 

precipitating soil proteins into stable compounds that were recalcitrant to decomposition and 

mineralization. They also showed that Kalmia gained access to the organic-N sequestered as soil 

tannin-protein complexes via their associated mycorrhizas. Taken collectively, these experiments 

demonstrated that the production of litter tannins and the preferential association to specialized root 

symbionts confer a competitive advantage to Kalmia in acquiring soil N, with strong implications for 

forest succession, ecosystem structure and functioning.  

Recent greenhouse experiments also investigated how trait plasticity of ericaceous shrubs could 

explain their dominance after major disturbances, compared to black spruce. Indeed, plasticity of 

functional traits associated with light and nutrient acquisition may provide a competitive advantage in 

changing environments [26], such as those found in forest ecosystems before and after harvest.  

Hébert et al. [27] thus submitted Kalmia, Rhododendron and black spruce plants to combinations of 

light and nitrogen addition levels during a simulated growing season. Their results showed that the leaf 

mass per unit of area (LMA) of both ericaceous species was significantly reduced by shading, whereas 

LMA of black spruce was unchanged in response to light level. The relative high level of plasticity for 
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this trait for ericads suggest that they can positively respond to increased light levels after logging, 

with increased nitrogen productivity, photosynthesis rate and growth, compared to the non-plastic 

black spruce. 

These fundamental studies that we have conducted for over a decade have strengthened our 

understanding of plant-plant interactions that drive early stand development on some boreal forest sites 

subjected to ericaceous shrub dominance. Knowledge of the nutritional and physiological impacts of 

Kalmia and related species on regenerating conifers has supported the development of silvicultural 

tools for soil and microsite management.  

3.2. The Stand/Plot Level 

In some ecosystems dominated by ericaceous shrubs, fertilization was effective to overcome 

planted conifer growth check [28,29]. In boreal Québec, we thus verified if slow-released fertilizer 

added at the time of planting could alleviate the nutritional issues on various Kalmia-dominated sites. 

Indeed, we measured increased early growth responses after fertilization, compared to unfertilized 

conditions on many sites [30–33]. Burying slow-release fertilizer near the seedlings at the time of 

planting was an efficient means of delivering nutrients to the trees while avoiding stimulation of 

Kalmia growth. However, the economic advantages of such treatment in these conditions need to be 

demonstrated, based on longer term results. Moreover, the initial growth stimulation provided by the 

fertilizer is short-lived [23]. We have yet to verify if the increased litterfall in fertilized plots will 

initiate a second wave of fertilizer-induced changes to soil processes, as observed in other  

ecosystems [34]. Longer term results obtained from another field trial in Newfoundland (Canada) 

suggest that it may be so, as we measured improved soil fertility 17 years after Kalmia control and 

conifer re-establishment on a Kalmia heath [35]. 

Many authors have identified mechanical soil preparation as a promising silvicultural option to 

establish tree seedlings on Kalmia sites. Soil scarification increases nutrient mineralization through 

changes in soil temperature and moisture regime and by mixing organic material with mineral  

horizons [36]. Furthermore, scarification is expected to limit Kalmia expansion by creating barriers to 

rhizome extension [37]. We confirmed the efficacy of mechanical soil preparation on various  

ericad-dominated sites [30,32,33,38,39]. For example, five years after planting in northeastern Québec, 

black spruce seedlings in scarified plots exhibit height and diameter gains of near 100% compared to 

seedlings planted in unscarified plots [32]. Without proper soil preparation, we observe height growth 

trajectories typical of stunted seedlings that will likely underperform for several decades. Recent 

results further confirmed that intensive scarification promotes seedling growth over standard, less 

aggressive site preparation [31]. However, the growth gains associated with intensive treatments need 

to be balanced against the supplemental investments involved, compared to standard, single-pass 

treatments [40]. 

Mechanical scarification also favors the establishment of early-succession species absent from 

control plots [32]. A shift in species dominance after scarification is expected to influence the quality 

of future litter inputs and further modify soil processes [35]. With these silvicultural trials, we also 

showed that the recalcitrant ericad-humus that accumulates in control plots has significant effects on 

soil temperature, reducing the quantity of energy absorbed by the conifer rooting zone [32].  
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Lorente et al. [41] have also demonstrated how scarification reduces Kalmia, Rhododendron and 

Vaccinium aboveground biomass. Furthermore, these authors have shown that at the stand level, 

ericaceous shrubs play a key role in driving soil properties, forest regeneration and long-term 

succession of boreal sites subjected to forest management. 

Taken collectively, these results indicate that the regeneration success of Kalmia and Rhododendron 

dominated sites is positively related to forest floor disturbance intensity. For tactical planning, they 

have confirmed mechanical site preparation as the preferred operational approach for the management 

of such sites in Québec, where provincial regulations prohibit the use of chemical herbicides [42]. 

Another tactical outcome is related to microsite selection for planting in provincial guidelines, which 

now integrates ericaceous shrub cover as a key variable to identify proper planting spots. The various 

silvicultural trials, conducted at the stand level, have, however, indicated that interactions exist 

between treatments and site characteristics, thus supporting the need for conducting landscape level 

analyses of the issue.  

3.3. The Landscape Level 

The relative importance of direct competition and indirect interference by ericaceous shrubs varies 

with site characteristics [43]. However, the effects of Kalmia and associated species on site 

productivity are difficult to evaluate, because of the complex interactions among ecosystem 

components. Moreover, it remains unknown if the dominant harvesting approaches used in boreal 

Québec (e.g., careful logging around advance growth with minimal soil disturbance) stimulate or 

restrain Kalmia dominance; site susceptibility to productivity losses due to ericad dominance remained 

to be studied. A better understanding of silviculture and site interactions is thus required to fine-tune 

both tactical (silvicultural prescriptions) and strategic planning (sustainable management).  

Based on the mechanistic knowledge acquired at the plant and plot levels, we set up a series of 

experiments to answer these questions at the landscape level. An experimental design was established 

in northeastern Québec to test for Kalmia and Rhododendron effects on natural black spruce 

regeneration growth and physiology along a gradient of site fertility [44]. Phytometers [45] and control 

(untreated) plots were established on recently harvested sites, representing three contrasting ecotypes. 

We assessed growth and physiological parameters of established conifer seedlings during two 

consecutive growing seasons, along with indices of soil fertility. We observed that black spruce 

photosynthesis rate and foliar K were higher in plots where Kalmia has been eliminated, compared to 

the control, untreated plots. However, contrary to our hypothesis, the influence of Kalmia on forest 

regeneration physiology was largely independent from site permanent characteristics. Growth 

monitoring, along with tree ring analysis are undergoing to verify if these physiological effects are 

transcribed in similar productivity responses. Based on current knowledge, site type characteristics are 

integrated in tactical forestry planning to guide mechanical soil preparation operations. Annual 

allowable cut calculations also integrate ericaceous shrubs and site characteristics interactions through 

the inclusion of adapted regeneration delays to growth curves [46].  
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3.4. The Regional Level 

The shift from productive forest stands into Kalmia heaths compromises the sustainability of 

forestry activities. However, several factors limited the accurate assessment of the spatial importance 

of the issue, at a scale relevant to strategic forest planning. Past and current forest inventories do not 

include detailed information related to ericaceous species, which forces the need to develop methods to 

assess ericaceous dominance at the regional scale. Preliminary work demonstrated the ability to map 

ericaceous dominance on small areas using images from airborne and satellite sensors [47,48]. 

However, a useful spatial assessment of the issue involves developing a method suitable to map 

large areas of the biome. Furthermore, given the dynamic nature of ericaceous species dominance 

during succession, spatial monitoring implies that the current status can only be interpreted in 

regards to its evolution since the last significant disturbances. These tools should also help in 

defining the site conditions favoring their dominance on disturbed forest sites. Therefore, we 

developed a method for mapping ericaceous shrubs from satellite images at the regional scale (i.e., 

for area larger than ~10,000 km
2
 [49]). Our method integrates high resolution satellite imagery (e.g., 

IKONOS, 1-m resolution) on a small, but representative, portion of the area to train the initial 

classification procedure. Once the training areas are mapped, they then serve as extended training areas 

to map medium resolution satellite imagery (e.g., Landsat, 30-m resolution). Discrimination of 

ericaceous shrub cover from other land cover types is achieved with global mapping accuracy 

comparable to the one expected for other forestland types; 88% and 79% from IKONOS and Landsat, 

respectively. Our method is adapted for mapping the spatial distribution of ericaceous shrub cover and 

is compatible with existing forest stand maps, thus having direct tactical and strategic applications for 

forest management. For example, it can be used to compare specific areas with their current status, 

knowing the time since harvest, to assess if there is an increase in ericad dominance. In such a case, the 

next five-year forest management plans may include more intense silvicultural treatments, like 

intensive mechanical soil preparation.  

The historical assessment of the spatial distribution of ericaceous shrubs at the regional level 

implies two specific challenges: (1) producing large mosaics from images taken at times relevant to 

identify the latest major site disturbances; and (2) integrating spatial modeling of favorable or limiting 

conditions leading to Kalmia dominance. Data on temporal vegetation changes, as influenced by 

logging and natural disturbances [50], will support the implementation of ecosystem-based 

management. However, regional-based models are limited by the available spatial layers of 

information. Therefore, relationships at that scale can only be established with spatial environmental, 

climatic or historical variables, such as slope, degree-days and type of last significant disturbance. 

These relationships are often inferred and difficult to establish. A regional model to predict ericaceous 

dominance can thus be built partially from the conclusion of finer scale studies that provide 

information on the general conditions that lead to a loss of site productivity due to Kalmia dominance. 

Such a model can also be developed by historical inspections of documented sites. Overall, either a 

current or historical map of the dominance status or a predictive model will allow managers to 

integrate the risk of site dominance by ericaceous shrubs. These tools under development will be used 

to adjust annual allowable cut calculations over entire forest management units and prioritize 

silvicultural investments accordingly.  
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3.5. The Provincial (or Biome) Level 

The maintenance of forest productivity and biodiversity as influenced by ericaceous species is a 

significant forestry issue in Québec [51], as the boreal forest supports most of the forest management 

activities in the province. Despite the abundant literature regarding the mechanisms responsible for 

heath formation and adapted silvicultural approaches, no information was yet available on ericaceous 

species distribution and dynamics at the provincial level.  

Using data from the provincial ecological survey (~20,000 sample plots), we selected the sample 

plots found in the boreal zone (10,000 sample plots) to calculate a relative index of abundance for each 

ericaceous species. Canonical multivariate data analyses were done using forest (e.g., percent tree 

cover by species), soil (e.g., parent material, drainage, slope), geographic (e.g., ecological region) and 

climatic data (e.g., mean annual temperature and precipitation). Ordination diagrams were used to 

identify ecological gradients that control ericaceous species distribution at the biome level and point to 

variables that best explain the occurrence of ericads on any given site. 

Patterns of species distribution appearing at the provincial level were otherwise impossible to 

apprehend at finer spatial scales. Our preliminary interpretations suggest that at this scale, Kalmia is 

intimately associated with fires and jack pine and that Rhododendron groenlandicum is associated with 

flat terrains and poorer drainages; its relative abundance, thus, diminishes from west to east in the 

province. Species distribution data, along with environmental and perturbation gradients, were used to 

define ecological units that cover the entire boreal zone within the province, each unit bearing distinct 

characteristics about their abundance and composition of ericaceous species. Once refined, this 

information will be available for fine-tuning of the actual provincial ecological classification system. 

Ultimately, this new ecological information will be available to forest managers and silviculturists to 

assess the risk of ericad dominance, depending on the region where they conduct forest activities. 

Thus, this global assessment of ericaceous species distribution will be useful in refining the provincial 

and regional sustainable management strategies. 

4. Paludification 

4.1. The Tree and Plant Level 

The nature of the forest soil changes dramatically as paludification proceeds. The tree rooting zone 

shifts from mineral soil, with a shallow organic layer and a feather moss (Pleurozium schreberi (Brid.) 

Mitt., Hylocomium splendens (Hedw.) Schimp., Ptilium crista-castrensis (Hedw.) De Not.) dominated 

field layer, to an inaccessible mineral soil, with a thick organic layer and a Sphagnum species 

dominated field layer. We have investigated how these changing conditions influence tree growth and 

nutrition. Sphagnum species are favourable seedbeds for most tree species [52] due to their ability to 

provide a constant water supply [52,53]. However, they are not a favourable growth substrate; both 

field [54,55] and greenhouse [56] studies have shown that black spruce have higher growth rates in 

Pleurozium than in Sphagnum (typically S. capillifolium (Ehrh.) Hedw. and S. warnstorfi Russow). 

Specifically, living P. schreberi and fibric or humic material derived from this species provide a better 

growth substrate than Sphagnum species or their fibric- or humic-derived material. Nitrogen 

availability plays a key role in these differences, as available N was higher in P. schreberi than in 
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Sphagnum species-derived substrates, and foliar nutrition was correlated with these higher levels. 

Studies have shown that not only do feather mosses (such as P. schreberi) harbour N fixing 

cyanobacteria [57], but also that black spruce is able to absorb this organic N [58]. Furthermore, 

Sphagnum species have particularly slow decomposition rates [59,60], which are not fully explained 

by their high C:N, but are probably a function of various secondary metabolites that limit microbial 

breakdown of their cell walls [61]. This fundamental knowledge raised questions that needed to be 

addressed at a coarser scale of analysis: what are the drivers of paludification at the site level, and what 

are the best techniques to manage paludified stands? 

4.2. The Stand/Plot Level  

At the stand level, we thus studied how paludification is influenced by processes linked to stand and 

forest floor attributes, and their interactions. We also examined the impact of fire severity on these 

processes. We found that stand attributes, particularly composition and structure, have a significant 

impact on paludification. As the accumulation of organic material is dependent upon a lower rate of 

decomposition than production, the type of environment created by the stand significantly affects the 

rate of paludification [62,63]. Stands with a partially mixed composition (particularly trembling aspen) 

accumulate less organic matter, as the decomposition rate of the litter is faster [64], the soil fauna is 

dominated by macrofauna [65] and bryophytes are less omnipresent on the forest floor [62]. Similarly, 

stands with a closed canopy tend to be dominated by feather mosses [66], which have a lower 

photosynthetic compensation point than Sphagnum species [67]. Our studies showed a positive 

feedback loop in the paludification process: as stands open up through natural self-thinning, Sphagnum 

species dominate and replace feather mosses [66], stimulating the accumulation of the organic layer 

via their slow decomposition rate [59,60] and their faster growth rate [68]. This thick organic layer 

results in an elevated water table [66], which creates a wet, cold, nutrient poor rooting environment for 

trees. This, in turn, limits tree growth, maintaining the openness of the stands [17,69]. The low tree 

cover then helps the growth of heliotrophic Sphagnum species. Our studies indicate that on the Clay 

Belt of Québec and Ontario, a 150,000 km
2
 physiographic region, time since fire is the best predictor 

of paludification [62]. This implies that given enough time in this region, characterized by a flat 

topography and partially impeded drainage, all stands will paludify [69,70]. However, only on 

relatively flat areas does this phenomenon proceed rapidly enough to warrant inclusion of this issue in 

forest management plans. 

This body of knowledge led to the development of management approaches to limit the productivity 

losses due to paludification. Stands can be returned to a productive state via significant disturbance of 

the organic layer [71]. Indeed, our initial studies indicated that high severity fires (near complete 

combustion of the organic layer [72]), generated dense productive stands [69]. We found that clearcut 

harvesting and prescribed burning, both of which substantially disturb the organic layer, generated 

denser, more productive stands than careful logging [55,73,74]. These more disruptive harvest and 

silvicultural practices (particularly summer clearcut harvesting), controlled competing vegetation, 

increased the cover of feather mosses and resulted in better conditions in the rooting zone, as a larger 

proportion of the roots were in the mesic, humic and mineral soil layers [73]. As clearcutting and 

prescribed burning are not viable options for forest management within the current legislative 
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environment, we are testing other site preparation techniques that could similarly affect the soil. To 

support the selection of the most appropriate soil preparation techniques, we recently demonstrated the 

feasibility of using ground penetrating radar as a method to detect organic layer thickness [75]. 

4.3. The Landscape Level 

In addition to the stand level factors, landscape attributes also influence paludification. Slope is a 

significant factor, both at fine [76] and coarser scales [75]. In these studies, we confirmed that the 

organic layer accumulates more slowly on steeper slopes than on flat terrains. However, we showed 

that even sites with significant slopes (from a regional perspective) can also accumulate thick organic 

layers given enough time. In addition to slope, topographic position influences paludification rates, 

with more accumulation occurring on plateaus [75,77], resulting in an unusual relationship between 

elevation and paludification.  

Fire severity (estimated as the thickness of the organic layer post-fire) also plays a significant role 

in paludification rates at the landscape level [62,69,78]. In regions burned by fires that were not severe 

(thick organic layer remaining post-fire), succession proceeds from stands that are already paludified 

or partially paludified. Studies indicate that these stands have fewer trees, and these trees grow more 

slowly than trees in stands established after high severity fires [17,69]. Recent results indicate that the 

remaining organic layer post-fire is a significant biological legacy that offers a short cut for Sphagnum 

species colonisation, resulting in rapid establishment of species that are typically seen only at the end 

of succession [79]. 

Mapping these factors (slope and fire severity) across the region is undergoing and will permit the 

development of regional paludification maps. These, in turn, will allow the deployment of appropriate 

management strategies for different states of paludification. For example, sites in depressions that may 

be paludified are difficult to distinguish from paludified sites on plateaus or slight slopes at the stand 

level. However, management strategies should be different in these environments, as harvest with 

significant soil disturbance may be effective on plateaus and slopes, but inefficient in depressions.  

4.4. The Regional/Provincial (or Biome) Level 

Paludification is essentially a regional phenomenon, although it is wide-spread in specific regions 

such as the Clay Belt of Québec and Ontario, the James Bay lowlands, central Alaska and the western 

Siberian plain [80]. However, our research has indicated that even a modest accumulation of organic 

material (25 cm) affects tree growth [81]. Consequently, considering the significant over-estimation of 

forest productivity when paludified stands are not managed specifically, province-wide adaptations 

have been suggested for paludified stands in provincial silvicultural guidelines. Within certain regions 

across the province, specific site types are targeted for intensive site preparation post-harvest to ensure 

that productive stands are re-established [82]. While the silvicultural options available are still limited, 

this first step opens the door for more adaptive management in paludified stands and on sites that are 

prone to paludification across the province.  
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5. Conclusions 

The achievement of sustainable forest management requires adopting multiple management  

scales, because multiple ecological scales are involved [83]. Hence, ecosystem-based management 

must take into account the connection between the various spatial scales, from plants to biome, to 

preserve biodiversity and ecological processes through time [3]. In this context, and inspired by 

proponents of multi-scale research activities [19,84], we proposed a multi-scale research model 

developed for maintaining forest productivity and biodiversity of sensitive boreal sites in  

Québec (Figure 3). In this model, general research objectives pursued at various scales, from 

determining microorganisms influence on soil fertility indices up to fine-tuning the provincial 

ecological classification, are intimately linked, so that new knowledge gained at one scale can be 

integrated to the next one. Practical outcomes at the fundamental, tactical and strategic levels take 

advantage of inputs from multiple levels of research activities. We believe that our model can easily be 

adapted to other contexts and biomes, where natural resources management is based on an 

understanding of ecosystem processes. 
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