
Int. Jnl. of Multiphysics Volume 4 · Number 3 · 2010 201

Evaluation of Grounding Resistance and Inversion
Method to Estimate Soil Electrical Grounding

Parameters
F. H. Slaoui, F. Erchiqui

Unité d’enseignement et de recherche en sciences appliquées,
Université du Québec en Abitibi-Témiscamingue, 455, Boul. de 

l’Université, Rouyn-Noranda, Québec, Canada, J9X 5E4
e-mail: fouad.slaoui-hasnaoui@uqat.ca

e-mail: fouad.erchiqui@uqat.ca

ABSTRACT

Soil resistivity plays a key role in designing grounding systems for high-

voltage transmission lines and substations. The objectives of this paper are

to determine the best estimated value of the apparent resistivity or

electrode grounding resistance of N-layer soil and to use a new inversion

method to precisely determine earth parameters. The inversion of electrical

sounding data does not yield a unique solution, and a single model to

interpret the observations is sought. This paper presents a new inversion

method to statistically estimate soil parameters from Schlumberger and

Wenner measurements. To validate the method and test the inversion

scheme, four soundings were selected: two theoretical and two in the field.

The procedure was applied using test data and a satisfactory soil model

was obtained.

Index Terms: electrical grounding parameters, N-layer soil, apparent

resistivity, resistivity measurement interpretation

I. INTRODUCTION
Ground electrode resistance plays an important role in designing power substations and
transmission towers. Predicting this resistance is very complicated in some situations,
especially when the soil is represented by an N-layer horizontal model with different
resistivities.

Soil conductivity can vary across seasons and the depth of each layer is usually
unknown, which makes determining the grounding resistance of an electrode particularly
difficult.

The N-layer soil model is a realistic representation of the actual soil. Soil parameters can
be estimated based on a set of soil resistivity measurements. 

Several authors have contributed to solving the problem of soil parameter estimation to
achieve the best fit between measured and computed resistivity values.

The Soil Measurements Interpretation Program (SOMIP) developed by Meliopoulos and
Papalexopoulos [1] statistically estimates soil parameters based on resistivity measurements,
but applied to field tests using four pin or three pin measurements. The program is designed
to reject erroneous measurements resulting from instrument inaccuracies and changes in
local soil resistivities.

Dawalibi and Barbeito [2] used imaging methods to compute the resistivity of multilayer
soils by subdividing the soil into layers with thicknesses equal to a multiple of a base value.
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The authors also used a method based on convolution and multiple filter theories to examine
soil resistivity measurements in multilayer soil.

Takahashi and Kawase [3] developed a very compact formula to analyze changes in
calculated apparent resistivity in multilayer soils, using a comparison of ρ-a curves.
However, they did not provide an analytical solution to the problem of parameter estimation
in such soils.

Del Alamo [4] compared eight different techniques to develop an optimum estimation of
electrical grounding parameters for a two-layered soil model.

Lagacé et al. [5] used combined electrostatic images to evaluate N-layer soil resistivities
and interpret sounding measurements from Wenner and Schlumberger electrode
configurations.

Slaoui et al. [6] applied linear electric filter theory to derive the resistivity transform and
proposed a method to estimate N-layer soil parameters from Schlumberger measurements
using a ridge regression estimator. 

Slaoui et al. [7] developed an innovative method to calculate the apparent resistivity of
horizontally multilayered soils using an inversion method to determine the electrical
grounding parameters of N-layered earth (resistivities and thicknesses).

Lagace and Vuong [8] proposed a method with a graphical user interface to estimate soil
parameters of multilayered horizontal soil. The N-layer soil model illustrated in Figure 1 is
a simplification of the actual soil.

This paper attempts to better estimate soil parameters from resistivity measurements. A
statistical method to estimate the parameters of an N-layer soil model from Schlumberger
measurements is presented.

This interpretation method works well for field data. Two field cases are presented.
The two-sounding method was selected, not because the analysis was easy using the ridge
regression method, but because the interpretation was very difficult using any method.

Figure 1 N-layer earth model with Schlumberger configuration.
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II. APPARENT RESISTIVITY EXPRESSIONS
Resistivity data is conventionally expressed in terms of horizontal layers having an isotropic
resistivity. A model consisting of n layers would be parameterized by a set of layer
resistivities ρ1, ρ2, ..., ρn, and thicknesses h1, h2, ..., hn − 1. The nth layer is the deepest and
extends to infinite depth. Reducing Slaoui’s [7] calculation of theoretical apparent resistivity
curves, the following general recurrence expression is obtained: (j = n − 1, n − 2, ..., 2, 1).

USING SCHLUMBERGER’S ARRANGEMENT

(1)

(2)

(3)

(4)

where 

ρj is the resistivity of the jth layer,
hj is the thickness of the jth layer,
ρjaS is the Schlumberger apparent resistivity at the jth layer,
n is the number of layers in the soil model,
a is half the distance between current electrodes, and
b is half the distance between voltage electrodes.

The apparent resistivity ρaS of the N-layer model is obtained at j = 1. 

III. INVERSION METHOD WITH RIDGE REGRESSION
The problem of Schlumberger sounding over a plane-layered earth is nonlinear in the
unknown parameters, namely, the resistivity and thickness of each layer. 

As a starting point, we have a series i (i = 1, 2,..., N) of resistivity measurements ρmS, and
N is the number of measurements.

In order to estimate soil parameters in multilayer soils from resistivity measurements, the
least squares fitting error between the measured values must be minimized and apparent
values must be analytically computed for the same spacing.

The objective function to minimize is

(5)

LEVENBERG-MARQUARDT METHOD
The Levenberg-Marquardt method is used to minimize multivariate functions. In N-layer
soil, the values X = (ρ1, ρ2, ... ρn, h1, h2, ... hn−1)

T must be determined in order to minimize the
distance function F. The F gradient is equal to zero at the absolute minimum. The Levenberg-
Marquardt method consists of iteratively computing the F gradient by adjusting X from the
Jacobien J such that it reduces the values of the gradient:
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From [4, 9], the gradient of F can be evaluated at X +∆X:

(6)

where

(7)

(8)

(9)

where J is a Jacobien matrix with partial derivatives of weighted differences with respect to
each parameter. The apparent resistivity can be extended in the vicinity of X: 

(10)

Equation (10) represents a linear system of N equations with M unknowns, where the
number of unknowns is 2n − 1. Since this is a nonlinear problem, by substituting (10) in (6),
the application of the least-squares inverse method yields

(11)

The method begins by calculating the eigenvalues of the matrix JTJ. Small eigenvalues
indicate a near-singular system, which is unstable in the presence of noisy data, and the
average difference between estimated ∆X and true ∆X becomes very large. The ridge
regression method [9,11] seeks to reduce this difference during the iteration process by
damping the diagonal terms of (JTJ).

The ridge regression estimate of ∆Xrr is

(12)

where I is the unit identity matrix and .
In the above equation, α = 0 and ∆X approaches the Taylor series direction. The

eigenvalues of (JTJ + αI)−1 are (λi
2 + α), whereas λi

2 are the eigenvalues of JTJ. Increasing
the size of all eigenvalues results in significant decreases in a) the mean of the squared length
between ∆X and ∆Xrr and b) the variance of the estimated solution. Therefore, in some cases,
the solution ∆Xrr is much closer to ∆X than the standard least-squares solution. The residual
sum of squares for the ridge regression solution is given by

(13)

where ∆ρ* = ρaS − ρmS is using the values X* = X + ∆Xrr.

IV. DATA ERROR AND WEIGHTING 
Generally, field curves contain noise due to measuring errors, superficial inhomogeneities,
telluric noise, and limited instrumentation precision.

When data are weighted, a relative degree of importance is assigned to each value. Such
weighting may be used to remove inherent bias in the data or to bias the least squares fit so
that it is more accurate in one area of the curve than another.

If there is a large numerical difference between the data values in different regions of the
curve, an undesirable bias may be introduced into the final solution. The bias is such as to
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cause the ridge regression estimator to be biased toward the large values while neglecting the
smaller values, which may be as accurate and may contain some very important information. 

In general, it is desirable to weight each data point according to the noise in that data
point, and so as not to give it a false degree of importance due to its large or small value
compared with other data points.

We assume that each data point has the same percentage standard deviation unless it is
known or suspected that certain points are significantly noisier. It is further assumed,
initially, that each point has a standard deviation equal to one percent of its measured value.
The problem standard deviation σ is then adjusted to the estimated noise level of the survey.
Most resistivity surveys yield data that is accurate within five per cent or less.

The solution consists of incorporating the weights within the residual sum of squares for
the ridge regression, as given by

(14)

The residual error is now defined as

(15)

If the error in each measurement is independent of the error in other measurements, as is
usually assumed, then W reduces to a diagonal matrix of data variance σi

2:

(16)

The choice of a weighting scheme does not appreciably affect minimization speed.
However, it can drastically affect the position of the minimum in parameter space and the
parameter statistics.

The weighted ridge regression estimator is given as

(17)

V. PARAMETER STATISTICS
The next most important requirement is to obtain some idea about parameter uncertainty. The
statistical parameters for our models are a) parameter standard errors and b) the parameter
correlation coefficient. In addition to these statistical parameters, the parameter and data
eigenvectors with the associated eigenvalues can yield great insight into the relations
between individual model parameters and specific data.

Parameter standard errors and correlations are derived from the covariance matrix cov(X)
evaluated at the minimum, as shown in [1, 11]:

(18)

where (19)

When is greater than σ2, σ2 has been underestimated. Although the value of σ2 varies
between surveys, it is assumed that the error at any data point is five percent or less. If is
found to be smaller than that of the weighting, either the estimated variance of the
observations have been overestimated or the curve calculated from the hypothesized model
fits the noise in the data.
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Thus, the residual variance can be used as an indicator of goodness-of-fit. The residual
variance is independent of the linearity or nonlinearity of the problem with respect to the
model parameters.

The parameter standard errors are defined by the square root of the diagonal term of
cov(X) (e.g., [cov(X)ii]

1/2 equals the standard error for numbered parameter i).
The correlation matrix is an indicator of the linear dependence between parameters. The

correlation matrix elements are given in [2, 11].

(20)

If the value of [cor(X)]ij is near unity, then the parameters Xi and Xj are strongly correlated
and nearly linearly dependent. For example, if i represents the thickness h and j, the
resistivity ρ of a layer (i.e., [cor(X)]ij represents the correlation between the thickness and
resistivity of a layer), only the ratio h/ρ is well determined by the data if [cor(X)]ij = 1. This
is true for layers that are highly conductive relative to their surroundings. If [cor(X)]ij = −1,
only the product hρ is well determined, as is the case for relatively resistive layers. This is
the familiar equivalence problem, as discussed by Sunde [10].

The diagonal elements of the covariance matrix are the variance terms for each parameter.
If the correlations are small, then the standard deviation is a good measure of the uncertainty
of each parameter. If two parameters are strongly correlated, then the standard deviation
given by the square roots of the diagonal terms of (18) will be larger than the actual
uncertainties.

The eigenvectors and their associated eigenvalues are also very useful in defining the
relations between soil parameters and their effects on data generated from a particular model.

The generalized inverse of J is defined in terms of these eigenvectors and eigenvalues, as
described by Sunde [10].

(21)

The matrix C consists of r (r is a rank of J) eigenvectors Ci of length N associated with
the columns (data) of J. B comprises the r eigenvectors Bi of length M associated with the
rows (parameters) of J. The matrix A−1 is the inverse of the diagonal matrix comprised of the
eigenvalues of J.

VI. EXAMPLES OF DATA INTERPRETATION
In this section, four Schlumberger sounding curves and their associated models illustrate the
ridge regression method and the estimation method for all parameter statistics.

A. THEORETICAL EXAMPLES
Consider theoretical model #1: X=(15, 500, 50, 10, 150), with a resistive middle layer.

In Figure 2, the first column shows the eigenvectors (columns of B), the second column
shows the eigenvalues (diagonal elements of A), and the third column shows the data
eigenvectors (columns of C), where the abscissas represents the number of measurements.
The correlation coefficients and the model parameter values with estimated standard errors,
calculated using data errors as weights in equation (14), are also shown. 

The solid curve in Figure 3 is the final fit to the data points, which appears to be very good
because there is little data noise. The final estimated model is close to the original model.

The first three eigenvalues have high magnitude. The linear combination of parameters
represented by the first three eigenvectors has the greatest effect on the sounding curve. In
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these three eigenvectors, the elements ρ1 and h1 have opposite signs, whereas the elements ρ2

and h2 have the same sign. This indicates that if ρ2 and h2 are both changed in the same
direction, the effect on the sounding curve (Figure 3) will be larger than the effect of similar

Figure 2 Parameters and data eigenvectors with associated eigenvalues,
parameter correlations, and best fit model parameters for minimization with
standard error weighted data.

Figure 3 Theoretical data and best fit curve for three-layer resistivity model #1 with
Schlumberger configuration.
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True Best Standard
Correlation matrix model fit error

ρ1 ρ2 ρ3 h1 h2

ρ1 1 15 15 ±0.0116
ρ2 0.09 1 500 500 ±0.5424
ρ3 0.01 0.16 1 50 50 ±0.0080
h1 0.94 0.39 0.05 1 10 10 ±0.0085
h2 −0.23 −0.91 −0.32 −0.47 1 150 150 ±0.0474
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changes on other parameters. In addition, if ρ1 increases while h1 decreases, or vice versa, the
sounding curve will change accordingly.

The eigenvector associated with λ4 = 1.17 indicates that increasing or decreasing ρ1 and
h1 together will have little effect on the sounding curve (Figure 3). In other words, the ratio
h1/ρ1 is the combination of these parameters that affects the sounding curve the most (note
that the correlation coefficient between ρ1 and h1 is +0.94). The eigenvector associated with
λ5 = 0.043 indicates that increasing ρ2 while decreasing h2, or vice versa, has little effect on
the sounding curve. Again, this is also indicated by considering the correlation coefficient
between ρ2 and h2, which is −0.91.

Considering the parameter eigenvector and parameter correlation coefficients of this
model, it can be seen that the products ρ2 h2 are better determined by, and have greater effect
on, this data than either ρ2 or h2 separately. 

From the analysis of the eigenvectors, we see a wide range of resistivities and thicknesses
for a very resistive layer that will yield nearly identical sounding curves as long as the
thickness-resistivity ratio changes only slightly. In addition, for a very conductive layer, there
is large range of resistivities and thicknesses that yield nearly the same sounding curve as
long as the resistivity-thickness product is relatively constant. Thus, the parameters of highly
resistive or highly conductive layers are difficult to determine. The correlation matrix must
be considered in any interpretation of the standard deviations given by equation (18).

For the second example, we consider four-layer earth model #2: X(150, 700, 15, 200, 3,
20, 40). Figure 4 shows the theoretical data points for this model. The solid curve in Figure 4
is the final fit to the data points, and the final estimated model is close to the original model.

Figure 5 illustrates the parameter eigenvectors, eigenvalues, data eigenvectors, parameter
correlation coefficients, and model parameter values with estimated standard errors.

In this example, we note five large eigenvalues and two small eigenvalues.
Due to the several high eigenvalues, the inverse interpretation for this model is not very

sensitive to noise, but it is very sensitive to model parameter changes. The eigenvectors may

Figure 4 Theoretical data and best fit curve for a four-layer resistivity model #2 with
Schlumberger configuration.
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be interpreted as for the three-layer problem. The eigenvectors associated with the small
eigenvalues indicate the expected combination of parameters to which the sounding curve is
insensitive, and the eigenvectors associated with the large eigenvalues indicate the
combinations of parameters to which the problem is highly sensitive. For example, the
eigenvector of λ6 = 0.38 indicates that if the ρ2 value increases while h2 decreases, or vice
versa, there will be almost no effect on the sounding curve.

B. FIELD EXAMPLE
The field data were taken from the Bryson site by Hydro-Québec. Consider the interpretation
of the three-layer earth model #3. Figure 6 contains the data for the Schlumberger sounding
and its computed sounding curve. The curve fits the data quite well, and the estimated noise
level based on this fit is approximately 4 percent of the value at several data points. Since
this is considered the approximate accuracy of the data, a closer fit is not justified.

Table 1 illustrates the parameter correlation coefficients, and the model parameter value with
estimated standard errors. All calculated parameters may be interpreted as for the three-layer

Figure 5 Parameters and data eigenvectors with associated eigenvalues,
parameter correlations, and best fit model parameters for minimization with
standard error weighted data.

True Best Standard 
Correlation matrix model fit error

ρ1 ρ2 ρ3 ρ4 h1 h2 h3

ρ1 1 150 150 ±0.0013
ρ2 0.30 1 700 700 ±0.0138
ρ3 −0.13 −0.56 1 15 14.99 ±0.0015
ρ4 −0.003 −0.01 −0.14 1 200 200.02 ±0.0015
h1 0.71 0.84 −0.41 −0.01 1 3 3 ±0.0001
h2 −0.40 −0.89 0.27 −0.05 −0.82 1 20 20 ±0.0002
h3 −0.14 −0.58 0.98 −0.06 −0.42 0.3 1 40 38.99 ±0.0062
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problem in model #1. The data do not appear to provide much information about the third
layer: we expected a much higher standard deviation for resistivity ρ3. Another interesting
observation is the strong correlation between parameter ρ3 and the thickness of the second
layer.

Figure 6 Field data from the Bryson site (Hydro-Québec) and interpreted best fit
curve for three-layer resistivity model #3.
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ρ1 ρ2 ρ3 h1 h2

ρ1 1 30.52 ±0.9457

ρ2 0.36 1 9.06 ±1.2779

ρ3 0.11 0.46 1 371.82 ±618.389

h1 −0.64 −0.81 −0.31 1 3.36 ±0.3653

h2 −0.23 0.89 −0.79 −0.71 1 21.33 ±5.8902

The final example, an interpretation of resistivity sounding measurements, was analyzed
for a four-layer case using the Schlumberger configuration in Table 2. 

Figure 7 illustrates the measured and calculated apparent resistivities, showing better
correlation. 

Table 3 illustrates the parameter eigenvectors, eigenvalues, and data eigenvectors. 
Table 4 illustrates the parameter correlation coefficients and the model parameter value

with estimated standard errors.
All calculated parameters may be interpreted as for the four-layer problem in model #2.

The data do not appear to provide much information about the fourth layer: we expected a
higher standard deviation for the resistivity ρ4. Another interesting observation is the strong
correlation between parameter ρ3 and the thickness of the second and third layers.

Table 1 Parameter correlations and best fit model parameters for minimization with
standard error weighted data
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Table 2 Numerical values of the 18 Schlumberger array measurements

Electrode separation (m) Apparent resistivity (W--m)
1 67.7
1.5 68.7
2 69.3
3 70.8
5 72.8
7 73.9

10 76.1
20 66.8
30 61.2
40 55.3
50 48.6
70 44.5

100 43.9
150 51.5
200 68.7
300 109.2

Figure 7 Field data and interpreted best fit curve for four-layer resistivity model #4.

Eigenvalues Parameter eigenvectors
rr1 rr2 rr3 rr4 h1 h2 h3

7.243 −0.153 0.038 −0.191 0.736 −0.628 0.015 −0.000
5.452 −0.075 −0.022 −0.474 −0.644 −0.592 −0.592 −0.000
3.280 −0.111 −0.941 −0.069 0.058 0.067 0.297 −0.0007
1.247 −0.000 −0.000 0.0001 −0.0001 −0.0002 −0.003 −1.0000
0.770 0.952 −0.134 0.121 0.028 −0.244 0.0111 −0.000
0.088 0.219 0.039 −0.845 0.192 0.428 −0.125 0.0002
0.0004 0.059 0.304 -0.064 0.027 0.079 0.944 −0.0034

Table 3 Parameter eigenvectors, eigenvalues, and data eigenvectors
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VII. ELECTRODE RESISTANCE EXPRESSIONS
Using an N-layer earth model, as shown in Figure 8, the electrode resistance can be
approximated using Wenner’s arrangement. 

The general recurrence expression for Wenner apparent resistivity is
(j = n − 1, n − 2, ..., 2, 1),

(22)

(23)

ρnaW = ρn (24)

(25)

where      
ρj is the resistivity of the jth layer,
hj is the thickness of the jth layer,
ρjaW is the Wenner apparent resistivity at jth layer,
n is the number of layers in the soil model, and
C is the distance between any two electrodes.
The apparent resistivity ρaw of the N-layer model is obtained at j = 1:

(26)

where
Re is the ground electrode resistance Ω,
and r is the electrode radius m.
The height of the top layer (i.e., h1) varies.
When h1 increases, the approximation of the electrode resistance becomes more accurate. 
When h1 approaches infinity (homogeneous soil), the expression reduces to
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Best Standard 
Correlation matrix fit error

ρ1 ρ2 ρ3 ρ4 h1 h2 h3

ρ1 1 67.4 ±0.0029
ρ2 0.3852 1 75.6 ±0.0031
ρ3 0.1525 0.460 1 28.2 ±0.0107
ρ4 0.0218 0.075 0.460 1 2384.1 ±6.7673
h1 0.7656 0.735 0.306 0.045 1 1.2 ±0.0010
h2 −0.3647 −0.7253 −0.902 −0.305 −0.606 1 18 ±0.0046
h3 0.1462 0.4414 0.9846 0.6028 0.2938 −0.875 1 59.3 ±0.0378

Table 4 Parameter correlations and best fit model parameters for minimization
with standard error weighted data
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(27)

This is the expression for the resistance of hemisphere buried in a homogeneous soil.
The computed ground electrode resistance and power loss are tabulated in Table 5 for

varying values of h1.

R
re

=
ρ

1

2π

Figure 8 Hemisphere buried in N- Layer soil.
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Table 5 Electrode resistance and power loss vs. height

Three-layer soil with earth resistivity (WW-m): (rr1 = 24, rr2 = 100, rr3 = 500)
Height, Electrode Electrode Power loss Power loss 
h1 (cm) resistance resistance using using

using using equation (26) equation (27)
equation (26) equation (27)

1.5 233.0345  127.3239 15.4483 28.2743
3 161.2195 127.3239 22.3298 28.2743
4.5 140.9845  127.3239 25.5347 28.2743
6 133.9004 127.3239 26.8856 28.2743
7.5 130.9250  127.3239 27.4966 28.2743
9 129.4894 127.3239 27.8015 28.2743
10.5 128.7206  127.3239 27.9675 28.2743
21 127.5079 127.3239 28.2335 28.2743
23 127.4645  127.3239 28.2431 28.2743
25 127.4337 127.3239 28.2499 28.2743
27 127.4112  127.3239 28.2549 28.2743
37 127.3582 127.3239 28.2667 28.2743
57 127.3334  127.3239 28.2722 28.2743
77 127.3258  127.3239 28.2739 28.2743
80 127.3242 127.3239 28.2743 28.2743
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VIII. CONCLUSION
The ridge regression estimator is a powerful method for interpreting resistivity soundings
over plane-layered earth structures. Accordingly, it is possible to find a model that fits the
data, to indicate the accuracy of the fit relative to the noise level in the data, and to predict
the accuracy with which each parameter is estimated. 

The inversion method is based on a statistical estimation of the parameters of an N-layer
soil model from Schlumberger measurements. This method provides the best estimate of soil
parameters.

Finally, computation of the ground electrode resistance of hemisphere buried in N-layer
soil is easier and faster using this method. 

IX. APPENDIX  
In order to obtain a recursive relationship for the partial derivatives, we differentiate Eq. (1):

Using these expressions for j = 2, 3, ..., n, recursive application gives the partial
derivatives of raS = rnaS

Introducing Gi (a, b, dj, i) = Gi, we have:

For k = 1, 2, ..., j − 1, we have:
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