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Abstract
Global warming could increase climatic instability and large wildfire activity in circumboreal
regions, potentially impairing both ecosystem functioning and human health. However, links
between large wildfire events and climatic and/or meteorological conditions are still poorly
understood, partly because few studies have covered a wide range of past climate-fire interactions.
We compared palaeofire and simulated climatic data over the last 7000 years to assess causes of
large wildfire events in three coniferous boreal forest regions in north-eastern Canada. These
regions span an east-west cline, from a hilly region influenced by the Atlantic Ocean currently
dominated by Picea mariana and Abies balsamea to a flatter continental region dominated by
Picea mariana and Pinus banksiana. The largest wildfires occurred across the entire study zone
between 3000 and 1000 cal. BP. In western and central continental regions these events were
triggered by increases in both the fire-season length and summer/spring temperatures, while in
the eastern region close to the ocean they were likely responses to hydrological (precipitation/
evapotranspiration) variability. The impact of climatic drivers on fire size varied spatially across
the study zone, confirming that regional climate dynamics could modulate effects of global
climate change on wildfire regimes.
1. Introduction

Fire is the most important natural disturbance in the
boreal forest biome, affecting vegetation dynamics,
biodiversity (Granström 2001, Bond et al 2005),
biogeochemical cycles and atmospheric aerosols
(Stocks et al 1998, Kasischke et al 2005, Kelly et al
2016). Model-based predictions suggest that the
severity of fire regimes will increase in the future in
response to global warming (Turetsky et al 2011, De
Groot et al 2013). Some scenarios even suggest that
frequencies of large fires may increase sufficiently to
push current fire suppression capacity beyond a
tipping point (Amiro et al 2001, Balshi et al 2009, De
© 2017 IOP Publishing Ltd
Groot et al 2013, Lehsten et al 2016). Such changes
could threaten human safety, impair the viability of
some economic sectors (Simms 2016), and trigger
substantial changes in vegetation structure and
composition (Flannigan et al 2005, Remy et al
2016). However, robust prediction of the changes,
evaluation of likely consequences, and formulation of
appropriate adjustments to forest management strat-
egies are hindered by paucity of understanding of the
climate factors inducing large wildfires. The infrequent
and random nature of these events, coupled with the
short historical period covered by fire statistics
(usually less than 100 years), further reduce the
robustness of fire predictions. In this context,
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paleoecological investigations based on analysis of
lacustrine sedimentary cores are valuable as they
enable exploration of the relationships between fire
size and climate in long-term perspectives (Ali et al
2012), and identification of the main climatic drivers
of eclosion of large fire events.

During the last 7000 years, fires in boreal forest of
northeastern Canada have mostly been larger in the
continental region than in the region closer to the
Atlantic Ocean (Remy et al 2016), hereafter referred to
as the western and eastern regions of our study zone,
respectively. According to previous studies (Balshi et al
2009, Ali et al 2012, Remy et al 2016) large fires in the
western region have been triggered by long late fire-
seasons, with warmer than today springs and dry
summers. Thus, based on these results, we hypothesize
that the fire season in the eastern region was mostly
shorter, with colder springs and moister summers,
than in the western one during the study period
(Girardin and Wotton 2009, Boulanger et al 2013).
However, around 1500 years cal. BP, fires in the eastern
region became dramatically larger, more than those in
the western region (Remy et al 2016). Two possible
explanations for this are that the climate in western
and eastern regions became similar, or climatic
changes that favored large fire ignition specifically
occurred in the eastern region.

The main objective of this study was to assess the
spatial variation (if any) in drivers of large fires in
coniferous boreal forests of eastern North America. A
specific hypothesis tested is that periods of large-fires
during the Holocene were associated with long late
fire-seasons, with warm springs and dry summers,
across the entire study zone and thus independently of
regional characteristics. For this purpose we studied
both past climate variations and fire size histories in
three regions of boreal forests in Quebec-Labrador
(western, central and eastern regions) displaying same
or different relief, current climate conditions, fire
activity and vegetation composition. We used macro-
scopic charcoal fragments previously extracted
from lake sediments to reconstruct regional fire
size histories during the last 7000 years. Then, we
compared these fire reconstructions with simulated
climate data obtained from a general circulationmodel
(GCM) that we downscaled at regional scales to detect
relationships between climate and fire size. The results
highlight the importance of several climatic drivers of
large fire occurrences linked to some regional
characteristics during the Holocene, and we discuss
their potential profound implications for future fire
regimes across eastern Canada.
2. Material and methods
2.1. Study area
We used 13 charcoal records from lacustrine sediments
located along a 500 km east-west transect within
2

spruce woodlands (spruce-moss in the south and
spruce-lichen in the north) of Quebec-Labrador
(between 50 and 53°N, and 67 and 79°W; figure 1).
Six of the lakes are located near the James Bay
Lowlands in western Quebec (Oris et al 2014), four
near Mistassini Lake in central Quebec (El-Guellab
et al 2015) and three in eastern Quebec or Labrador
(Remy et al 2016, figure 1; appendix A available at
stacks.iop.org/ERL/12/035005/mmedia). These areas
were rapidly colonized by trees after the last
deglaciation, between ca. 8000 and 7000 years cal.
BP (Richard 1995). Since then, the western and central
regions have been mainly dominated by Picea mariana
(Mill.) B.S.P. and Pinus banksiana Lamb. (Richard
1979, Gajewski et al 1993, Payette 1993), while the
eastern region has been mainly dominated by P.
mariana along with Abies balsamea (L.) Mill. and
Picea glauca (Moench) Voss (Mott 1976, King 1986,
Payette 1993). Mean annual temperature (from 1966
to 1996) are between�1.1 and�3.1 °C in western and
central regions and are between �3.1 and �5.0 °C in
eastern region (DesJarlais et al 2004). Mean annual
precipitations (from 1966 to 1996) are between 710
and 989 mm in western region, 850 and 989 mm in
central region, and 850 and 1129 mm in eastern region
(DesJarlais et al 2004). In recent decades, fires in the
eastern region have been less frequent than in the
western and central one, but may have been
episodically larger (Stocks et al 2003, Bergeron et al
2004, Bouchard et al 2008).

2.2. Fire-history reconstructions
Lakes with small surface areas and sufficiently long
sediment cores to provide robust sedimentary records
of fires at the local scale (i.e. at the watershed scale)
were selected (appendix A). Sediment cores composed
of gyttja were extracted between 2007 and 2013. To
obtain fine-scale temporal resolution, they were cut
into contiguous 0.5 to 1 cm thick slices depending on
total sequence length (appendix A). Sediment
accumulation chronologies were generated based on
AMS radiocarbon dating of terrestrial plant macro-
remains and/or total organic content extracted from
gyttja samples. 14C dates were calibrated using the
Bchron R package based on the IntCal13.14C data set
(Hua et al 2013, Reimer 2013). Age-depthmodels were
obtained using Bayesian models (Parnell et al 2008).
All dates were expressed in calibrated years before
present (hereafter BP).

Charcoal samples from all lacustrine cores were
obtained from previous studies (appendix A) in which
a common protocol for extracting charcoal was
applied. Particles were measured and the resulting
data were transformed into charcoal accumulation
rates (CHAR; mm2 cm�2 yr�1) based on numerical
age-depth models to reconstruct past regional biomass
burning (hereafter RegBB; no unit) and past regional
fire frequency (hereafter RegFF; # of fires yr�1) values.
Individual CHAR series were homogenized to reduce
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Figure 1. Locations of the study sites in the western, central and eastern regions of Quebec-Labrador.

Environ. Res. Lett. 12 (2017) 035005
the influence of sedimentation rate and potential
taphonomic biasing factors linked to sequestration of
charcoal in the sediments (Power et al 2008).
Homogenized series were then pooled to build the
RegBB by (i) rescaling initial CHAR values using min-
max transformation, (ii) homogenizing the variance
using Box-Cox transformation, and (iii) rescaling the
values to Z-scores (Power et al 2008).

The dates of local fire events (� 1–3 km from the
lake shore; (Higuera et al 2007) were extracted from
CHAR series using CharAnalysis v1.1 software
(Higuera et al 2010a) available at https://sites.
google.com/site/charanalysis/ (appendix B). The local
fire frequency was calculated using the ‘paleofire’ R
package (Blarquez et al 2014). The RegFF for each
region was constructed by pooling individual lake
smoothed series (Ali et al 2012, Kelly et al 2013). We
assessed the significance of changes in both RegFF and
RegBB by bootstrap resampling the pooled means 999
times (BCI; 90%).

For each region, we used the ratio between RegBB
and RegFF (hereafter FS index; Ali et al 2012) to
assess changes in fire size through time. The
significance of changes in the FS index was derived
from ratios between maximum and minimum values
of RegBB and RegFF. The RegBB values are correlated
3

to long-term changes in areas burned inferred from
fire histories (Higuera et al 2010b, Ali et al 2012, Kelly
et al 2013). Thus, we consider fire size to be related to
the temporal trajectory of mean biomass burned per
fire (RegBB), and modulated by the number of fires
through time (RegFF). FS index values are indicative of
mean areas burned per fire.

2.3. Climate data
We applied the method developed by (Hély et al 2010)
to climate simulations from the UK Universities
Global Atmospheric Modeling Program GCM (here-
after HadCM3; Hall and Valdes 1997) to compute the
fire-season length centered on each millennium over
the last 7000 years (Singarayer and Valdes 2010) in
each region. For each millennium of HadCM3 dataset,
we computed the twelve monthly temperature and
precipitation anomalies as compared to those from the
HadCM3 pre-industrial control (i.e. 1750 AD). To
obtain spatial resolution more compatible with our
palaeodata, we downscaled these Holocene datasets at
0.5° by applying HadCM3 temperature and precipita-
tion anomalies to the modern 1971–2000 climate
normals computed from the Climate Research Unit
spatial grid TS 2.1 (Time Series at 0.5°; Mitchell and
Jones 2005). Then, within each 0.5° pixel, we used the
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Gaussian distribution for temperature and the
Gamma distribution for precipitation (New et al
2002) to reconstruct 30 year time series in which each
specific monthly distribution was parameterized with
the reconstructed downscaled monthly mean and the
modern variance computed from the 1971–2000
climate normals (Ramstein et al 2007). The weather
generator presented by (Richardson 1981) was applied
to the reconstructed 30 year monthly temperature and
precipitation time-series to derive the daily values
needed to compute the Drought Code index (hereafter
DC index) of the Canadian Forest Fire Weather Index
System (FWI; Van Wagner 1987). The DC index
relates to deep humus dryness and is used to assess fire
risks based on weather conditions with a 52 d lag (De
Groot et al 2007). According to Hély et al (2010), the
DC values computed from Canadian weather data
(1981–2010) starts to be higher than 80 units in June in
eastern North America when spring fires began to
occur. Consequently, we calculated the fire-season
length based on the cumulative number of days in
months with mean DC index value >80 units, to
which is added the number of days for the fire-season
onset and termination computed as the number of
days with DC value>80 units preceding and following
the first or the last month with monthly mean DC
value >80 units, respectively, based on interpolations
of monthly mean DC values (Hély et al 2010). Spring
fire onset (April-June), summer fire termination
(July–October) and hence fire season length in spring,
summer and over the year (spring and summer) were
determined. The regional simulated climate and fire-
season length datasets, expressed as anomalies relative
to the control period (0 BP), represent average
conditions computed from the three nearest 0.5° pixels
to each sampled lake within the western, central and
eastern regions of the study area.

Correlations between the reconstructed climate
outputs and RegBB, RegFF or the FS index were
computed using Pearson’s correlation coefficients and
assessing their significance using permutation tests
(Robinson 2007).
3. Results
3.1. Fire histories
The Holocene RegFF and RegBB series for the western
and central regions displayed the same trends, with fire
occurrence peaking around 4000 BP and biomass
burning peaking between 5000 and 3000 BP (figure 2).
The RegFF gradually increased from ca. four or five
fires per millennium at 7000 BP to approximately six
per millennium at 4000 BP. It then decreased below ca.
three fires per millennium around 2500 BP, before
slightly increasing again to present values, close to
those recorded during the early-Holocene period.
Similarly, RegBB gradually increased from 0 at 7000 BP
to 0.6 between 5000 and 3000 BP in the western region
4

and to 0.9 in the central region around 4000 BP, before
decreasing to present values, mostly lower than 0. In
both of these areas, the FS index values oscillated
around 1 before 3000 BP, then rose to 1.4 and 1.6 in the
western and central regions, respectively, at ca. 2000
BP before decreasing back close to 1 until the present
day. The derived RegFF, RegBB and FS index dynamics
through the last 7000 years are independent of changes
in sedimentation rates (appendix D).

In the eastern region, the reconstructions indicat-
ed that fire occurrence peaked between 6000 and 2500
BP, whereas biomass burning peaked around 1500 BP
(figure 2). RegFF increased gradually from approxi-
mately six fires per millennium at 7000 BP to ca. seven
between 6000 and 2500 BP. Then, it decreased below
four fires per millennium at 1500 BP before increasing
again to present values, close to those recorded at 7000
BP. The RegBB value was equal to those in western and
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central regions at 7000 BP. It oscillated around 0 until
3000 BP and increased during the 3000–1500 BP
period, reaching ca. 0.9 around 1500 BP. Then, it
decreased rapidly to the present-day value, ca. 1.5; the
lowest over the last 7000 years. FS index values of
the eastern region stayed lower than 0.8 from 7000 to
2500 BP, and subsequently increased to ca. 1.9 at
1500 BP. This increase in FS index was not linked to a
sudden increase in lacustrine sedimentation rates, but
coincided with the largest peaks of charcoal area
recorded in the three study lakes (appendix D). Finally,
FS index values decreased to 0.3 at present-day.

3.2. Past climate
We have reconstructed Holocene climate data for eight
periods centered on each millennium. Thus, although
results are reported as temporal trends, climate data
between two successive millennia must be interpreted
with caution as there is no available data from this
HadCM3 Holocene simulation experiment. During
the last 7000 years, the fire-season length ranged
between 164 and 175 d in the western studied
region, and between 155 and 164 d in the central
region (figure 3). In these regions, the fire-season
started 2–3 d later in spring at 7000 BP than today.
Between 6000 and 4000 BP, it began progressively
earlier in spring and terminated earlier in summer-fall.
During this period, the fire-season was slightly (two-
three days) shorter than it is today. Then, between
3000 and 2000 BP, the fire-season extended in fall. At
2000 BP, the fire-seasons in the western and central
regions were similar to the present-day seasons in
terms of lengths (174 and 161 d, respectively) and time
period in the year. However, the fire-season ended 8
and 4 d earlier in the two regions, respectively, and
thus was markedly shorter at 1000 BP.

Overall, the fire-season in the eastern region was a
third shorter (ranging from 105 to 135 d) than those of
western and central regions during the Holocene
(figure 3). At 7000 BP, the fire-season length was seven
days shorter than today (ca. 130 d), mainly due to a
later spring onset. The longest reconstructed fire-
season was at 6000 BP, ca. 128 d, similar to the present-
day length, and covering the same period in the year.
Between 6000 and 4000 BP, the fire-season began
progressively later and finished earlier. It was shortest
at 4000 BP, when it began three days later and finished
12 d earlier than today. Then, between 3000 and 1000
BP the timings of fire-season length varied between
0–2 d later onset and 7–10 d earlier termination than
today.

3.3. Fire-climate relationships
In the western and central regions, the FS index values
were significantly higher during periods with warm
springs and summers, and when the fire-season began
early in spring (table 1). In the eastern region, the FS
index values were not correlated with either spring or
summer temperatures, and were significantly higher
5

during periods when fire-seasons ended relatively early
in fall. In the western and eastern parts, FS index values
were significantly higher during moist periods.
4. Discussion

Our findings clearly show that fire histories during the
last 7000 years were similar in the western and central
regions, but differed in the eastern region (figure 2).
These results suggest that fire regime in oceanic region
(east) was driven by different climatic factors than in
continental regions (west and centre). Three main
chronological periods can be distinguished in the fire
size dynamics during this period: 7000 to 3000 BP,
when there were larger fires in the west and center than



Table 1. Pearson’s correlation coefficients between past fire size and main climatic variables, fire occurrence and biomass burning for
the three regions. Fire season is split into two periods: ‘spring’ from April to June and ‘summer’ from July to October. Significant
correlation coefficients are marked in boldface type and asterisks indicate P values (�P < 0.1, ��P < 0.05, ���P < 0.01) determined by
permutation tests (sample size: n = 8 millennia).

West Centre East

Temperature

Spring 0.316��� 0.416��� 0.099

Summer 0.560��� 0.216��� 0.047

spring and summer 0.797��� 0.499��� 0.113

Precipitation

Spring 0.633��� 0.161 0.086

Summer 0.530��� 0.091 0.764���

spring and summer 0 642��� 0 02 0 637���

Fire season length

Spring 0 174� 0 228�� �0 031

Summer �0 037 0 236�� �0 504���

spring and summer 0 067 0 516��� �0 461���

RegBB 0 318 0 036 0 836��

RegFF �0 401 �0 65 �0 832�
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in the east; 3000 to 1000 BP, when the largest fires were
recorded in all three regions; and the last 1000 years,
when fires were again larger in the west and center than
in the east. Detected regional climatic effects on the fire
regimes during these three periods are discussed
below.

4.1. 7000–3000 BP
Between 7000 and 3000 BP, fires were mostly larger in
the western and central regions than in the eastern one
(figure 2), probably partly because the fire-seasons
were longer and drier (figure 3 and appendix E). Other
influential factors presumably included the flatter
relief and dominance of more fire-prone conifers
(which favor the spread of fires), notably Pinus
banksiana Lamb., in the western and central regions
than in the eastern region (Hély et al 2001, Blarquez
and Aleman 2015, Remy et al 2016). In the eastern
region, fires were smaller but more frequent, possibly
due to the more pronounced variations in relief,
which reportedly increased lightning frequencies
(Foster 1983, Reap 1986). The environmental con-
ditions were more favorable for fire ignition and
frequency in the eastern region before 5000 BP.

High fire frequency and biomass burning during
the Holocene were significantly associated with warm
and/or dry summers, but cold springs (appendix C).
In the western and central regions, fire frequency and
biomass burning both peaked during the mid- to late
Holocene period (between 5000-3000 BP) without
any increase in fire size (figure 2). According to
paleoclimate reconstructions based on pollen data and
the modern analog technique, this period corresponds
to the Holocene Thermal Maximum, characterized by
warm and dry conditions in northern Quebec (Viau
and Gajewski 2009) and in various other locations
across North America (Bartlein et al 1998, Viau et al
2006). The simulated climate data used here confirm
this climatic scenario in spring with a gradual increase
of temperature and DC relative to before, but not in
summer (appendix E and F). We therefore assume that
between 5000 and 3000 BP higher precipitation and
6

temperature during spring led to increases in
combustible biomass (appendix F). We conclude that
series of consecutive days in spring and summer may
often have been warm enough to favor fire ignition
and spread, but fuel dried insufficiently for fires to
spread over large areas, as the springs would have been
generally too cool and the fire-seasons in summer too
brief (table 1, figure 3; appendix E) (Ali et al 2012).

4.2. 3000–1000 BP
The decrease in fire frequency between 3000 and 1000
BP (figure 2) has been already observed by other
studies in northern boreal forests and previously
attributed to a cooler and wetter annual climate
corresponding to the Neoglacial period (Gavin et al
2006, Ali et al 2009, 2012, Oris et al 2014, El-Guellab
et al 2015). It has also been putatively linked to an
abrupt decrease in solar activity around 2900–2800 BP
(van Geel et al 2000, Wanner et al 2008). However, the
largest fires were recorded in all regions of the study
area during this period (figure 2), more specifically
around 2500–2000 BP in the western and central
regions, and around 1500 BP in the eastern region.

In the western and central regions, large fires were
significantly dependent upon warmer springs and
summers, relative to those in the preceding period
(figure 3; appendix F), and upon the abundance of
fire-prone coniferous species such as Picea sp. (mainly
Picea mariana) and Pinus banksiana (Blarquez and
Aleman 2015, Remy et al 2016). These findings are
similar to conclusions from previous studies on boreal
forests of North America (Balshi et al 2009, Turetsky
et al 2011, Ali et al 2012, Blarquez et al 2015).
However, such large fires in the western region
occurred despite an increase in precipitation during
the fire-season (table 1, appendix F). Intra-seasonal
variations in precipitation distribution coupled with
warm springs and summers may explain the low
impact of precipitation on fire size (Ali et al 2012). We
suggest that, like today, weather patterns creating long-
lasting blocking events of high-pressure ridges
inducing droughts lasting several days to several
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weeks during the fire-season (Harrington and
Flannigan 1987, Flannigan and Harrington 1988,
Skinner et al 1999, Girardin et al 2006) could have
favored the occurrence of large fires during the course
of fire-seasons.

In the eastern region, the largest fires during the
whole 7000 year s study period (and the highest
increase in fire size in any part of the study zone)
occurred between ca. 2000 and 1000 BP (figure 2),
contributing to an increase in the abundance of Pinus
banksiana in regional vegetation (Remy et al 2016).
The fire frequency was approximately as low as that
recorded around 2500 BP in western and central
regions, but the biomass burning was substantially
higher (figure 2). In addition, fires were not
significantly linked to the same climatic conditions
that induced large wildfires in other regions (table 1
and appendix F). More specifically, warm and/or dry
springs and summers do not seem to have triggered
these large wildfires. However, reconstructions of past
water table levels in ombrotrophic peatlands based on
testate amoeba communities analysis indicate there
was high interannual to interdecadal hydrological
variability (precipitation versus evapotranspiration)
between 2500 and 1500 BP in the eastern region
(appendix G; Magnan and Garneau 2014). To limit
uncertainties associated with autogenic influences of
peatlands on water table depth results, these paleo-
climate data reconstructions correspond to means
recorded from four sites (two batches of two sites
distanced by 450 km) and pooled into 500 year bins.
This epoch between 2500 and 1500 BP corresponds to
the Roman Warm Period in Eurasia and to high
moisture shifts recorded in Greenland and North
America, although the nature and causes of those are
not yet clearly understood, especially in North
America (Seidenkrantz et al 2007, Holmquist et al
2016). Such hydrological variability cannot be
captured and confirmed (or refuted) with the available
HadCM3 climate data due to the ‘snapshot’ format of
these simulated data, causing an absence of informa-
tion between each millennia. However, it could at least
partially explain the reconstructed fire regime, as it
could have resulted in series of moist years favorable to
fine fuel production interspersed by one or several
drier years with relatively low precipitation and/or
very high temperature and/or strong winds, all of
which cause high evapotranspiration (Li et al 2000)
and thereby inducing few but large wildfires (Zum-
brunnen et al 2008, appendix D). Palaeohydrological
reconstructions in ombrotrophic peatlands in the
western region (based on means results of three sites
situated on a ca. 10 km radius) indicate there was less
variability in the atmospheric moisture balance
between 3000 and 1000 BP (period of largest fires
in western and central regions) than in the eastern
region (appendix G; van Bellen et al 2011). Thus, large
wildfires in the western and central regions seem to
have been mainly induced by high temperatures in
7

spring and summer coupled with intra-seasonal
variability in precipitation, while high interannual to
interdecadal variability in precipitation may have been
the major climatic driver of the development of large
wildfire events in the eastern region. The latter
hypothesis is corroborated by the eastern region’s
uneven topography, which favors fire ignition in
dryness zones (mostly altitudinal tops and south
slopes; Romme and Knight 1981, Parisien and Moritz
2009) but limits the spread of fire over large areas,
implying that conditions were sometimes dry over
large areas, as currently observed during some fire
years in others regions (Kasischke et al 2002, Stocks
et al 2003).

4.3. 1000 BP to present-day
During the last 1000 years, the fire regimes of the three
regions became similar (in terms of fire frequency, size,
and biomass burning) to those recorded just after the
deglaciation, with frequent but relatively small fires
(figure 2). This change was likely caused by a slight
shift of the fire-season timeframe towards earlier
termination around 1000 BP, but without high intra-
seasonal or interannual variations in precipitation
(figure 3 and appendix E). This stable climatic pattern
would have led to more years with optimal conditions
for fire ignition, but also more frequent rainfall during
the entire fire-season, which would have inhibited fire
spread and, to some degree, efficient fire ignition.

Current regional fire-season lengths are similar (in
the western and central regions) or longer (in the
eastern region) than those recorded during the period
of large wildfire events (figure 3), mainly due to a
reduction in summer precipitation (appendix F).
However, no significant changes in the fire regime
were recorded during the last 1000 years (figure 2). In
the western and central regions, the fire-season may
have only begun to lengthen since the industrial era,
but this possibility cannot be evaluated because the
control period, which is the pre-industrial period, has
been assumed to be equivalent to the modern period
(1971–2000) in our simulations. Another possibility is
that the lower summer temperatures which prevailed
during the last 1000 years, according to our
simulations, decreased the fire size, independently
of the reduction in precipitation (appendix F), by
limiting evapotranspiration late in the fire-season, and
thus restricting the development of large wildfire
events. This possibility is supported by pollen-based
climate reconstructions in eastern North America
indicating that summer temperatures have declined
continuously, although not progressively, since ca.
1000 BP (Viau et al 2012). However, in the eastern
region, temperatures during the fire season, which was
cooler than in other regions during all of the Holocene
periods, do not seems to have affected fire sizes
(table 1). Consequently, the less frequent dry years due
to a decrease in interannual hydrological variability
since 1000 BP seems to be the best explanation for the
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rarity of large fire events in the eastern region, despite a
decrease in summer precipitation in this region during
this period (appendix G).
5. Conclusion

The largest fires recorded in boreal forests of eastern
Canada during the last 7000 years occurred between
3000 and 1000 BP, but their causes varied spatially. In
continental regions, warm summers and early fire-
season onsets seem to have provided optimal
conditions for large wildfires, as already shown by
Ali et al (2012). However, closer to the Atlantic coast,
large wildfires occurred during periods of high
variability in atmospheric moisture balance, indepen-
dently of temperatures over the entire fire-season.
Thus, climatic variables that have most strongly
influenced fire size differed between continental and
oceanic regions. The predicted climatic changes for the
next decades across eastern Canada seem to include
trends towards both sets of conditions (warmer
summers and increases in interannual precipitation-
evaporation variability) that promote large fires
(Bergeron et al 2010, Seager et al 2012, IPCC
2014). Thus, their frequency seems likely to increase.
Focusing on climate conditions during the large-fire
period from 3000 to 1000 BP with higher temporal
resolution data and better understanding of associated
atmospheric circulation patterns could help efforts to
predict consequences of future climate changes on
sizes and frequencies of fires in boreal forests more
robustly.
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