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Abstract

Immediate phenotypic variation and the lagged effect of evolutionary adaptation to climate change appear to be two key
processes in tree responses to climate warming. This study examines these components in two types of growth models for
predicting the 2010–2099 diameter growth change of four major boreal species Betula papyrifera, Pinus banksiana, Picea
mariana, and Populus tremuloides along a broad latitudinal gradient in eastern Canada under future climate projections.
Climate-growth response models for 34 stands over nine latitudes were calibrated and cross-validated. An adaptive
response model (A-model), in which the climate-growth relationship varies over time, and a fixed response model (F-model),
in which the relationship is constant over time, were constructed to predict future growth. For the former, we examined
how future growth of stands in northern latitudes could be forecasted using growth-climate equations derived from stands
currently growing in southern latitudes assuming that current climate in southern locations provide an analogue for future
conditions in the north. For the latter, we tested if future growth of stands would be maximally predicted using the growth-
climate equation obtained from the given local stand assuming a lagged response to climate due to genetic constraints.
Both models predicted a large growth increase in northern stands due to more benign temperatures, whereas there was a
minimal growth change in southern stands due to potentially warm-temperature induced drought-stress. The A-model
demonstrates a changing environment whereas the F-model highlights a constant growth response to future warming. As
time elapses we can predict a gradual transition between a response to climate associated with the current conditions (F-
model) to a more adapted response to future climate (A-model). Our modeling approach provides a template to predict tree
growth response to climate warming at mid-high latitudes of the Northern Hemisphere.
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Introduction

Modeling future growth of forests under climate change is a

challenge since our understanding of tree physiology and growth,

and the role and rate of genetic adaptation to a rapidly shifting

climate is currently limited. Previous modeling studies have

attempted to predict potential changes in tree growth, net primary

productivity, and forest productivity under increased greenhouse

gases emissions scenarios (generally 26CO2) using either empir-

ical/statistical models [1,2] or process-based models [3,4]. Tree

ring based studies aimed at predicting the impact of future climate

usually assume that the relationships between tree growth and

climate are linear and constant through time. For example, Chhin

et al. [5] using a site-specific empirical regression model, reported

negative impact of future climate warming on productivity of

lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.)

in Alberta. Tree ring based studies, however, often do not address

the fact that the relationships between growth and climate may

change and they often extrapolate growth responses beyond the

range where they have been validated.

In this study, we predict future radial growth of trees based on

two theoretical assumptions. Given that tree growth conditions

may be changing with a warming climate over time, the first

assumption is that future response of trees to climate warming at

the local scale can be best approximated by the response of trees to

climate currently occurring at more southern latitudes. Here we

defined this assumption based-model as ‘‘Adaptive response model

(A-model)’’. By shifting the growth model to more southern models

as climate warming occurs, the potential effects (e.g., drought

effect highlighted in the southern models [6]) will be involved. For
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example, different climate effects that the northern models may

not indicate will be involved, as e.g. trees develop shoots which

may be better adapted physiologically for the warming climate.

Using the correlation pattern along the gradient 48–50uN in

eastern Canada, among sites, between species [black spruce (Picea

mariana (Mill.) BSP), and jack pine (Pinus banksiana Lamb.)], and

through time (1825–1993), Hofgaard et al. [7] found significant

linear relationship between climate change over time and climate

change over latitude. This study supports our first assumption.

In contrast, the second assumption states that future tree growth

can be best predicted by the climate-growth equations obtained

from the local stands when considering genetic constraints or the

lagged effect of genetics on growth. Here we defined this

assumption based-model as ‘‘Fixed response model (F-model)’’.

This assumption is supported by Savva et al. [8] who reported in a

provenance study that northern populations of jack pine trans-

ferred to a southern latitude did not benefit from the warmer

climate conditions due to an inherent earlier onset of growth

cessation than the local populations. This might indicate a genetic

constraint or a lagged effect in genetic response to climate [9] since

the onset of bud set and growth cessation, and maximum radial

growth rate are genetically-constrained photoperiodic responses

[10]. Growth simulations contrasting these two assumptions would

provide alternative scenarios for better understanding how future

climate warming will impact the growth of trees and forests in

eastern Canada.

To accomplish this, we designed a dendrochronological study

across a broad latitudinal gradient from 46–54uN in eastern

Canada. In our first examination of this data, we systematically

investigated the radial growth response of four major boreal

species paper birch (Betula papyrifera Marsh.), jack pine, black

spruce, and trembling aspen (Populus tremuloides Michx.) to past

climate change in eastern Canada and found their growth

responses to the past 50-years of climate warming in this

vegetation transition zone differed among species [6]. This broad

latitudinal gradient design may provide an analogue of future

climate warming given that the northern growth conditions might

be changing to the southern ones with warming. In this study, we

further forecast the radial growth of these species over this broad

spatial scale using the A- and F- models noted above. We

hypothesized that 1) the climate-growth calibration models

developed from the southern stands can be used to predict future

growth of stands growing in the north; 2) the northern trees may

be able to benefit from future warming to enhance growth.

The specific objectives of the current paper were fourfold. First,

we updated the calibration of the climate-growth models for each

species at different latitudes reported in Huang et al. [6] through

extending the calibration period to the maximum length of

chronology and climate data for each species at each site. Second,

we forecast the potential mean growth change (MGC) of a species

for a given latitude from 2010–2099 based on four different IPCC

Emissions Scenarios generated from three General Circulation

Models (GCMs) and one from the Canadian Regional Climate

Model (CRCM) using the above calibration models. Third, we

quantified whether the predicted MGC of a given species at

different latitudes differs among different climate change projec-

tions using different calibration climate-growth models through

decomposition of variance. This process can allow us to determine

the most appropriate calibration model for predicting future radial

growth at a given latitude over time. Last, we predict the potential

MGC of each species for a given latitude from 2010–2099 using

the A- and F- models constructed on the two assumptions,

respectively. This study expands how we simulate future growth

rate of trees and forests to consider both environmental and

genetic effects.

Materials and Methods

Study Area
The study area is located along the Quebec-Ontario border

over a latitudinal gradient ranging from Petawawa (approximately

46uN) in the south to Radisson (approximately 54uN) in the north

(Fig. 1). The topography along the gradient is generally flat and

uniform with low-elevation hills and rock outcrops. The climate of

the region is dominated by dry polar and moderate polar air

masses in winter, and by moist maritime and moist tropical air

masses in summer [11]. A climate gradient followed the latitudinal

gradient, as described in Huang et al. [6]. A vegetation transition

zone between the mixedwood and the coniferous-dominated

boreal forest occurs at approximately 49uN [12]. The tree line is

about 500 km north of the northernmost stands.

Tree-ring Increment Data
Ring width data sets for aspen, birch, spruce and pine used in

this study were exactly the same as reported in Huang et al. [6],

i.e. residual chronologies from 8 aspen stands, 8 birch stands, 9

spruce stands and 9 pine stands (2 cores per tree, 20 trees per

stand). All tree-ring chronologies were developed according to

standard dendrochronological techniques: crossdating, standardi-

zation (60-year or more flexible spline detrending was used),

calculation of residual ring-width chronologies, as well as

reduction of noise created by insect defoliations [6,13]. All

residual chronologies were then used to calibrate the current

climate-growth response. The expressed population signal, which

is a statistic used to evaluate the reliability of a chronology, was

above the generally accepted cutoff value of 0.85 for all time spans

of the residual chronologies [14].

Instrumental Climate Data for Updating Calibration
Models
Instrumental climate data used for updating the calibration

models at each of 12 locations were interpolated from ANUSPLIN

(version 4.3) [15] for the period 1901–2003 (see details in [6]).

Climate variables used in the model included monthly maximum

temperature (Tmax), monthly minimum temperature (Tmin), and

monthly total precipitation (Ptotal). In addition, the monthly

Canadian Drought Code (CDC) from May to October was also

calculated for each climate data set as described by Girardin &

Wotton [16] using monthly Tmax and Ptotal generated by

ANUSPLIN. The CDC is a numerical index representing the

average moisture content of deep and compact organic layers, and

was used to investigate if soil moisture variability had any impact

on tree growth in the region.

Climate Change Projections for Future Growth
Simulation
For each of the 12 locations, the simulations obtained from 8

climate change scenarios through three GCMs and the Canadian

third-generation coupled global climate model (CRCM3) were

used for growth predictions. They included three sets of data

generated from CGCM3 under the A1B, A2, and B1 scenarios

[17], two sets of data generated from UK Hadley Centre

(HadCM3) under the A2 and B2 scenarios [18], two sets of data

generated from Max Planck Institut für Meteorologie (ECHAM4)

under the A2 and B2 scenarios [19], and one set of data generated

from CRCM3 under the A2 scenario. They were referred to

Impact of Future Climate on Tree Growth
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CA1B, CA2, CB1, HA2, HB2, EA2, EB2 and MA2 respectively in

this paper. A brief description of the four emissions scenarios and

the corresponding GCMs were given in Table S1.

The regional projections were used to estimate the climate

anomalies using a delta method in which the predicted changes, or

anomalies, of climate variables (their mean and variance) obtained

from climate future simulations are added to the current climate

normal [20]. These anomalies were applied to a series of years

randomly selected from 1980 to 2000, as reported by Lapointe-

Garant et al. [21]. Tmax and Ptotal data obtained from this process

were then used to calculate the CDC from May to October for

each of the 12 locations. All climate change projection data during

1961–2099 were used for future growth simulations.

Updating Climate-growth Calibration Models using
Instrumental Climate Data
Based on tree-ring chronologies and instrumental climate data

from 1950–2003, Huang et al. [6] calibrated and reported the

climate-growth calibration models for all species/sites over the

gradient. In the current study, to obtain the most reliable

calibration models for future simulation, it would be preferable

to use the maximum length of the chronologies and instrumental

climate data to update the calibration models reported in Huang

et al. [6]. Least-squares stepwise multiple regression employing a

backward selection was used to update these empirical climate-

growth models. The covariates included 17 Tmax, 17 Tmin, and 17

Ptotal monthly variables (previous May to current September), and

11 CDC at each latitude/species. This updating procedure

resulted in the shortest and longest calibration period being,

respectively, 1946–2003 (BS at 46uN) and 1902–2003 (10

latitudes/species, see Table S2). The common longest calibration

period among all species/latitudes was 1946–2003.

For each latitude/species, the statistically important monthly

climate variables were retained during modeling trials, and multi-

month combinations of these climate variables were then

calculated to reduce the number of predictors to establish the

best calibration model (minimum tolerance P= 0.05). Variance

inflation factors (VIF) were also calculated to detect multi-

collinearity among the variables [22]. VIFs were generally lower

than the accepted value of 3. The minimum Akaike Information

Criterion (AIC) [23] was used to choose the best calibration

model. In general, less than 10 combined climate variables were

retained in the final model (Table S3).

The performance of each regression model was cross-validated

using a split sample calibration–verification scheme [24]. First,

climate data during the full calibration period was split into two

subperiods at the year of 1965, thus resulting in a calibration

subperiod and a verification subperiod, respectively. For example,

when the full calibration period is 1902–2003, then the calibration

and verification subperiod is 1902–1965, and 1966–2003,

Figure 1. The sampling sites for paper birch, jack pine, black spruce, and trembling aspen in the eastern Canadian boreal forest,
where all four species (N), only two conifers (m), only two deciduous species (half solid circle), only aspen, spruce and pine (*), and
only birch (&) were sampled at the site. The origins of major air mass types affecting the climate of the region are also indicated: dry polar (DP),
moist polar (MP), moderate moist (MM), and moist tropical (MT) [11].
doi:10.1371/journal.pone.0056758.g001
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respectively. Second, the regression coefficients obtained from the

equation fit to the calibration subperiod were applied to the

climate variables over the verification periods to produce a series

of tree-ring increment estimates. The same process was repeated,

reversing the subperiods for model calibration and model

verification. Tree-ring increment estimates obtained from the

above procedure were further compared with tree-ring observa-

tions to assess the strength of the model using the Pearson R2,

reduction of error (RE, its values can range from 2‘ to a

maximum of 1 and any positive value indicates that the model has

some skill), product means test (PM), and sign test (ST counts the

numbers of agreements/disagreements in sign of deviation from

the means in the observed and estimated series) [25]. All analyses

were conducted using SAS 10 (SAS Corporation, Cary, North

Carolina, USA). The program VFY [26] was used for calculation

of the RE, PM and ST verification statistics.

Mean Growth Change Simulation and Decomposition of
Variance
Each of the updated calibration climate-growth models was

used to predict ring-width index (dependent variable) for the

period 2010–2099 based on each of 8 sets of climate change

scenarios data (independent variables). The simulated mean

growth change (MGC) was expressed as a percentage of growth

(ring-width index) anomalies over 1962–1991. Because we are

unclear whether each of the calibration climate-growth models of

a species has the same capability to predict future growth, the

decomposition of variance [27] was thus performed to quantify

whether the predicted MGC of a given species at different latitudes

differed among different climate change scenarios using different

calibration models. The decomposition of variance was performed

on a large dataset of MGC (8 or 9 calibration models68 climate

change scenarios 68 or 9 latitudes). The variance of the whole

simulated dataset was broken down into different variance parts as

follows:

d2TOT~d2MODzd2SCEzd2LATzd2INTzd2CLI

Where d2TOT is the variance of the whole simulated growth and

d2MOD the variance caused by different calibration climate-growth

models, d2SCE the variance caused by different climate change

scenarios, d2LAT the variance caused by different latitudes at which

predictions were made, d2INT the variance caused by interactive

effects of the above factors (all possible interactions), and d2CLI the
variance that cannot be explained by the above factors, and thus

be considered to be caused by future climate variability. The

breakdown of variances was calculated using ANOVA.

Model Construction and Future Mean Growth Change
Simulation

A-model. Since the first assumption insists that with climate

warming the calibration model currently developed for the

southern stands could be used to predict future growth of the

northern stands, the A-model was constructed as follows. First, a

future 30-year mean temperature was calculated for three

subperiods 2010–2039, 2040–2069, and 2070–2099, respectively,

based on the 8 climate change scenarios and 9 latitudes (Table 1).

Second, comparisons between the moving future 30-year mean

temperature (e.g., 1981–2010, 1982–2011, and so on) and the past

Table 1. Comparisons of 30-year mean annual temperatures (6SD) between instrumental climate data for 1961–1990 and future
mean GCMs simulation climate data from eight climate change scenarios for 2010–2039, 2040–2069, and 2070–2099 over latitude
of 46–54uN, as well as the corresponding models identified and applied at each latitude from 48–54uN.

Latitude (6N) Time Period

1961–1990 2010–2039 2040–2069 2070–2099

46 T (uC) 4.25 (0.65) 5.83 (0.81) 7.31 (0.96) 8.75 (1.14)

Models N/A N/A N/A N/A

47 T (uC) 3.02 (0.75) 4.47 (0.84) 5.97 (0.98) 7.45 (1.20)

Models N/A N/A N/A N/A

48 T (uC) 1.14 (0.78) 2.66 (0.84) 4.18 (0.97) 5.67 (1.21)

Models L48-L47 L48-L46 L47-L46

49 T (uC) 20.63 (0.80) 0.82 (0.82) 2.36 (0.96) 3.88 (1.22)

Models L49-L48 L48-L47 L48-L46

50 T (uC) 20.89 (0.85) 0.67 (0.85) 2.24 (0.97) 3.79 (1.25)

Models L50-L48 L49-L47 L48-L46

51 T (uC) 21.54 (0.92) 0.13 (0.85) 1.73 (0.94) 3.32 (1.23)

Models L51-L48 L49-L47 L48-L46

52 T (uC) 23.06 (1.00) 21.28 (0.89) 0.38 (0.97) 2.02 (1.27)

Models L52-L50 L51-L48 L49-L47

53 T (uC) 23.21 (1.01) 21.42 (0.90) 0.23 (0.98) 1.89 (1.28)

Models L53-L50 L51-L48 L49-L47

54 T (uC) 23.18 (1.07) 21.35 (0.94) 0.34 (1.02) 2.03 (1.32)

Models L54-L50 L51-L48 L49-L47

Note: Models at 46uN and 47uN were not determined (N/A); The underscored italic text indicates the simulations with uncertainties. Standard deviation (SD) of climate
projections is interannual variation of the average of the mean of the 8 climate change scenarios.
doi:10.1371/journal.pone.0056758.t001
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30-year (1961–1990) ANUSPLIN mean temperature at different

latitudes were made to identify the latitude at which future mean

temperature at a given latitude for a given subperiod approximates

that of a southern stand. Third, the calibration models established

from the given northern latitude to the best southern latitude

identified above were involved to predict future MGC using 8 sets

of climate change scenario data simulated for the given northern

latitude, given that those climate conditions might be gradually

changing from the given latitude to the best southern latitude with

warming over time.

The calibration models identified in above procedure for each

latitude/species are listed in Table 1. In many cases several models

were involved for future growth simulation. For instance, the

growing condition of aspen at 54uN during the future subperiod

2010–2039 is assumed to be gradually changing to that at a more

southern latitude (e.g., 50uN) when the 2010–2039 mean

temperature at 54uN is near the 1961–1990 mean temperature

of 50uN (southern limit). In this case, the calibration models from

54, 53, 52, 51 and 50uN were all selected for the 2010–2039

growth simulations of stands at 54uN. We calculated the growth

response by interpolating the growth models based on average

yearly temperatures. For the next subperiod (e.g., 2040–2069), the

southern limit chosen above (e.g., 50uN) was considered as the

northern limit, and a more southerly site yet (than 50uN) was

chosen, and the calibrated models established between these two

limits were used sequentially for future growth simulation. The

same principle was applied to each of all the latitudes/subperiods.

However, when future climate range was beyond the range of our

data (such as for 46–47uN and during 2070–2099 at 48uN,

Table 1), extrapolation was thus not performed and future growth

in these latitudes were not further discussed. The 95% confidence

interval was built for each prediction, which indicates the

uncertainty due to different models and climate scenarios.

Decomposition of variance was also calculated.

F-model. Our second assumption was that future tree growth

would be best predicted by the climate-growth equations obtained

from the given local stands due to their local genetic constraints.

The F-model was constructed and future growth was simulated.

This was a simpler process where the calibrated climate-growth

model obtained for each species in each local stand was employed

to simulate future MGC based on each of 8 climate change

scenario data simulated for the given latitude. The MGCs

calculated for the 8 climate change scenarios were further

averaged for comparison with the A-model simulations. The

95% confidence interval was also built, which indicates the

uncertainty due to climate scenarios.

Figure 2. Partitioning of variance in mean simulated growth change of paper birch, jack pine, black spruce, and trembling aspen
along the gradient. The pie plot shows that the proportions of variance in mean growth change for each species explained by the calibration
models (M), scenarios (S), latitudes (L), and the interactive effects of the above three factors, as well as the climate. Grey dots represent the least
square means of potential growth change of each species predicted from 2010 to 2099. Grey short lines represent the standard error of the means.
doi:10.1371/journal.pone.0056758.g002
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Results

Updated Climate-growth Calibration Models
As listed in Table S2, the significant and positive RE values

reveal that the models are reasonably robust over the full length of

the calibration period. Both the PM and ST results suggest

significant predictive skills to reproduce the magnitude and

direction of year-to-year changes. Among four species, higher R2

and RE values in most of pine stands along the gradient indicate

that pine models are more robust than that of the other species,

and should have high fidelity to predict radial growth. As shown in

Table S3, the main climate variables selected for aspen models

mostly include previous summer- and autumn temperatures,

current growing season temperatures and current precipitation.

The main climate variables for birch models include previous

autumn temperatures and current spring and summer tempera-

tures. The models for two conifers highlight mostly winter and the

average growing season temperatures.

Future Climate Anomalies
As shown in Fig. S1 and Table S4, compared to mean climate

during 1961–1990, the greatest positive temperature anomalies

(+2 to +6uC) were predicted by ECHAM4 (EA2 and EB2), and the

smallest positive anomalies (+1 to +4uC) were simulated by

HadCM3 (HA2 and HB2). Higher precipitation anomalies (+40 to

+180 mm) were predicted by CGCM (CA1B, CA2, and CB1) and

CRCM3 (MA2) than that predicted by ECHAM4 and HadCM3.

Severe drought anomalies (+10 to +40 units) were more frequently

predicted by ECHAM4 (EA2 and EB2) than other models.

Mean Growth Change and Decomposition of Variance
As illustrated in Fig. 2 D, climate variability accounts for about

half of the simulated variability (45.6%–54.3%), followed by the

calibration model differences representing 26.5%–47.1% of

simulated variability, scenario differences representing 0.1%–

3.7%, latitude differences representing 1.2%–5.9%, and other

interactive effects representing 4.2%–13.7%. As shown in Fig. 2 A,

the northern models for aspen, birch and pine generally predicted

a large growth increase, whereas the southern models predicted a

minor growth change. The models for spruce mostly show a

moderate increase in growth with increasing latitude except for the

southernmost and northernmost stands. Among different latitudes

(Fig. 2 C), the MGC was predicted to increase towards the north

(5.1% to 10.6% from south to north for aspen, 4.0% to 8.6% for

birch, 20.2% to 7.7% for spruce, and 7.0% to 13.6% for pine).

Among different scenarios (Fig. 2 B), relatively less variability in

simulated MGC was found. Within the GCMs, the A2 scenario

generally resulted in better growth in aspen and pine than the B2

scenario, yet no such difference was found for other two species.

Mean Simulated Growth Change using the A-model
As shown in Fig. 3 and Fig. 4, the A-model simulation results

indicate that aspen would have a positive MGC (10–15% growth

increase) during 2010–2099 at 53–54uN, and a moderate growth

increase (less than 10%) during 2010–2069 followed by a growth

decrease (less than 10%) during 2070–2099 at 50–51uN. For

stands at 49uN, a moderate growth increase (less than 8%) during

2010–2049 was predicted, followed by growth fluctuations

(increases/decreases) during 2050–2069 and a growth decrease

(less than 10%) after 2070. For stands at 48uN, a low growth

increase (less than 5%) during the next one or two decades

followed by a gradual growth decrease thereafter were simulated,

with a large 95% confidence interval. As shown by the pie plot in

Fig. 3 and Fig. 4, the results of partitioning the variance showed

that from south to north the variance in simulated MGC explained

by climate variability increases (53.5% to 73.4%), whereas that

explained by the calibration models decreases (40.9% to 18.4%).

Both together accounted for the largest proportion of the variance,

yet other factors like climate change scenarios and scenario6cali-

bration model interactions explained only very little variance.

Birch would show moderate growth increases (less than 20%)

until 2040s followed by a gradual growth decrease (less than 20%)

thereafter at 53–54uN. For stands at 51uN, a weak growth increase

(less than 10%) during 2010–2039 was predicted, followed by

gradual growth decrease thereafter. Stands at 48–50uN would

show a moderate growth decrease (less than 10%) during 2010–

2099. Partitioning of variance indicates that the climate variability

explained more variance for stands at 48–51uN (84.2% to 96.1%)

than that for stands at 53–54uN (61.5% to 63.9%), whereas the

calibration models explained less variance for stands at 48–51uN
(0.0% to 5.9%) than that for stands at 53–54uN (26.3% to 27.6%).

Other factors explained only very little variance.

Spruce at 52–54uN was predicted to show an obvious growth

increase (up to about 20%) until 2099. For stands at 49–51uN, a

growth increase (less than 15%) during 2010–2069 was simulated,

followed by a moderate growth decrease during 2070–2099, with a

large 95% confidence interval. Stands at 48uN would show a weak

growth increase (less than 6%) during the coming decade, followed

by a gradual growth decrease thereafter. The results of partition-

ing of variance showed that the variance in simulated MGC

explained by climate variability increases from 45.2% to 74.1%,

and that explained by the calibration models decreases from

47.7% to 15.5%, from south to north, respectively. Other factors

explained only very little variance.

In contrast to the previous three species, pine at all latitudes

would show a consistent growth increase until 2099. Up to 20%

growth increase in stands at 52–54uN and up to 10% growth

increase in stands at 48–51uN are expected. The results of

partitioning of variance showed that, from south to north, the

variance in simulated MGC explained by the climate variability

decreases from 92.0% to 35.2%, and explained by the calibration

models increases from 2.7% to 59.3%. Other factors also

explained very little variance.

Mean Simulated Growth Change using the F-model
As illustrated in Fig. 5 and Fig. S2, the F-model simulation

results showed that except for an expected growth decrease until

2099 at 46 and 48uN, aspen would have a moderate growth

increase during 2010–2099 at most of the latitudes, with the

highest growth increase (up to 40%) at 53–54uN. Birch would

show a potential growth increase until 2099 at 51–54uN, and a

growth decrease during most of the 21st century at 46–50uN. Like

aspen, the fastest growth increase (up to 40–50%) is expected for

stands at 53–54uN. Spruce would show a moderate growth

increase north of 48uN, relatively minor growth fluctuations at 47–

48uN, and a linear growth decrease at 46uN to as low as 30% in

2099. Pine would show a strong linear growth increase (up to 60%)

at 51–54uN, moderate growth increases (10%) at 48–50uN, and a

weak, fluctuating growth increase from 2010–2099.

Discussion

Our simulations showed that tree ring based growth simulations

depend strongly on the assumptions of the growth model. There

were consistent and large differences between the A- and the F-

model. Further differences were, however, caused by the climate

change scenarios and natural climate variability.

Impact of Future Climate on Tree Growth
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Decomposition of Variance
The decomposition of variance showed that climate variability

will remain a major source of growth variation. There are large

differences between the various growth models, indicating that our

poor understanding of the growth responses is a second important

source of uncertainty. Surprisingly, the choice of the climate

scenario and the latitude was not such an important effect. We

should also note that the decomposition of variance deals with

variations of simulated growth indices. These exclude possible

interactions of the environment with site factors such as soils.

Furthermore, other factors such as insect outbreaks might change

the growth [28].

Comparison between the A-model and F-model
Species adjustments to environmental change occur in the short

term through physiological plasticity of individuals and in the long

term through the evolutionary process of selection, migration,

mutation, and drift [29]. With rapid warming predicted in the

current century, slow maturing organisms like trees may not be

able to keep pace with this change [30]. Evolution and migration

may, therefore, play a minor role in the survival of tree species,

whereas phenotypic variation may be the most important key

process [9]. The main feature of the A-model is that it varies over

time. That is, a gradual changing environment for tree growth is

highlighted because more southern models involved may highlight

different growth responses to climate over spatial gradient. This

modeling concept, i.e., a changing environment, is similar to the

provenance experiments that often transfer a northern original

population (seeds or seedlings) to a more southern location to

detect its fitness compared to the local populations [31].

Compared to the provenance experiments, however, our modeling

approach has the advantages of sampling at a broad spatial scale

and short duration, focusing on mature trees and forests, with

much less cost. Its disadvantage is that it cannot separate

environmental from genetic effects like a provenance trail does.

Consequently, this model might reveal an alternative scenario of

growth when tree growth conditions will be changing with

warming.

In contrast, the F-model is similar to the previous empirical tree-

ring modeling studies that often used the local models to simulate

future tree growth under climate change scenarios [5,32].

Although this approach is identical to methods that use static

and linear relations of climate and tree growth to extrapolate

future growth trends, its innovative aspect is the ecological

interpretation of the approach, not the approach itself. Common

garden experiments showed that the null transfer for most of forest

tree species studied in North America is optimal for current

climates in terms of temperature, suggesting that local populations

generally have higher fitness than non-local populations in local

climates [33,34]. Therefore, the local model established from the

current stands might be the best model to quantify the growth

response to a rapidly changing climate. Growth responses of trees

in the model appear to be generally larger and the model seems to

emphasize strong temperature responses of northern populations

and to put little weight on the effects of drought on tree growth.

A common feature of these two models is that their northern

forests all experience a large growth increase, but minor growth

changes were predicted for southern forests. This is in agreement

Figure 3. The predicted mean growth change of trembling aspen, paper birch, black spruce, and jack pine at 48, 51 and 546N under
the A-model. The pie plots indicate the proportion of variance in mean potential growth change explained by, counter clock wise, the calibration
models (dark), scenarios (grey), calibration models *scenarios (darker grey), and climate (blue). The grey zones are 95% confidence interval. White
dashed lines indicate the estimation of mean growth change with uncertainties.
doi:10.1371/journal.pone.0056758.g003
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with the principle of the limiting factors that has been commonly

used in dendrochronology [35]: with increasing latitude, temper-

ature plays a more important role in limiting radial growth,

whereas synergistic factors (temperature, precipitation, drought)

are more significant in the south [36]. Hence, with climate

warming, the northern stands would lose their temperature

limitations, leading to a large growth increase due to extension

of the growing season, earlier budbreak and growth stimulation, as

well as less damage by severe cold temperatures; The southern

stands would become more drought stressed, thus tending to show

minor growth change [36]. Generally speaking, in the north where

tree populations are occupying climates much colder than their

optima, trees should have the smallest losses but more gain in

growth with climate warming, whereas in the south, where the

discrepancies between the inhabited and optimal environments are

the least, the negative effect of a warming climate will be the

greatest [33]. Rehfeldt et al. [33], for instance, predicted more

gains in productivity of the P. contorta Doug. ex Loud. forests of

British Columbia at high latitudes and elevations, which would

overcompensate the losses projected for lower elevations in the

south under future warming.

Simulation Output from the A-model and F-model
Future consistent growth increases in northern stands predicted

by the two models are in agreement with the findings of

provenance experiments [9,37] and forest growth modeling studies

[21,38]. For instance, Rehfeldt et al. [9] reported that the

immediate short-term response of P. sylvestris to global warming

should be strongly positive for populations inhabiting severe

climates. Thomson et al. [37] documented that the northern black

spruce provenances in Ontario currently achieve better height

growth when moved to more southern locations. Eggers et al. [38]

projected the forest resources from 2000 to 2100 for 15 European

countries under different climate scenarios, and observed signif-

icantly increased growth in northern Europe, but minor growth

change in southern Europe.

Consistent growth decreases or minor growth change forecasted

in southern stands by the two models are supported by the current

provenance experiments and other modeling studies [9,39]. For

example, several provenance experiments on black spruce and

jack pine in Ontario revealed that their current maximum growth

is achieved in the central latitudes (approximately between 45 and

48uN) [37,40]. Potential drought or heat stress -induced growth

Figure 4. The predicted mean growth change of trembling aspen, paper birch, black spruce, and jack pine at 49, 50, 52 and 536N
under the A-model. The pie plots indicate the proportion of variance in mean potential growth change explained by, counter clock wise, the
calibration models (dark), scenarios (grey), calibration models *scenarios (darker grey), and climate (blue). The grey zones are 95% confidence interval.
White dashed lines indicate the estimation of mean growth change with uncertainties.
doi:10.1371/journal.pone.0056758.g004
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decline will be expected with future warming [41]. Rehfeldt et al.

[9] pointed out that climate warming would negatively influence

the southern populations of P. sylvestris that currently inhabit mild

climates. Our results are also supported by other studies in Europe

[42] and North America [36,43] documenting drought-caused

growth decline or loss in several boreal tree species in southern

part of their range. Compared to the other species, consistent

growth increase predicted for the southern pine stands during

2010–2099 might be due to its better drought-tolerance than

others or more variance explained in the model.

Rationale of the Predicted Future MGC Under the Two
Models
Under the A-model, all stands from 48 to 54uN were

predicted to show moderate growth increase, then a decrease

with time rather than a steep linear growth change over time.

These results corroborate tree physiological studies which show

that the optimum growth of trees often occurs in an

intermediate climate conditions (moderately warm and moist)

[44]. Therefore trees might not be able to continue to enhance

growth after reaching the optimum during the latter part of the

current century. Furthermore, future climate-induced changes in

disturbance regimes such as insect outbreaks might also have a

negative effect on growth [45]. Last, but not least, this moderate

growth change calculated through means of growth estimates

obtained by several linear models from different latitudes is

equivalent to that estimated on the same aspen dataset by a

nonlinear model, which integrated both climate and non-climate

factors [21]. Overall the A-model might indicate a lower

boundary for future growth.

In contrast, simulated growth change under the F-model

showed high variability and large range of growth responses

across species/stands. It assumes that actually, the current

populations at mid to high latitudes established after a long

evolutionary process and thus are close to their optimal growth

conditions [33]. This assumption has also been supported by the

provenance trial studies that observed growth decrease when

moving the populations growing at mid latitude to more southern

latitudes [8,37,40]. The conditions for the near optimal growth

would persist only in the next decades; thereafter tree growth

would decrease with climate warming. The climate-growth

response model established at the local stands would thus be

almost the best model and may give best growth prediction during

the current century. In any case, the simulated large growth

change under the F-model is based on the assumption that future

climate-growth relationships would be constant over time. In fact,

this would be possible only during the coming decades and the

models will be very likely to shift from the northern ones to more

southern ones with warming, i.e., growth simulation under the A-

model. Hence the F-model prediction might indicate an upper

boundary for future growth. Altogether, we infer that under

climate warming, potential MGC of these four species in eastern

Canada might be somewhere between the two simulation results

obtained by the A-model and F-model, respectively.

Figure 5. Comparison between average growth change of paper birch, jack pine, black spruce, and trembling aspen predicted by
the A-model, and that predicted by the F-model at each latitude from 48 to 546N over time slices 2010–2039, 2040–2069, and
2070–2099 in the eastern Canadian boreal forest. The error bars were shown by the short dashed lines.
doi:10.1371/journal.pone.0056758.g005
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Mechanism of Adaptation, Acclimation and Plasticity
Aspen, birch, spruce, and pine are typically fire-adapted, wind-

pollinated species, and bear high genetic variability [34,46]. The

trees currently growing at the sites have genetically adapted to the

local environmental and climate conditions, and would not be able

to fully adapt to future climatic conditions considering the rate of

changes and the pace of genetic selection [34,47]. However, they

can demonstrate some growth plasticity to respond to climate

warming such as early onset of xylem cell production [48,49],

spring early flowering, budburst, and shoot extension [49,50]. As

the next generation develops acclimation of seeds to new climatic

environment and selection of best adapted genotypes will

contribute to a better response to the changing climate. Common

garden experiments have shown high among-population levels of

genetic variation for quantitative traits associated with adaptation,

geographic climatic gradients, and genotype-by-environment

interactions [34], providing strong evidence of local adaptation

of populations to climate [51]. Therefore, as time elapses we can

predict a gradual transition between a response to climate

associated with the current conditions (the F-model) to a more

adapted response to the future climate (the A-model). It may take

several generations and a constant climate for trees to reach an

optimal response to future climate.

Model Limitations
Our simulation results might be biased by different periods of

calibration for different tree species/latitudes or lower explained

variance in the calibration model (adjR2). Future predictions might

be also influenced by other external factors that were not involved

in the models, such as fire disturbances [16,], species competition

[52], as well as the potential for a direct CO2 fertilization effect

[53] or possible nitrogen deposition [54]. Moreover, choosing a

calibration model derived from the southern populations for

predicting a northern population neglects the genetic differences

(in contrast to the phenotypic differences). However, if the

southernmost populations are already genetically adapted but

the northernmost populations are not able to adapt to the

warming by 2099, there would be genetic differences between the

southernmost and northernmost populations. As a result, the

southernmost models-based growth prediction for the northern

population would have already included genetic differences in the

simulation. Therefore the current approach does not conclusively

allow for disentangling genotypic and phenotypic variation.

Finally, future growth change prediction was based on the

standardized tree-ring indices, not the absolute growth change in

ring width. Actual growth can be calculated through multiplying

mean annual ring-width growth during 1961–1990 with the

percentage change predicted by the two models (Table S5).

Implications
Overall, the main trend demonstrated by both the A- and F-

model simulation results is that stands to the north of the

vegetation transition zone of 49uN would mostly increase growth,

whereas those at south of 49uN would decrease growth in the

current century. In terms of species, the results indicate that pine

and birch might benefit the most and least, respectively, from

climate warming, and spruce and aspen are intermediate species.

Our results suggest that climate warming will not favour deciduous

species in eastern Canada in the long term, though it may for the

next few decades. This result is contrary to the general expectation

of increased growth of boreal deciduous species [55]. Our results

altogether further suggest that there might be a potential shift in

forest composition and structure from south to north. That is, the

southern boreal mixedwood forest might gradually develop into

the coniferous-dominated boreal forest with warming over time.

As a consequence, forest productivity might be increasing in the

north but decreasing in the south. This will further have profound

impacts on the sustainable forest management and boreal carbon

cycles and equilibrium. Our modeling approach and concept in

the study could be used as a template to investigate growth

response of other tree species to climate warming at mid-high

latitudes of the Northern Hemisphere, which may allow us to

further quantify how forest growth, structure, and composition will

respond to and shift in a future warming climate.

Supporting Information

Figure S1 Positive climate anomalies of future three
subperiods 2010–2039, 2040–2069, and 2070–2099 (from
bottom to top) from each model in relative to mean
climate during the period 1961–1990 (See Table S4 for
the reference values) along the latitudinal gradient in
eastern Canada. Abbreviations: Tmax (anomalies for mean

maximum temperature during each subperiod), Tmin (anomalies

for mean minimum temperature during each subperiod), Precip-

itation (anomalies for mean total precipitation during each

subperiod), drought code (anomalies for mean drought code

during each subperiod). See definition for scenarios abbreviations

in the text. The climate anomalies values were shown in the

figures.

(TIF)

Figure S2 The predicted mean growth change of
trembling aspen, paper birch, black spruce, and jack
pine at 46–546N under the F-model. The calibrated model

for paper birch at 47uN was not established and thus the predicted

mean growth change was not shown.

(DOCX)

Table S1 General circulation models (GCM) including
Canadian third-generation coupled global climate mod-
el (CGCM3), UK Hadley Centre HadCM3, Max Planck
Institut für Meteorologie ECHAM4 and Canadian Re-
gional Climate Model (CRCM3), their corresponding
scenarios and the storylines (from the worst to the best)
that describe the relationships between the forces
driving greenhouse gas and aerosol emissions and their
evolution during the 21st century applied in this study.
(DOCX)

Table S2 Statistics of the model calibration and verifi-
cation for trembling aspen, paper birch, black spruce
and jack pine along the gradient. Significance level is at

p,0.5. Note: r: correlation coefficient; R2: explained variance;

adjR2: square of the multiple correlation coefficients following

adjustment for loss of degrees of freedom; SE: standard error of the

predictions; RE: reduction of error statistic, which is a measure of

shared variance between the actual and modelled series, but is

usually lower than the calibration R2. A positive value signifies that

the regression model has some skill [24]. PM: product means test

[35]; ST: sign test [35]. The italic texts indicate insignificant

values.

(DOCX)

Table S3 The calibrated full-period climate-growth
(Tree-Ring Index, TRI) models for trembling aspen,
paper birch, black spruce, and jack pine along the
latitudinal gradient from 466N to 546N. Note: The

chronology full period and adj R2 of each model were listed in

Table S2. Monthly climate variables were abbreviations in the

model, for example climate variables in May, p5p and p5 indicates
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precipitation in the previous and current May, respectively;

tmax5p and tmax5 indicates maximum temperature in the

previous and current May, respectively; tmin5p and tmin5

indicates minimum temperature in the previous and current

May, respectively; dc5p and dc5 indicates drought code in the

previous and current May.

(DOCX)

Table S4 The mean climate values (±SD) during the
reference period of 1961–1990 over the latitudinal
gradient 46–546N in eastern Canada. Note: Max T and

Min T: Mean maximum, and minimum temperature during

1961–90; Precipitation: mean total annual precipitation during

1961–90; Drought code is mean drought code during 1961–90.

(DOCX)

Table S5 Mean annual ring width [RW (±SD) mm]
growth of the four species from 1961 to 1990 over the

latitudinal gradient 46–546N in eastern Canada. Note: NA

indicates that stands were not found at 52uN.

(DOCX)
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