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1  | INTRODUC TION

In North America, one of the most sudden collapses of mam-
mal populations on record is that of hibernating bat populations, 
caused by white-nose syndrome (WNS, Frick, Pollock, et al., 2010). 

After the initial discovery of a bat population contaminated by 
Pseudogymnoascus destructans (Pd; Ascomycota) in the State of 
New York (USA), over 5.5 million bats had died from WNS annu-
ally (Froschauer & Coleman, 2012), with a regional mean of mor-
tality rates of 73% (Frick, Pollock, et al., 2010). Pd is a non-native 
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Abstract
In North America, the greatest and most sudden threat to hibernating bats is white-
nose syndrome (WNS), which has caused massive declines in populations since 2006. 
Other determinants of bat dynamics, such as the climate, and the effect of reduction 
in the number of individuals sharing foraging space and summer roosting habitat may 
have an effect on population dynamics. We analyzed transect acoustic bat surveys 
conducted with ultrasonic detectors in 16 regions in Quebec, Canada, between 2000 
and 2015. We used piecewise regression to describe changes in activity over time 
for each species and a meta-analytic approach to measure its association with the 
North Atlantic Oscillation (NAO). As expected, mouse-eared bat (Myotis spp.) activ-
ity sharply declined after the onset of WNS, down by 79% after 3 years. In contrast, 
big brown/silver-haired bat activity increased over the same period, possibly due to 
a release of competition. Hoary bats and red bats remained present, although their 
activity did not increase. Myotis activity was positively correlated with a one-year 
lag to the NAO index, associated with cold conditions in winter, but warm autumns. 
Big brown/silver-haired and hoary bats were also more active during NAO-positive 
years but without a lag. We conclude that combinations of threats may create rapid 
shifts in community compositions and that a more balanced research agenda that 
integrates a wider range of threats would help better understand and manage those 
changes.
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psychrophilic fungus that preferentially develops at temperatures 
between 4°C and 20°C, which are commonly measured in bat hiber-
nacula during winter (Blehert et al., 2009; Gargas, Trest, Christensen, 
Volk, & Blehert, 2009; Minnis & Lindner, 2013). The species most 
affected are the mouse-eared bats (Myotis spp.), including the little 
brown bat (M. lucifugus) and Northern long-eared bat (M. septentrion-
alis), as well as tricolored bats (Perimyotis subflavus). Big brown bats 
(Eptesicus fuscus) share hibernacula with Myotis species and have also 
been diagnosed with WNS (Blehert et al., 2009). The latter is some-
times depicted as resistant to Pd infection (Bernard, Foster, Willcox, 
Parise, & McCracken, 2015), but new evidence suggests tolerance 
rather than resistance to Pd (Dorville, 2019); in any case, their popu-
lations have not suffered the same loss as other hibernating species.

Migratory bats such as the eastern red bat (Lasiurus borealis), 
the silvered-haired bat (Lasionycteris noctivagans), and the hoary bat 
(Lasiurus cinereus) do not hibernate in caves, and thus, they are not di-
rectly threatened by WNS (Bernard et al., 2015). However, they are 
vulnerable to other threats, most notably collisions with wind turbines 
(Arnett et al., 2008). The effect of wind turbines is considered to be 
large enough that it could cause hoary bat populations to decline by as 
much as 90% in the next 50 years, from an estimated initial population 
of 2.5 million (Frick et al., 2017). Bats are also vulnerable to pesticides, 
as well as to habitat loss and fragmentation, which are known to have 
caused steady population declines in migratory bats over the past few 
decades, most notably in red bats (Carter et al., 2003; Whitaker, Brack, 
& Cope, 2002; Winhold, Kurta, & Foster, 2008).

When some species decline, others that share the same re-
sources might benefit from a competitive release (Larsen, 1986; 
Ruscoe et al., 2011). Insectivorous bats are known to compete 
for foraging resources (Carter, Menzel, Chapman, & Miller, 2004; 
Hickey, Acharya, & Pennington, 1996), as well as hibernating, re-
productive, and roosting sites (Perkins, 1996; Thalken, Lacki, & 
Johnson, 2018). Thus, we expect that a competitive release has oc-
curred in insectivorous bats following the onset of WNS (Jachowski 
et al., 2014), which would allow species like big brown bats to ex-
ploit the portion of their diet that is shared with little brown bats, 
as found by Morningstar, Robinson, Shokralla, and Hajibabaei 
(2019) in Ontario. Additionally, O’Keefe, Pettit, Loeb, and Stiver 
(2019) found that the patterns in hibernacula mirrored the decline 
in Myotis, as well as the stability in big brown bat summer popu-
lations. It could mean that big brown bats would benefit from a 
competitive release for roosting locations in the long term, as well 
as increased availability of foraging habitat, resulting in better sur-
vival and reproduction.

Besides catastrophic events like the WNS, bats probably re-
spond to subtle impacts of weather and climate, as exemplified 
by the association between Leisler's bat (Nyctalus leisleri) activity 
and weather in spring and winter (Schorcht, Bontadina, & Schaub, 
2009). For all species, a warm autumn with more insects could 
have a positive impact on reproduction, hibernation, and first-year 
survival, as it is the season during which mating and prehiberna-
tion fat accumulation occurs (Ewing, Studier, & O’Farrell, 1970; 
Kunz, Wrazen, & Burnett, 1998) and particularly for juveniles 

(Kunz et al., 1998). For hibernating species, mild winters with lit-
tle temperature fluctuations would reduce energy expenditures 
for bats which choose to roost near cave entrances rather than in 
deeper, more stable locations (Brack, 2007).

In the Province of Quebec (Canada), bats have been monitored 
annually since 2000 using recorded detections on motorized acous-
tic transects, that is, prior to and following the onset of WNS (Jutras, 
Delorme, Mc Duff, & Vasseur, 2012). We provide a first in-depth anal-
ysis of those surveys, examining to what extent WNS is temporally 
associated with bat populations, and how yearly changes in activity 
are driven by weather as modulated by climatic variables. We examine 
six predictions: (a) that Myotis species decline from the onset of WNS, 
consistent with estimates from the USA (Frick, Pollock, et al., 2010); 
(b) that such declines create a release from competition for foraging 
space thus leading to a relative increase in the activity of species unaf-
fected by WNS; (c) that migratory bats decline with the creation of new 
wind energy facilities; (d) that stochastic fluctuations in bat activity are 
modulated by climatic variables; (e) that years with long and warm falls 
would benefit all bat species and result in an increased recorded activ-
ity the following summer; and (f) that mild winters are associated with 
high hibernating bat activity in the following summer for species at risk 
of hibernating in unstable conditions in caves.

2  | MATERIAL S AND METHODS

2.1 | CHIROPS network

The Quebec network for acoustic bat monitoring, known as 
CHIROPS (Jutras et al., 2012), relies upon volunteers, technicians, 
and biologists from the provincial wildlife ministry (Ministère de la 
Faune, des Forêts et des Parcs; MFFP). At its inception in 2000, the 
network consisted of three listening transects using existing roads 
and included nine transects by 2009. In 2015, 16 regions in the prov-
ince of Quebec participated in the survey (Figure  1, Table  1). The 
group located the transects in a forested area when possible (one 
exception being Laval, which is located in the city) representative 
of the type of forest typical of the area (see Table 1) and included 
preferred habitats for, such as wetlands or watersheds. They usually 
selected them following a year of assessment of multiple potential 
transects for the same area, after which they chose the candidate 
deemed most suitable for bat recording based on the preselection 
results. Selected transects had to be about 20 km in length, in an 
approximate triangular, U- or 8-shaped form, and located on quiet 
and unfrequented roads. Each spring, the participants were assigned 
a detection kit consisting of an ultrasonic detection device (see 
Transect Monitoring) and a GPS receiver.

2.2 | Description of the regions

In the southwestern part of the province, transects were mostly 
located outside of a city, except for the one located in Laval. This 
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area is densely populated, and agricultural lands are often present 
along the transects that were surveyed. The Montérégie transect 
was added in 2012 to compensate for the habitat loss that occurred 
in the Laval transect over the years. In the northwest (47° N, 74° W), 
the landscape is more heavily forested, particularly in the Nord-du-
Québec administrative region. Northeastern transects were located 
near small- to medium-sized towns with a large proportion of fields 
and some forest stands. In the southeast, transects were located 
mostly in rural areas.

Wind energy facilities existed in the province before 2000, but 
the industry has grown more rapidly, especially since 2011 (Figure 2). 
The proximity to a wind energy facility increased for most transects, 
but it mostly affected northeastern transects that were located in 
the regions of Gaspésie, Charlevoix, Chaudière-Appalaches, Côte-
Nord, and Bas-Saint-Laurent.

2.3 | Transect monitoring

During monitoring nights, participants recorded echolocation 
calls using an ultrasonic detector (AnaBat; Titley Scientific) cou-
pled to a tape recorder. From 2012, Anabats were replaced by 
Anabat II, which allowed automatic recording on a CF card rather 

than manual recording on a cassette. Participants conducted 
CHIROPS surveys between 15 June and 31 July of each year 
(mean: 194th day of the year, SE  = 0.15). Most years, the mean 
sampling date fell between 10 July and 14 July, except for 2001 
(mean = 9 July), 2002 (4 July), and 2008 (16 July). We kept the sur-
veys that were completed and excluded any survey that was con-
ducted outside of the allowed date period. They were instructed 
to select a maximum of 4 nights with no precipitation, wind 
speeds below 5  km/h, and a temperature that was at or above 
the local seasonal mean. The mean sampling effort per transect 
is detailed in Table  1. In each region, a survey team traveled in 
a vehicle at 20 km/h. After completing the 20-km-long transect 
once, they drove back to the beginning of the transect to sample 
it a second time, for a total of 40 km. When a call was detected, 
participants remained stationary for 2  minutes while pointing 
the detector toward the bat. This maneuver originally helped to 
improve call quality from the Anabats, which were coupled to 
a cassette recorder and, therefore, identification accuracy. The 
transects typically began 15 min after sunset (mean starting time 
9:20 p.m., SD = 28 min) and ended 2 hr 35 min later in average 
(SD  =  42  min), which is well within the period of peak activity 
found in the province of Quebec for all species (Faure-Lacroix, 
Desrochers, Imbeau, & Simard, 2019).

F I G U R E  1   Location of motorized recording transects monitoring bat activity as of 2015 in Quebec, Canada. A description of each 
administrative region can be found in Table 1
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2.4 | Climatic data

To assess the influence of climate on bat activity in the province, 
we used the North Atlantic Oscillation (NAO) index from 1999 
to 2015 (National Center for Atmospheric Research Staff, 2018), 
a periodic index calculated from the difference of the sea-level 
surface pressure between the Subtropical High (an area between 
35°N and 40°N in the North Atlantic) and the Subpolar Low (over 
Greenland, Climate Prediction Center, 2012). Although several 
climate indices can be used according to their geographical influ-
ence (see a review by Stenseth et al., 2003), the use of NAO index 
is generally prevalent in eastern North America given that it has 

measurable effects on terrestrial species, including amphibians, 
mammals, and birds (Forschhammer, Post, & Stenseth, 1998). The 
advantage of NAO is that such a global index is less sensitive to 
spatial scales than local indices and may relate more strongly to bi-
ological effects (Hurrell, 1995). In Canada, positive values of NAO 
are normally associated with cooler ambient temperatures, north-
ern winds, and dry conditions, whereas negative values are associ-
ated with warm and wet conditions (Hurrell, Kushnir, Ottersen, & 
Visbeck, 2003). To confirm the influence of climatic variations on 
the local weather, we used data that were recorded at the closest 
weather stations (Environment Canada, 2016) from 1999 to 2015 
(see Table 1).

F I G U R E  2   Proximity of each region 
to wind energy facilities. a) The curves 
are the sum of the inverse of the 
squared distance of all facilities to each 
transect centroid, b) cumulative number 
of windfarms in the province, and c) 
cumulative theoretical power (megawatts) 
of the windfarms
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We calculated several versions of the NAO index: a mean of the 
12  months preceding each summer (yearly NAO) and one for each 
season (autumn, winter, spring, summer). By doing this, we accounted 
for the specific movements of each group of bats. Even though their 
specific seasonal movements are largely unknown in the province, it 
is safe to say that hibernating species remain in Northeastern America 
over winter even when considering potential seasonal movements be-
tween hibernacula and summer roosts ranging from tens to hundreds 
of kilometers (Neubaum, O’Shea, & Wilson, 2006; Norquay, Martinez-
Nuñez, Dubois, Monson, & Willis, 2013), while migrating species 
leave during autumn and come back the following year (Cryan, 2003). 
Consequently, the latter group may only be significantly affected by 
northeastern conditions as modulated by NAO from the current sum-
mer or the previous summer. However, we included the possibility of 
a one-year lag to the response to climate conditions. In mid-June/early 
July, Myotis give birth to pups which fledge after ca. 6 weeks (Powers, 
Kandarian, & Kunz, 1991; Wimsatt, 2012), while big brown bats give 
birth in June and pups take flight 3 to 5 weeks later (Kurta, Kunz, & 
Nagy, 1990). Big brown pups are likely detected during the late-June/
late-July surveys that same year, while more of the activity from Myotis 
pups would be recorded the following year since they start fledging 
later than big brown bats. A lagged effect of weather on body con-
dition has also been detected in other species, notably through their 
effect on reproduction (Simard, Huot, de Bellefeuille, & Côté, 2014).

2.5 | Detections and bat activity

We assessed bat activity by counting the number of detected passes 
for each species using motorized transects. The consulting firm WPS 
(formerly Envirotel 3,000) manually identified calls and considered a 
pass to be a minimum of 3 calls per 15-s file. They identified the calls 
based on typical shapes of the calls of bats found in the area and 
known to the consulting firm and rejected those they could not iden-
tify because of poor recording quality and we validated the iden-
tifications using a DFA analysis (Adams, 2013). Calls of big brown 
and silver-haired bats are cryptic, and thus, they were combined in 
further analyses to minimize errors in identification (hereafter, big 
brown/silver-haired). Myotis species, which include little brown, 
northern long-eared, and eastern small-footed bats, were also con-
sidered as a group to minimize errors. In our area, little brown bats 
typically account for most detections, followed by northern long-
eared bats; eastern small-footed bats are rarely detected (MFFP, un-
published). The calls of eastern red bats, hoary bats, and tricolored 
bats are distinctive enough to be considered separately.

2.6 | Measuring temporal dynamics within regions

To assess sudden or gradual changes in activity for each species, 
we conducted piecewise regressions using the segmented package 
(Muggeo, 2015) in R (R Core Team, 2016). Because the transects 
were resampled twice in the same night and visited multiple times 

a year, we summed the number of calls for each transect every year, 
as was done by Crewe, Taylor, and Lepage (2016). Because we used 
count data and that the sampling effort was of constant distance but 
various time lengths, we used a generalized linear model function 
(glm) with a Poisson family and added the log of the sampling ef-
fort in minutes as an offset. In piecewise regressions, the independ-
ent variable is segmented into a predetermined number of intervals 
and a separate regression is fitted for each interval, which allows the 
estimation of “breakpoints,” that is, regressor values at which the 
relationship changes. For hibernating species, the breakpoint was in-
terpreted as corresponding to the period of contamination by WNS 
and two intervals that represented the periods pre-WNS and ongo-
ing WNS. We had access to a list of years of first assessment of WNS 
in each region, which corresponded to the year when a sick bat was 
first reported in that area. In some case when no sick bat has been 
found in a region, the first assessment date has been inferred from 
the neighboring regions. According to the year of the first assessment 
of WNS for each region (Table 1), we split regions into two groups: an 
“early-onset” group for which the first detection of WNS by regional 
authorities occurred before 2012; and a “late-onset” group for which 
the first detection occurred after 2012 and the one region for which 
the first signs of WNS were documented in 2015. We assumed two 
intervals: one covering the years before the onset of WNS and one 
following the onset of WNS. In the piecewise regressions, we used 
2011 as an arbitrary starting point to look for breakpoints (psi value) 
if the region belonged to the early-onset group and 2014 if it be-
longed to the late-onset group. For migrating species, which should 
not be affected negatively by WNS, the value of 2011 corresponds 
to the year before the beginning of the construction of several wind 
energy facilities (Figure 2). We split the transects into two groups: 
the northeastern transects (n = 5, see methods for the list) closest to 
the major facilities and the rest of the province (n = 11).

2.7 | Estimating climatic effects

We tested variation in the NAO index on bat activity for each species 
using meta-analysis, with each region treated as a separate “study.” A 
meta-analysis aggregates data from multiple studies or in this case, 
multiple sites from a single study. In all sites, each bat species was con-
sidered a separate population that could respond differently to several 
variables, and as it is common in meta-analyses, we did not work with 
one single a priori explanatory variable. We detrended variables using 
linear or LOESS regressions when required (Fox & Weisberg, 2018). 
We computed Pearson product-moment correlations (r) for each spe-
cies (Borenstein, Hedges, Higgins, & Rothstein, 2009). Using the meta-
phor package in R (Viechtbauer, 2015), we standardized the Pearson 
coefficients as z-scores using Fisher's Z transform. We used rz to calcu-
late the effect size (E++), weighted with the reciprocal of the sampling 
variance for each region. It considered a number of degrees of freedom 
of 16 or less according to the number of regions included in the analy-
sis. We considered effect sizes as significant if their confidence interval 
did not include zero. To assess whether the strength of the relationship 



5232  |     FAURE-LACROIX et al.

was modulated by the location of the region, we computed separate 
group effect sizes (E+) for each quadrant in the province (North, East, 
South, and West), which took into account the number of sites in each 
group. The number of degrees of freedom was equivalent to the num-
ber of regions included in the analysis. We calculated 95% confidence 
intervals (CI) by bootstrapping with 999 resamples of the data for each 
group. We computed Cochran's Q heterogeneity test (Cochran, 1954) 
to evaluate differences in effect sizes within groups (QE) and between 
groups (QM). We separated the climatic analysis and the temporal anal-
ysis related to WNS and wind energy facilities because we chose to 
analyze the climatic data as a meta-analysis, for which the use of beta 
coefficients is often considered dubious, even though it may be robust 
enough with a much larger sample size than it is the case in our study 
(Peterson & Brown, 2005).

3  | RESULTS

3.1 | Relationship between white-nose syndrome 
and bat activity

Myotis was the most frequently encountered group of species 
prior to the first detection of WNS, but we recorded more big 

brown/silver-haired bats activity in the years following the es-
timated onset of WNS. Before WNS, we recorded a mean (±SE) 
of 34.18  ±  3.11 passes/year for Myotis; during the years after 
the onset of WNS, this count dropped by 79%, that is, down to 
7.1  ±  1.55 passes/year. Mean nightly detection for big brown/
silver-haired bats more than doubled from 20.54 ± 2.81 passes/
year before WNS to 43.22  ±  5.61 passes/year in the years fol-
lowing the breakpoint. Comparing raw means of activity before 
and following the breakpoint, red bat activity had remained bio-
logically unchanged from 1.51 ± 0.23 passes/year to 2.35 ± 0.68 
passes/year. Hoary bats also remained biologically stable when 
comparing global mean activity before and after the breakpoint. 
However, until the beginning of the progress of wind energy facili-
ties in 2012, the mean yearly detection was 30.05 ± 3.23 passes/
transect while after that period, the mean number of detections 
decreased to 23.62 ± 4.61 passes/transect. The mean yearly pass 
count of tricolored bats before the breakpoint changed from 
0.07 ± 0.03 to 2.1 ± 0.3 passes/night following breakpoint. This 
generally low activity did not allow us to draw strong conclusions 
regarding the effects of WNS on this group.

Piecewise regression showed that, globally, the levels of bat 
activity stopped increasing in 2009 (SE = 0.74, p =  .03, Table 2). 
Myotis activity increased throughout the province as a function 

TA B L E  2   Summary of the breakpoints and slopes found in piecewise regression for each species in the province of Quebec, Canada

Group Species

Breakpoint

Slope before breakpoint [CI] Slope after breakpoint [CI]Year SE

Early-onset Big brown/silver-haired 2010*** 0.29 0.017 [0.003, 0.030] 0.227 [0.200, 0.254]

Hoary 2012*** 0.26 0.066 [0.055, 0.077] −0.125 [−0.169, −0.081]

Red 2012*** 0.27 0.284 [0.236, 0.333] −0.686 [−1.014, −0.358]

Myotis 2009*** 0.13 0.074 [0.060, 0.088] −0.407 [−0.449, −0.364]

Tricolored 2013*** 0.41 0.894 [0.578, 1.210] −0.006 [−0.227, 0.215]

Total 2002** 0.86 −0.087 [−0.241, 0.067] 0.038 [0.034, 0.042]

Late-onset Big brown/silver-haired 2005*** 0.41 1.042 [0.452, 1.633] −0.231 [−0.312, −0.15]

Hoary N/A — — —

Red N/A — — —

Myotis N/A — — —

Tricolored N/A — — —

Total 2012*** 0.49 0.002 [−0.017, 0.021] −0.430 [−0.672, −0.188]

Overall Big brown/silver-haired 2003*** 0.18 −0.294 [−0.359, −0.229] 0.133 [0.124, 0.142]

Hoary 2012*** 0.29 0.056 [0.046, 0.066] −0.116 [−0.16, −0.072]

Red 2012*** 0.30 0.315 [0.268, 0.362] −0.666 [−0.988, −0.343]

Myotis 2010*** 0.13 0.053 [0.040, 0.066] −0.364 [−0.400, −0.328]

Tricolored 2013*** 0.42 0.852 [0.546, 1.158] 0.011 [−0.207, 0.230]

Total 2009* 0.74 0.048 [0.038, 0.058] 0.008 [−0.003, 0.018]

Note: The data span from 2000 to 2015 and the response variable considered is the sum of the counts per year per transect. The early-onset group 
comprises all regions for which WNS was detected before 2012, the late-onset group comprises regions for which WNS was detected after 2012, 
and the overall group is made of all regions. The table shows N/A in cases where the analysis found no significant breakpoint.
***p < .001. 
**p < .01. 
*p < .05. 
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of the year up until 2010 (SE = 0.13, p < .001). However, in 2009 
(SE = 0.13, p < .001), the regions where WNS was detected the earli-
est started experiencing a drop in Myotis activity (β = −0.40 ± 0.04, 
p  <  .001). The effect of WNS measured in early-onset regions 
was sufficiently large to reflect the overall activity count for that 

group, even though the late-onset regions had yet to show any 
significant decline of activity. In general, the inclusion or exclusion 
of the Laval site did not have a major effect on the result, mostly 
because of the low number of detections.

Piecewise regressions for big brown/silver-haired bats showed 
marked changes in the separate regression estimates, like those 
of Myotis. In the early-onset regions, the activity of the former 
species increased significantly (β = 0.22 ± 0.02, p = .01) from 2010 
onwards (SE = 0.29, p < .001) instead of decreasing, one year fol-
lowing the beginning of declines in Myotis activity. But the break-
points identified for the late-onset and the province as a whole 
did not match any known threat that would have occurred around 
these years.

The breakpoint for red bats in both early-onset region and in the 
province as a whole was in 2012 (SE = 0.27, p < .001) and their activity 
subsequently went back down (early: β = −0.69 ± 0.32, p = .01, over-
all: β = −0.67 ± 0.32, p = .01). When considering the impact of wind 
energy facilities, the breakpoint for red bats was in 2013 in both the 
northeastern regions close to wind energy facilities and those further 
away (Table  3); however, large intervals around the slope estimate 
after the breakpoint in the northeastern group make it inconclusive. 
Inspection of the residuals showed some linearity issues that were 
more marked after the breakpoint, mainly due to the low number of 
detections before 2004 and after 2013. In the case of hoary bats, their 
breakpoint was in 2012 in early-onset regions (SE = 0.26, p < .001), as 
well as globally (SE = 0.29, p <  .001) but examining the regressions 
from a windfarm perspective did not shed light on a relationship be-
tween breakpoint years and a known threat. The overall breakpoint 
for tricolored bats was in 2013 (SE = 0.41, p < .001), although there 
was very little activity in this species, either before or after 2013, and 
investigation of the residuals suggests linearity issues.

3.2 | Association between NAO and local weather

Positive NAO values are generally associated with cold and dry con-
ditions, as is generally the case in our study (Figure 3). Even if NAO-
positive years resulted in colder temperatures during winter, spring, and 
summer, autumn temperatures during our study were, in fact, warmer 

TA B L E  3   Summary of the breakpoints and slopes found in piecewise regression for migratory species in the province of Quebec, Canada

Group Species

Breakpoint

Slope before breakpoint [CI]
Slope after 
breakpoint [CI]Year SE

Northeastern Hoary 2005* 0.84 −0.09 [−0.20, 0.02] 0.08 [0.07, 0.10]

Red 2013*** 3.33 0.34 [0.27, 0.42] −32.51 [−2119, 2054]

Other transects Hoary 2009*** 0.36 0.09 [0.07, 0.12] −0.09 [−0.11, −0.06]

Red 2013*** 0.22 0.30 [0.24, 0.36] −0.73 [−1.07, −0.40]

Note: The data span from 2000 to 2015 and the response variable considered is the sum of the counts per year per transect. The northeastern group 
comprises regions closest to wind energy facilities, and it is compared to the other regions.
***p < .001. 
**p < .01. 
*p < .05. 

F I G U R E  3   Based upon climate values that were recorded at 
weather stations closest to each of the 16 bat transects in Quebec 
(Canada), NAO-positive summers were colder and drier than 
NAO-negative summers. Indeed, as summer NAO increased, we 
observed a) an increase in the number of cold days below 10oC 
and b) a decrease in the number of rainy days that were recorded. 
Only the North–South difference was significant; hence, the lack of 
representation of East and West
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in positive than in NAO-negative years (Figure 4). NAO-positive sum-
mers tend to have more days during which the minimum daily tempera-
ture falls below 10°C, a threshold that is considered limiting to foraging 
(Anthony, Stack, & Kunz, 1981; Ciechanowski, Zając, Biłas, & Dunajski, 
2007; Frick, Reynolds, & Kunz, 2010). The temperature in southern lo-
cations fell less frequently below 10°C, and they had fewer rainy days 
than northern locations. In the west, snow melts about 20 days earlier 
during NAO-negative years than during NAO-positive years.

3.3 | Meta-analyses of climatic variables

Myotis was positively correlated to the previous year's NAO index 
(E = 0.11, CI = 0.03–0.19, Figure 5), meaning high activity when the 
previous year was cold and dry, regardless of the current year's 
conditions. It was more specifically correlated to the NAO index 
during the winter that year (E = 0.09, CI = 0.01–0.16). The effect size 
of the yearly NAO index was small, but significant for big brown/
silver-haired (E = 0.10, CI = 0.01–0.18), and more specifically to the 
fall (E = 0.10, CI = 0.03–0.18) and winter (E = 0.10, CI = 0.01–0.19) 
and similar to hoary bats (yearly: E  = 0.14, CI = 0.06–0.22, win-
ter: E  =  0.12, CI  =  0.04–0.20), showing that those species were 
more active during NAO-positive years, that is, having cold and 
dry conditions. Red bat activity was negatively correlated with 
the previous summer's NAO index (E = −0.18, CI = −0.26, −0.09), 
meaning low activity in the year following a cold and dry sum-
mer. They were also positively correlated to spring temperatures 
(E  =  0.10, CI  =  0.01, 0.20). The low count of tricolored bat calls 
made it difficult to detect any correlation between activity and 
climate conditions.

3.4 | Effect of geographical location on the 
relationship between NAO index and activity

The activity levels of big brown/silver-haired and hoary bats were 
positively correlated to the current year's NAO index, and that ef-
fect was significantly different for the eastern and western regions 
of the province (P(QM) < 0.0001). The effect of the NAO index on 
activity in western regions was significant and positive (E+ = 0.21, 
CI = 0.13, 0.29), whereas it was not significantly different from zero 
in eastern regions (Figure 6). The effect of the NAO index on red 
bat activity also varied according to their geographical locations 
(P(QM) < 0.001). The effect of the previous summer's NAO index was 
only significantly different from zero in northern regions (E+ = −0.26, 
CI = −0.36, −0.15).

4  | DISCUSSION

Our results support 3 of our 6 predictions and partly support 2 of 
them. We observed a decline in the activity of Myotis species after 
initial WNS detection in the regions. We only observed an increase 
in activity for big brown/silver-haired bat activity after the initial de-
tection of WNS, with a matching breakpoint in 2010 in early-onset 
regions. Globally, we found that the constant increase in bat activity 
plateaued around 2009, which coincides with the breakpoints ob-
served in Myotis and big brown/silver-haired bats. We saw stochas-
tic fluctuations modulated by climatic variables in all species except 
tricolored bats and warm falls appeared beneficial to most of them. 
However, contrary to our expectations, cold and dry winters are 
beneficial to hibernating species.

F I G U R E  4   Based on climate values that were recorded at weather stations closest to each of the 16 bat transects in Quebec (Canada), 
NAO-positive years translated into a) warmer nights in the autumn, b) colder winters, and c) later snowmelt in the West. The difference was 
only significant between East and West; hence, the lack of representation of North and South
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4.1 | Effect of WNS and windfarms on bat activity

Our finding of a 79% drop in Myotis activity following the first assess-
ment of WNS shows a decline just below those detected in popula-
tions the province, which suggested a 95% decline from hibernacula 
counts, and 94% from surveys in 10 maternity colonies (Équipe de 
Rétablissement des Chauves-souris du Québec, 2019). They are con-
sistent with reported capture rates (Francl, Ford, Sparks, & Brack, 
2012; Ingersoll, Sewall, & Amelon, 2016; Moosman, Veilleux, Pelton, 
& Thomas, 2013) and other results from acoustic surveys, which re-
ported a 75% Myotis decline following WNS introduction in one case 
(Frick, Pollock, et al., 2010) and a 72% decline in another (Brooks, 
2011). However, cases where the decline occurred before the official 
detection suggest that WNS affected the region before it was de-
tected by the local teams. Similarly to our assessments of big brown/
silver-haired bat activity, Morningstar et al. (2019) found a significant 
increase in big brown bat activity, coinciding with a decline of little 

brown bat activity following the onset of WNS in Ontario. Hauer, 
Powers, Mcnaughton, Paul, and Sewall (2019) also found a decline in 
Myotis captures and a 276% increase in big brown bat captures dur-
ing WNS. However, Francl et al. (2012) found that capture rates of 
big brown bats in mist nets increased by only 17% following the first 
assessment of WNS, which was not significant compared to captures 
before WNS. Stable capture rates of big brown bats during WNS 
were also reported by Moosman et al. (2013) and Pettit and O’Keefe 
(2017). In our case, their activity more than doubled after the onset 
of WNS. Not only might they benefit from exploiting prey resources 
previously shared with Myotis as found by Morningstar et al. (2019), 
they may also have a higher availability of roosting (Thalken et al., 
2018) and hibernating locations. Frank et al. (2014) found a 43% in-
crease in the number of big brown bats hibernating in two WNS-
affected locations, which is in line with the high numbers of big 
brown bats found in the southern part of the province (Batwach.ca, 
unpublished data).

F I G U R E  5   Meta-analysis of climate and weather variables for each bat species that was detected during the 15-year acoustic survey in 
Quebec, Canada. Effect sizes are computed for each for variable for which sufficient data were available in the 16 regions that were sampled
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Migratory species like red and hoary bats are not affected by WNS 
(Bernard et al., 2015), which showed in our results. However, they are 
known to be negatively affected by wind energy production (Arnett 
et al., 2008). We found a significant breakpoint in 2012 when wind 
energy facilities started being built mostly in the northeastern part of 
the province. The differences in activity after 2012 between the north-
eastern and the rest of the transects were not significant for red bats, 
but the activity of hoary bats significantly decreased. However, when 
the breakpoint was 2013, the second part of the piecewise regression 
was made of only 3 years, which is a bare minimum to estimate a trend. 
Preliminary analysis of additional data from 2016 to 2018 indicates that 
a slow decrease might be a trend in hoary bats, while red bats had fluc-
tuated back to 2012 activity in 2018 (unpublished data).

4.2 | Association between NAO index and 
bat activity

Similarly to other studies (Brack, Stihler, Reynolds, Butchkoski, & 
Hobson, 2002; Thogmartin & McKann, 2014), we found climatic in-
dices to be relevant predictors of bat activity, in the present case 

NAO index. Yet, the relationship between climatic conditions and bat 
activity did not conform to our prediction, as for both Myotis and big 
brown/silver-haired bats we found an increase in bat activity during 
NAO-positive years, that is, cold and dry conditions. The major dif-
ference being that the NAO effect was lagged for the Myotis but not 
for the big brown bat. Because we analyzed WNS separately from 
climate correlates, it is probable that the drastic changes in activity 
had an influence on the results of the meta-analysis. However, meta-
analyses are generally robust to individual variations (Viechtbauer, 
2015) and the fact that both Myotis and big brown/silver-haired bats 
follow similar trends climate-wise and opposite trends WNS-wise 
indicates that the effect of separating the two analyses is minimal. 
In addition, the piecewise regression is designed to detect stable 
trends across years and would only be affected by NAO values in-
creasing or decreasing in a linear fashion from or to the breakpoints, 
which would then be the same for all species.

In our study area, NOA-positive years were associated with warm 
autumns, especially in the West, followed by cold winters and delayed 
snowmelt in the West. We, therefore, suggest that the possible posi-
tive effect of NOA-positive years is likely attributed to advantageous 
autumn weather. Studies on Myotis suggested that fat deposition in 
September is particularly important, making up to 30% of prehiber-
nating fat deposition (Ewing et al., 1970; Kunz et al., 1998). Moreover, 
juvenile bats tend to have less fat than adults in early autumn and to 
extend fat accumulation until mid-October (Kunz et al., 1998). Kunz 
et al. (1998) also suggested that the capacity to store fat could be 
particularly limiting in northern latitudes, especially for young fe-
male reproduction and survival. In Québec province, September and 
October temperature can be quite variable, possibly allowing differ-
ential capacity to accumulate prehibernating fat.

Despite the warm autumns under NAO-positive years, the 
positive relationship between the NAO index and bat activity 
is still surprising as it also involves colder winters and delayed 
springs. If bats hibernate in poorly tempered locations inside the 
hibernacula (Brack, 2007; Perry, 2013a), abrupt drops in tempera-
ture may trigger arousal (Davis & Reite, 1967) that can account for 
up to 75% of energy requirements during hibernation (Thomas & 
Geiser, 1997), causing depletion of fat reserves, and compromis-
ing survival and the success of ovulation and fertilization (Kunz 
et al., 1998). It is also possible that individuals who survived 
cold and dry winters benefited from those conditions lasting 
into spring, allowing them to delay their arousal and shorten the 
amount of time exposed to unstable spring conditions (Frick, 
Reynolds, et al., 2010; Norquay & Willis, 2014) a strategy used by 
males (Norquay & Willis, 2014).

Red bats are the only species for which activity was influenced 
by lagged values of the summer NAO index rather than by the 
yearly NAO index; their activity was low in northern regions when 
the previous summer was cold (NAO-positive). As is the case in 
other migratory species (Cryan, 2003), lactating female red bats 
avoid torpor under low temperatures. Yet, red bats are known 
for a low degree of flexibility in their thermoregulatory response 
and high reproductive rate (Dunbar & Tomasi, 2006). During short 

F I G U R E  6   Group effect sizes of NAO index on big brown/silver-
haired and hoary bats located in eastern and western regions of 
Quebec, Canada. The groups are based upon geographical locations 
of the participating regions and the data cover the 15-year span of 
the survey

Geographical part of the province Group effect sizes [95% CI]
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periods of hibernation during the winter, they are known to bene-
fit from the presence of leafy litter when the ambient temperature 
ranges below 10°C (Mormann & Robbins, 2007) to minimize en-
ergy expenditure, which allows them to hibernate in a wider range 
of temperatures (Perry, 2013b). If temperatures frequently drop 
below 10°C in the spring and early summer, they might suffer from 
higher energy expenditures if they cannot benefit from a protec-
tive leafy cover, resulting in poor reproduction rates.

5  | CONCLUSIONS

In Quebec, the sharp decline in Myotis activity is consistent with the 
well-documented impact of WNS. However, as Ingersoll et al. (2016) 
have noted, several factors might be at play in stochastic changes 
and regional population declines. The current state of conservation 
and biodiversity research has been increasingly centered around 
climate change, and as we have found, there is indeed a relation-
ship between bats and climate. This being said, we want to echo 
a call from Titeux, Henle, Mihoub, and Brotons (2016) for a more 
balanced research agenda that puts in perspective and integrates 
a wider range of threats. Eventual northward shifts in wintering 
ranges related to climate change have been predicted in little brown 
bats (Humphries, Thomas, & Speakman, 2002) and Indiana bats 
(Thogmartin, King, Szymanski, & Pruitt, 2012), but these shifts may 
never occur if the species become locally extirpated.

We show an example where competition release following the 
collapsing of bats species vulnerable to an introduced fungus may 
create rapid shifts in community compositions if combined with the 
effect of human-made threats like windfarms to migrating bat spe-
cies. Thus, they should be considered together with a wider range 
of potential threats in long-term monitoring, in conjunction with the 
impact of climate change on conservation efforts.
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