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FOREWORD 

This thesis is presented in the form of three scientific articles corresponding to Chapters 

II, III and IV, being completed by a general introduction and conclusion (Chapters I 

and V, respectively). Chapters II and III have been published while Chapter IV is being 

prepared for submission. One additional review article is included in Annex A, which 

was carried out and published during the development of the present thesis. 

The three main scientific articles (Chapters II, III and IV) were developed with the 

collaboration and from the essential contribution of each of their authors. As the main 

responsible for the development of these articles, including data preparation, 

exploration and analysis, as well as their writing, I am the first author of all of them. 

My supervisors, Dr. Osvaldo Valeria and Dr. Nicole J. Fenton occupy the first and last 

co-author positions, respectively, in all these articles. Both actively contributed to their 

development, from the conception of the studies and data acquisition (either field and 

remote sensing data) to the interpretation of results and revision of the manuscripts. Dr. 

Marion Barbé and Dr. Nicolas Mansuy provided field and remote sensing data, 

respectively, for Chapter II, as well as critical and constructive reviews of the 

manuscript. Dr. Jesús Muñoz was significantly involved in the development of Chapter 

3, including the conceptualization of the study, data curation, statistical analyses and 

manuscript review and editing. The first two articles (Chapters II and III) focus on 

bryophytes and were conducted in the same region using a database built from field 

data from three previous studies carried out by Marion Barbé, Chafi Chaieb and Joëlle 

Castonguay. A certain degree of repetition is therefore inevitable. However, since the 

extension of the study area was different for both articles, the field data used for their 

development was not the same. The third article (Chapter IV) focuses on lichens in a 

study area located further north. The field data used for this third chapter were collected 

by lichenologist Mireille Martel within the framework of this thesis project. 
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The additional review article included as Annex A was performed in parallel to the 

scientific chapters. The decision to include this review as annexe was based on its 

proximate topic but not closely linked to those of the main scientific chapters of this 

thesis. Specifically, it provides a synthesis on the use of remote sensing to detect and 

predict the occurrence of rare plants. I am the first author of this article as the main 

responsible for carrying out the systematic search, information extraction, production 

and interpretation of results, and the preliminary version of the manuscript. All co-

authors, including my supervisors, Dr. Richard T. Caners, and Dr. Philippe Marchand 

contributed to its conceptualization and provided critical and constructive reviews of 

the manuscript 

Chapter I. General introduction 

Chapter II. Cerrejón, C., Valeria, O., Mansuy, N., Barbé, M., Fenton, N. J. (2020). 

Predictive mapping of bryophyte richness patterns in boreal forests using species 

distribution models and remote sensing data. Ecological Indicators, 119, 106826. 

Chapter III. Cerrejón, C., Valeria, O., Muñoz, J., Fenton, N. J. (2021). Small but visible: 

Predicting rare bryophyte distribution and richness patterns using remote sensing-based 

ensembles of small models. Plos one, 17(1), e0260543. 

Chapter IV. Cerrejón, C., Valeria, O., Fenton, N. J. (2022). Assessing alpha and beta 

diversity in inconspicuous species using satellite data at different spatial resolutions. In 

preparation for Biological Conservation. 

Chapter V. General conclusion 

Annex A. Cerrejón, C., Valeria, O., Marchand, P., Caners, R. T., Fenton, N. J. (2021). 

No place to hide: Rare plant detection through remote sensing. Diversity and 

Distributions, 27(6), 948-961. 
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ABSTRACT 

Cryptogams (bryophytes and lichens) are ubiquitous non-vascular species that 
contribute significantly to total biodiversity and play an essential ecological role in 
ecosystem functioning worldwide. Specifically, cryptogams influence water, carbon 
and nutrient cycles, as well as physical and chemical weathering, and increase stability 
of soils, preventing their erosion and regulating their temperature and humidity. 
Cryptogams facilitate ecosystem recovery following disturbances, and provide 
microhabitats for micro- and macroorganisms, and a food source for invertebrates and 
herbivores. These species are also reliable and highly sensitive indicators to 
environmental disturbances and currently face numerous human-induced threats 
mainly derived from land use and climate change. Despite this, cryptogams are 
generally neglected in conservation planning mostly due to current knowledge gaps in 
their diversity, ecology and distribution, which jeopardizes the maintenance of their 
species and ecological role. New technologies and data sources such as remote sensing 
(RS) can significantly help to fill these gaps and ultimately improve the representation 
of cryptogams in systematic conservation planning. The contribution of RS to 
cryptogam biodiversity assessments can be particularly valuable in vast and largely 
unknown regions such as boreal forests, where these species and their habitats face 
increasing human-induced threats. The general objective of this thesis is to elucidate 
the role that RS can play in the evaluation and generation of information on cryptogam 
biodiversity in a boreal context. The study region is located in the Canadian boreal 
forest, within the Eeyou-Istchee James Bay region in Northern Quebec. As specific 
objectives, Chapter II aims to predict and map diversity (species richness) patterns of 
i) total bryophytes, and ii) bryophyte guilds (mosses, liverworts and sphagna) using RS 
data; Chapter III focusses on producing predictive models of rare bryophyte species 
using RS-derived predictors in an Ensembles of Small Models (ESMs) framework; and 
Chapter IV is intended to describe and model the lichen alpha diversity (species 
richness) and beta diversity (species turnover) components parallelly using two set of 
RS-derived variables (Red and NIR; EVI2) from two sensors (Wordlview-3, WV3; 
Sentinel-2, S2) at different high spatial resolutions (1.2m; 10m), and ii) to identify 
which habitat types represent lichen biodiversity hotspots. 

The Random Forest algorithm used in Chapter II allowed us to develop spatially 
explicit models and to generate predictive cartography at 30m resolution of total 
bryophyte, moss, liverwort and sphagna richness. These models explained a significant 
fraction of the variation in total bryophyte and guild level richness, both in the 
calibration (42 to 52%) and validation sets (38 to 48%), and consistently identified 
vegetation (mainly NDVI) and climatic variables (temperature, precipitation, and 
freeze-thaw events) as the most important predictors for all bryophyte groups modeled. 
Guild-level models identified differences in important factors determining the richness 
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of each of the guilds and thus in their predicted richness patterns, which provide 
valuable information for management and conservation strategies for bryophytes. The 
RS-based ESMs developed in Chapter III built from Random Forest and Maxent 
techniques using predictors related to topography (TPI) and vegetation (EVI2, NDWI1, 
Vegetation Continuous fields, and PALSAR HVHH) yielded poor to excellent 
prediction accuracy (AUC > 0.5) for 38 of the 52 modeled species despite their low 
number of occurrences (< 30), with AUC values > 0.8 for 19 species. The actual 
presences of the 38 species modeled better than random (AUC ≤ 0.5) were accurately 
predicted, as supported by the high sensitivity values obtained that ranged from 0.8 to 
1 with an average of 0.959 ± 0.063. The distribution of these 38 species and the richness 
patterns both for total rare bryophytes and rare species at the guild level were mapped 
at 30m resolution. Chapter III also revealed a spatial concordance between rare (present 
chapter) and overall bryophyte richness patterns (Chapter II) in different regions of the 
study area, which has important implications for conservation planning. In Chapter IV, 
a total of 116 lichen species were identified. While high lichen richness was generally 
found across our plots (36.5 ± 9 species), those richer in microhabitats often harbored 
more species (R2 = 0.22) regardless of the habitat type. Differences in species 
composition were identified among plots (25.6% explained by PCoA) and habitat types 
(PERMANOVA R2 = 0.35), both being supported by differences in microhabitat 
composition (Mantel r = 0.22 and PERMANOVA R2 = 0.29, respectively). Rocky 
outcrops and undisturbed coniferous forests represented the main lichen biodiversity 
hotspots, while other habitat types were also important for maintaining overall 
biodiversity. Red and NIR variables were effective for modeling alpha and beta 
diversity at both resolutions, while EVI2, either from WV3 or S2, was only informative 
for assessing beta diversity. Poisson models explained up to 32% of the variation in 
lichen richness. Generalized dissimilarity models described well the relationship 
between beta diversity and spectral dissimilarity (R2 from 0.25 to 0.30), except for the 
S2 EVI2 model (R2 = 0.07), confirming that more spectrally and thus environmentally 
different areas tend to harbor different lichen communities. While WV3 often 
outperformed the S2 sensor, the latter still provides a powerful tool for the study of 
lichens and their conservation. 

This thesis demonstrated the ability for RS at medium and high spatial resolutions to 
characterize the habitat of inconspicuous cryptogam species, to capture diverse 
meaningful ecological features shaping their distribution, and thus to better understand 
and/or predict their biodiversity patterns. RS-based modeling frameworks proved to be 
informative even when the available baseline information on cryptogam biodiversity 
was limited. By identifying environmental drivers of cryptogam biodiversity that can 
guide specific management actions, and by providing predictive mapping of their 
spatial patterns at high level of detail across the landscape, this work unequivocally 
highlighted the high potential of RS technology for conservation purposes of 
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cryptogams. This thesis thus represents a very important step to achieve the inclusion 
of these inconspicuous and generally overlooked species into systematic conservation 
planning. 

Keywords: Alpha diversity; Beta diversity; Biodiversity components; Black spruce 
forests; Boreal forests; Conservation; Digital mapping; Machine learning; Predictive 
modeling; Rarity; Remote sensing predictors; Satellite sensors; SDMs; Unseen 
biodiversity. 

 



 

 

RÉSUMÉ 

Les cryptogames (bryophytes et lichens) sont des espèces non vasculaires 
omniprésentes qui contribuent de manière significative à la biodiversité et jouent un 
rôle écologique essentiel dans le fonctionnement des écosystèmes à l'échelle mondiale. 
Plus précisément, les cryptogames influencent les cycles de l'eau, du carbone et des 
nutriments, ainsi que l'altération physique et chimique des roches, et augmentent la 
stabilité des sols, empêchant leur érosion et régulant leur température et humidité. Les 
cryptogames facilitent le rétablissement des écosystèmes après des perturbations et 
fournissent des microhabitats pour des micro- et macro-organismes, ainsi qu'une source 
de nourriture pour des invertébrés et herbivores. Ces espèces sont également sont des 
indicateurs fiables mais très sensibles aux perturbations environnementales et sont 
actuellement confrontées à de nombreuses menaces d'origine humaine principalement 
dérivées de l'utilisation des terres et du changement climatique. Malgré cela, les 
cryptogames sont généralement négligés dans la planification de la conservation, 
principalement en raison des lacunes actuelles dans les connaissances sur leur diversité, 
écologie et distribution, ce qui met en péril le maintien de leur espèces et rôle 
écologique. Les nouvelles technologies et sources de données telles que la télédétection 
peuvent contribuer de manière significative à combler ces lacunes et, en fin de compte, 
à améliorer la représentation des cryptogames dans la planification systématique de la 
conservation. La contribution de la télédétection aux évaluations de la biodiversité des 
cryptogames peut être particulièrement précieuse dans des régions vastes et largement 
inconnues telles que les forêts boréales, où ces espèces et leurs habitats sont confrontés 
à des menaces croissantes d'origine humaine. L'objectif général de cette thèse est 
d'élucider le rôle que peut jouer la télédétection dans l'évaluation et la génération 
d'informations sur la biodiversité des cryptogames en contexte boréal. La région 
d'étude est située dans la forêt boréale canadienne, dans la région d'Eeyou-Istchee Baie-
James dans le Nord du Québec. En tant qu'objectifs spécifiques, le chapitre II vise à 
prédire et à cartographier les patrons de diversité (richesse en espèces) i) des 
bryophytes totaux et ii) des guildes de bryophytes (mousses, hépatiques et sphaignes) 
à l'aide de données de télédétection; le chapitre III se concentre sur la production de 
modèles prédictifs d'espèces de bryophytes rares à l'aide de prédicteurs dérivés de la 
télédétection dans un cadre d'ensembles de petits modèles; et le chapitre IV est destiné 
à décrire et modéliser les composantes alpha (richesse des espèces) et beta 
(changements de composition de la communauté) de la biodiversité des lichens en 
utilisant en parallèle deux ensembles de variables dérivées de la télédétection (Red et 
NIR; EVI2) à partir de deux capteurs (Wordlview-3 , WV3 ; Sentinel-2, S2) à 
différentes résolutions spatiales élevées (1,2 m ; 10m), et ii) à identifier les types 
d'habitats qui représentent les points chauds de la biodiversité des lichens. 
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L'algorithme Random Forest utilisé dans le chapitre II nous a permis de développer des 
modèles spatialement explicites et de générer une cartographie prédictive à 30m de 
résolution de la richesse totale en bryophytes, mousses, hépatiques et sphaignes. Ces 
modèles expliquent une fraction importante de la variation de la richesse totale en 
bryophytes et au niveau de la guilde, à la fois dans les ensembles de calibration (42 à 
52 %) et de validation (38 à 48 %), et identifient systématiquement la végétation 
(principalement NDVI) et les variables climatiques (température , précipitations et 
événements de gel-dégel) comme les prédicteurs les plus importants pour tous les 
groupes de bryophytes modélisés. Les modèles au niveau de la guilde ont identifié des 
différences dans des facteurs importants déterminant la richesse de chacune des guildes 
et donc dans leurs modèles de richesse prédits, qui fournissent des informations 
précieuses pour les stratégies de gestion et de conservation des bryophytes. Les 
ensembles de petits modèles basés sur la télédétection développés au chapitre III 
construits à partir des techniques Random Forest et Maxent en utilisant des prédicteurs 
liés à la topographie (TPI) et à la végétation (EVI2, NDWI1, Vegetation Continuous 
fields et PALSAR HVHH) ont donné une précision de prédiction de faible à excellente 
(AUC > 0.5) pour 38 des 52 espèces modélisées malgré leur faible nombre 
d'occurrences (< 30), avec des valeurs AUC > 0.8 pour 19 espèces. Les présences 
réelles des 38 espèces modélisées mieux que aléatoires (AUC ≤ 0.5) ont été prédites 
avec précision, comme en témoignent les valeurs de sensibilité élevées obtenues allant 
de 0.8 à 1 avec une moyenne de 0.959 ± 0.063. La distribution de ces 38 espèces et les 
patrons de richesse à la fois pour les bryophytes rares totales et les espèces rares au 
niveau de la guilde ont été cartographiés à une résolution de 30m. Le chapitre III a 
également révélé une concordance spatiale entre les patrons de richesse en bryophytes 
rares (chapitre présent) et totaux (chapitre II) dans différentes régions de la zone d'étude, 
ce qui a des implications importantes pour la planification de la conservation. Au 
chapitre IV, un total de 116 espèces de lichens ont été identifiées. Alors qu'une grande 
richesse en lichens était généralement observée dans nos parcelles (36.5 ± 9 espèces), 
celles plus riches en microhabitats abritaient souvent plus d'espèces (R2 = 0.22) quel 
que soit le type d'habitat. Des différences dans la composition des espèces ont été 
identifiées entre les parcelles (25.6 % expliquées par la PCoA) et les types d'habitats 
(PERMANOVA R2 = 0.35), tous deux étayés par des différences dans la composition 
des microhabitats (Mantel r = 0.22 et PERMANOVA R2 = 0.29, respectivement). Les 
affleurements rocheux et les forêts de conifères non perturbées représentaient les 
principaux points chauds de la biodiversité des lichens, tandis que d'autres types 
d'habitats étaient également importants pour le maintien de la biodiversité totale Les 
variables Red et NIR étaient efficaces pour modéliser la diversité alpha et bêta aux 
deux résolutions, tandis que EVI2, soit de WV3 ou S2, n'était informatif que pour 
évaluer la diversité bêta. Les modèles de Poisson expliquaient jusqu'à 32% de la 
variation de la richesse en lichens. Les modèles de dissimilarité généralisée décrivaient 
bien la relation entre la diversité bêta et la dissimilarité spectrale (R2 de 0.25 à 0.30), 
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sauf pour le modèle S2 EVI2 (R2 = 0.07), confirmant que des zones plus spectralement 
et donc environnementales différentes ont tendance à abriter différentes communautés 
de lichens. Alors que WV3 a souvent surpassé le capteur S2, ce dernier fournit toujours 
un outil puissant pour l'étude des lichens et leur conservation. 

Cette thèse a démontré la capacité de la télédétection à moyenne et haute résolution 
spatiale à caractériser l'habitat d'espèces cryptogames discrètes, à capturer diverses 
caractéristiques écologiques significatives façonnant leur distribution, et ainsi à mieux 
comprendre et/ou prédire leurs patrons de biodiversité. Les cadres de modélisation 
basés sur la télédétection se sont avérés informatifs même lorsque les informations de 
base disponibles sur la biodiversité des cryptogames étaient limitées. En identifiant les 
facteurs environnementaux de la biodiversité des cryptogames qui peuvent guider des 
actions de gestion spécifiques et en fournissant une cartographie prédictive de leurs 
patrons spatiaux à un niveau de détail élevé à travers le paysage, ce travail a mis en 
évidence sans équivoque le potentiel élevé de la technologie de télédétection à des fins 
de conservation des cryptogames. Cette thèse représente donc une étape très importante 
pour parvenir à l'inclusion de ces espèces discrètes et généralement négligées dans la 
planification systématique de la conservation. 

Mots clés: Apprentissage automatique; Biodiversité inaperçue; Capteurs satellitaires; 
Cartographie numérique; Composantes de la biodiversité; Conservation; Diversité 
alpha; Diversité bêta; Forêts boréales; Forêts d'épinettes noires; Modélisation 
prédictive; Prédicteurs de télédétection; Rareté; SDMs. 

 



 

 

CHAPTER I 

 

INTRODUCTION 

1.1 Study organisms 

The present thesis targets bryophytes and lichens as study organisms. Both taxonomic 

groups are part of the group of cryptogams, which has traditionally encompassed those 

plants (in the wide sense of the word) that reproduce through spores instead of seeds 

and which therefore also includes algae, ferns and fungi. In fact, the Latin term 

"Cryptogamae", which derives from the Greek roots κρυπτός (kryptos) and γάμος 

(gamos), means “hidden sexual reproduction”. This concept, however, lacks taxonomic 

value due to the polyphyletic origin of the above-mentioned groups. Taking this into 

account and for brevity reasons, the term “cryptogam” will be used throughout this 

thesis to refer jointly but exclusively to bryophytes and lichens, which are known to 

share important physiological similarities as well as ecological attributes and roles.  

1.2 Small but essential species: cryptogams and their ecological role 

Cryptogams (bryophytes and lichens) are ubiquitous small-size non-vascular species 

that contribute significantly to total biodiversity worldwide (approximately 25,000 and 

20,000 species, respectively; Hawksworth and Lücking, 2017; Li and Chang, 2021; 

Lucking et al., 2017). Cryptogams are descendants of green algae and belong to the 

first photoautotrophic multi-cellular eukaryotes colonising terrestrial habitats (Lakatos, 

2011; Simpson, 2010). They share a poikilohydric physiology allowing them to survive 

in a wide range of environmental conditions, including biomes with extreme 

environments such as hot and cold deserts (Lakatos, 2011; Robinson et al., 2003). 

Cryptogams occur on highly diverse microhabitats raging from soils to leaves, bark, 

rocks, or even substrates of anthropogenic origin. Bryophytes and lichens are however 

phylogenetically distinct. Bryophytes form a monophyletic group of non-vascular 
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plants senso stricto, as they present plant tissues (leaves-like and stem-like structures) 

and enclosed reproductive systems (archegonium, antheridium) but with water- and 

food-conducting tissues lacking lignin (Lakatos, 2011; Su et al., 2021). Unlike all other 

land plants, bryophytes have a dominant haploid gametophyte whereas the sporophyte, 

nutritionally dependent on the gametophyte, is small and ephemeral (Simpson, 2010). 

Bryophytes are composed of three monophyletic lineages, namely mosses, liverworts, 

and hornworts, which display diverse morphologies ranging from thalloid to leaf 

possessing structures (Goffinet and Shaw, 2000; Simpson, 2010). Beyond their 

phylogenetic differentiation, these lineages are made up of species that generally share 

ecological preferences and tolerances which are commonly known as guilds. Sphagna 

species, which are included in the clade of mosses, are frequently considered as another 

independent guild based on their distinctive taxonomical and functional traits (e.g. 

Fenton and Bergeron, 2006, 2008). Lichens, meanwhile, form a polyphyletic group 

composed by mutualistic symbiotic organisms that have traditionally comprised a 

fungal mycobiont and one or more photobiont partners (photosynthetic algae and/or 

cyanobacteria; Lakatos, 2011).  

Lichens do not present plant tissues and the chloroplasts are exclusively contained in 

their photobiont partners, which are found extracellularly within the lichen thallus. The 

fungal mycobiont provides the photobiont with structure, protection, nutrients, and 

water, while the photobiont provides the fungal mycobiont with carbohydrates from 

photosynthesis. Approximately 85% of the symbiosis in lichens is made with a green 

algae partner, 10% with cyanobacteria, and 3-4% with both photobiont types 

(Honegger, 1998). A recent research showed that a second fungus, namely a 

basidiomycete yeast, can also be involved in the symbiosis, being found in the 

peripheral cortex of lichens (Spribille et al., 2016), although the circumstances 

associated with its appearance are not yet clear (Lendemer et al., 2019). The whole 

organism of the lichen is often referred as the holobiont, which is mainly differentiated 
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into three growth forms ranging from foliose (leaf-like with discernable lower or upper 

surfaces) to fruticose (shrub-like without discernable upper and lower surfaces), and 

crustose (crust directly attached to a substrate and thus with only the upper cortical 

surface; Asplund and Wardle, 2017). Foliose and fruticose lichens are commonly 

referred as macrolichens, while crustose lichens, whose discriminating characteristics 

are not normally visible to the human eye, are known as microlichens. 

Cryptogams play an essential ecological role in water, carbon and nutrient cycles, as 

well as in physical and chemical weathering (Adamo and Violante, 2000; Porada et al., 

2014, 2018). Specifically, these species significatively influence global rainfall 

interception and evaporation, being also able to uptake water from fog, dew or snow 

melt, and thus influencing hydrologic cycling and climate at different scales (Belnap 

and Lange, 2001; Porada et al., 2018). They represent important carbon reservoirs, 

particularly in northern latitude ecosystems, thus mitigating the adverse effects of 

climate change (Bond-Lamberty and Gower, 2007; Bond-Lamberty et al., 2004; 

O’Neill, 2000; Turetsky et al., 2010). They also strongly influence nutrient flows 

through nitrogen fixation and phosphorus uptake, incorporating them into the biosphere 

and thus making them accessible to other organisms (Porada et al., 2014; Turetsky, 

2003). Cryptogams also increase the stability of soils by creating a protective and 

insulating layer that prevents soil erosion and regulates their temperature and humidity 

(Belnap and Lange, 2001). At the same time, this favors the preservation of permafrost 

in arctic and subarctic areas, promoting the ecosystem resistance to climate change 

(Bokhorst et al., 2012; Porada et al., 2016; Turetsky et al., 2010). Moreover, pioneer 

cryptogam species allow the colonization of newly exposed surfaces resulting from 

both natural and anthropogenic disturbances, which is essential to reach more advanced 

succession stages and thus for ecological functional recovery (Cutler, 2010; Hugron et 

al., 2011; Ryömä and Laaka-Lindberg, 2005). This is due to their capability to survive 

in extreme environments (very cold, dry or nutrient-poor) thanks to their ability to 
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withstand desiccation events as poikilohydric organisms, as well as their generally low 

dependence from the substrate for nutrient uptake (Belnap and Lange, 2001; Proctor et 

al., 2007; Song et al., 2016; Takezawa, 2018). Furthermore, they provide microhabitats 

for a broad diversity of micro- and macroorganisms, and a food source for invertebrates 

and herbivores, including emblematic and threatened species such as the caribou 

(Rangifer tarandus; Boertje, 1984; Longton, 1992; Nash, 2008). Cryptogams are also 

recognized as reliable bioindicators of environmental contamination, forest naturalness, 

and ecological continuity (Brunialti et al., 2010; Czerepko et al., 2021; Frego, 2007; 

Seaward, 2004). 

Since cryptogams are highly sensitive to environmental disturbances, cryptogam 

species and the functions they support are currently facing numerous threats mainly 

derived from the increase in intensity and extent of human development activities 

worldwide, but also from global climate change (Bokhorst et al., 2012; Chuquimarca 

et al., 2019; Vellak and Ingerpuu, 2005). More precisely, land use changes and forest 

resource extraction are leading to the degradation and loss of cryptogam habitats, 

thereby reducing habitat continuity and/or connectivity (Hallingbäck and Hodgetts, 

2000; Pykälä, 2019), and inducing significant changes in their diversity and community 

composition (Chuquimarca et al., 2019; Newmaster and Bell, 2002; Ross-Davis and 

Frego, 2002). While the impacts of climate change have been less documented, 

growing evidence shows that cryptogams are undergoing changes in their distributions, 

abundances and community composition as a result of global warming (e.g. Aptroot, 

2009; Bergamini et al., 2009; Cornelissen et al., 2001; Frahm and Klaus, 2001; Walker 

et al., 2006). In consequence, efforts directed at the study and preservation of these 

ecologically important but vulnerable species should be a current priority. 
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1.3 Underrepresentation of cryptogams in conservation planning 

While some valuable efforts have been made in the last decades to increase the 

representativeness of cryptogams in conservation planning (e.g. Faubert et al., 2010; 

Goward et al., 1998; Vanderpoorten et al., 2005), they are still often neglected, 

jeopardizing not only these species but also their ecological role (McMullin, 2015; 

Scheidegger and Goward, 2002; Vanderpoorten and Hallingbäck, 2009). This is mainly 

due to their small size and inconspicuousness, which has historically fostered low 

recognition by conservation authorities and managers, politicians and the broader 

public (Scheidegger and Goward, 2002). 

The main challenge to achieve the systematic integration of cryptogams in conservation 

planning lies in filling the current knowledge gaps existing on their diversity, ecology 

and distribution, which is an essential requirement to develop and implement effective 

management and conservation measures (McMullin, 2015). The increasing 

anthropogenic pressure on species worldwide and the continuing advance of climate 

change have increased the need to develop and apply new technologies and data 

sources in the field of ecology in order to efficiently and quickly meet conservation and 

monitoring targets. In this sense, relatively new research areas such as remote sensing 

(see section 1.5) or citizen science are called upon to play a central role as informative 

tools for conservation, especially in the case of inconspicuous and neglected species 

such as cryptogams (Cerrejón et al., 2020, unpublished; Feldman et al., unpublished). 

Specifically, cryptogams can benefit from citizen science for two main reasons. First, 

citizen science can raise public awareness of these species through the participation 

and contribution of volunteers in scientific studies. Secondly, this approach allows the 

acquisition and generation of information related to cryptogams of a very diverse nature, 

encompassing scopes as varied as biodiversity monitoring, effects of land-use changes, 

environmental contamination, conservation of species at risk, and so on (Feldman et 

al., unpublished). Therefore, the possibility of approaching the broad non-scientific 
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public to the hidden biodiversity through the citizen science may be key for the future 

preservation of cryptogam species. 

1.4 Conservation effectiveness resides in complementarity of biodiversity 
components 

Biodiversity can be split in multiple components, while the most traditionally used in 

the literature are those defined by Whittaker (1960): i) alpha diversity, which refers to 

species richness within homogeneous sampling units in the landscape; ii) beta diversity, 

which describes community composition changes or species turnover between those 

units; and iii) gamma diversity, which corresponds to the overall species diversity in 

the landscape, resulting from the combination of alpha and beta diversities from all 

sampling units. Rare species represent another fundamental component of biodiversity, 

not only for their significant contribution to total species richness and functional 

diversity (Bracken and Low, 2012; Kearsley et al., 2019; Leitao et al., 2016; Mouillot 

et al., 2013; Patykowski et al., 2018; Rejžek et al., 2016; Umaña et al., 2017), but also 

for their ecological importance (Dee et al., 2019; Hooper et al., 2012; Jolls et al., 2019; 

Soliveres et al., 2016; Xu et al., 2020; Zavaleta and Hulvey, 2004) and vulnerability to 

extinction (Sykes et al., 2019; Weisser et al., 2017; Zhang, 2019). More specifically, 

rare species refer to those species restricted either in geographic distribution range, 

prevalence, environmental conditions and/or abundance (Faubert et al., 2010; Flather 

and Sieg, 2007; Porley, 2013; Rabinowitz, 1981). The study of the above-mentioned 

biodiversity components can provide very valuable information for the preservation of 

inconspicuous and less studied taxa such as cryptogams. However, as these biodiversity 

components are complementary, their joint assessment allows to increase the 

robustness of biodiversity estimates and thus the development of more effective 

management and conservation measures. 
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1.5 Use of remote sensing in cryptogam biodiversity assessments and its potential 
for conservation purposes 

Remote sensing (hereafter RS) is a detection method of electromagnetic radiation 

coming from the earth surface through satellites or aircraft sensors which produces 

overhead-perspective images from which it is possible to derive information about 

Earth’s land and water surfaces (Campbell and Wynne, 2011; Turner et al., 2003;). 

This information can be used to assess biodiversity over large areas at regular intervals 

of time. Biodiversity can be studied using two different RS approaches, namely direct 

and indirect. The direct approach consists in detecting species by directly capturing 

their spectral information. The indirect approach, in contrast, is not focused on the 

species but on its habitat. More precisely, the indirect approach makes it possible to 

characterize the habitats where the species occur and to analyse this information 

through statistical and modeling tools to assess species-environment relationships and 

to spatialize biodiversity estimates across the landscape. 

Both RS approaches can provide interesting and powerful tools for the study of 

cryptogams. However, since cryptogams are very small species located in the 

understory and normally covered by other vegetation layers (Yang et al., 2006), the 

applicability of the direct approach is often limited. Specifically, the direct approach is 

restricted to non-forest areas, and even in those areas, cushions of cryptogams large 

enough and very high spatial resolution RS imagery are required to achieve their direct 

detection. Therefore, studies using the RS direct approach on cryptogams have been 

located mainly in Arctic and Antarctic regions and have focused almost exclusively on 

mapping their cover or health status (Cerrejón et al., unpublished). Fortunately, the 

indirect approach provides a powerful alternative for the study of cryptogams under 

environmental conditions where their direct detection is not possible. In terms of 

potential and applicability in conservation, this approach is very attractive for several 

reasons: i) it allows the evaluation of a wide variety of cryptogam-related aspects, 
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including their main biodiversity components, i.e., alpha and beta diversity, and the 

presence of rare species; ii) the development and test of a large array of RS-based 

indicators as potential drivers of biodiversity related to different environmental features 

(topography, vegetation, moisture, geology, etc.; Annex A; Cerrejón et al., 2021a), iii) 

the spatialization of biodiversity estimates at a fine level of detail (spatial resolution) 

and at scales relevant to ecological planning, iv) it can be applied to all types of 

environments, including forest landscapes, which normally harbor high cryptogam 

diversity (e.g. Benítez et al., 2015; Jonsson and Esseen, 1990) but also suffer the 

impacts of increasing anthropogenic pressure worldwide (Benítez et al., 2012, 2015; 

Mansuy et al., 2020; Riffo-Donoso et al., 2021); and v) it provides a cost-effective 

approach, since it does not require the purchase of very high resolution RS imagery. 

All this makes RS, and in particular its indirect approach, a tool designed to improve 

our understanding on cryptogam biodiversity and thus to facilitate their integration in 

systematic conservation planning. 

Despite its potential benefits, only a few relatively recent studies have so far used the 

RS indirect approach for the study of cryptogam alpha and beta biodiversity 

components, and none for the presence of rare species (Cerrejón et al., unpublished). 

Most of these articles have assessed the performance of a single or a few RS variables 

for answering specific questions. More precisely, RS has been used to asses the 

performance of the Light Detection and Ranging (LiDAR)-derived depth-to-water 

index to detect the moisture gradient and, ultimately, its influence on bryophyte cover, 

richness, diversity and composition across boreal forest types (Bartels et al., 2018) and 

different levels of harvest retention (Bartels et al., 2019); the importance of snow 

persistence, as captured by the Normalized Difference Snow Index (NDSI), as 

predictor of cryptogams species distributions and community composition in Finnmark 

(Norway; Niittynen and Luoto, 2018); and the recovery dynamics of cryptogams (cover, 

richness and composition) after fires characterized through either Difference 
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Normalized Burn Ratio (dNBR), relativized dNBR (RdNRB) or traditional colour 

images (Hammond et al., 2019; Root et al., 2017; Whitehead and Baines, 2018). 

Studies testing a larger set of RS variables were almost exclusively aimed at evaluating 

and predicting cryptogam richness in Switzerland. Two of these articles were carried 

out combining RS and non-remotely sensed variables as models’ inputs. Specifically, 

modest to relatively good predictions were achieved for specific cryptogam subgroups, 

namely edaphic bryophytes and epiphytic lichens (R2 of 0.40 and 0.23, respectively; 

Camathias et al., 2013), and for overall bryophyte and forest species richness (R2 of 

0.24 and 0.20, respectively; Zellweger et al., 2015). On the other hand, RS data alone 

from high resolution satellite and airborne sensors provided accurate predictions of 

total (R2 = 0.58), tree (R2 = 0.79-0.80), rock (R2 = 0.54-0.56) and soil lichen richness 

(R2 = 0.48-0.50; Waser et al., 2004, 2007). A recent study performed in New 

Brunswick (Canada), however, demonstrated the usefulness of LiDAR alone to derive 

a wide set of environmental variables and identify the main drivers of bryophyte 

richness and composition across a variety of mature, managed or unmanaged, forest 

habitat types (Bourgouin et al., 2022). This allowed the authors to provide accurate 

predictions of bryophyte richness (R2 = 0.30) and composition (R2 = 0.71). Beyond 

alpha and beta diversity assessments, additional works have also followed a RS indirect 

approach to jointly estimate the probability of occurrence of certain bryophyte 

guilds/groups, namely epiphyllous liverworts (Jiang et al., 2013, 2014) or Sphagnum 

spp. (Harris and Baird, 2019), and to map the distribution of the invasive moss 

Campylopus introflexus (Hedw.) Brid. (Skowronek et al., 2017, 2018). 

While the aforementioned works have provide valuable insights on the use of RS 

technology for the study of cryptogams, their applicability for conservation issues can 

often be limited by the costs associated to the high resolution RS data acquisition, either 

from satellite or airborne sensors (e.g. LiDAR), as well as by their limited spatial 

coverage, which can lead to a low representativeness of the results with respect to the 
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scale at which conservation planning is carried out. Likewise, the low prevalence of 

studies focusing on the main biodiversity components (alpha and beta diversity), either 

in bryophytes or lichens, and the total absence of studies regarding rare species, 

highlights that more effort should be made to assess the role that RS can play in the 

assessment and conservation of cryptogam communities. 

1.6 Boreal forests 

Circumboreal forests are the largest terrestrial biome in the world, constituting 14 

million km2 (32%) of the global forest cover (Burton et al., 2003). These forests are 

found in the northernmost regions of North America, Europe and Asia, which are 

mainly characterised by a cold continental climate with harsh snowy winters and a short 

growing season. The terrain presents a generally gently relief, with wet and cold soils 

often poorly drained, leading to a mosaic of forests intersperse with wetlands across 

the boreal landscape (Burton et al., 2003). The presence of permafrost, i.e. permanently 

frozen soils, is more notable towards high latitudes of the boreal biome. Boreal forest 

dynamics are mainly driven by natural disturbances (wildfires, insect outbreaks) and 

succession (Burton et al., 2003; Lecomte et al., 2006), although anthropogenic 

activities such as logging are also a notable influential factor (Cyr et al., 2009). 

In terms of vegetation, the boreal biome is mainly dominated by coniferous forests, 

while mixed and deciduous forests are also present. The diversity of tree species is 

however relatively low and limited to a few coniferous (Pinus, Larix, Picea, Abies) and 

broadleaf genera (Betula, Populus, Salix, Alnus, Sorbus; Burton et al., 2003). In 

contrast, inconspicuous species such as cryptogams constitute a highly diverse and 

abundant group (Androsova et al., 2018; Jonsson and Esseen, 1990; Turetsky et al., 

2010, 2012). The ecological role played by cryptogams worldwide (see section 1.2) 

extends to the boreal biome, where their influence on ecosystem functioning and 

service provision has been widely documented (e.g. Bond-Lamberty and Gower, 2007; 
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Bond-Lamberty et al., 2004; Kivinen et al., 2010; Nilsson and Wardle, 2005; Turetsky, 

2003; Turetsky et al., 2012). Cryptogams are however part of the extensive unseen 

biodiversity found in boreal forests for which ecology and distribution information is 

deficient. Documentation on these aspects is therefore crucial to ensure the 

preservation of these species and the ecosystem functions they support. 

Due to the human-induced threats currently faced by cryptogams and their habitats in 

boreal forests (mostly related to forest management; Boudreault et al., 2018; Dettki and 

Esseen, 2003; Johansson, 2008; Venier et al., 2014), obtaining and generating new 

information on these species has become a top priority. Unfortunately, the acquisition 

of information on cryptogams in boreal forest regions is greatly limited by the paucity 

of specialized bryologists and lichenologists as well as the vastness and/or 

inaccessibility of many forest areas. At the same time, however, these vast and largely 

unknown regions provide a valuable opportunity for the development and application 

of new approaches and techniques aimed at acquiring new and/or updated biodiversity-

related information quickly and efficiently such as RS. Until now, RS studies 

encompassing cryptogams in boreal forests have been very rare (Bartels et al., 2018, 

2019; Hammond et al., 2019; Niittynen and Luoto, 2018) and have focused on 

relatively specific ecological questions (see section 1.5 for more details). While these 

works can inform management actions for cryptogams, they can be of limited use for 

achieving the systematic conservation of these species.  

1.7 Ojectives  

The general objective of this thesis is to elucidate the role that RS can play in the 

evaluation and generation of information on cryptogam biodiversity in a boreal context. 

This objective is determined by the need to achieve a systematic integration of 

inconspicuous species such as cryptogams in conservation planning as well as to 

develop tools that allow obtaining and generating valuable information for these 
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purposes. All the studies included in this thesis (Chapters II, III and IV) are located in 

the Canadian boreal forest, more specifically within the Eeyou-Istchee James Bay 

region in Northern Quebec (Figure 1.1). This region includes extensive areas of boreal 

forest in which there are still important knowledge gaps on cryptogams, although 

important efforts for their study have been made in recent years (Barbé et al., 2017; 

Castonguay, 2016; Route, 2020). 

Bryophytes and lichens are studied in separate chapters in this thesis, while satellite RS 

data is used for the development of all of them. More specifically, and in terms of 

biodiversity components, bryophyte alpha diversity and rare species are respectively 

targeted in Chapters II and III, while lichen alpha and beta diversity are assessed in 

Chapter IV. The specific objectives of these three chapters are the following: 

• Chapter II: To predict and map diversity patterns (in terms of species richness) 

of i) total bryophytes, and ii) bryophyte guilds (mosses, liverworts and sphagna) 

using RS data. 

• Chapter III: To produce predictive models of rare bryophyte species using RS-

derived predictors in an Ensembles of Small Models (ESMs) framework. 

Additionally, we assess i) if there is a relationship between the number of 

occurrences and the predictive performance of ESMs, ii) if the predictive 

performance of models varies by the modeled bryophyte guild (mosses, 

liverworts and sphagna), and iii) if there is a spatial relationship between the 

richness patterns of rare bryophyte species (from the present chapter) and 

overall bryophyte species (from Chapter II) both for bryophytes as a whole and 

at the guild level. 

• Chapter IV: i) to describe and model the lichen alpha diversity (in terms of 

species richness) and beta diversity (species turnover) biodiversity components 
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using high resolution RS-derived variables, and ii) to identify which habitat 

types represent lichen biodiversity hotspots. 

 

Figure 1.1 Study areas of the three scientific articles included in this thesis 
corresponding to Chapters II, III and IV. 
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2.1 Abstract 

Bryophytes represent an essential component of global biodiversity and play a 

significant role in many ecosystems, including boreal forests. In Canadian boreal 

forests, industrial exploitation of natural resources threatens bryophyte species and the 

ecological processes and services they support. However, the consideration of 

bryophytes in conservation issues is limited by current knowledge gaps on their 

distribution and diversity patterns. This is mainly due to the ineffectiveness of 

traditional field surveys to acquire information over large areas. Using remote sensing 

data in combination with species distribution models (SDMs), we aim to predict and 

map diversity patterns (in terms of richness) of i) total bryophytes, and ii) bryophyte 

guilds (mosses, liverworts and sphagna) in 28,436 km2 of boreal forests of Quebec 

(Canada). A bryophyte presence/absence database was used to develop four response 

variables: total bryophyte richness, moss richness, liverwort richness and sphagna 

richness. We pre-selected a group of 38 environmental predictors including climate, 

topography, soil moisture and drainage as well as vegetation. Then a final set of 

predictors was selected individually for each response variable through a two-step 

selection procedure. The Random Forest (RF) algorithm was used to develop spatially 

explicit regression models and to generate predictive cartography at 30m resolution for 

the study area. Predictive mapping-associated uncertainty statistics were provided. Our 

models explained a significant fraction of the variation in total bryophyte and guild 

level richness, both in the calibration (42 to 52%) and validation sets (38 to 48%), 

outperforming models from previous studies. Vegetation (mainly NDVI) and climatic 

variables (temperature, precipitation, and freeze-thaw events) consistently appeared 

among the most important predictors for all bryophyte groups modeled. However, 

guild-level models identified differences in important factors determining the richness 

of each of the guilds and, therefore, in their predicted richness patterns. For example, 

the predictor number of days > 30°C was especially relevant for liverworts, while 
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drainage class, topographic position index and PALSAR HH-polarized L-band were 

identified among the most important predictors for sphagna. These differences have 

important implications for management and conservation strategies for bryophytes. 

This study provides evidence of the potential of remote sensing for assessing and 

making predictions on bryophyte diversity across the landscape. 

2.2 Résumé 

Les bryophytes représentent une composante essentielle de la biodiversité mondiale et 

jouent un rôle important dans de nombreux écosystèmes, y compris les forêts boréales. 

Dans les forêts boréales canadiennes, l'exploitation industrielle des ressources 

naturelles menace les espèces de bryophytes et les processus et services écologiques 

qu'elles soutiennent. Cependant, la prise en compte des bryophytes dans les problèmes 

de conservation est limitée par les lacunes actuelles dans les connaissances de leur 

distribution et patrons de diversité. Cela est principalement dû à l'inefficacité des 

enquêtes de terrain traditionnelles pour acquérir des informations sur de grandes 

superficies. En utilisant des données de télédétection en combinaison avec des modèles 

de distribution d'espèces, nous visons à prédire et à cartographier les patrons de 

diversité (en termes de richesse) de i) les bryophytes dans leur ensemble, et ii) les 

guildes de bryophytes (mousses, hépatiques et sphaignes) dans 28,436 km2 de forêts 

boréales du Québec (Canada). Une base de données de présence/absence de bryophytes 

a été utilisée pour développer quatre variables de réponse: la richesse totale en 

bryophytes, la richesse en mousses, la richesse en hépatiques et la richesse en sphaignes. 

Nous avons présélectionné un groupe de 38 prédicteurs environnementaux, notamment 

le climat, la topographie, l'humidité et le drainage du sol ainsi que la végétation. Ensuite, 

un ensemble final de prédicteurs a été sélectionné individuellement pour chaque 

variable de réponse au moyen d'une procédure de sélection en deux étapes. 

L'algorithme Random Forest a été utilisé pour développer des modèles de régression 

spatialement explicites. et générer des cartographies prédictives à une résolution de 
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30m pour la zone d'étude. Des statistiques d'incertitude associées aux cartographies 

prédictives ont été fournies. Nos modèles expliquaient une fraction significative de la 

variation de la richesse totale des bryophytes et des guildes, à la fois dans les ensembles 

d'étalonnage (42 à 52%) et de validation (38 à 48%), surpassant les modèles des études 

précédentes. La végétation (principalement NDVI) et les variables climatiques 

(température, précipitation et événements de gel-dégel) figuraient systématiquement 

parmi les prédicteurs les plus importants pour tous les groupes de bryophytes modélisés. 

Cependant, les modèles au niveau de la guilde ont identifié des différences dans des 

facteurs importants déterminant la richesse de chacune des guildes et, par conséquent, 

dans leurs patrons de richesse prédits. Par exemple, le prédicteur nombre de jours > 

30°C était particulièrement pertinent pour les hépatiques, tandis que la classe de 

drainage, l'indice de position topographique et la bande L polarisée PALSAR HH ont 

été identifiés parmi les prédicteurs les plus importants pour les sphaignes. Ces 

différences ont des implications importantes pour les stratégies de gestion et de 

conservation des bryophytes. Cette étude démontre le potentiel de la télédétection pour 

évaluer et faire des prédictions sur la diversité des bryophytes à travers le paysage. 

2.3 Introduction 

Climate and land use changes as a result of the increase in human development 

activities, both in intensity and extent (Butchart et al., 2010; Kerr and Ostrovsky, 2003), 

are currently cited as the primary threats to global biodiversity (Chapin Iii et al., 2000; 

Millennium Ecosystem Assessment, 2005; Newbold et al., 2015; Pereira et al., 2010). 

According to the Global Assessment Report on Biodiversity and Ecosystem Services 

of IPBES (Brondizio et al., 2019), 1 million of animal and plant species face extinction 

at present, jeopardizing ecosystem functions and services and thus affecting human 

well-being. Therefore, conservation of biodiversity is a top priority to promote and 

maintain global ecosystem functioning and services (Cardinale et al., 2012; Isbell et 

al., 2011). 
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Biodiversity conservation planning should ideally integrate as many taxonomic groups 

as possible. However, inconspicuous and poorly known species such as bryophytes (i.e. 

mosses, sphagna, liverworts and hornworts; Hespanhol et al., 2015; Larraín et al., 2019) 

tend to be overlooked when developing conservation plans and programs (Cornwell et 

al., 2019; Rowntree et al., 2011; Vanderpoorten and Hallingbäck, 2009). Bryophytes 

represent an essential part of global biodiversity and play a significant role in many 

diverse ecosystems on earth (Hallingbäck and Hodgetts, 2000). Bryophytes are reliable 

but extremely vulnerable indicators to environmental disturbances and currently face 

numerous human-induced threats (Frego, 2007). These threats derive mainly from land 

use changes (e.g. forestry, mining, infrastructure construction), which leads to the loss 

and degradation of bryophyte habitats (Hallingbäck and Hodgetts, 2000; Pykälä, 2019; 

Söderström et al., 1992), inducing changes in bryophyte community composition 

(Caners et al., 2013; Fenton and Frego, 2005; Lehosmaa et al., 2017; Tolkkinen et al., 

2016). Therefore, much more attention should be given to the preservation of these 

species groups on a global scale. 

Specifically, in Canadian boreal forests, which account for 24% of the world’s boreal 

forest (Natural Resources Canada, 2017), bryophytes represent an abundant and 

diverse plant group. They are the main ground vegetation layer (Bond-Lamberty and 

Gower, 2007; Fenton and Bergeron, 2011; Gower et al., 2001) and account for an 

important fraction of total diversity (Cole et al., 2008; Möls et al., 2013; Turetsky et 

al., 2012). The essential contributions of this taxonomic group in ecosystem 

functioning and service provision of boreal forests have been largely documented. 

Concretely they account for a significant portion of the net primary production, 

representing up to 20% and 48% of wetland and upland productivity, respectively 

(Bond-Lamberty et al., 2004; Gower et al., 1997; Turetsky et al., 2010), and exceeding 

in some cases overstory production (Peckham et al., 2009). Bryophytes also have a 

strong influence on water, carbon and nutrient cycles (Bond-Lamberty and Gower, 
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2007; Skre and Oechel, 1981; Turetsky, 2003; Turetsky et al., 2010). They regulate the 

moisture and temperature of soils, prevent erosion (Turetsky et al., 2010, 2012), and 

exert an insulating effect protecting permafrost (Porada et al., 2016). Likewise, these 

species promote key processes determining the stability and resilience of boreal 

ecosystems (Turetsky et al., 2012). In Canada, the degradation of mature and old-

growth boreal forests driven by the cumulative effects of natural resources extraction 

(mainly related to mining and forestry; Mansuy et al., 2020) seriously threatens 

bryophytes (Boudreault et al., 2018; Paquette et al., 2016; Venier et al., 2014). This 

issue is accentuated in the case of more vulnerable bryophyte species such as liverworts, 

which often depend on microhabitat conditions provided by mature forests (Barbé et 

al., 2017). Despite the ecological benefits provided by bryophytes in boreal forest 

ecosystems, their distribution and diversity patterns have been poorly documented 

(Belland, 1998; Faubert, 2012; Faubert and Gagnon, 2013; Faubert et al., 2010; Locky, 

2010), endangering the maintenance of their ecological roles in the current context of 

anthropogenic pressure. Therefore, the acquisition and integration of knowledge on 

bryophyte diversity into industrial sustainable development strategies and plans 

become essential (Hallingbäck and Hodgetts, 2000; Vanderpoorten et al., 2001). This 

may greatly facilitate the conservation of biodiversity and consequently ecosystem 

service provision in boreal forest regions. 

The remoteness and inaccessibility of many Canadian boreal forests can make field 

surveys challenging, limiting the acquisition of critical information on biodiversity 

(Gillis et al., 2005). In parallel, species distribution models (SDMs) combined with 

remote sensing data provide a powerful alternative tool to overcome these limitations 

offering a non-expensive method to remotely assess biodiversity over large areas at 

regular intervals over time (Corbane et al., 2015; Turner et al., 2003; Tweddale and 

Melton, 2005). SDMs offer tools to quantify species-environment relationships from 

known locations in order to evaluate species’ ecological preferences or predict their 
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distributions using the relevant environmental conditions as proxies of species 

occurrence (Guillera-Arroita et al., 2015; Mateo et al., 2011). Therefore, SDMs 

provide supplementary information making them a suitable tool for conservation 

planning (Hespanhol et al., 2015). SDMs have been widely used to assess distribution 

and diversity patterns of different organisms (Mateo et al., 2011) including bryophytes 

(e.g. Bakkestuen et al., 2009; Hespanhol et al., 2015). Increasing numbers of studies 

integrate remote sensing methods with SDMs to assess, model, predict or map species’ 

distributions and therefore different aspects of biodiversity (e.g. Buermann et al., 2008; 

Jiang et al., 2013; Saatchi et al., 2008; Zimmermann et al., 2007).  

The use of the direct remote sensing approach on bryophytes was initially proposed 

based on the spectral differences found through laboratory tests, both among 

bryophytes (Bubier et al., 1997) and between bryophytes and vascular plants 

(Vogelmann and Moss, 1993). However, the direct approach is in most cases unable to 

directly capture reflectance-based information from bryophytes as they are understory 

species that are normally covered by forest canopy (Yang et al., 2006). The indirect 

approach, conversely, examines different aspects of bryophyte biodiversity based on 

the existing relationships between these species groups and their environment. Few 

remote sensing studies have been done for bryophyte cover detection (Bartels et al., 

2019, 2018; Ewalda et al., 2019; Peckham et al., 2009; Rapalee et al., 2001), 

distribution (Goguen and Arp, 2017; Jiang et al., 2014, 2013; Skowronek et al., 2017, 

2018) and diversity (Bartels et al., 2018, 2019; Moeslund et al., 2019). 

Here, we use the Random Forest machine learning method (hereafter “RF”; Breiman, 

2001) to predict and map diversity patterns, in terms of species number (hereafter 

“richness”), of i) total bryophytes, and ii) bryophyte guilds (i.e. mosses, liverworts and 

sphagna) in boreal forests of Quebec (Canada) using remote sensing data. With this 

study, we contribute to the acquisition and integration of knowledge on bryophyte 

diversity to promote industrial sustainable development strategies and ecological 



21 

 

 

planning framework that improve decision making for governments and industries. The 

consideration of bryophyte diversity will help the conservation of biodiversity along 

with the maintenance of ecosystem service supply in the boreal forest regions, where 

the footprint of the mining and forestry industries is large. 

2.4 Materials and methods 

2.4.1 Study area 

The study area is located in western Quebec within the James Bay region, and covers 

28,436 km2 (between 48° 53’ and 49° 57’N latitude and 75° 50’ and 79° 22’W 

longitude; Figure 2.1). This region is dominated by black spruce (Picea mariana [Mill.] 

BSP)–feathermoss (Pleurozium schreberi [Brid.] Mitt.) forests whose dynamic is 

subject to natural disturbances (Lecomte et al., 2006) and logging activities (Cyr et al., 

2009). Fire is the main natural disturbance (Fenton and Bergeron, 2013) with a cycle 

of 398 years since 1920 (Bergeron et al., 2004). In the absence of fire, the forests in 

this region are prone to paludification, especially in areas located in the Clay Belt 

physiographic region (Bergeron et al., 2007; Boudreault et al., 2002) which is 

characterized by the deposits left by the proglacial lakes Barlow and Ojibway (Vincent 

and Hardy, 1977). This process consists in the accumulation of organic matter over 

time (Fenton and Bergeron, 2008, 2013) due to a flat topography with a dominance of 

clay soils, low drainage capacity and a moderately humid and cold climate (927.8 mm 

of precipitation annually; annual mean temperature 1.0°C; Environment Canada, 2010). 

Mature forests in the study area are characterized by a high frequency of perennial 

mosses and liverworts (Barbé et al., 2017) with feathermosses (P. schreberi, Ptilium 

crista-castrensis (Hedw.) De Not., and Hylocomium splendens (Hedw.) Schimp.) 

dominating the soil (Boudreault et al., 2002). They tend to be naturally replaced by 

Sphagnum species under more humid conditions (Barbé et al., 2017). In contrast, 

disturbed forests are characterized by pioneer and colonist bryophyte species such as 
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Ceratodon purpureus (Hedw.) Brid., Pohlia nutans (Hedw.) Lindb. and Polytrichum 

juniperinum Hedw. (Baldwin and Bradfield, 2005; Barbé et al., 2017; Fenton and 

Frego, 2005). 

 

Figure 2.1 Study area and sampling plots (n = 326) in the boreal black spruce forest of 
eastern Canada. 

2.4.2 Species field data set 

The bryophyte presence/absence database used in this study was developed using the 

field sampling data recorded in three previous studies carried out in the same study area 

(Barbé et al., 2017; Castonguay, 2016; Chaieb et al., 2015; Figure 2.1). These studies 

sampled young, mature and old-growth forests and both recent fires and cut-blocks, 

using a modified “floristic habitat sampling” method (Newmaster et al., 2005), 

consisting in collecting all bryophytes present in all microhabitats within 5 x 10m plots. 

Due to the computational capacity and processing time necessary for the development 

of remote sensing predictors (see section 2.4.3 for descriptions), Landsat-derived 

predictors already developed by the laboratory of geographic information systems of 
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the UQAT (Université du Québec en Abitibi Témiscamingue) were used in this study. 

The spatial extent of these predictors limited the number of selected study plots to a 

total of 326 plots, ensuring an equal number of predictors per observation. Bryophyte 

species richness at the microhabitat level were grouped by plot to obtain plot-level total 

bryophyte richness. Species richness by guild (mosses, liverworts and sphagna) was 

also calculated at the plot level in order to develop individual predictive models for 

each of them. The 326 plots accounted for a total of 207 different bryophyte species 

(mean: 22; max: 54; min: 2), including 119 mosses (mean: 11; max: 32; min: 0), 67 

liverworts (mean: 7; max: 26; min: 0) and 21 sphagna (mean: 3; max: 10; min: 0). Total 

bryophyte richness and the richness at the guild level were used as response variables 

in our models (4 models in total). Methods to geolocate the plots differed among the 

studies, consequently the Fishnet tool implemented in ArcGIS v.10.5 (ESRI, 2016) was 

employed to standardize the GPS coordinates of all plots. The Fishnet tool allows the 

building a georeferenced vector grid from which it is possible to correct the location of 

plots. As Fishent input parameters, we set template extent to the extent of our study 

area and both cell size height and cell size width to 10m. The location of the plots was 

thus corrected according to their position on a 10m grain-size georeferenced grid. 

2.4.3 Environmental predictors 

The preselection of variables as potential predictors of total bryophyte richness and 

richness at the guild level was carried out according to their known influence on the 

bryophyte distribution and diversity. These factors are related with climatic conditions 

(Chen et al., 2015a, 2015b; Jiang et al., 2014; Medina et al., 2014); topographic 

features (Ah-Peng et al., 2007; Bruun et al., 2006; Rey Benayas, 1995); soil attributes 

such as composition (Tyler et al., 2018) and moisture content (Bartels et al., 2018, 

2019; Raabe et al., 2010); and forest properties such as canopy cover (Couvreur et al., 

2016; Raabe et al., 2010) and structure (Grandpré et al., 2011; Hespanhol et al., 2011; 

Jiang et al., 2014). The variables are described in detail below. 
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2.4.3.1 Climate data 

Climate variables for the 1981-2010 period at a 10km spatial resolution were obtained 

from the Canadian Consortium on Regional Climatology and Adaptation to Climate 

Change database (known as Ouranos, https://www.ouranos.ca/en/ouranos/; Charron, 

2016). These variables are adequate for our study area where climatic fluctuations are 

quite moderate. Climatic data were derived from a subset of downscaled climate model 

simulations selected using cluster analysis following Casajus et al. (2016) from the 

regional climate models developed by Ouranos. A total of six annual climatic variables 

were selected: average temperature (°C), total precipitation (mm), freeze-thaw events 

(days), growing degree days (GDD), number of days > 30°C (days), and maximum 5-

Day precipitation (mm). Seasonal variables (autumn, spring, summer and winter) of 

average temperature, total precipitation and freeze-thaw events were also chosen (12 

in total). These variables were resampled at a 30m resolution. We anticipated a high 

correlation between annual variables and their corresponding seasonal variables, so 

annual variables were finally selected for further analyzes. 

2.4.3.2 Topographic data 

The digital elevation model was obtained from the Shuttle Radar Topography Mission 

(SRTM) at 30m resolution and was used to derive different topographic variables using 

ArcGIS v.10.5. Eight topographic variables that are important in describing landscape 

geomorphology and hydrology (Doetterl et al., 2013; Walsh et al., 1998) were included 

in our analyses: elevation, slope, beers aspect, profile curvature, topographic position 

index, topographic convergence index, flow direction and flow accumulation. All of 

these topographic features govern water flow both above and within soil. Therefore, 

they influence hydrologic processes that determine the water table level (Mansuy et al., 

2018), which ultimately affects bryophyte diversity (Bartels et al., 2018, 2019). Beers 

aspect is a measure of incident solar radiation (Vanderpuye et al., 2002), which has 
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been shown to influence bryophyte richness (Austrheim, 2002; Kuzemko et al., 2016; 

Turtureanu et al., 2014). Profile curvature describes the concavity/convexity of the land 

surface in the direction of the aspect of the slope and thus influences erosion and 

deposition (Bourg et al., 2005; Mansuy et al., 2018). The topographic position index 

measures the relative elevation at one point compared to its surrounding environment 

(Jenness, 2006) and can be used as a proxy of microclimate conditions (Bennie et al., 

2008). The topographic convergence index is related to surface water availability due 

to the contribution of runoff water from upslope areas (Keitt and Urban, 2005). Flow 

direction describes the downslope direction of runoff water and thus also affects soil 

erosion and deposition. Flow accumulation is an indicator of drainage water collection. 

2.4.3.3 Soil data 

As indicators of soil texture and hydrologic processes, we used the surface deposits and 

their drainage classes obtained from the MFFP (Ministère des Forêts, de la Faune et 

des Parcs du Québec, 2018). The surface deposits and their drainage affect the water 

flow content in the soil and also the moisture content of the litter as well as the 

vegetation (Mansuy et al., 2011, 2012). Vector layers were transformed to raster and 

resampled to 30m resolution. 

2.4.3.4 Vegetation data 

Spectral bands 2, 3 (visible spectrum; green and red respectively), 4 (near infrared; 

NIR), 5 and 7 (shortwave infrared; SWIR) from 30m resolution Landsat 7 Enhanced 

Thematic Mapper Plus (ETM+) imagery for the summer season 2010 already 

radiometric corrected were used in this study. We selected these spectral variables 

based on their different ecological applications related with the assessment of forest 

and soil attributes such as moisture content, vegetation vigour and biomass, and forest 

development stage and composition (Hall et al., 2006; Kerr and Ostrovsky, 2003; 

Valeria et al., 2012). 
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The Normalized Difference Vegetation Index (NDVI; (NIR – Red) / (NIR + Red)) was 

also included in our analyses. NDVI has been used to assess diversity in different 

studies (e.g. Gould, 2000; Levin et al., 2007; Seto et al., 2010). This index was derived 

from Landsat 8 ETM+ single date images of bands 4 (Red) and 5 (NIR) for the summer 

season of 2016.  

We also selected the Difference Normalized Burn Ratio (dNBR) as potential predictor 

of bryophyte richness. dNBR is derived from the difference between pre-fire and post-

fire Normalized Burn Ratio (NBR; (NIR – SWIR) / (NIR + SWIR)) products and is 

related to the change experienced by the vegetation between two different dates. This 

index which has been largely used to assess fire severity (e.g. Bobbe et al., 2001; Hudak 

et al., 2004; for further details see the review of French et al., 2008) was used here as 

a proxy for the vegetation change rate over time, which should indirectly take into 

account disturbance events like fires. dNBR was calculated from Landsat 7 ETM+ and 

Landsat 8 ETM+ single date images of NIR and SWIR bands for the period between 

1990 and 2016. This period was selected as we thought it was a large enough time 

window to perceive changes in the vegetation in a study area where both natural and 

anthropogenic disturbances are frequent. 

Japanese Advanced Land Observing Satellite (ALOS) Phased Array L-band SAR 

(PALSAR) sensor data were also used in our analyses. We selected both HH-polarized 

(PALSAR_HH) and HV-polarized (PALSAR_HV) L-bands, which are related with 

aboveground biomass and forest structure (Lucas et al., 2010; Mansuy et al., 2018; 

Proisy et al., 2003). PALSAR_HH is also informative of surface moisture in humid 

sites (Lucas et al., 2010; Mitchard et al., 2011), thus it was used as an indicator for soil 

moisture. However, PALSAR_HV is related to biomass since it is not affected by soil 

moisture content (Kuenzer et al., 2011; Mitchard et al., 2011). Annual PALSAR 

images between 2007 and 2010 were filtered through speckle filtering for reducing 

backscatter noise, averaged and subsequently resampled to 30m resolution. The 
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polarization index HV/HH which also relates to forest biomass and structure according 

to Mansuy et al. (2018) was likewise included in our analyses. 

2.4.4 Statistical analyses 

The analyses were carried out individually for each category of the response variables: 

total bryophyte richness and richness at the guild level, i.e. mosses, liverworts and 

sphagna. All analyzes were performed in R v.1.1.456 (R Development Core Team, 

2018). 

2.4.4.1 Predictor selection 

A total of 38 potential predictors were preselected. A large set of variables can decrease 

the accuracy of machine-learning methods (Nguyen et al., 2015) and require a greater 

computational capacity and processing time, especially when generating predictive 

mapping. We used a method similar to Rudiyanto et al. (2018) and Mansuy et al. (2018) 

to select the most important environmental predictors for each response variable using 

the Boruta package v.6.0.0 (Kursa and Rudnicki, 2010). The algorithm implemented 

in Boruta uses a wrapper method developed around RF (Kursa and Rudnicki, 2010) to 

determine the relevance of each predictor. This algorithm works by generating copies 

of the input predictors by shuffling their original values and subsequently comparing 

the importance of the real predictors with that of the randomly generated copies. As 

output, it provides a list of both predictors confirmed as important and those rejected 

for the target response variable. The model must be specified using a formula or a data 

frame containing the response variable and predictors. We set the arguments ntree 

(number of trees to grow) and maxRuns (maximal number of importance source runs) 

to 5000 and 1000, respectively. This package allowed us to identify and keep only 

relevant predictors in our models. The selection of predictors was then further refined 

by using the Pearson correlation coefficient to identify highly correlated variables (|r|) > 

0.7) and avoid the inclusion of redundant variables in our models. Among correlated 
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variables, those that had more ecological meaning were retained for further analyses. 

The final sets of predictors, which varied from 11 to 13 predictors depending on the 

response variable, are shown in Table 2.1



 

 

 

Table 2.1 Description of selected predictors by category and source used to model and predict total bryophyte (Bry), moss 
(Mos), liverwort (Liv), and sphagna (Sph) richness. 

Bry Mos Liv Sph Predictors Description Category Data source 

x x x x Temperature Average annual temperature (°C) Climate Ouranos 

x x x x Precipitation Total annual precipitation (mm)   

x x x x Freeze_thaw Annual number of days with freeze-thaw 
events (days) 

  

x x x x Days_30degrees Annual number of days with temperatures 
greater than 30°C (days) 

  

        

x   x Slope Maximum rate of change in value from one 
cell to its 

immediate neighbors (degrees) 

Topographic SRTM 

   x Beers_asp Beers aspect (heat index) = 1 + cos ((45° − 
aspect) / slope)  
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Table 2.1 continued    

x x x x TPI Topographic position index; relative 
topographic position of each cell in terms of 
elevation compared to the surrounding 
neighborhood (m) 

  

 x   Flow_acc Flow accumulation in each cell determined by 
the accumulation of the weight of all cells 
flowing into each downslope cell (unitless) 

  

        

x x x  Surf_depo1 Surface deposit; types defined according to 
the shape of the land, the position on the slope 
and soil texture, inter alia (44 categories) 

Soil  MFFP forest 
map 

x x x x Drai_class2 Drainage class; soil drainage capacity based 
on topographic position, soil and bedrock 
permeability, surface deposit thickness, 
abundance and regularity of water supplies 
and water table levels (8 categories) 

  

        

x x x x B4 Band 4 (near infrared (NIR), 0.76‒0.9µm); 
relates to vegetation biomass 

Vegetation Landsat 7 
ETM+ 
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Table 2.1 continued    

x x x x B5 Band 5 (shortwave infrared (SWIR), 2.08‒
2.35µm); relates to moisture content in 
vegetation and soil and thus to newly burned 
areas 

  

x x x x NDVI Normalized Difference Vegetation Index 
((NIR – Red) / (NIR + Red)); relates to 
photosynthetically active radiation of plants 
and thus to vegetation biomass and health 

 Landsat 8 
ETM+ 

 x  x PALSAR_HH HH-polarized L-band; relates to soil moisture 
content, especially in open forest stands 

 ALOS PALSAR 

x x x x PALSAR_HVHH Polarization index, as the ratio of HV-
polarized to HH-polarized L-bands; relates to 
forest biomass and structure 

  

Data source abbrev.: SRTM, Shuttle Radar Topography Mission; MFFP, Ministère des Forêts, de la Faune et des Parcs du Québec; 
ETM+, Enhanced Thematic Mapper Plus; ALOS PALSAR, Japanese Advanced Land Observing Satellite Phased Array L-band SAR. 
1 Surf_depo categories range from organic to rock. 
2 Drai_class categories range from xeric to subhydric. 
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2.4.4.2 Random forest approach 

Spatially explicit predictive models of both total bryophyte richness and richness at the 

guild level were developed using the RF algorithm (Breiman, 2001) implemented in 

the randomForest package v4.6.14 (Liaw and Wiener, 2002). As richness is a 

continuous response variable, we performed RF regression models. RF is an effective 

and flexible approach to make predictions, which is not subject to overfitting (Breiman, 

2001; He et al., 2010). It does not require distribution assumptions or transformations 

(Drew et al., 2010), deals efficiently with outliers, and provides variable importance 

measures and unbiased error estimates (Breiman, 2001). The RF algorithm uses a 

modified bagging (bootstrap aggregation) technique to generate a multitude of 

independent decision trees from randomly selected subsamples (or bootstrap samples) 

from the training dataset outputting the mean prediction (Breiman, 2001). For each 

node of each individual tree, a random subset of candidate predictors is assessed, 

selecting from them the predictor providing the most information to split that node 

(Liaw and Wiener, 2002). The observations from the original dataset that are not 

included in a bootstrap sample are known as out of bag (OOB) observations, which are 

used to estimate both the mean square error (MSE) and the importance of the predictors. 

The importance of each predictor (%IncMSE) is estimated by calculating, tree by tree, 

the difference between the OOB MSE derived from predictions on the OOB 

observations by using its real values and the OOB MSE obtained from the same 

procedure but using randomly permuted values of that predictor. The OOB MSE 

differences are subsequently averaged across all trees and normalized by their standard 

deviation (Liaw and Wiener, 2002). 

Data were randomly split into a calibration (70%) and a validation dataset (30%) using 

the sample.split() function from the caTools package v.1.17.1.1 (Tuszynski, 2018). In 

order to improve model performance, the values of the parameters ntree (number of 

trees to grow), mtry (number of variables randomly sampled as candidates at each 
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split), and nodesize (minimum size of terminal nodes) of the RF algorithm were 

optimized independently for each model, selecting those that minimized the OOB 

MSE. After training models, they were tested on the validation datasets to check their 

behavior beyond the data from which they were built. This step has been considered as 

a requirement for predictive modeling with conservation purposes since it provides an 

estimate of model reliability (Maes et al., 2005). The predictive performance of the 

regression models was assessed using the root mean square error (RMSE) and R2 

estimates obtained with the postResample() function implemented in the caret package 

v.6.0.80 (Kuhn, 2018), which only requires two input numeric vectors containing 

observed and predicted values. Subsequently, predictive cartography at 30m resolution 

of both total bryophyte richness and richness at the guild level was generated for the 

whole study area. To provide an uncertainty measure of RF predictions, coefficient of 

variation maps were also produced for each richness from predictions of individual RF 

trees at each pixel. The coefficient of variation mapping was performed using the 

model.mapmake() function implemented in the ModelMap package v.3.4.0.1 (Freeman 

et al., 2018) by using the previously built RF models as the model objects (model.obj 

argument) for predictions and by setting the map.sd argument to “TRUE”. Additionally, 

coefficient of variation statistics (min., 1st quantile, median, 3rd quantile and max.) were 

calculated. 

2.5 Results 

2.5.1 Model performance 

The RF algorithm parameters used to develop the models, as well as R2 and error 

estimates associated with both their training and validation are listed in Table 2.2. 

Among the four, the total bryophyte richness model was the best adjusted explaining 

52% of the variation in the training dataset, although it also showed the highest OOB 

MSE (78.23). The amount of variation explained by the guild level models was lower, 
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ranging from 42 to 48%, while their OOB MSE was considerably lower (< 25) 

compared to that of the total bryophyte richness model. 

Testing the models with the validation datasets, models at the guild level yielded better 

results than the model encompassing total bryophyte species (Table 2.2). Guild models 

explained 39 to 48% of the variation in the validation datasets and had lower MSE 

estimates, ranging from 3.25 to 25.9. In contrast, the total bryophyte richness model 

explained 38% of the variation in the validation dataset with an MSE of 102.91. Plots 

of observed versus predicted richness values by group are shown in Figure 2.2. Our 

four models showed a better predictive performance for low levels of observed richness, 

decreasing their accuracy as the number of observed species increased; no 

overestimation or underestimation trends were observed. 

Table 2.2 Parameters and coefficients of regression models for total bryophyte richness 
and richness at the guild level (mosses, liverworts and sphagna) along with prediction 
coefficients resulting from their validation. See Table 2.1 for a description of predictors. 

 

 Regression models 
 # of predictors ntree mtry nodesize OOB MSE R2 

Bryophytes 12 5000 2 10 78.23 0.52 
Mosses 13 3000 2 2 24.84 0.48 
Liverworts 11 3000 1 7 19.70 0.45 
Sphagna 13 3000 1 6 3.43 0.42 
 Prediction coefficients     
 MSE R2     
Bryophytes 102.91 0.38     
Mosses 25.90 0.39     
Liverworts 18.29 0.44     
Sphagna 3.25 0.48     
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Figure 2.2 Observed versus predicted richness values (black points) of (A) total 
bryophytes, (B) mosses, (C) liverworts, and (D) sphagna. The dashed line represents a 
1:1 relationship. Note that x-axes and y-axes are variable. 

2.5.2 Predictors and their importance 

Our models showed differences in terms of both the selected predictors (Table 2.1) and 

the importance of the predictors shared by two or more models (%IncMSE; Figure 2.3). 

However, vegetation and climatic variables consistently appeared among the most 

important predictors for the richness of the four bryophyte groups modeled. Overall 

bryophytes and mosses shared the same set of most important predictors, which were 

NDVI, B4, Precipitation, Temperature and Freeze_thaw (Figure 2.3A and B). For 

liverwort richness, NDVI, Temperature, Precipitation, Days_30degrees and 

Freeze_thaw were the best predictors (Figure 2.3C). For the sphagna guild, soil and 

topographic variables also ranked among the most relevant predictors along with 

climatic and vegetation variables. The best predictors of the sphagna richness were 

Drai_class, Temperature, TPI, Precipitation and PALSAR_HH (Figure 2.3D).  
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Figure 2.3 Predictor importance measures (%IncMSE) for regression models of (A) 
total bryophyte, (B) moss, (C) liverwort, and (D) sphagna richness. 

2.5.3 Predictive mapping 

The results from the predictive mapping of the total bryophyte richness and the richness 

at the guild level are shown in Figure 2.4. Predicted richness values ranged from 6 to 

41 for total bryophytes, 3 to 27 for mosses, 1 to 17 for liverworts and 0 to 7 for sphagna. 

Different richness patterns were obtained for each mapped group. Regarding the results 

for total bryophytes, two diversity hotspots are located in the north-northeast and 

southwest of the study area, while we find a zone especially poor in species in the 

southeast (Figure 2.4A). At the guild level, moss species display a similar pattern but 

with a second zone of low richness in the west-northwest (Figure 2.4B). Likewise, high 

richness levels can be found in the north-northeast for liverworts and in the northwest 

for sphagna, although both guilds present a particularly low richness in the southeast 

(Figure 2.4C and D). 

The statistics of the coefficient of variation showed that, overall, predictions from 

individual RF trees of both total bryophyte richness and richness at the guild level were 
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stable (Table 2.3; Figure 2.5). In 75% of the cases the coefficient of variation did not 

reach the value of 1 species for any of the modeled groups (third quartiles ranging from 

0.45 to 0.75), with total bryophyte richness predictions showing the least uncertainty. 

For all groups, higher predictive uncertainty was found in areas showing lower 

predicted species richness (Figure 2.4; Figure 2.5). 

 

Figure 2.4 Predictive cartography of (A) total bryophyte, (B) moss, (C) liverwort, and 
(D) sphagna richness for the study area at 30m resolution. Red colors correspond to 
areas predicted to be species rich, while yellow and blue colours correspond to areas 
predicted to harbour intermediate and low levels of richness. White areas on maps 
correspond to non-forest areas for which soil information was not available (Ministère 
des Forêts, de la Faune et des Parcs du Québec, 2018). 
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Table 2.3 Coefficient of variation statistics associated to the predictive mapping of total 
bryophyte, moss, liverwort and sphagna richness shown in Figure 2.4 (see Figure 2.5 
for coefficient of variation maps). 

 Coefficient of variation statistics 
 Min. 1st quantile Median 3rd quantile Max. 

Bryophytes 0.14 0.33 0.38 0.45 0.97 
Mosses 0.10 0.48 0.55 0.62 1.26 
Liverworts 0.19 0.51 0.60 0.71 1.63 
Sphagna 0.11 0.47 0.58 0.75 2.16 
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Figure 2.5 Maps of coefficient of variation associated to the predictive mapping of (A) 
total bryophyte, (B) moss, (C) liverwort, and (D) sphagna richness. Measures were 
derived from predictions of individual Random Forest trees at each pixel. 

2.6 Discussion 

2.6.1 Predicting bryophyte richness patterns 

The present study demonstrates the efficacy of combining remote sensing data and 

SDMs to model and assess the richness patterns of bryophytes in boreal forest. Recent 

studies have used the same approach to model and understand the spatial patterns of 

total bryophyte diversity (Bartels et al., 2018; Moeslund et al., 2019). However, our 

study was also able to develop a predictive cartography at the guild level and therefore 
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offer a potential repeatable methodology for conservation purposes of these species 

groups.  

Our models explained a significant fraction of the variation in total bryophyte and guild 

level richness, both in the calibration (42 to 52%) and validation sets (38 to 48%). 

However, a substantial part of the variation remained unexplained, which can be due 

to several causes: i) errors inherent to the geolocation of the plots, which can affect the 

performance of the models (Moudrý and Šímová, 2012); ii) variables describing 

important environmental features that drive bryophyte richness patterns were missing, 

especially at the microhabitat scale, since local conditions, such as quantity and decay 

class of rotting logs, affect bryophyte assemblages more directly (Cole et al., 2008; 

Hespanhol et al., 2011; Pócs, 1996); iii) variables that explicitly integrate information 

on anthropogenic pressure on the territory (such as harvest intensity), which 

considerably influence the dynamics of boreal forests, were not included in our models; 

iv) the mismatch between the size of the sampling plots (50m2) and image pixels 

(900m2) used in the modeling can introduce errors that result in a decrease in model 

accuracy (Xu et al., 2009). Despite these potential limitations, we consider that our 

results based solely on remote sensing data are significant, specifically at the guild level. 

Lower fits to the calibration data were achieved by the total bryophyte diversity models 

developed in similar studies. Bartels et al. (2018) were able to explain up to 16% and 

11% of the variation in diversity and richness, respectively, while a 32% variance in 

richness was explained by Moeslund et al. (2019). 

2.6.2 Remote sensing predictors 

Despite variable resolution, remote sensing predictors offer valuable information in 

understanding the relationships between bryophytes and their environment, and thus 

for protection and management purposes. Since “bryophytes” are composed of 

different guilds presenting differences in ecological and physiological terms (Aranda 
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et al., 2014; Chen et al., 2015a; Fenton and Bergeron, 2008), the discussion in the 

present section is mainly addressed at the guild level. 

This study demonstrated the importance of climatic factors, especially Temperature 

and Precipitation, in generating richness patterns of the different bryophyte guilds. This 

result agrees with those obtained in earlier studies, both for total bryophytes (Aragón 

et al., 2012; Pharo et al., 2005; Zechmeister et al., 2003) and for bryophytes guilds 

(Chen et al., 2015a, 2015b). Both Temperature and Precipitation show a consistent 

negative effect throughout the three guilds (Figure 2.6) as previously reported (Chen et 

al., 2015a, 2015b; Zechmeister et al., 2003). Although the variation of Temperature 

presented in our study area is around 1.0°C, the effect of this annual variable may be 

reflecting the masked effect of temperatures of the warmest months which can limit the 

persistence of bryophytes according to their tolerance to desiccation. The results 

obtained for Precipitation, however, may seem contradictory. In boreal black spruce 

forests, where precipitation is primarily intercepted by the first canopy layers (Liu and 

Liu, 2008), most of bryophyte species appear to be more dependent on other moisture 

sources such as fog, dew, high humidity (Lüttge et al., 2011) or the water table (Bartels 

et al., 2018, 2019). The negative effect of Precipitation could be explained based on 

the spatial pattern that it shows in our study area. Precipitation shows an east west 

gradient with higher values spatially coinciding with high fire activity areas outside the 

Clay Belt region close to the Fire Triangle Area (Le Goff et al., 2007, 2008). These 

more frequently disturbed areas are characterized by well drained sandy soils poor in 

nutrients (Mansuy et al., 2011). Therefore, we argue that the lower observed bryophyte 

richness in areas of higher Precipitation may be due to factors related to the natural 

disturbance regime and the composition and drainage capacity of soils of those areas 

rather than to the effect of Precipitation as a moisture source. 

Days_30degress was also negatively correlated with the richness of the different 

bryophyte guilds. This result is directly related to the poikilohydric physiology of these 
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organisms (Gignac, 2001; Huttunen et al., 2018; Raven, 1995). Days of extreme heat 

may exceed the desiccation tolerance of these species (as well as of their propagules), 

particularly in the case of liverworts that generally have a lower tolerance to stress 

induced by desiccation (Proctor et al., 2007; Wood, 2007). Although liverworts can 

resist desiccation periods under determined conditions (Proctor et al., 2007; Wood, 

2007), stable humid environments are required, among other factors, to harbor and 

maintain high levels of their richness. 

The richness of the different guilds was also influenced by the Freeze-thaw variable. It 

showed a positive effect for mosses and sphagna and a negative effect for liverworts. 

Although many bryophytes show physiological response mechanisms to freezing 

which allow them to withstand freeze-thaw cycles without suffering severe damage 

(Lenne et al., 2010; Takezawa, 2018), the positive influence of Freeze-Thaw events on 

moss and sphagna richness remains unclear. Liverworts, conversely, are species 

generally more sensitive to freezing (Longton, 1988), especially in the case of thalloid 

liverworts which can suffer frost-induced irreversible damage (Clausen, 1964; Dilks 

and Proctor, 1975). This fact would explain the lower richness of liverwort species in 

areas exposed to more frequent freeze-thaw cycles. 

NDVI also appeared as a very important predictor, positively correlated in particular 

with moss and liverwort richness (Figure 2.6). The usefulness of this vegetation index, 

as well as of its combination with climatic variables (Li et al., 2020), as predictors of 

bryophyte biodiversity-related aspects are consistent with previous studies (Jiang et al., 

2013, 2014). NDVI relates to the absorption of photosynthetically active radiation 

carried out by plants (Rouse et al., 1974) and therefore to the presence of vegetation, 

which increases with time since disturbance as regeneration advances. Diversity of 

substrates as well as their quality and quantity also increases with time since 

disturbance, which are factors that favour a higher diversity of bryophytes, particularly 

of liverworts (Barbé et al., 2017; Boudreault et al., 2018; Paquette et al., 2016). 
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Likewise, the long ecological continuity of forests with high NDVI values increases 

their probability of being colonized by new species (Nordén et al., 2014), especially 

for potentially dispersal-limited species, such as rare bryophytes found in managed 

environments (Söderström and During, 2005). The influence of disturbance regimes, 

both natural and anthropogenic, on the dynamics and spatial patterns of boreal forests 

(Castonguay, 2016; Cyr et al., 2009; Grandpré et al., 2011; Lecomte et al., 2006), as 

well as the ability of NDVI to capture disturbance-derived differences in important 

forest attributes that affect moss and liverwort richness, explain the importance of this 

index. 

B4, as NDVI, is sensitive to the presence of vegetation, which can explain that both 

predictors show similar importance for, and relationships with, those observed richness 

values of mosses and sphagna (Figure 2.3). However, these results contrast with those 

obtained for liverworts, in which we observe a significantly importance of NDVI with 

respect to B4. Although we ignore the cause of this disparity, it is likely that B4 is also 

providing information on vegetation structural features (Ewalda et al., 2019; Huete et 

al., 1997) that can be more determinant for the richness of mosses and sphagna than 

for liverworts richness. 

Regarding the sphagna guild, a higher richness was found in sites showing poor 

drainage capacity, low relative elevation, high soil moisture content and flat relief. 

These are features normally associated with paludified sites (Laamrani et al., 2015; 

Mansuy et al., 2018), habitats in which feathermosses are naturally replaced by 

sphagna (Fenton and Bergeron, 2006; Simard et al., 2007) and that are known for 

harboring a high diversity of these latter species (Boudreault et al., 2002). In fact, the 

areas predicted as the richest in sphagna species correspond to those predicted by 

Mansuy et al. (2018) within our study area to have thicker organic layers as a result of 

the paludification process. 
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While bryophytes also respond to microhabitat conditions (Cole et al., 2008; Pócs, 

1996), larger-scale environmental factors, such as climate (Medina et al., 2014) or 

overstory vegetation (Weibull and Rydin, 2005) can substantially influence their 

diversity patterns by shaping local conditions. The differences found among guilds in 

terms of relevant variables as well as of their relative importance highlight the 

importance of focussing at the guild level. This permits the identification of the 

environmental features that influence each guild in order to develop management and 

conservation strategies adapted to their ecophysiological specificities (Baldwin and 

Bradfield, 2007; Fenton and Bergeron, 2008; Raabe et al., 2010). 

 

Figure 2.6 Relationship between the observed richness of total bryophytes, mosses, 
liverworts, and sphagna and their five best predictors (in decreasing order of 
importance from left to right; see Table 2.1 for predictor description). 

2.6.3 Implications for conservation strategies 

Boreal forests are poor in tree species diversity (Turetsky et al., 2012) and show an 

overall species richness inferior to that found in lower latitude forests (Gentry, 1986; 

Gower et al., 2001; Myers, 1988). Bryophytes therefore represent a significant 
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proportion of the diversity in boreal forests (i.e. 207 different species included in the 

present study against 10 tree species recorded in the boreal black spruce forest of 

Quebec; Gagnon, 2004). Bryophytes are also well known indicators of environmental 

changes (Frego, 2007; Hylander et al., 2002; Vellak and Ingerpuu, 2005) and their 

monitoring and mapping can be used to track the impacts of natural and anthropogenic 

disturbances in the landscape. As 99% of the study area experiences some form of 

forestry or mining related activities, the bryophyte richness predictive map provided 

here could be integrated in land use management as well as in a decision support tool 

for government and industries operating in this region. Understanding the main drivers 

of bryophyte richness patterns at a large scale is also crucial to the development of 

conservation strategies and the maintenance of ecosystem functions. Other biodiversity 

indicators such as dissimilarity measures (beta diversity) could be added to the baseline 

provided by our study to support conservation planning processes in boreal forests. 

2.7 Conclusion 

At the scale of the study (about 30,000 km2), the predictive performance of the model 

encompassing total bryophyte species was acceptable. However, predictive mapping 

of bryophyte richness at the guild level allowed us to identify important variables 

determining the richness of a myriad of bryophyte species with singular environmental 

requirements. This distinction among guilds remains hidden when bryophytes are 

considered as a homogeneous plant group. Independent guild-level models also 

produced more accurate predictions, since they were better adapted, in terms of 

predictors and their relative contribution, to the specific ecological preferences and 

tolerances of each guild. This study highlights the importance of working, not only 

with bryophytes as a whole, but also at the guild level. 

The 30m spatial resolution remote sensing data used in our study were able to capture 

biophysical features driving the assemblage of different bryophyte species. This 
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ultimately allowed the explanataion of a significant fraction of richness variations in 

all models in both training and validation datasets. Therefore, the indirect remote 

sensing approach provides a valuable tool for assessing bryophyte diversity and to 

make predictions on biodiversity distribution across the landscape. However, more 

research on remote sensing-derived indicators of bryophyte diversity is needed. While 

more accurate and reliable predictive models could be developed in the future using 

high-resolution data, this study clearly underlines the potential of remote sensing tools 

in the field of predictive modeling of bryophyte biodiversity. Our work also lays the 

basis for eventual inclusion of bryophytes, until now overlooked, into the sustainable 

industrial development planning in northern Canada. 
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3.1 Abstract 

In Canadian boreal forests, bryophytes represent an essential component of biodiversity 

and play a significant role in ecosystem functioning. Despite their ecological 

importance and sensitivity to disturbances, bryophytes are overlooked in conservation 

strategies due to knowledge gaps on their distribution, which is known as the Wallacean 

shortfall. Rare species deserve priority attention in conservation as they are at a high 

risk of extinction. This study aims to elaborate predictive models of rare bryophyte 

species in Canadian boreal forests using remote sensing-derived predictors in an 

Ensemble of Small Models (ESMs) framework. We hypothesize that high ESMs-based 

prediction accuracy can be achieved for rare bryophyte species despite their low 

number of occurrences. We also assess if there is a spatial correspondence between rare 

and overall bryophyte richness patterns. The study area is located in western Quebec 

and covers 72,292 km2. We selected 52 bryophyte species with < 30 occurrences from 

a presence-only database (214 species, 389 plots in total). ESMs were built from 

Random Forest and Maxent techniques using remote sensing-derived predictors related 

to topography and vegetation. Lee’s L statistic was used to assess and map the spatial 

relationship between rare and overall bryophyte richness patterns. ESMs yielded poor 

to excellent prediction accuracy (AUC > 0.5) for 73% of the modeled species, with 

AUC values > 0.8 for 19 species, which confirmed our hypothesis. In fact, ESMs 

provided better predictions for the rarest bryophytes. Likewise, our study revealed a 

spatial concordance between rare and overall bryophyte richness patterns in different 

regions of the study area, which has important implications for conservation planning. 

This study demonstrates the potential of remote sensing for assessing and making 

predictions on inconspicuous and rare species across the landscape and lays the basis 

for the eventual inclusion of bryophytes into sustainable development planning.  
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3.2 Résumé 

Dans les forêts boréales canadiennes, les bryophytes représentent une composante 

essentielle de la biodiversité et jouent un rôle important dans le fonctionnement des 

écosystèmes. Malgré leur importance écologique et leur sensibilité aux perturbations, 

les bryophytes sont négligées dans les stratégies de conservation en raison de lacunes 

dans les connaissances sur leur distribution, connue sous le nom de déficit de 

Wallacéen. Les espèces rares méritent une attention prioritaire dans la conservation car 

elles présentent un risque élevé d'extinction. Cette étude vise à élaborer des modèles 

prédictifs d'espèces de bryophytes rares dans les forêts boréales canadiennes à l'aide de 

prédicteurs dérivés de la télédétection dans un cadre des ensemble de petits modèles. 

Nous émettons l'hypothèse qu'une grande précision de prédiction basée sur les 

ensembles de petits modèles peut être obtenue pour les espèces de bryophytes rares 

malgré leur faible nombre d'occurrences. Nous évaluons également s'il existe une 

correspondance spatiale entre les patrons de richesse en bryophytes rares et totaux. La 

zone d'étude est située dans l'ouest du Québec et couvre 72,292 km2. Nous avons 

sélectionné 52 espèces de bryophytes avec < 30 occurrences à partir d'une base de 

données de présence uniquement (214 espèces, 389 parcelles au total). Les ensembles 

de petits modèles ont été construits à partir des techniques de Random Forest et Maxent 

en utilisant des prédicteurs dérivés de la télédétection liés à la topographie et à la 

végétation. La statistique L de Lee a été utilisée pour évaluer et cartographier la relation 

spatiale entre les patrons de richesse en bryophytes rares et totaux. Les ensembles de 

petits modèles ont donné une précision de prédiction faible à excellente (AUC > 0.5) 

pour 73% des espèces modélisées, avec des valeurs d'AUC > 0.8 pour 19 espèces, ce 

qui a confirmé notre hypothèse. En fait, les ensembles de petits modèles ont fourni de 

meilleures prédictions pour les bryophytes les plus rares. De même, notre étude a révélé 

une concordance spatiale entre les patrons de richesse en bryophytes rares et totaux 

dans différentes régions de la zone d'étude, ce qui a des implications importantes pour 
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la planification de la conservation. Cette étude démontre le potentiel de la télédétection 

pour évaluer et faire des prédictions sur les espèces discrètes et rares à travers le 

paysage et jette les bases pour l'inclusion éventuelle des bryophytes dans la 

planification du développement durable. 

3.3 Introduction 

Canadian boreal forests represent 24% of the world’s boreal forest (Natural Resources 

Canada, 2017). In these forests, anthropogenic disturbances pose serious threats for 

boreal flora (Ficken et al., 2019; Newmaster and Bell, 2002). This is particularly true 

for sensitive plant species such as bryophytes, which have been recognized as reliable 

indicators of environmental changes (Frego, 2007; Hylander et al., 2002; Vellak and 

Ingerpuu, 2005). Bryophytes are key constituents of biodiversity in Canadian boreal 

forests, promoting species richness (Möls et al., 2013; Turetsky et al., 2012) and 

supporting important ecosystem functions (Bond-Lamberty and Gower; 2007; 

Turetsky, 2003; Turetsky et al., 2012). 

Forest management pressure is however affecting bryophyte diversity and community 

composition in the boreal biome, either through direct species removal or by altering 

habitat conditions originally suitable for bryophytes (Caners et al., 2013). Forestry 

practices are also reducing the ecological continuity of forests, jeopardizing the 

recolonization processes after disturbance events (Boudreault et al., 2018; Frego, 2007). 

Highly habitat-specific and/or dispersal-limited bryophyte species harbored by old-

growth boreal forests may therefore be at risk (Boudreault et al., 2018). Despite their 

ecological importance and sensitivity to disturbances, bryophytes are part of the vast 

unseen biodiversity that is currently ignored in most conservation plans (Rowntree et 

al., 2011; Vanderpoorten and Hallingbäck, 2009). 

Less known and represented in natural history collections than other groups such as 

birds, mammals or flowering plants, the large contribution of inconspicuous taxonomic 
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groups to diversity is difficult to assess, and thus commonly operationalized using 

diversity measures of these other groups as surrogates (Austin and Margules, 1986; 

Pimm et al., 2014). However, these better-known taxonomic groups are poor surrogates 

for highly diverse but less showy or studied taxa (Rodrigues and Brooks, 2007). 

Including inconspicuous species groups, such as bryophytes (e.g. Cerrejón et al., 2020), 

representativeness in systematic conservation planning assessments would lead to more 

robust conservation measures (Delso et al., 2021). 

From a conservation perspective, rare species deserve priority attention as they are at 

a high risk of extinction (Lomba et al., 2010; Zhang, 2019). However, because of their 

own nature, many rare species of unseen biodiversity groups (Delso et al., 2021) suffer 

from a lack of information on environmental requirements or their distribution (Hortal 

et al., 2015; Whittaker et al., 2005). Species Distribution Models (SDMs), which allow 

to quantify the statistical relationships between species observations and environmental 

conditions from known locations, can provide useful tools for assessing ecological 

preferences of rare species or predicting their distributions (Guillera-Arroita et al., 

2015; Mateo et al., 2011). More precisely, SDM-based predictions are achieved by 

using the relevant environmental conditions as proxies of species occurrence. However, 

the ability of traditional SDMs to predict rare species has been strongly limited by the 

number of occurrences available, with increases in prediction accuracy with increased 

sample size (Guisan et al., 2007; Wisz et al., 2008). Furthermore, modeling species 

with low prevalence often results in a high predictors/occurrences ratio, which can lead 

to model overfitting and reduced applicability to new data (Breiner et al., 2015; 

Vaughan and Ormerod, 2005). Fortunately, recent advances in modeling techniques 

and approaches such as Ensembles of Small Models (ESMs) have been shown to 

provide robust predictions for rare plants (Amirkhiz et al., 2021; Breiner et al., 2015; 

Lomba et al., 2010). ESMs are ensembles of bivariate models generated from all 

pairwise predictor combinations from a larger set of predictors (Breiner et al., 2015; 
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Lomba et al., 2010). ESMs can produce more accurate predictions than traditional 

SDMs and reduce model overfitting for rare species (Breiner et al., 2015). In parallel, 

remote sensing (RS) offers a powerful tool to derive and integrate environmental 

information into SDMs and generate predictions on species distribution over large 

areas (Cerrejón et al., 2020; He et al., 2015; Turner et al., 2003). Although a 

considerable number of studies have successfully integrated RS predictors into SDMs 

(Jiang et al., 2013; Saatchi et al., 2008; Zimmermann et al., 2007), no study has 

generated ESMs using only RS predictors, nor has used this approach to generate 

SDMs of inconspicuous organisms such as bryophytes, much less of their rare species. 

In this paper we use RS-derived predictors in an ESMs framework to produce 

predictive models of rare bryophyte species in Eastern Canadian boreal forests. 

Bryophyte rare species were selected based on their prevalence in the study area (< 30 

occurrences; Barbé et al., 2018). This rare species selection approach was chosen 

because of the lack of knowledge on bryophytes related to their distribution, ecological 

preferences and abundance in the region (Barbé et al., 2018), which make it difficult 

to apply more informative approaches such as multicriteria rare species classification 

methods (e.g. Rabinowitz, 1981). In fact, the most complete rare bryophyte species list 

published to date for the region used species’ prevalence as the only criterion for rare 

species classification (Faubert et al., 2010, 2011, 2012). It should be noted that rare 

bryophytes from (Faubert et al., 2010, 2011, 2012) were not targeted here as their low 

prevalence (≤ 5 occurrences) greatly restricts the development of SDMs. We 

hypothesize that high ESMs-based prediction accuracy can be achieved for rare 

bryophyte species despite their low number of occurrences (Breiner et al., 2015). Our 

specific objectives are to assess i) if there is a relationship between the number of 

occurrences and the predictive performance of ESMs, ii) if the predictive performance 

of models varies by the modeled bryophyte guild (mosses, liverworts and sphagna), 

and iii) if there is a spatial relationship between the richness patterns of rare bryophyte 
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species and overall bryophyte species both for bryophytes as a whole and at the guild 

level (Cerrejón et al., 2020). A total of 52 rare bryophyte species were targeted in the 

present study, including 33 mosses, 14 liverworts and 5 sphagna 

3.4 Materials and methods 

3.4.1 Bryophyte field data set  

We used a 389-plot database of presences-only including the field data from three 

studies previously conducted in our study area (Barbé et al., 2017; Castonguay, 2016; 

Chaieb et al., 2015), which integrated young, mature and old-growth forests and both 

recent fires and cut-blocks. The study area of 72,292 km2 is located in the southwest of 

the Nord-du-Québec administrative region of western Quebec (48° 51’ to 50° 42’N and 

74° 31’ to 79° 26’W; Figure 3.1), within the Black spruce–feathermoss forest 

bioclimatic domain (Saucier et al., 2003). Natural dynamics of these forests are 

primarily driven by stand-replacing fires, whose cycle has been estimated at 398 years 

after 1920 (Bergeron et al., 2004). The region is characterized by a flat topography, 

dominance of poorly drained clay soils and a moderately humid and cold climate (927.8 

mm annual precipitation and 1.0°C annual mean temperature) (Environment Canada, 

2010). These conditions favor the accumulation of organic layer between fires, which 

is known as the paludification process (Bergeron et al., 2007; Boudreault et al., 2002). 
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Figure 3.1 A: Study area and sampling plots (n=389) in the boreal black spruce forest 
of western Quebec. B: Location of the study area within Quebec. C: Location of 
Quebec (eastern Canada). 

Bryophytes were collected following a “floristic habitat sampling” method, which 

consists in collecting all bryophytes found in all microhabitats within 5 x 10m plots 

(Newmaster et al., 2005). Rare bryophyte species were selected based on their 

prevalence within the study area (< 30 occurrences) (Barbé et al., 2018). From an initial 

set of 214 species, 142 rare species were pre-selected, and among them, only those with 

a minimum of 5 occurrences were retained for modeling, since meaningful predictions 

can be achieved at this sample size (Hernandez et al., 2006, Pearson et al., 2007; Spiers 

et al., 2018). A total of 52 rare bryophyte species (33 mosses, 14 liverworts and 5 
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sphagna; Appendix B) were finally selected for modeling (species occurrence 

coordinates are shown in Appendix C). 

3.4.2 Remote sensing environmental predictors 

The selection of RS-derived predictors was carried out based on their sensitivity to 

environmental factors known to influence bryophyte distribution, namely topography, 

canopy cover and structure, and vegetation and soil moisture (Cerrejón et al., 2020; 

Couvreur et al., 2016; Jiang et al., 2014; Raabe et al., 2010). Climatic variables were 

not included due to their coarse spatial resolution (≥ 1km) and low spatial variability 

across the study area (annual mean temperature and total precipitation with an 

approximate variability range of 1 °C and 150 mm respectively; Cerrejón et al., 2020), 

which could lead us to overestimate the distribution of rare species. In addition, the 

climatic variability that could be integrated into the individual models of our rare 

species would be even more limited by the low number of available occurrences. It 

should be noted that climate variables also present lower reliability compared to RS 

variables at the scale of our study. This is because climatic variables are based on 

interpolation methods with high uncertainty, especially in northern latitudes where 

weather stations are scarce, while RS information is spatially continuous by nature. 

Therefore, we selected RS variables showing higher variability across the study area 

and capable of detecting changes in local conditions more closely related to bryophyte 

occurrence. 

RS-derived environmental data were acquired using Google Earth Engine (GEE; 

Gorelick et al., 2017). The initial set of 6 predictors included topographic position 

index (TPI), 2-band enhanced vegetation index (EVI2), normalized difference water 

index (NDWI1), vegetation continuous fields (VCF), PALSAR HV/HH polarization 

index (PALSAR_HVHH), and bare soil index (BSI; see Table 3.1 for predictor 

descriptions). TPI was derived from the Shuttle Radar Topography Mission (SRTM) 
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digital elevation model in ArcGIS v.10.5 (ESRI, 2016) using an annulus neighborhood 

with inner and outer radius of 15 and 20 pixels, respectively. EVI2, NDWI1, and BSI 

predictors were derived from Sentinel-2 spectral bands. For each band, a mosaic was 

built from the images available for the summer season (July 1-August 31) between 

2015-2019 to ensure homogeneity in the reflectance values (Franch et al., 2019). 

Cloudy pixels were masked in all selected images using the Sentinel-2 QA60 band, 

which allows to identify pixels with opaque clouds and cirrus clouds. Mosaics were 

performed by applying the median of the overlapping pixel values. We chose EVI2 

instead of EVI since EVI2 does not require the blue band, which is sensitive to the 

presence of residual clouds and aerosols (Jiang et al., 2007). VCF represents percent 

tree cover at 30m resolution, after rescaling the 250 m MODIS VCF Tree Cover layer 

using circa-2010 and 2015 Landsat images and incorporating the MODIS Cropland 

Layer to improve accuracy in agricultural areas 

(https://catalog.data.gov/dataset/global-forest-cover-change-tree-cover-multi-year-

global-30m-v003) (Sexton et al., 2013). The VCF predictor presented pixels (0.1% of 

the total) with missing values in the study area. PALSAR_HVHH was calculated as 

the ratio of HV-polarized to HH-polarized L-bands from the Advanced Land Observing 

Satellite (ALOS) Phased Arrayed L-band Synthetic Aperture Radar (SAR) (Mansuy et 

al., 2018). HV-polarized and HH-polarized L-bands were averaged from yearly 

mosaics between 2015 and 2017. All predictors were generated and standardized at a 

30m spatial resolution (see Table 3.1 for original spatial resolutions). Pearson 

correlation coefficient was used to identify pairs of highly correlated predictors (|r|) > 

0.7) from a set of 10,000 random background points. Only the NDWI1-BSI predictor 

pair showed a high correlation (r = -0.87). We retained NDWI1 which is sensitive to 

vegetation and soil moisture (Gao, 1996), since bryophytes are poikilohydric 

organisms whose distribution is highly dependent on available moisture (Bartels et al., 



57 

 

 

2018; Gignac, 2001). This resulted in a final set of 5 uncorrelated predictors to run the 

models (Table 3.1).



 

 

 

Table 3.1 Description of predictors by category and source. Uncorrelated predictors finally selected to model bryophyte 
distribution are shown in bold. 

Predictors Description Category Data source Source spatial 
resolution (m) 

TPI Topographic position index; relative elevation at one 
point compared to its surrounding environment (m); 
indicative of microclimate conditions (Bennie et al., 
2008) 

Topography SRTM 30m 

EVI2 2-band enhanced vegetation index (2.5 * (NIR - RED) 
/ (NIR + 2.4 * RED + 1)); sensitive to photosynthetic 
active biomass (Jiang et al., 2007; Moreira et al., 
2017) 

Vegetation Sentinel-2 10m 
 

NDWI1 Normalized difference water index ((NIR – SWIR1) 
/ (NIR + SWIR1)); sensitive to soil and vegetation 
moisture (Gao, 1996) 

Vegetation Sentinel-2 10m; 20 m 

VCF Vegetation continuous fields; percent tree cover (%) 
(Townsend and DiMiceli, 2015) 

Vegetation MODIS 250 m 

PALSAR HVHH PALSAR HV/HH polarization index; indicative of 
forest structure (Mansuy et al., 2018) 

Vegetation ALOS 
PALSAR 

25 m  

BSI Bare soil index ((SWIR1 + RED) – (NIR + BLUE) / 
(SWIR1 + RED) + (NIR + BLUE)); sensitive to bare 
soil areas and vegetated areas with different 
background (Roy et al., 1996) 

Soil Sentinel-2 10m; 20 m 
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3.4.3 Modeling approach: Ensembles of Small Models 

ESMs based on bivariate models were developed to spatially predict 52 rare bryophyte 

species (5–29 occurrences) using two modeling machine-learning techniques: Maxent 

(Phillips et al., 2006) and Random Forest (RF) (Breiman, 2001). Both Maxent and RF 

techniques can provide robust predictions when few occurrences are available 

(Hernandez et al., 2006; Pouteau et al., 2012; Williams et al., 2009). Maxent estimates 

the probability distribution for a given species by finding the probability distribution 

of maximum entropy according to a set of constraints representing the input known 

locations (Phillips et al., 2006). RF uses a bootstrap aggregation technique to provide 

mean predictions from a multitude of independent decision trees built from randomly 

selected subsamples from the training dataset(Breiman, 2001). A random subset of 

candidate predictors is assessed to split each node of each individual tree, selecting the 

predictor that provides the most information in each case (Liaw and Wiener, 2002). 

ESMs were generated in R v.3.6.3 (R Development Core Team, 2020) using the 

biomod2 package v.3.4.6 (Thuiller et al., 2020). As we used presence-only data, 10,000 

background points were randomly generated within the study area and used as pseudo-

absences for all species. Presences and pseudo-absences were weighted equally for 

training the ESMs. The pairwise combinations of our 5 final predictors resulted in 10 

candidate bivariate models per modeling technique (Maxent and RF) for each species. 

We used default settings of the biomod2 package for computing Maxent and RF models. 

Predictive performance of each bivariate model was assessed via 10-fold cross-

validation procedure, using 80% of the data to train the model and 20% for its 

validation. While we acknowledge that validation would be optimal using an external 

dataset, this is hardly available when dealing with rare species. The Somers’ D metric 

was used to identify and select bivariate models better than random (Somers’ D score > 

0, i.e. AUC > 0.5). Maxent-ESMs and RF-ESMs were then performed using a weighted 

mean of predicted probabilities from their corresponding retained bivariate models 
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based on their Somers’ D scores (Breiner et al., 2015; Lomba et al., 2010). The 

contribution of each bivariate model was thus proportional to its predictive accuracy. 

The final ESMs selected for each species was generated by weighted averaging 

predictions from Maxent-ESMs and RF-ESMs. Predictive performance of final ESMs 

was evaluated using the area under the receiver operating characteristic curve (AUC), 

and the true skills statistic (TSS). AUC is not dependent on a threshold and ranges from 

0.5 for an uninformative model to 1 for a perfect fit model, while TSS ranges from -1 

to 1 and was chosen instead of kappa because it is not affected by prevalence (Allouche 

et al., 2006). Since AUC and TSS values were highly correlated (Pearson r > 0.95), the 

results and discussion on models’ overall predictive performance will be based on the 

AUC statistics, following (Breiner et al., 2015) and Allouche et al. (2006). The statistic 

sensitivity was also calculated, which allows the assessment of the proportion of actual 

presences correctly predicted (Fawcett, 2004). We computed sensitivity for those 

species whose final ESMs were better than random (AUC > 0.5). Besides of the 

continuous models (values 0-1000), we generate binary models (presence/absence) 

using the maximum training sensitivity plus specificity threshold, or TSS optimum 

(Figure 3.2; predictive mapping of the distribution of the target species is available in 

Cerrejón et al., 2021b). Finally, we mapped the richness patterns (species number) for 

total rare bryophyte species, as well as for rare species by guild, by stacking their binary 

predictions (presence/absence). Missing values associated with the predictions of the 

three species that included the VCF predictor in their final models were classified as 

absences before richness computation. We then compared the spatial richness patterns 

obtained here for rare species with those obtained recently for overall bryophyte species 

in a smaller region (28,436 km2) but fully included in our study area at the same spatial 

resolution (30m; Cerrejón et al., 2020). The comparison was performed for bryophytes 

as a whole (i.e. rare bryophyte richness versus overall bryophyte richness), and between 

homologous bryophyte guild pairs. This spatial correspondence analysis was carried 
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out using Lee’s L statistic (Lee, 2001) through the lee() function from the spdep 

package v.1.1-5. (Bivand et al., 2015). Lee’s L statistic, in contrast to non-spatial 

bivariate association measures such as Pearson’s correlation coefficient, integrates and 

corrects for the spatial autocorrelation of each variable when computing the pixel-to-

pixel spatial correlation (Lee, 2001). Due to the high computational requirements to 

carry out this analysis, the 30m pixels were previously averaged into 300 m pixels 

through the aggregate() function of the raster package v.3.4-5 (Hijmans, 2020). 

Outputs of lee() function were centered at 0 and re-scaled to -1 and 1 to facilitate the 

interpretation of the results by subtracting the overall mean and dividing by the 

maximum value (Mateo et al., 2016). We then calculated, for each pixel, the quantile 

associated with its Lee’s L value using a Monte Carlo test with 999 simulations in order 

to identify significant positive (quantile > 0.975) or negative (quantile < 0.025) spatial 

associations. 

 

Figure 3.2 Example of (A) continuous and (B) binary predictive mapping of the moss 
Trematodon ambiguus (Hedw.) Hornsch. for the study area at 30m spatial resolution. 

3.4.4 Species traits characterization 

Species traits can influence the accuracy and therefore the ability of SDMs to predict 

their occurrence (Chefaoui et al., 2011; McCune et al., 2020). We evaluated the 
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relationship between ESMs' model performance, as measured by AUC, and rare species 

traits, namely substrate preference (six categories), reproduction mode (three 

categories), and spore size (maximum and minimum; Appendix B), as well as their 

interactions. This assessment was performed using a multiple linear regression through 

the lm() function from the stats package v.3.6.3 (R Development Core Team, 2020). 

Relationships were considered significant at α = 0.05. 

3.5 Results 

3.5.1 ESMs’ predictive performance versus number of occurrences and bryophyte 
guilds 

RS-based ESMs provided poor to excellent predictive accuracy for 38 of the 52 

modeled rare species, with AUC values ranging from 0.551 to 0.979 and a mean AUC 

(mAUC) of 0.795 ± 0.132. Of these 38 species, 19 species were predicted with AUC 

values greater than 0.8, confirming our hypothesis that high ESMs-based prediction 

accuracy can be achieved for rare bryophyte species despite their low number of 

occurrences (< 30). Sensitivity for these 38 species ranged from 0.8 to 1 with an 

average of 0.959 ± 0.063, indicating that actual presences were usually accurately 

predicted. Only predictions for 14 species were not better than random (AUC ≤ 0.5). 

Regarding our first specific objective, a negative correlation (Pearson r = -0.34) was 

found between the number of occurrences of the 52 target species and the predictive 

accuracy as measured by AUC. This negative correlation was also observed at the guild 

level (Figure 3.3). 

To accomplish our second specific objective, we grouped the 52 modeled species by 

guild and found that predictive accuracy was similar for mosses (mAUC = 0. 715 ± 

0.167) and liverworts (mAUC = 0.735 ± 0.185), and lower for sphagna (0.663 ± 0.208). 

No significant relationships were found between ESMs' performance and rare species 

traits (or their interactions). 
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Figure 3.3 AUC values versus number of occurrences (Overall Pearson r = -0.34). 
Bryophyte guilds are indicated. 

3.5.2 Richness patterns of rare bryophyte species 

Predictive mapping of richness patterns of total rare bryophyte species and rare species 

at the guild level (mosses, liverworts and sphagna) are presented in Figure 3.4. 

Predicted richness values ranged from 0 to 30, 21, 9, and 3 species, respectively. The 

richness pattern of total rare bryophytes was largely structured by the similar richness 

patterns observed for rare mosses and liverworts, with high richness values mostly 

found towards the center and southwest of the study area. Conversely, rare sphagna 

species were concentrated in very specific areas mainly towards the north of the study 

area with two additional spots towards the southeast. 
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Figure 3.4 Mapping of (A) total rare bryophyte, (B) rare moss, (C) rare liverwort, and 
(D) rare sphagna richness (species number) for the study area at 30m resolution. 
Computed from stacked predicted rare species distributions. 

Regarding our third specific objective, the Lee’s L statistic identified areas of 

significant positive and negative spatial association between rare and overall species 

richness for the four homologous bryophyte group pairs (Figure 3.5). Large areas in 

which the spatial association between the two types of richness was not significant 

were also consistently observed across pairs. 
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Figure 3.5 Correlation between rare and overall (A) bryophyte, (B) moss, (C) liverwort, 
and (D) sphagna species richness as measured by re-scaled Lee’s L statistic for the 
study area of Cerrejón et al. (2020) at 300 m spatial resolution. "Positive" (blue) and 
"Negative"(red) indicate significant positive (quantile > 0.975) and negative (quantile 
< 0.025) Lee’s L values derived from Monte Carlo test. Continuous values of the re-
scaled Lee’s L statistic are shown in Appendix E. 

3.6 Discussion 

Boreal regions are large areas lacking sharp environmental contrasts, as shown by the 

low variability of our predictors (Figure 3.6), and thus a habitat where obtaining high-

performance SDMs can be challenging. Despite this, our ESMs provided reasonably 

accurate predictions for rare bryophytes using only 5 uncorrelated RS predictors. 

Specifically, RS-based ESMs provided poor to excellent predictive accuracy for 73% 



66 

 

 

of the target species despite their very low number of occurrences. Indeed, 16 species 

with less than 10 occurrences showed an AUC > 0.7. In addition, the computation of 

the metric sensitivity allowed us to independently show the ability of our ESMs to 

accurately predict known presences, with high values for the 38 species modeled better 

than random. Therefore, the combination of RS data at 30m spatial resolution and 

ESMs proved to be a powerful approach to predict the distribution of rare bryophyte 

species in Eastern Canadian boreal forests. 

 

Figure 3.6 Boxplots of standardized uncorrelated predictors used for modeling. See 
Table 3.1 for predictor descriptions. Measurement units are indicated in parentheses. 
Unit abbrev.: DN, digital number; TOA, top-of-atmosphere reflectance. 

The negative relationship found between models’ predictive performance and the 

number of occurrences of all bryophytes, as well as at the guild level (Figure 3.3), 

illustrated the suitability of ESMs for predicting the distribution of very rare bryophyte 

species regardless of guild. This result agrees with those obtained in Breiner et al. 

(2015), who showed a higher predictive performance of ESMs for the rarest vascular 

plants. Regarding bryophyte species by guild, we consider that the lower overall 

predictive performance obtained for sphagna species compared to that of mosses and 

liverworts may be an artifact resulting from the low number of rare sphagna species 
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modeled (n = 5). In fact, the occurrences of two of these five sphagna species were 

successfully predicted (AUC values of 0.76 and 0.97). However, we do not exclude the 

possibility that some ecologically meaningful variables that describe the habitat of 

these species, such as drainage class (Cerrejón et al., 2020), were missing from our 

models. 

In general, our results show that the development of SDMs from RS data allows not 

only to make predictions of rare species distribution at spatial scales relevant to 

ecological planning, but also to do so at a level of detail (30m resolution) that can not 

be achieved using the traditionally used climatic variables at coarse resolutions ( 1km). 

This is particularly important for inconspicuous species such as bryophytes, which 

interact with their environment at more local scales (Cole et al., 2008; Hespanhol et al., 

2011; Pócs, 1996) and for which the use of coarse resolutions can result in a critical 

lose of information. Likewise, SDMs developed at coarse resolutions can overestimate 

species distribution (Lawler et al., 2011) and greatly limits the practical utility of 

derived predictions to subsequently detect species in the field (Guisan et al., 2006). On 

the other hand, the wide variety of potentially relevant predictors for rare plants that 

can be derived from RS (related to vegetation, humidity, forest structure, topography, 

etc.; Annex A; Cerrejón et al., 2021a), can allow a more realistic approach to the 

environment-species relationship, which can be particularly useful for species with 

complex ecological niches. Thus, our methodology can play an important role in filling 

existing knowledge gaps on bryophyte distribution ranges, as well as their ecological 

preferences, in largely unexplored regions such as boreal forests (Barbé et al., 2018). 

The Identification of diversity hotspots has been one of the most used criteria in 

biodiversity conservation planning in order to locate areas of biological and ecological 

interest that should be prioritized by decision makers (Hespanhol et al., 2015; Myers 

et al., 2000; Prendergast et al., 1999). Conservation measures targeting these areas will 

be more effective if multiple components of biodiversity are spatially concentrated 
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(Myers et al., 2000; Prendergast et al., 1993; Ricketts et al., 2005). Specifically, both 

species richness and the presence of rare species have frequently been cited as the main 

criteria to select areas for conservation (Scott et al., 1993; Usher, 1986), while many 

rare species might not be represented in species-rich areas (Prendergast et al., 1993). 

Our study however revealed a spatial concordance between the richness of overall 

bryophyte species and that of their rare taxa in different regions of the study area 

(Figure 3.5). While more bryophyte biodiversity components could be subsequently 

evaluated, this result have important implications for Canadian conservation planning. 

We consider that the identification of areas harboring high level of both overall and 

rare bryophyte species diversity, as well as the development of informative tools that 

serve these purposes, is a significant and necessary step to promote the systematic 

integration of these species into conservation plans and programs (Hespanhol et al., 

2015). Likewise, conservation planning targeting bryophytes and other inconspicuous 

taxa could further benefit from individual SDMs-based predictions as a basis for 

assessing their representation in nature reserve networks (Margules and Stein, 1989), 

to quantify the impact of land use changes on their distribution ranges (Thomas et al., 

2004), to inform assessments of their conservation status (Sousa-Silva et al., 2014; 

Syfert et al., 2014), and to identify suitable areas for their recovery or reintroduction 

(Pearce and Lindenmayer, 1998). 

3.7 Conclusions 

Our work demonstrates the ability for RS data to characterize the habitat of rare 

bryophyte species and predict their distribution patterns across the landscape. This 

study also reaffirms the effectiveness of ESMs in estimating rare plant distributions 

(Breiner et al., 2015; Lomba et al., 2010), and highlights, for the first time, the 

suitability of this modeling approach for making predictions of inconspicuous rare 

species. We consider that our methods and results provide an important advance in the 

application of techniques focused on the study of bryophytes, with potential valuable 
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applications for their management and conservation. In fact, although our study focuses 

on a particular taxonomic group, the combined use of ESMs and RS would lend useful 

results for other overlooked inconspicuous taxa lacking information on distribution, 

which would facilitate their integration in systematic conservation planning. 
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4.1 Abstract 

Understanding biodiversity patterns and its environmental drivers is crucial to meet 

conservation targets and develop effective monitoring tools. Inconspicuous species 

such as lichens require special attention since they are ecologically important but 

sensitive species that are often overlooked in conservation planning. Remote sensing 

(RS) can be particularly beneficial for these species as in combination with modelling 

techniques it allows planners to assess and better understand biodiversity patterns. This 

study aims i) to describe and model the lichen alpha diversity (species richness) and 

beta diversity (species turnover) biodiversity components using high resolution RS 

variables across a subarctic region in Northern Quebec (~190.25 km2), and ii) to 

identify habitat types that are lichen biodiversity hotspots. Two sensors, one 

commercial (WorldView-3, WV3) and another freely accessible (Sentinel-2, S2), at 

different resolutions (1.2m and 10m, respectively) were tested separately. Lichens were 

sampled in 45 plots across different habitat types, ranging from forested habitats 

(coniferous, deciduous) to wetlands (bogs, fens) and rocky outcrops. Two sets of 

uncorrelated variables (Red and NIR; EVI2) from each sensor were parallelly used to 

build our alpha and beta diversity models (8 models in total). A total of 116 lichen 

species were identified. While high lichen richness was generally found across our 

plots (36.5 ± 9 species), those richer in microhabitats often harbored more species (R2 

= 0.22) regardless of the habitat type. Differences in species composition were 

identified among plots (25.6% explained by PCoA) and habitat types (PERMANOVA 

R2 = 0.35), both being supported by differences in microhabitat composition (Mantel 

R2 = 0.22 and PERMANOVA R2 = 0.29, respectively). Rocky outcrops and 

undisturbed coniferous forests represented the main lichen biodiversity hotspots, while 

other habitat types were also important for maintaining global biodiversity. Red and 

NIR variables were useful for modeling the two biodiversity components at both 

resolutions, while EVI2, especially from WV3, was only informative for assessing beta 
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diversity. Poisson models explained up to 32% of the variation in lichen richness. 

Generalized dissimilarity models  described well the relationship between beta 

diversity and spectral dissimilarity (R2 from 0.25 to 0.30), except for the S2 EVI2 

model (R2 = 0.07), confirming that more spectrally and thus environmentally different 

areas tend to harbor different lichen communities. While WV3 often outperformed the 

S2 sensor, the latter still provides a powerful tool for the study of lichens and their 

conservation. This study contributes to improve not only our knowledge of lichen 

biodiversity in subarctic regions but informs on the use of RS to understand 

biodiversity patterns of inconspicuous species, which we consider to be an essential 

step to enhance their representation in conservation planning. 

4.2 Résumé 

Comprendre les modèles de biodiversité et ses moteurs environnementaux est crucial 

pour atteindre les objectifs de conservation et développer des outils de surveillance 

efficaces. Les espèces discrètes telles que les lichens nécessitent une attention 

particulière car ce sont des espèces écologiquement importantes mais sensibles qui sont 

souvent négligées dans la planification de la conservation. L’utilisation de la 

télédétection peut être particulièrement bénéfique pour ces espèces car, en combinaison 

avec des techniques de modélisation, elle permet aux planificateurs d’évaluer et de 

mieux comprendre les patrons de biodiversité. Cette étude vise i) à décrire et à 

modéliser les composantes de la biodiversité de la diversité alpha (richesse des espèces) 

et de la diversité bêta (changements de la composition des communautés) des lichens 

à l’aide de variables de télédétection à haute résolution dans une région subarctique du 

nord du Québec (~190.25 km2), et ii) à identifier les types d'habitats qui sont des points 

chauds de la biodiversité des lichens. Deux capteurs, un commercial (WorldView-3, 

WV3) et un autre librement accessible (Sentinel-2, S2), à différentes résolutions (1.2m 

et 10m, respectivement) ont été testés séparément. Les lichens ont été échantillonnés 

dans 45 parcelles dans différents types d'habitats, allant des habitats forestiers 
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(conifères, feuillus) aux milieux humides (tourbières, fens) et aux affleurements 

rocheux. Deux ensembles de variables non corrélées (Red et NIR; EVI2) de chaque 

capteur ont été utilisés en parallèle pour construire nos modèles de diversité alpha et 

bêta (8 modèles au total). Au total, 116 espèces de lichens ont été identifiées. Alors 

qu'une grande richesse en lichens était généralement observée dans nos parcelles (36.5 

± 9 espèces), les parcelles les plus riches en microhabitats abritaient souvent plus 

d'espèces (R2 = 0.22) quel que soit le type d'habitat. Des différences dans la 

composition des espèces ont été identifiées entre les parcelles (25.6% expliquées par la 

PCoA) et les types d'habitats (PERMANOVA R2 = 0.35), tous deux étayés par des 

différences dans la composition des microhabitats (Mantel r = 0.22 et PERMANOVA 

R2 = 0.29, respectivement). Les affleurements rocheux et les forêts de conifères non 

perturbées représentaient les principaux points chauds de la biodiversité des lichens, 

tandis que d'autres types d'habitats étaient également importants pour le maintien de la 

biodiversité totale. Les variables Red et NIR étaient utiles pour modéliser les deux 

composantes de la biodiversité aux deux résolutions, tandis que EVI2, soit de WV3 ou 

S2, n'était informatif que pour évaluer la diversité bêta. Les modèles de Poisson 

expliquaient jusqu'à 32% de la variation de la richesse en lichens. Les modèles de 

dissimilarité généralisée décrivaient bien la relation entre la diversité bêta et la 

dissimilarité spectrale (R2 de 0.25 à 0.30), sauf pour le modèle S2 EVI2 (R2 = 0.07), 

confirmant que des zones plus spectralement et donc environnementales différentes ont 

tendance à abriter différentes communautés de lichens. Alors que WV3 a souvent 

surpassé le capteur S2, ce dernier fournit toujours un outil puissant pour l'étude des 

lichens et leur conservation. Cette étude contribue non seulement à améliorer nos 

connaissances sur la biodiversité des lichens dans les régions subarctiques, mais nous 

renseigne sur l'utilisation de la télédétection pour comprendre les modèles de 

biodiversité des espèces discrètes, que nous considérons comme une étape essentielle 

pour améliorer leur représentation dans la planification de la conservation.  
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4.3 Introduction 

Currently biodiversity is in a continuous decline worldwide (Brondizio et al., 2019) 

and understanding its spatial patterns as well as its environmental drivers is essential 

to efficiently meet conservation targets and elaborate effective monitoring tools 

(Barnosky et al., 2011). Two major components of biodiversity, namely alpha and beta 

diversity, are especially informative to identify and prioritize areas of high ecological 

interest for conservation planning and to ensure appropriate ecosystem management 

(Socolar et al., 2016). Alpha diversity refers to the diversity within sampling units, 

while beta diversity describes community composition changes or species turnover 

between those units (Whittaker, 1960, 1972).  

The study of biodiversity is however often limited by the constraints associated with 

traditional field surveys, especially in remote or inaccessible areas. Remote sensing 

(RS) can greatly assist in assessing biodiversity and understanding its environmental 

drivers in remote areas (Pettorelli et al. 2014; Rocchini et al. 2005), by providing 

continuous spatial information on a wide variety of biophysical conditions at multiple 

spatial, spectral and temporal resolutions (He et al., 2015; Rocchini et al., 2015). This 

information could be used in combination with spatially explicit statistical methods or 

modelling techniques to better understand and map spatial patterns of biodiversity 

components (e.g. Rocchini et al., 2010). While the use of RS for the study of alpha 

diversity has been largely documented in the literature (e.g. Camathias et al., 2013; 

Waser et al. 2004), studies focusing on beta diversity have been much less frequent 

(Feilhauer and Schmidtlein, 2009; Rocchini et al., 2009). The assessment of both alpha 

and beta diversity is however required to achieve the most complete and unbiased view 

of biodiversity (Socolar et al., 2016). RS data can effectively help in this regard, 

increasing the robustness of biodiversity models for conservation purposes. 
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RS techniques can be especially beneficial for the conservation of inconspicuous 

species such as lichens, which suffer from an important lack of knowledge on their 

distribution and are often neglected in conservation planning (Allen et al., 2019; Hunter 

and Webb, 2002). Lichens are ubiquitous species that dominate in around 8% of the 

land surface of the Earth as the main vegetation component (Ahmadjian, 1995; Nash, 

2008) and contribute significantly to global biodiversity with a total of approximately 

20 000 species (Hawksworth and Lücking 2017; Lucking et al., 2017). They perform 

key ecological roles in many diverse environments, supporting ecosystem functioning 

from local (Asplund and Wardle, 2017) to global scales (Elbert et al., 2012; Porada et 

al., 2014). Specifically, lichens play a major role in nitrogen and carbon cycles as well 

as in chemical weathering (Asplund and Wardle, 2017; Elbert et al., 2012; Nash, 2008). 

They provide substrate and microhabitats for a high diversity of micro- and 

macroorganisms and constitute a food source for herbivores and invertebrates (Boertje, 

1984; Nash, 2008). Lichens are also reliable bioindicators of atmospheric and substrate 

pollution as well as of forest ecological continuity (McMullin and Wiersma, 2019; 

Seaward, 2004; Tibell, 1992). Therefore, due to their significative ecological 

contribution, but also their high sensitivity to disturbances (Czerepko et al., 2021), 

understanding the relationships between lichen communities and their environment is 

a crucial issue. 

Lichens are especially sensitive to local conditions (e.g. air humidity, temperature, light 

conditions, substrate type and pH) due to their poikilohydric physiology and the 

influence of those conditions on the photosynthetic efficiency and fitness of their 

photobiont partner (Lakatos, 2011; Peksa and Škaloud, 2011). Therefore, RS data at 

high spatial resolution (< 30m; Corbane et al., 2015) can provide useful information 

that accurately characterizes the environmental drivers potentially shaping their 

diversity and composition patterns (Keim et al., 2017; Sahu et al., 2019). However, the 

high costs normally associated with the acquisition of high resolution RS data strongly 
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limit its systematic use in conservation. Fortunately, satellite sensors such as Sentinel-

2 currently provide freely accessible high resolution RS data (10 to 20m), although 

their resolutions are still coarser compared to those of commercial sensors such as 

WorldView, Pléiades or GeoEye-1 (≤ 2m spatial resolution). 

In this paper, we aim i) to describe and model the lichen alpha diversity (in terms of 

species richness) and beta diversity (species turnover) biodiversity components using 

high resolution RS-derived variables across a subarctic region in Northern Quebec, and 

ii) to identify which habitat types represent lichen biodiversity hotspots. To model 

lichen alpha and beta diversity, RS data from two different high resolution sensors, one 

commercial (WorldView-3; hereafter “WV3”) and another freely accessible (Sentinel-

2; hereafter “S2”), at two different resolutions (1.2m and 10m, respectively) will be 

tested separately. Consequently, we assess the performance of both open access and 

commercial high resolution RS data for biodiversity estimates for inconspicuous 

species, which would have important implications for their conservation. The habitat 

types included in this study range from forested habitats (coniferous, deciduous) to 

wetlands (bogs, fens) and rocky outcrops, which provide a good representation of the 

habitat variability found in subarctic boreal landscapes. The hypotheses of this study 

are: 

(1) Sampling units and habitat types that are richer in microhabitats (e.g. tree trunks, 

snags, logs) will host higher lichen species richness, since different microhabitats can 

support different inconspicuous species (Barbé et al., 2017; Cole et al. 2008; Malíček 

et al., 2019). 

(2) Sampling units and habitat types that are more different in their microhabitat 

composition will differ more in their species composition (Barbé et al., 2017; Cole et 

al. 2008; Malíček et al., 2019). 
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(3) As lichens are primarily related to their immediate microenvironment (Keim et al., 

2017; Sahu et al., 2019), RS data at higher resolution from WV3 will allow more 

accurate estimates of this microenvironment than those at lower resolution from S2 and 

result in better estimation of both alpha and (4) beta diversity. 

(5) Regarding beta diversity, a higher spectral dissimilarity between sampling units as 

well as between habitat types, which is assumed to derive from differences in 

environmental features, will lead to a higher dissimilarity in terms of the species they 

host (He et al., 2009; Rocchini et al., 2009). 

This study will contribute to improve the knowledge on lichen biodiversity in subarctic 

boreal regions as well as on the use of RS technologies for understanding biodiversity 

spatial patterns of inconspicuous species. We consider this to be an essential step to 

enhance the representation of these species in conservation planning. 

4.4 Materials and methods 

4.4.1 Study area 

The study area is primarily delimited by the boundaries of the Goldcorp Eleonore Mine 

property (52° 42' 16.49"N, 76° 04' 15.82"W), which is located in the northeast corner 

of the Opinaca Reservoir within the Eeyou-Istchee James Bay region in Northern 

Quebec (Figure 4.1). The region is about 250-250m above sea level and is characterized 

by a subarctic climate with long cold winters and short cool summers (daily average 

temperatures range from -20°C in January to 17°C in July; Lauzier and Pelletier, 2016). 

Snow and ice cover the region from approximately November to April, however there 

is no permafrost. Homogeneous sets of low hills and depressions shape the landscapes, 

which are composed by gneissic and granitic rocks of the Canadian Precambrian Shield. 

This region shows one of the most active fire regimes in the North American boreal 

forest, with an averaged burn rate of 2.4% of the land area per year over the last century 

(Enri et al., 2017). Fires are not suppressed. The region is thus dominated by even-aged 
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Picea mariana (Mill.) B.S.P. and Pinus banksiana Lamb. forest stands, which are fire 

adapted species that can quickly recover after fire due to their serotinous cones (Héon 

et al., 2014). Betula papyrifera Marshall and Populus tremuloides Michx stands are 

also present, while their prevalence in the landscape is less than 5%. No logging or 

agricultural activities are carried out in this region. There is a dense hydrographic 

network composed by numerous lakes and rivers flowing to James Bay. Peatlands are 

also abundant in the region, covering around 10–20% of the landscape (Enri et al., 

2017). The high diversity of habitats characteristic of the James Bay region, as well as 

their fire-driven dynamics, are well represented in the study area. Specifically, our 

study area is composed of a mosaic of P. mariana and P. banksiana forests interspersed 

with islets of B. papyrifera and P. tremuloides, swamps, peatlands, and regenerating 

sites after recent fires (Lauzier and Pelletier, 2016). 
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Figure 4.1 Study area and sampling plots (n = 45) within the Eeyou Istchee James Bay 
region in Northern Quebec. Two plots were located outside the Eleonore Mine property. 

4.4.2 Lichen field data set 

Field surveys were conducted in 2018 (August 8 to September 2). The lichen 

community was sampled in a total of 45 plots of 5 x 10m (50m2) using the modified 

“floristic habitat sampling” method. This method consists in sampling all lichens found 

in all microhabitats within plots (Newmaster et al., 2005). These plots were selected to 

represent the variability of habitat types found within the study area. The selection of 

most of the sampling plots was carried out using classified vegetation maps developed 

by the Eleonore Mine environmental team, traditional color (RGB) composite imagery 

derived from Landsat and WorldView-2 satellites, and freely accessible cartography 

from Google Earth. Table 4.1 shows the different habitat types sampled, their 

abbreviation codes (used hereafter), and the number of plots per habitat type, which 

depended on their prevalence in the study area and accessibility. Lichen species were 
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identified by the lichenologist Mireille Martel in the bryology laboratory of the 

Université du Québec en Abitibi-Témiscamingue (UQAT). Problematic specimens 

were verified by a second expert and by thin layer chromatography. Among crustose 

lichen species, only Icmadophila ericetorum (L.) Zahlbr. was identified at the species 

level, while the rest of the crustose specimens were identified at the "crustose lichen" 

level. Thus, and to be conservative, species identified as "crustose lichen" were only 

counted as a species in plots where I. ericetorum was not present. Specimen vouchers 

are stored in the UQAT herbarium (Rouyn-Noranda, Canada). Nomenclature follows 

Brodo (2016), except for Bryoria, Melanohalea and Usnea genera (Thell and Moberg, 

2011). Lichen species at the microhabitat level were aggregated at the plot level to 

obtain the community species richness and composition per plot. The final database 

included a total of 116 different lichen species (Appendix F). The rarefaction curve 

showed good coverage of the lichen species according to the number of plots sampled 

(Appendix J).



 

 

 

Table 4.1 Habitat types sampled, abbreviation codes used in this study, number of plots, total number of species and 
description. Numbers in parentheses indicate the number of plots used for alpha and beta diversity analyses after removing 
outliers (see methods section). 

Habitat types Codes # of plots sampled 
(n = 45) 

# of  
species Description 

Bog B 4 48 

Peat-accumulating wetland fed primarily by water from precipitation, 
with acid pH and low in nutrients. Dominated by Sphagnum mosses and 
Ericaceae species (Rhododendron groenlandicum, Chamaedaphne 
calyculata, Kalmia angustifolia). Small coniferous trees (P. mariana) 
sometimes present. 

Bog burned B_B 6 53 
Similar to the bog habitat type but with some evidence of burned soils 
and/or burned P. mariana trees, which has been replaced by small trees 
of P. banksiana. 

Fen Fen 5 (3) 28 
Peat-accumulating wetland fed by ground or surface water, with basic 
pH and rich in nutrients. Dominated by Sphagnum mosses and sedges 
species (mainly Carex sp.). Larix Laricina also present. 

Rock R 5 76 Rocky outcrops. Small coniferous trees (P. mariana or P. banksiana) 
sometimes present. 

Deciduous 
forest DF 5 61 

Broadleaf forests composed of B. papyrifera and/or P. tremuloides, with 
mainly bare or litter-covered soils. Some shrubs (Alnus sp., Ribes 
rubrum, R. groenlandicum) also present. 

Coniferous 
forest CF 15 (14) 85 

Evergreen forests composed of P. mariana and/or P. banksiana. Soils 
mainly dominated by mosses and/or lichens along with Ericaceae 
species (R. groenlandicum, C. calyculata, K.angustifolia). Alnus sp. 
sometimes present. 

Coniferous 
forest burned CF_B 5 48 Similar to coniferous forest habitat type but with some evidence of 

burned trees and/or soils. 

81 
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4.4.3 Environmental characterization of plots through remote sensing variables 

Satellite data from two different sensors (WV3, S2) at different spatial resolutions, 

were used to carry out the environmental characterization of the plots. To compare the 

results from the two resolutions, we selected the same spectral bands for each satellite 

as explanatory variables. Since WV3 imagery only spanned the visible and near-

infrared spectrum, we chose two bands of ecological interest from that spectral region, 

namely red and near-infrared (hereafter “Red” and “NIR”, respectively). The blue band 

was not selected because it is sensitive to atmospheric conditions, and thus is normally 

used for atmospheric corrections (Xu et al., 2019; Zhang et al., 2013). Green was also 

not included because of its ability to emphasize peak vegetation (Kerr and Marsha, 

2003; Mansuy et al., 2018) is not due to green light reflection by vegetation, as 

chlorophyll does not reflect green light, but to the absorption of chlorophyll in the blue 

and Red regions (Virtanen et al., 2020). In fact, compared to green leaves, chlorophyll-

deficient leaves are more efficient reflecting green light but also less efficient absorbing 

Red light. This implies that the potential information that can be derived from green 

and Red is very similar, as supported by their high correlation (Appendix G). 

Specifically, Red is particularly effective in distinguishing forested from rocky habitats, 

due to the high reflection of Red on bare soil and its high absorption by vegetation. 

Likewise, Red can be informative in discriminating disturbed (burned in our case) from 

undisturbed habitat types. This is because undisturbed vegetated habitats show higher 

chlorophyll levels, which absorbs strongly in the Red region (Evans et al., 2004), while 

the amount of chlorophyll decreases in disturbed habitats, leading to a lower absorption 

and thus a higher reflection. In addition, this band can be useful for the identification 

of different vegetation and habitat types, since vegetation differences results in 

differences in Red absorption and reflection (Kerr and Marsha, 2003). For instance, 

Red has proved to be informative for discriminating bog habitats from other wetlands 

classes (Amani et al., 2018). NIR, on the other hand, is indicative of forest structure, 
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as it can penetrate forest canopy and provide information on foliage vertical profile 

(Hall et al., 2006; Ma et al., 2019). For instance, NIR is able to detect differences 

between coniferous and deciduous forests based on the shape and arrangement of the 

leaves (Cavender-Bares et al., 2020). NIR has also proved to be useful to discriminate 

among wetland classes (Amani et al., 2018) or disturbed and undisturbed habitats 

(Ranson et al., 2003). Additionally, we developed the 2-band enhanced vegetation 

index (EVI2; 2.5 * (NIR - Red) / (NIR + 2.4 * Red + 1)), which is sensitive to 

photosynthetic active biomass and thus to the presence of green vegetation and 

disturbance-induced changes (Jiang et al., 2007; Moreira et al., 2017). 

The WV3 imagery consisted in two cloud-free orthorectified scenes corrected 

atmospherically at Bottom of Atmosphere (BOA) to provide surface reflectance values. 

Both scenes were captured on July 9, 2020, to ensure that the presence of snow did not 

influence reflectance values. This date was the closest to the field data collection date 

for which cloud-free images covering all our sample plots were available. WV3 

spectral bands and EVI2 were then extracted and developed, respectively, using the 

2020 PCI Geomatics software. Sentinel-2 data was acquired using Google Earth 

Engine (GEE; Gorelick et al. 2017). We used S2 Level 2A images freely available for 

the study area, which were also atmospherically corrected to provide BOA reflectance 

values. Images from the summer season (July 1 to August 31) of 2020 were used to 

match the acquisition date of the WV3 imagery. The S2 QA60 band, which allows the 

identification of pixels with dense clouds (bit 10) and cirrus clouds (bit 11), was used 

to mask cloud pixels from the imagery. A mosaic was then performed by applying the 

median of the overlapping pixel values from each selected image. Finally, spectral 

variables (including bands and EVI2) were developed at 10m resolution, which is the 

original resolution provided by S2 for the visible and NIR bands. The spectral variables 

developed at both resolutions were standardized before statistical analyses 
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4.4.4 Statistical analyses 

The analyses on lichen alpha and beta diversity were performed individually at each 

resolution in order to compare their performance. All statistical analyses were 

performed in R v.1.1.456 (R Development Core Team, 2018) and considered 

significant at α = 0.05. 

4.4.4.1 Describing lichen alpha diversity 

Lichen richness both across all plots and per habitat type was assessed. Plots identified 

as outliers were removed from all statistical analyses (see Poisson models below). The 

Tukey test was used to assess if habitat types in pairwise combinations differed 

significantly in terms of their mean lichen richness values. The Tukey test is a 

conservative method for unequal sample sizes and thus suitable for comparing our 

habitat types which were differently represented. We also evaluated the relationship 

between lichen species richness and microhabitat richness using linear regression. The 

microhabitats included encompassed 14 different classes (e.g., soil, snags, or logs; 

Appendix H). The Tukey test was then used to identify potential differences in 

microhabitat richness among habitat types. 

In order to model lichen species richness, Poisson regressions were used. Since Poisson 

regression is sensitive to multicollinearity, the Pearson correlation coefficient was used 

to identify highly correlated variables (|r| > 0.7) at both pixel resolutions (see Appendix 

G for correlations coefficients). Regarding the WV3 variables, a high correlation was 

found between Red and EVI2, while the NIR band was not highly correlated with any 

other. For the S2 variables, the NIR-EVI2 pair showed a high correlation, while Red 

was uncorrelated with any other variable. Based on this, two different sets of variables 

allowed us to generate equivalent lichen richness models from WV3 and S2 and to 

compare their performances: i) Red + NIR and ii) EVI2. Since Red and NIR raw 

spectral bands and EVI2 are sensitive to different environmental features, independent 
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models were computed from each set of variables at both resolutions. This resulted in 

a total of four models including WV3 and S2 spectral band models, hereinafter referred 

to as “WV3 band” and “S2 band” respectively, and EVI2 models, referred to as "WV3 

EVI2 " and “S2 EVI2”. The interaction between Red and NIR bands was also integrated 

in the band models (Table 4.2). 

Table 4.2 Remote sensing-based Poisson models of lichen richness (alpha diversity) 
tested in the present study. Significant variables are shown in bold. Models were 
computed from 42 plots after removing outliers. 

Model ID Sensor (resolution) Variables Disp. R2 AICc 
WV3 band  WordlView-3 (1.2m) Red + NIR + Red:NIR 1.65 0.32 188.08 
WV3 EVI2  WordlView-3 (1.2m) EVI2 2.20 0.03 195.71 
S2 band  Sentinel-2 (10m) Red + NIR + Red:NIR 2.05 0.19 199.86 
S2 EVI2  Sentinel-2 (10m) EVI2 2.23 0.03 200.13 

Preliminary Poisson regression models were performed to identify potential outliers by 

visual assessment of the normal Q-Q plots. Three outliers (plots), two located in the 

Fen habitat type and the third one in the CF_B habitat type, were identified in three of 

our models, while the S2 band model only shared two of them (Appendices K-N). To 

ensure model comparability, the three outliers were removed from all models. These 

outliers showed extremely low richness values (mean richness of 4 ± 1 species; Figure 

4.2) compared to the other plots belonging to their corresponding habitat types (mean 

richness of Fen and CF_B of 19 ± 3.6 and 34.5 ± 3.9 species, respectively). The final 

Poisson regression models were then fitted using the remaining 42 plots. The Q-Q plots 

showed that residuals from our models were normally distributed (Appendices O-R), 

with dispersion coefficients from 1.65 to 2.23 (Table 4.2). To take into account this 

overdispersion models were corrected through quasi-likelihood adjustments, known as 

Quasi-Poisson regression models. All Poisson models were performed using the glm2() 

function from the glm2 package v1.2.1 (Marschner, 2011). 
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The performance of RS at the two targeted resolutions to estimate lichen richness was 

assessed through i) the significance level of the corresponding variables, ii) the 

coefficient of determination (R2), which refers to the amount of variation explained by 

a given model, and iii) the Akaike Information Criterion (AIC), which allows the 

ranking of models based on a trade-off between their goodness of fit and complexity 

(Burnham and Anderson, 2002). More specifically, we used the second-order AIC 

(AICc), which is recommended for small sample sizes, i.e., where the ratio between 

the number of observations (n) and the number of variables (k) is less than 40 (Burnham 

and Anderson, 2002). Models’ AICc were computed using the aictab() function of the 

AICcmodavg package v.2.3-1 (Mazerolle, 2020). To correct for overdispersion when 

computing Models’ AICc, the lowest dispersion coefficient from our four candidate 

models was used (Table 4.2), which was implemented through the c-hat parameter. 

4.4.4.2 Describing lichen beta diversity 

Lichen beta diversity was assessed through a principal coordinates analysis (PCoA). A 

dissimilarity matrix was first computed from the species presence/absence data using 

the Sørensen’s dissimilarity index with the dist.binary() function from the ade4 

package v.1.7-16 (Dray and Dufour, 2007). Sørensen’s index was chosen since it gives 

double weight to double presences, which is a strong indication of resemblance, while 

the absence of one species at one sampling unit is not necessarily determined by 

differences in the environmental conditions (Legendre and Legendre, 2012). We 

confirmed the Euclidean nature of the produced dissimilarity matrix using the is.euclid() 

function, and thus no correction method for negative eigenvalues was applied. A 

preliminary PCoA was performed using the initial set of 45 plots to identify potential 

outliers using the cmdscale() function from the stats package v.2.6.3 (R Development 

Core Team, 2018). PCoA visualization was carried out through the ordiplot() function 

from the vegan package v.2.7-5 (Oksanen et al., 2020). The same three outliers 

identified from alpha diversity analyzes were identified in the PCoA and thus removed 
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from further beta diversity analyses (Appendix S). The final PCoA was then performed 

using the remaining 42 plots. The Mantel regression test was then used to evaluate the 

relationship between lichen beta diversity, as measured by the Sørensen dissimilarity 

index, and microhabitat-based dissimilarity, as measured by Euclidean dissimilarity. 

The Mantel test is based on the Pearson’s correlation in which two independent 

dissimilarity matrices are used as input variables (He et al., 2009). This test allowed us 

to assess if differences in microhabitat composition between our plots result in different 

species composition. The Mantel tests were performed through the mantel() function 

from the vegan package, using the Monte Carlo test with 999 simulations to estimate 

the significance of the results. 

Lichen beta diversity was modeled through generalized dissimilarity modelling (GDM; 

Ferrier et al., 2007), using spectral (Euclidean) dissimilarity estimated from the two 

sets of variables (Red + NIR; EVI2) at both targeted spatial resolutions (1.2m, 10m). 

With this modeling method we assessed if spectral differences resulting from different 

environmental conditions lead to different species composition among our plots. 

GDMs were carried out with the gdm() function of the gdm package v1.5.0-3 

(Fitzpatrick et al., 2020). The parameter geo of tis function was set to TRUE to include 

the geographic distance as an additional explanatory variable. We anticipate a 

negligible effect of the geographic distance in all beta diversity models (sum of 

coefficients ranging from 0 to 0.028). 

Finally, the PERMANOVA test was used to assess if the different habitat types differ 

significatively from each other in terms of species composition (beta diversity), 

microhabitat composition, and spectral dissimilarity. The PERMANOVA test was 

performed using the previously computed dissimilarity matrices and 9999 permutations, 

through the adonis2() function from the vegan package. 
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4.5 Results 

4.5.1 Describing lichen alpha diversity 

We identified a total of 116 lichen species in our study area, belonging to 33 genera 

and 14 families. The total number of different species found in each habitat type is 

shown in Table 4.1, which ranged from 28 to 85 species occurring in Fen and CF, 

respectively. A mean richness of 36.5 ± 9 species was found across all plots included 

in the present study, excluding the three outliers previously identified. At the habitat 

type level, CF and R plots presented the highest mean species richness, followed by 

CF_B, DF, B_B, and B with intermediate values, and lastly by Fen, which presented 

the lowest mean species richness (Figure 4.2A). Fen differed significantly in its species 

richness from all other habitat types according to the Tukey test. Significant differences 

in species richness were also found between the habitat type pairs CF-B_B and CF-DF 

(Figure 4.2A). The greatest variability in species richness values was found in R, with 

a standard deviation of 12 species, while the other habitat types showed more 

homogenous values, with a standard deviation ranging from approximately 4 to 6 

species. A significant positive relationship was found between lichen richness and 

microhabitat richness across our study area (Figure 4.2B), which confirmed our 

hypothesis (1), while no significant differences in microhabitat richness were found 

between habitat types (Appendix T). 

Among the lichen species included in the present study, almost 50% occurred in only 

one or two habitat types, while the remaining species appeared in three to seven 

different habitat types (Appendix U). Species associated with one habitat type were the 

most abundant (39 species), of which 17, 13, 7, 1 and 1 species were exclusive of R, 

CF, DF, CF_B and B_B, respectively. There were no species occurring exclusively in 

B or Fen. Species occurring in 3 to 5 habitat types were the least frequent, representing 

19.8% of the total, while 31% occurred in 6 to 7 (all) habitat types. 
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Figure 4.2 A: Boxplots of lichen richness per habitat type; different letters indicate 
significant differences in lichen richness among habitat types based on the Tukey test. 
B: Linear regression between lichen richness and microhabitat richness. Outliers were 
not included. Habitat type abbrev.: B, bog; B_B, bog burned; CF, coniferous forest; 
CF_B, coniferous forest burned; DF, deciduous forest; Fen, Fen; R, Rock. 

Results from Poisson models on lichen richness showed higher R2 and AICc values for 

the WV3 band compared to the S2 band model (Table 4.2). The WV3 band model also 

presented a lower dispersion value, indicating a better fit to a Poisson distribution. The 

significant variables varied between these two models, with NIR and the Red:NIR 

interaction being significant in the WV3 band model, and only Red in the S2 band 

model. EVI2 models at the two targeted resolutions showed very low performance (R2 

= 0.3), close AICc (ΔAICc = 4.42) and similar dispersion, with the variable EVI2 being 

non significant in both cases (Table 4.2). Therefore, our hypothesis (3) that RS 

variables at higher resolution (1.2m) allow more accurate estimates of alpha diversity 

than those at 10m resolution was accepted only for the band models (see discussion 

section for more details). 

All variables, namely, Red, NIR and EVI2, showed a negative relationship with lichen 

richness at the two targeted resolutions (Figure 4.3). Regarding both WV3 and S2 Red 

values, a transition was found from close to open canopy habitat types (Figure 4.3; 

Appendix V). More specifically, the lowest Red values, which were indicative of high 

lichen species richness, were mainly represented by undisturbed forested habitat types 

(CF and DF). Intermediated Red values were associated with a lower species richness 
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and represented by disturbed forested (CF_B) and either disturbed or undisturbed 

wetland habitat types (B, B_B, and Fen). R, which was the best differentiated habitat 

type in this spectral region, showed the highest Red values despite generally showing 

high richness. Concerning NIR at both resolutions, the lowest spectral values were 

generally associated with CF, CF_B and R habitat types, while the highest values were 

indicative of DF, which was the best discriminated habitat type. The other habitat types, 

namely B, B_B and Fen, often showed intermediate NIR values, particularly at the 

higher resolution of WV3. For EVI2, different patterns were observed for WV3 and S2. 

WV3 EVI2 was able to spectrally discriminate DF and R, which showed the highest 

and the lowest spectral values, respectively, while the rest of habitat types presented 

intermediate values. S2 EVI2 differentiated DF well, while it was unable to 

discriminate the other habitat types, which appeared intermingled through low and 

intermediate EVI2 values. 
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Figure 4.3 Linear relationship between the observed lichen richness and the 
explanatory variables included in the models at both targeted spatial resolutions (WV3, 
WorldView-3 at 1.2m resolution; S2, Sentinel-2 at 10m resolution). Units of 
explanatory variables are expressed in digital numbers. See section 4.4.3 for 
explanatory variable description. Habitat type abbrev.: B, bog; B_B, bog burned; CF, 
coniferous forest; CF_B, coniferous forest burned; DF, deciduous forest; Fen, Fen; R, 
Rock. 

4.5.2 Describing lichen beta diversity 

Regarding lichen beta diversity, the PCoA explained 25.6% of the total variance in 

species composition changes between plots (PC1: 13.5%, PC2: 12.1%; Figure 4.4). 

The habitat types studied showed significant differences in their species composition 

(Table 4.3). More specifically, Rock and Fen clearly differed in their species 

composition both between them and from the other habitat types. Plots belonging to 

forested habitat types, namely DF, CF and CF_B, were clustered close but generally 

separated, indicating differences in their species composition. These plots were 

however interposed with those of B and B_B, which showed a high variability in terms 

of species composition. The differences in species composition found here were 

supported by significant differences in microhabitat composition across both our plots 

(Figure 4.5) and habitat types (Table 4.3), confirming our hypothesis (2). 



92 

 

 

 

Figure 4.4 Principal coordinates analysis (PCoA) on lichen community composition 
based on the Sørensen’s dissimilarity index. Habitat type abbrev.: B, bog; B_B, bog 
burned; CF, coniferous forest; CF_B, coniferous forest burned; DF, deciduous forest; 
Fen, Fen; R, Rock. 
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Table 4.3 Results of PERMANOVA for lichen species composition (Sørensen’s 
dissimilarity), microhabitat-based and spectral dissimilarities (based on both set of 
variables – Red + NIR; EVI2 – from both sensors – WV3, WorldView-3; S2, Sentinel-
2) according to the habitat type based on 999 permutations. Groups of sampling units 
were defined by habitat type. 

Dissimilarity matrix R2 Significance 
Species composition 0.35 < 0.001 
Microhabitats 0.29 < 0.001 
WV3 Red + NIR 0.61 < 0.001 
WV3 EVI2 0.76 < 0.001 
S2 Red + NIR 0.64 < 0.001 
S2 EVI2 0.60 < 0.001 

 

                              

Figure 4.5 Relationship between lichen species composition (Sørensen’s dissimilarity) 
and microhabitat-based dissimilarity. Mantel coefficients (r and p-value) resulting from 
999 permutations are indicated. See Appendix I for Mantel upper confidence limits. 

GDMs showed significant positive relationships between lichen beta diversity, as 

measured by the Sørensen dissimilarity, and the spectral dissimilarity at both targeted 

spatial resolutions for the two different set of variables tested (Figure 4.6). These 

models explained a significant fraction of the variation in beta diversity (R2 = 0.27 ± 

0.03), except for the spectral dissimilarity computed only from S2-derived EVI2 (R2 = 

0.07). Therefore, our hypothesis (3) that RS variables at higher resolution (1.2m) allow 

more accurate estimates of beta diversity than those at 10m resolution was accepted 
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when spectral dissimilarity was computed from EVI2 and rejected when estimated 

from raw spectral bands. The PERMANOVA showed that the habitat types, beyond 

being significatively different in species composition, also differed significatively in 

their spectral characteristics, showing relatively high R2 values for the two different set 

of variables at both spatial resolutions (Table 4.3). Therefore, GDM and 

PERMANOVA results consistently confirmed our hypothesis (4) that a higher spectral 

dissimilarity between plots, as well as between habitat types, leads to a higher 

dissimilarity in terms of the species they host. 
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Figure 4.6 Generalized dissimilarity models of lichen beta diversity (Sørensen’s 
dissimilarity) using spectral dissimilarity from the two different set of variables (Red 
+ NIR; EVI2) at both targeted spatial resolutions (WV3, WorldView-3 at 1.2m 
resolution; S2, Sentinel-2 at 10m resolution). See section 4.4.3 for variable description. 

4.6 Discussion 

4.6.1 Lichen biodiversity and the influence of environmental variability at different 
scales 

This study put in evidence that high lichen biodiversity can be hosted even in small 

areas of subarctic boreal regions. This was supported by the 116 lichen species 

identified, despite the limited number of sampling plots (n = 45) and extension of the 

study area (Eleonore Mine property area of 190.25 km2). Similar results were found by 

Chagnon et al. (2021), who found 94 lichen species in 42 plots distributed across a 

subarctic to arctic region of Northern Quebec, and Androsova et al. (2018), who 

recorded 158 lichen species in 68 plots in Russian boreal forests. 



96 

 

 

In our study region, overall lichen biodiversity is promoted by the wide variety of 

habitat types present, which harbor different species (Figure 4.4; Table 4.3) as a result 

of their varying environmental characteristics and microhabitats they provide (Table 

4.1; Table 4.3). More specifically, higher microhabitat richness promotes higher 

species richness across all habitat types, while differences in microhabitat composition 

support different lichen species among both sampling plots and habitat types. These 

relationships between lichen biodiversity and both microhabitat diversity and 

composition have been previously shown in the literature (Gignac and Dale, 2005; Peck 

et al., 2004). This highlights the important role played by environmental variability at 

different scales (habitat type and microhabitat level) to maintain lichen biodiversity in 

subarctic regions. 

4.6.2 Assessing habitat types as lichen's biodiversity hotspots 

The Eeyou Istchee Bay James Region, as many other subarctic boreal regions, represent 

areas rich in natural resources where the human footprint, while still light or absent, is 

expected to increase in the future (Boucher et al., 2017; Grondin et al., 2018; 

Kuuluvainen and Gauthier, 2018; Venier et al., 2018). Thus, the study of biodiversity 

in these almost intact regions and the identification of hotspots offer an ideal context 

to inform and promote effective conservation planning, particularly in the case of 

under-known species such as lichens. In this respect, alpha and beta biodiversity 

components provide crucial complementary information (Socolar et al., 2016). In this 

study, the assessment of alpha diversity revealed certain differences in lichen richness 

among habitat types, while that of beta diversity allowed to identify differences and 

similarities in species composition among them. Based on these biodiversity 

components, two environmentally contrasting habitat types were identified as lichen 

biodiversity hotspots, namely R and CF. While the importance of these habitat types 

for lichen biodiversity and conservation have already been showed in the literature 

(Androsova et al., 2018; Boudreault et al., 2002; McMullin and Lendemer; 2013; 
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Peterson and McCune, 2003), to our knowledge, this is the first time that this has been 

put in evidence in subarctic ecosystems. Here, R and CF showed the highest species 

richness, both in overall (Table 4.1) and across their plots (Figure 4.2A). Regarding 

species composition, R harbored the most differentiated lichen community, showing 

the highest proportion of exclusive species (17 species) and with its plots differing well 

from plots belonging to other habitat types (Figure 4.4). CF, which also showed a high 

number of exclusive species (13 species), shared a higher proportion of species with 

other habitat types, as shown by the distributions of its plots in the PCoA. Therefore, 

in terms of species representativeness and potential conservation, these two habitat 

types can be seen as complementary, since actions or decisions focused on them can 

maximize the proportion of species benefited throughout the study region. This 

however does not detract from the other habitat types included in the present study, 

such as DF or wetland habitat types, which not only harbor relatively high lichen 

richness but also either exclusive or redundant species. Exclusive species help to 

maintain the global species pool, as illustrated by the 8 species found only in DF, while 

redundant species facilitate species persistence in the face of disturbances that could 

lead to their extirpation. Thus, both exclusive and redundant species, as well as the 

habitat types harboring them, are also very valuable from a conservation perspective. 

Given that beta diversity is based on species identity, and that different species can 

support both unique and redundant functions (Hector and Bagchi, 2007; Isbel et al., 

2011; Zavaleta et al., 2010), we consider the assessment of this component as essential 

not only to identify and preserve biodiversity hotspots, but also to ensure the 

maintenance of the functioning and ecological stability of ecosystems across the 

landscape. 
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4.6.3 Assessing lichen alpha and beta diversity and habitat types through remote 
sensing 

RS variables were reasonably efficient in assessing both lichen alpha and beta diversity 

at both targeted resolutions (1.2m, 10m). Red and NIR bands were consistently useful 

for modeling both lichen biodiversity components, while the derived vegetation index 

EVI2 was only informative when evaluating beta diversity. 

Regarding alpha diversity, raw spectral bands at higher resolution (WV3 band model) 

provided the best performance, explaining up to 32% of the variation in lichen species 

richness, while the S2 band model performed relatively well (R2 = 0.19). EVI2 models 

at both targeted resolutions however lacked explanatory power (R2 = 0.03). Raw 

spectral bands (Red, NIR) thus showed to be able to detect environmental features 

shaping lichen richness patterns. Specifically, Red captured the transition from closed 

to open canopy habitat types, which were generally related to high and 

intermediate/low lichen richness values, respectively. Only the open habitat type R, 

while being well distinguished in the Red region, did not follow this relationship, since 

it showed both high Red and richness values (Figure 4.3). S2 Red however performed 

better than WV3 Red mainly because the reflectance of the close canopy CF habitat 

type was less variable in this spectral region and thus more consistent across its plots 

than that of WV3, resulting in a stronger S2 Red-lichen richness relationship (Figure 

4.3; Appendix V). The higher variability of WV3 Red in CF plots can be attributed to 

its higher resolution (1.2m) that can lead the reflectance of conifer stands to be further 

influenced by more local features such as percent cover, background reflectance or 

shadow (Walthall et al., 1997). In contrast, the lower resolution of S2 (10m) probably 

decreases the influence of these factors, giving a more representative spectral 

characterization of these plots. NIR, on the other hand, was able to successfully detect 

differences in structure across our plots at both resolutions (Appendix V). This was 

supported, for example, by the good discrimination achieved for plots belonging to CF 
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(or CF_B) and DF in this spectral region. The spectral differentiation of these habitat 

types based on their different structural attributes has been well documented in the 

literature (e.g., Cavender-Bares et al., 2020; Kuusinen et al., 2016; Zheng et al., 2004). 

The habitat types richest in lichen species, namely CF and R, while structurally 

different, often showed similarly low NIR values, reinforcing the lichen richness-NIR 

reflectance relationship. On the other hand, the less species-rich wetland habitat types 

(B, B_B, Fen) showed close higher NIR values, particularly at higher resolution, which 

also supported the performance of this variable. This result agrees the similar structure 

of the wetland habitat types included here, as being open ecosystems mainly dominated 

by Sphagnum species often with a few small coniferous trees. Similarly to Red, WV3 

EVI2 detected the transition from open to closed canopy habitats defined by the 

minimum and maximum spectral values associated with R and DF, respectively. This 

agrees with the environmental features of which it is indicative , the presence of 

photosynthetic active green vegetation (Jiang et al., 2007; Moreira et al., 2017). 

However, its poor performance at this resolution for modeling lichen richness can 

mainly be explained by its inability to distinguish between other vegetated habitat types 

beyond DF that showed different lichen richness, particularly regarding CF (or CF_B) 

versus wetland habitat types (Figure 4.3; Appendix V). Likewise, as in the case of Red, 

while WV3 EVI2 was able to spectrally discriminate plots belonging to R, this habitat 

did not follow the same relationship with lichen richness as other open habitat types, 

which also influenced its performance. In regard to S2 EVI2, this variable was unable 

to distinguish between habitats as different in terms of vegetation as R and either CF 

(or CF_B) or wetland habitat types, which also resulted in a poor lichen richness model. 

These results regarding EVI2 are in concordance with recent studies which showed the 

underperformance of vegetation indices compared to raw spectral bands for estimating 

forest parameters and differentiating habitat types (Grabska et al., 2020; Hallik et al., 

2019). 
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In relation to beta diversity, raw spectral bands at both target resolutions and WV3 

EVI2 allowed relatively accurate estimates on the relationship between lichen beta 

diversity and spectral dissimilarity, while S2 EVI2 showed low performance. 

Specifically, we demonstrated that more spectrally and thus environmentally different 

areas tend to host different lichen communities, and that those environmental 

differences can be detected through high resolution RS (Figure 4.6). These results are 

in concordance with those from previous studies assessing plant beta diversity using a 

spectral dissimilarity approach (He et al., 2009; Rocchini et al., 2009). At the habitat 

type level, these differences in lichen composition and spectral features were also 

highlighted (Table 4.3). These results underscored that, despite the very small set of 

RS variables used to compute spectral dissimilarities, either i) Red and NIR or ii) EVI2, 

they generally well represent ecologically important environmental features shaping 

lichen beta diversity regardless of the resolution. Therefore, the spectral dissimilarity 

approach has a high potential for the identification of sites complementary in species 

composition using spectral dissimilarity as proxies, which can be especially 

informative to enhance biodiversity assessments and conservation planning. In our case, 

the combination of Red and NIR would be privileged as potential indicator of the 

spectral variability found in the study area due to its consistent results (Figure 4.6). 

While this work was focused on boreal subarctic regions, we are confident in the 

effectiveness of this approach for beta diversity assessments in other, even contrasting, 

ecosystem types. In fact, the high diversity of remote sensing variables that can 

currently be computed (e.g., Cerrejón et al., 2021) can allow to develop larger sets of 

complementary variables to be jointly used in the estimation of spectral dissimilarities, 

which would maximize the detection of environmental differences potentially 

governing species turnover across the landscape. 

The commercial WV3 sensor data at 1.2m resolution generally provided better 

estimates of lichen biodiversity than the open access S2 data at 10m resolution using 
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the two tested set of variables (Table 4.2; Figure 4.6). However, S2-based modeling of 

alpha and beta diversity was also acceptable, and even the most accurate when 

assessing the relationship between beta diversity and spectral dissimilarity through Red 

and NIR bands. Based on this, and despite its underperformance in the present study, 

S2 provides a very useful tool for the study of the biodiversity of lichens and other 

inconspicuous species (Cerrejón et al., 2022). Conservation efforts focused on these 

often-overlooked species can thus especially benefit from these freely available RS 

data, especially when financial resources are limited. However, further studies 

including variables from multiple sensors at different spatial resolutions and covering 

a broader range of the electromagnetic spectrum are needed to better understand the 

influence of these RS-related factors on biodiversity estimates of inconspicuous species. 

To our knowledge, this is the first study offering an assessment of lichen beta diversity 

based fully on RS information (Cerrejón et al., unpublished). Regarding alpha diversity, 

however, two previous studies have modeled lichen richness using RS variables alone 

(Cerrejón et al., unpublished). In both cases, the authors were able to explain up to a 

68% of the variation in lichen richness an alpine region in the Swiss Pre-Alps using the 

same small set of RS variables at 0.5m spatial resolution (Waser et al., 2004, 2007). 

These final variables were however selected as the best performing from a larger set of 

29 and 32 variables, respectively, covering a wider range of environmental features, 

which can explain the higher model performance. In our work, the objective of 

comparing the performance of sensors at different resolutions greatly restricted the 

selection of RS variables used for modeling and presumably the variability explained 

for alpha and beta diversity (Marzialetti al., 2021; Schmidtlein et al., 2017). Therefore, 

we expect that the use of a more diversified set of RS variables potentially shaping 

lichen biodiversity, such as topographic, surface temperature, snow persistence or 

humidity indices, could further enhance future assessments both in our study area and 

in similar subarctic landscapes. Likewise, the combination of RS variables with other 
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ecological meaningful non-remotely sensed variables such as climatic or geological, if 

available, could improve estimates of lichen biodiversity (Camathias et al., 2013; 

Niittynen and Luoto, 2018), and more particularly when the acquisition of RS variables 

is limited. 

4.7 Conclusions 

In this paper we described lichen alpha and beta diversity patterns in a subarctic boreal 

region of Northern Quebec, highlighting the high lichen biodiversity harbored by these 

areas, as well as the importance of the environmental variability at the habitat type and 

microhabitat levels for its maintenance. R and CF habitat types were identified as the 

main lichen biodiversity hotspots in our study area, while the importance of other 

habitat types for species conservation and ecosystem functioning was also underscored. 

This work also put in evidence the ability for RS to describe and model lichen 

biodiversity at two different high spatial resolutions (1.2m, 10m). RS variables, 

especially Red and NIR, captured well ecologically meaningful environmental features 

shaping both alpha and beta diversity components. While the WV3 commercial sensor 

often outperformed the S2 open data sensor, the latter still provides a powerful and 

very promising tool for the study of lichen and other inconspicuous species, with great 

potential for conservation purposes. 

This study not only contributes to enrich the knowledge on lichen biodiversity in 

subarctic boreal regions but also on the use of RS-based modeling approaches for 

understanding biodiversity spatial patterns of inconspicuous species. While further 

studies on lichen biodiversity should be conducted to test a broader range of RS 

variables, sensors, and spatial resolutions, we hope our work to promote the use of RS 

technology for the study of inconspicuous species as well as their representation in 

conservation planning. 
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CHAPTER V 

 

CONCLUSION 

Biodiversity assessments are essential in order to avoid and/or mitigate the increasing 

adverse effects of human-induced global climate and land use changes. The 

development and application of new approaches allowing to accelerate the acquisition 

of knowledge on biodiversity patterns and their environmental drivers have thus 

become crucial, and more particularly in the case of lesser-known, inconspicuous 

species. Hence the present thesis was focused on evaluating the potential of RS as a 

source of information to acquire and generate knowledge on biodiversity patterns of 

cryptogams in regions where this information in deficient such as in Canadian boreal 

forests. Specifically, this thesis demonstrated the ability for RS to i) characterize the 

habitat of inconspicuous cryptogam species, namely bryophytes and lichens, and 

capture meaningful ecological features shaping their distribution, and thus ii) to better 

understand and/or predict their biodiversity patterns. Overall, various biodiversity 

components were successfully estimated, ranging from alpha and beta diversity 

(Chapters II and IV) to the distribution of rare species and their richness patterns 

(Chapter III). This was possible even when the information available on the species of 

interest or their biodiversity components was limited, as in Chapters III and IV, where 

either the number of rare bryophyte species’ observations (5 to 29 occurrences) or the 

plots available for assessing lichen alpha and beta diversity (n = 43), respectively, were 

very low. This thesis thus highlights that RS-based modeling frameworks are 

informative and thus particularly useful for the study of lesser-known taxa for which 

baseline information is deficient. 

The ability of RS to identify the environmental drivers of species biodiversity patterns 

depends on the scale in which species interact with their environment and, therefore, 

on the spatial resolution of RS data, which must be able to detect variation at that scale. 
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This scale depends ultimately on the particular taxa under study. Cryptogams are 

sensitive to local conditions (Cole et al., 2008; Keim et al., 2017; Sahu et al., 2019), 

and RS at high spatial resolution can thus be needed to capture them. Here, however, 

the usefulness for RS to identify environmental factors shaping their biodiversity 

patterns was highlighted not only at high (1.2m and 10m; Chapter IV) but also at 

medium spatial resolution (30m; Chapters II and III; Corbane et al., 2015). In fact, 

larger-scale environmental features, such as overstory vegetation type and forest 

structure (Weibull and Rydin, 2005), can significatively affect local conditions (e.g. 

humidity; substrate composition; litter deposition) and, ultimately, the biodiversity 

patterns of these species. Likewise, while the results of Chapter IV on lichen alpha and 

beta diversity generally showed a better performance of the higher resolution (1.2m) 

commercial WV3 sensor compared to that of open access S2 sensor (10m), this 

assessment was carried out using only three RS variables (Red, NIR and EVI2) as 

model’s inputs and a limited number of plots. These results can thus be considered 

preliminary and further studies including a broader range of RS variables at different 

resolutions are required to confirm whether an increase in the spatial resolution of RS 

variables translates into an increase in the performance of the models they feed. 

The usefulness of a wide range of RS-derived variables for assessing and understanding 

cryptogam biodiversity patters was also underscored across the different chapters 

included in this thesis. These variables, either in the form of raw spectral bands or 

indices, represented environmental factors as diverse as the presence of vegetation, 

percent tree cover, stand structure, vegetation and soil moisture content, and 

topographic features ranging from elevation or slope to relative topographic position, 

drainage water collection or incident solar radiation, and so on. Likewise, the efficacy 

of RS variables to feed biodiversity models of cryptogam species was highlighted both 

in combination with non-remotely sensed variables, such as climatic or soil-related 

(Chapter II), and alone (Chapters III and IV). A novel and very promising approach 
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that could improve cryptogam biodiversity assessments and predictions is the 

development of time series-derived RS variables describing ecosystem functioning 

attributes to characterize species habitat dynamics, such as energy balance, primary 

production and C02 fluxes, or vegetation or soil water content dynamics (Regos et al., 

2022). The usefulness of this approach for prediction purposes has already been 

demonstrated in different taxa such as birds and vascular plants, including herbaceous 

and trees (Arenas-Castro et al., 2018, 2022; Vila-Viçosa et al., 2020). Another 

interesting RS variable to be tested in future boreal cryptogam studies is snow 

persistence, which influences the duration of the growth session and the time of 

exposure of species to winter conditions and can therefore have a significant effect on 

plant growth and survival and thus on their distribution. The performance for predicting 

cryptogam distribution has already been put in evidence in tundra ecosystems 

(Niittynen and Luoto, 2018). In addition, the inclusion of other non-remotely sensed 

variables (e.g., geological) could also be beneficial for cryptogam biodiversity 

estimates (Camathias et al., 2013), as long as data spatial resolution allows capturing 

enough environmental variability in the region of interest. 

5.1 Remote sensing as a tool to inform conservation actions in cryptogams: 
Possibilities for improvement are at hand 

This thesis unequivocally underscores the high potential of RS technology for 

conservation purposes of cryptogams, and more specifically of a RS-based modeling 

framework (RS indirect approach). Interesting insights have been provided on the 

environmental drivers of cryptogam biodiversity throughout the different scientific 

chapters, which can guide specific management actions focused on the maintenance or 

reestablishment of the conditions suitable, e.g. in terms of humidity or forest structure, 

to conserve biodiversity. Likewise, the ability for RS data to map cryptogam 

biodiversity patterns across the landscape at a high level of detail, as highlighted in 

Chapters II and III, makes the resulting predictive cartography very valuable tools to 
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fill biodiversity data gaps and inform conservation planning for these often neglected 

species (Delso et al., 2021). This is despite the limitations and uncertainty associated 

with the use of SDMs for conservation, which is related to the representativeness of the 

actual distribution, type and geolocation of the biodiversity data used (Aranda and 

Lobo, 2011; Moudrý and Šímová, 2012; Rondinini et al., 2006; Underwood et al., 

2010), the approach employed to assess these biodiversity data (Mateo et al., 2013), 

and the absence from models of meaningful environmental factors, ecophysiological 

(e.g., biotic interactions, anthropogenic pressure) and evolutionary or historical 

processes (e.g. speciation processes, geographic barriers; Cerrejón et al., 2020; Delso 

et al., 2021; Guisan and Zimmermann, 2000). On the other hand, RS information, 

continuous by nature and with a source spatial resolution close to that used in our 

analyses, allows the user to obtain more accurate environmental information (moisture, 

vegetation attributes, etc.), particularly in relatively flat regions such as ours, and thus 

to increase model reliability compared to coarse resolution variables, such as climatic 

or soil attribute variables, which are generally based on interpolation methods and 

introduce higher uncertainty into the models (Guisan and Zimmermann, 2000). 

Specifically, the predictive mapping elaborated in Chapters II and III allowed to 

geolocate, for the first time, overall and rare bryophyte biodiversity hotspots, 

respectively, as well as their spatial correspondence, within the Eeyou-Istchee James 

Bay region, contributing to overcome current knowledge gaps on cryptogam 

biodiversity patterns (Barbé et al., 2018). The identification of these hotspots provides 

very useful information for prioritizing areas to preserve and prevent species loss. In 

total, 46 predictive maps were produced, including one map on overall bryophyte 

richness (Figure 2.4A), three maps on guild-level bryophyte richness (Figure 2.4B-D), 

38 maps on individual rare bryophyte species distribution (Cerrejón et al., 2021b), one 

map on rare bryophyte richness (Figure 3.4A), and three maps on guild-level rare 

bryophyte richness (Figure 3.4B-D). An eventual modeling and spatial prediction of 
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the bryophyte beta diversity component in the study region of Chapters II and III would 

allow to identify complementary area in terms of species composition, providing very 

valuable information to be integrated in the hotspot identification process. On the other 

hand, while lichen biodiversity hotspots were not mapped in Chapter IV, the habitat 

types representing their main biodiversity hotspots were identified. 

If the lack of knowledge of the cryptogams in general can put their perpetuation at risk 

in the face of the increasing magnitude of industrial development activities in the boreal 

regions, this poses an even greater threat to their rare species. Therefore, rare species 

monitoring has become a conservation priority (Guisan et al., 2006; Lomba et al., 2010; 

Zhang, 2019). Bearing this in mind, the predictive mapping of rare species distribution 

elaborated in Chapter III represents a significant progress in the application of 

techniques focused on the study and conservation of cryptogams. Despite its high 

potential as decision support tools, no previous studies have used RS-based modeling 

approaches for assessing and mapping the presence of rare species of cryptogams and 

their richness patterns (Cerrejón et al., unpublished). Although the knowledge on the 

performance of stacked SDMs in inconspicuous species is deficient and more data need 

to be collected from insufficiently surveyed areas (Hespanhol et al., 2015), particularly 

in the case of rare species characterized by low prevalence, our predictive mapping, as 

developed at 30m spatial resolution, have a great potential to guide future field surveys 

and discover new populations of the mapped rare species (Annex A; Cerrejón et al., 

2021; Guisan et al., 2006). This would allow us to provide an independent validation 

assessment of rare species model performance, to check for possible overprediction 

instances either of single species distributions (Cayuela et al., 2009; Guisan and 

Thuiller, 2005; Trotta-Moreu and Lobo, 2010) or derived richness patterns (Dubuis et 

al., 2011; Mateo et al., 2012), and to improve these models and their predictions by 

integrating the new observations. Likewise, this new information on species occurrence 

can better inform the actual environmental variability in which rare species occurs 
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(Guisan et al., 2006), which is deficiently documented (Barbé et al., 2018). This 

knowledge on species’ ecological niches can ultimately help understand the causes of 

their rarity, review their conservation status, and facilitate either the discovery of new 

populations and the development of effective management and conservation measures 

(Annex A; Cerrejón et al., 2021; Söderström et al., 1992). 

The promising results obtained in the present thesis using freely accessible satellite 

data with global coverage at high and medium spatial resolutions (S2 and Landsat, 

respectively) support the suitability of RS-based modeling approaches as a tool to 

promote the systematic integration of cryptogams in conservation planning. This is 

especially relevant for regions or countries where resources devoted to conservation 

issues are limited and/or where increasing anthropogenic pressure makes biodiversity 

assessments critical, particularly regarding lesser-known, inconspicuous species. 

Although economic and logistical resources were used for the collection of the 

cryptogam field data used across the scientific chapters included in this thesis, the 

increasing availability of open access biodiversity data from digitization of natural 

history collection and herbarium sheet data or citizen science initiatives and programs 

(Rocchetti et al., 2021; Andrew et al., 2017; Beaman and Cellinese, 2012; Chandler et 

al., 2017; Paton et al., 2020; www.gbif.org), which are typically in presence-only data 

format (Guillera‐Arroita, 2017), provides a unique opportunity to perform biodiversity 

assessments through a RS indirect approach without cost associated to either species 

or satellite data acquisition. The usefulness of these freely accessible biodiversity data 

to feed SDMs have been put in evidence (Feldman et al., 2021; Henckel et al., 2020). 

Therefore, a modeling framework combining open access RS and species data can be 

key for rapid biodiversity assessments of cryptogam species and their future 

preservation across the world. Furthermore, our results and methodologies could be 

useful for other lesser-known, inconspicuous species facing underrepresentation in 

conservation planning (e.g. fungi, arthropods, etc.; Delso et al., 2021; Dunn, 2005; 
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Senn-Irlet et al., 2007). Following a similar approach of that used in Chapter III based 

on Lee’s L statistic (Lee, 2001), future multi-taxon studies could be directed at 

assessing and mapping the spatial relationships among hotspots of these different 

inconspicuous taxonomic groups, which represent most of the biodiversity in any given 

region (Delso et al., 2021). This type of cartography would be of great interest to 

planners and other stakeholders in order to identify exclude sites of high ecological 

interest from growing industrial development and facilitate its coexistence with the 

conservation of biodiversity and the ecological functions it supports. 
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A.1 Abstract 

Aim. Detection of rare species is limited by their intrinsic nature and by the constraints 

associated with traditional field surveys. Remote sensing (RS) provides a powerful 

alternative to traditional detection methods through the increasing availability of RS 

products. Here we assess the capacity of RS at high and medium resolution to detect 

rare plants with direct and indirect approaches, and how the performance of RS can be 

influenced by the characteristics of species. 

Methods. An extensive literature review was conducted to synthesize the use of RS to 

detect or predict rare plant occurrence at high and medium resolution (<30m and 30–

300m, respectively). The concept of “rarity” was based on Rabinowitz’s rare species 

classification. The literature review was performed in Scopus for the period 1990–2020. 

Results. While direct detection is often limited, it is possible with high and very high 

spatial resolution data for rare plants with distinctive traits. RS is also able to capture 

biophysical conditions driving rare plant distributions, which can indirectly provide 

accurate predictions for them. Both approaches have the potential to discover new 

populations of rare plants. RS can also feed SAMs of rare plants, which combined with 

SDMs can provide a valuable approach for rare plant detection. While direct detection 

is limited by the space occupied by a species within its habitat and its morphological, 

phenological, and physiological characteristics, the predictive performance of RS-

based SDMs (indirect detection) can be influenced by habitat size, habitat specificity, 

and phenological features of rare plants. Similarly, model predictive performance can 

be influenced by the rarity form of the target species according to the rarity 

classification criteria. 
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Main conclusions. With this synthesis, the strong potential of RS for the purposes of 

detection and prediction of rare plant has been highlighted, with practical applications 

for conservation and management. 

Keywords: Direct detection; Endemism; New populations; Predictive models; Rarity; 

Remote sensing predictors; Sensor; SDMs; Spatial resolution.  
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A.2 Résumé 

Objectif. La détection des espèces rares est limitée par leur nature intrinsèque et par les 

contraintes associées aux enquêtes de terrain traditionnelles. La télédétection offre une 

alternative puissante aux méthodes de détection traditionnelles grâce à la disponibilité 

croissante des produits de télédétection. Ici, nous évaluons la capacité de la 

télédétection à haute et moyenne résolution à détecter des plantes rares avec des 

approches directes et indirectes, et comment les performances de la télédétection 

peuvent être influencées par les caractéristiques des espèces. 

Méthodes. Une revue approfondie de la littérature a été menée pour synthétiser 

l'utilisation de la télédétection pour détecter ou prédire la présence de plantes rares à 

haute et moyenne résolution (<30 m et 30–300 m, respectivement). Le concept de 

“rareté” était basé sur la classification des espèces rares de Rabinowitz. La revue de la 

littérature a été réalisée dans Scopus pour la période 1990-2020. 

Résultats. Bien que la détection directe soit souvent limitée, elle est possible avec des 

données à haute et très haute résolution spatiale pour les plantes rares aux traits 

distinctifs. La télédétection est également capable de capturer les conditions 

biophysiques qui déterminent la distribution des plantes rares, ce qui peut 

indirectement fournir des prédictions précises pour celles-ci. Les deux approches ont 

le potentiel de découvrir de nouvelles populations de plantes rares. La télédétection 

peut également alimenter les modèles d'abondance d'espèces de plantes rares, qui, 

combinés aux SDMs, peuvent fournir une approche précieuse pour la détection des 

plantes rares. Alors que la détection directe est limitée par l'espace occupé par une 

espèce dans son habitat et ses caractéristiques morphologiques, phénologiques et 

physiologiques, la performance prédictive des SDMs basés sur la télédétection 

(détection indirecte) peut être influencée par la taille de l'habitat, la spécificité de 

l'habitat et les caractéristiques phénologiques des plantes rares. De même, la 
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performance prédictive du modèle peut être influencée par la forme de rareté de 

l'espèce cible selon les critères de classification de la rareté. 

Conclusions principales. Avec cette synthèse, le fort potentiel de la télédétection à des 

fins de détection et de prédiction de plantes rares a été mis en évidence, avec des 

applications pratiques pour la conservation et la gestion. 

Mots clés: Capteur; Détection directe; Endémisme; Modèles prédictifs; Nouvelles 

populations; Prédicteurs de télédétection; Rareté; Résolution spatiale; SDMs. 
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A.3 Introduction 

Rare plants are recognized as a conservation priority as they are key components of 

biodiversity, increasing and promoting species richness and functional diversity at 

different scales (Bracken and Low, 2012; Kearsley et al., 2019; Leitao et al., 2016; 

Mouillot et al., 2013; Patykowski et al., 2018; Rejžek et al., 2016; Umaña et al., 2017) 

and supporting ecosystem functioning and services (Dee et al., 2019; Hooper et al., 

2012; Jolls et al., 2019; Soliveres et al., 2016; Xu et al., 2020; Zavaleta and Hulvey, 

2004). While rare plants are especially vulnerable to extinction (Sykes et al., 2019; 

Weisser et al., 2017; Zhang, 2019), implementing effective conservation measures is 

limited by the quality and quantity of data available on them. The low detectability 

often associated with rare plants due to their low prevalence (Lomba et al., 2010) and/or 

sparse and small populations (Guisan et al., 2006; Menon et al., 2010) results in notable 

knowledge gaps on important aspects of their ecology (Lyons et al., 2005; Wu and 

Smeins, 2000) or spatial distribution patterns (Gogol-Prokurat, 2011; MacDougall and 

Loo, 2002). Furthermore, remoteness of terrain, as well as economic and logistic 

constraints, can make field studies of rare plants unfeasible (Le Lay et al., 2010). 

Remote sensing (hereafter “RS”; see Glossary Box) has become an important tool for 

the scientific community in addressing these field survey issues, offering an 

inexpensive method to assess biodiversity characteristics over large areas at regular 

intervals (Corbane et al., 2015; Kerr and Ostrovsky, 2003;). RS allows both i) detection 

of individual biological entities, species assemblages, or ecological communities 

(direct approach) and ii) acquisition of biodiversity-related information from 

environmental proxies (indirect approach; Turner et al., 2003). The indirect approach 

provides a powerful alternative that, in combination with species distribution models 

(hereafter “SDMs”), enables users to infer species’ habitat preferences or predict 

species distributions (Buechling and Tobalske, 2011; Guillera-Arroita et al., 2015).



 

 

 

Glossary Box. Remote sensing (RS)-related terms and abbreviations 
Active sensor: Emits radiation and measures the energy returned after being reflected. 
Hyperspectral sensor: Discriminates many narrow spectral bands across the electromagnetic spectrum. 
Multispectral sensor: Discriminates a few relatively broad spectral bands across the electromagnetic spectrum. 
Multi-temporal imagery: Multiple images of the same location acquired on different dates. 
Passive sensor: Measures energy emitted or reflected by the earth’s surface without emitting radiation. 
Remote sensing: Methods of detecting the electromagnetic radiation coming from the Earth’s surface via aircraft or satellite sensors 
(Campbell and Wynne, 2011; Turner et al., 2003).  
Spatial resolution: Basic unit of captured information that corresponds to pixel or grain size and determines the minimum spatial 
scale at which variation can be observed. Categories of spatial resolution in this paper follow Corbane et al. (2015): very high 
resolution <3m; high resolution 3–29m; medium resolution 30–300m; low resolution >300m. 
Spectral resolution: Width (and thus number) of bands into which the electromagnetic spectrum is divided. 
Temporal resolution: Measure of the revisit frequency of the sensor at the same location. 
Sensors abbrev.: AISA, Airborne Imaging Spectrometer for Applications; AMSR-E, Advanced Microwave Scanning Radiometer 
for Earth Observing System; ASTER, Advanced Spaceborne Thermal Emission and Reflection Radiometer; CMOS, Complementary 
Metal Oxide Semiconductor; HiFIS, High Fidelity Imaging Spectroscopy; LiDAR, Light Detection and Ranging; LISS, Linear 
Imaging and Self Scanning; MERIS, Medium Resolution Imaging Spectrometer; MODIS, Moderate-Resolution Imaging 
Spectroradiometer; SPOT, Satellite for Observation of Earth; SRTM, Shuttle Radar Topography Mission; SSM/I, Special Sensor 
Microwave Imager; TMI, TRMM Microwave Imager. 
RS data/predictor abbrev.: EVI, Enhanced Vegetation Index; GCC, Green Chromatic Coordinate; mNDWI, modified Normalized 
Difference Water Index; NCVI, Normalized Coastal Vegetation Index; NDVI, Normalized Difference Vegetation Index; NDWI, 
Normalized Difference Water Index; NGVI, Normalized Green Vegetation Index; NIR band, Near Infrared band; PRI, Photochemical 
Reflectance Index; RENDVI, Red Edge Normalized Difference Vegetation Index; SAVI, Soil-Adjusted Vegetation Index; SIPI, 
Structurally Insensitive Pigment Index; SWIR band, Shortwave Infrared band; Thermal IR band, Thermal Infrared band; TNDVI, 
Transformed Normalized Difference Vegetation Index. 
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RS has become a widely applied tool in plant studies (e.g. Asner, Hughes, et al., 2008; 

Asner, Jones, et al., 2008; Kopeć et al., 2020; Wan et al., 2020) with the increasing 

availability of RS products that capture a wide variety of environmental features 

(Corbane et al., 2015; Kerr and Ostrovsky, 2003; Turner et al., 2003). Studies using 

RS to focus specifically on rare plants remain uncommon, although their number has 

been growing in recent years (e.g. Arenas-Castro et al., 2019; Gonçalves et al., 2016; 

Zhu et al., 2016). As an emerging research field, the potential benefits of RS for the 

detection of rare plants remain unclear. In this context, the objectives of this synthesis 

were i) to evaluate the capacity for RS to detect and predict the occurrence of rare 

plants, and ii) to assess how the main characteristics of rare plants influence the 

performance of RS. Our concept of “rarity” is based on Rabinowitz’s rare species 

classification (Rabinowitz, 1981), which discerns seven rarity types based on three 

dichotomous criteria: geographic distribution range (large vs. restricted), habitat 

specificity (wide vs. narrow), and local population size (large vs. small). Since these 

criteria are characterized by a continuous transition among the different rarity 

categories (absence of defined thresholds) and make abstraction of causes of rarity, it 

is a flexible concept for the continuous and complex nature of rarity. While we will 

discuss the capacity for RS to feed into and improve SDMs of rare plants, a comparative 

evaluation of the performance of different modeling techniques is beyond the scope of 

this synthesis and has been addressed in the literature (e.g. Elith and Burgman, 2002; 

Williams et al., 2009; Wiser et al., 1998). We will discuss the suitability of predictive 

performance measures for rare plant modeling studies, as well as the potential influence 

of rarity types on RS effectiveness and the detection of target species in the field 

(hereafter “practical utility”). 
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A.4 Methods 

An extensive literature review was conducted to synthesize the use of RS to detect or 

predict rare plant distributions. Although the term "remote sensing" is defined precisely 

in the literature, the concept of "remote sensing variables or predictors" remains 

ambiguous. Henceforth, RS predictors refer to i) continuous spectral information 

obtained from aircraft or satellite sensors, either as raw spectral bands or as indices; ii) 

landcover products developed from the classification of spectral information; and iii) 

digital elevation models (“DEMs”) developed from satellite or airborne sensor 

information as well as derived topographic indices. In cases where the information on 

the origin or generation process of the predictors were not provided nor accessible, they 

were considered as non-RS predictors, except for DEM-derived topographic indices. 

DEMs are commonly generated through RS techniques and their direct survey is rare; 

therefore, when the DEM source is other than RS, it is usually stated in the literature 

(e.g. Padalia et al., 2010; Sperduto and Congalton, 1996). 

A literature review of peer-reviewed articles was carried out using the search engine 

Scopus by combining terms related to plant with keywords related to RS and rarity or 

species at risk for the period 1990–2020. Studies targeting species at risk were included 

since they can be considered rare according to Rabinowitz’s rarity classification 

(Rabinowitz, 1981). Specifically, the search was carried out using the following 

combination of keywords: (plant OR tree OR bryophyte OR moss) AND (rare OR 

endemic OR “at risk” OR endangered OR threatened OR red-list) AND (“remote 

sensing” OR “remotely sensed” OR sensor OR satellite OR drone OR “unmanned 

aerial vehicle” OR spectral OR lidar OR radar OR airborne OR aircraft). A total of 

1112 articles matched our search criteria. These articles were reviewed individually to 

identify and keep only those relevant for our topic, i.e., articles using RS data for the 

purpose of detecting or modeling and predicting the presence of rare plant species. We 

excluded i) articles that model richness distribution patterns of rare plants as they do 
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not evaluate the capacity for RS to predict individual species, nor the influence of 

species’ characteristics on RS performance, and ii) those studies performed at low 

spatial resolutions (>300m) since SDMs at these pixel sizes hinder the identification of 

local environmental factors driving species occurrence patterns (Engler et al., 2004), 

can result in large areas predicted as suitable habitat of limited practical use to detect 

rare species through field surveys (Guisan et al., 2006), and normally provide less 

accurate predictions for sessile species (Guisan and Thuiller, 2005). A total of 43 

articles were selected for the development of this study. These articles were first 

classified by RS approach (direct or indirect) and then by spatial resolution used (Table 

A.1).



 

 

 

Table A.1 Reviewed literature using remote sensing at very high, high, or medium resolutions to detect or predict the 
occurrence of rare plants. See Glossary Box for sensor and RS data/predictor abbreviations. 

Reference study 
Location 
on mapa 

# and 
type 

of rare 
speciesb 

Sensor(s)c 
Pixel 
size 
(m)d 

Data/Predictorse Practical 
utilityh 

Remote sensingf Non-remote 
sensingg 

Direct approach (detection) 

Very high spatial resolution (<3m) 
Landenberger et al. 
(2003) 

1 1: S 
Airborne optical 
sensor (Nikon 

N90s) 

0.04 to 
0.05 

Traditional colour 
imagery 

NA No 

Jones et al. (2011) 2 1: T 
LiDAR; 

Airborne optical 
sensor (AISA) 

2 

Structural 
(Canopy height; 
Canopy volume 

profiles); Spectral 
bands 

NA No 

Fletcher and Erskine 
(2012) 3 1: H 

Airborne optical 
sensor (Sony 

NEX5) 

0.041 x 
0.096 

Traditional colour 
imagery NA Yes 

Chávez et al. (2013) 4 1: T WorldView-2 0.5 
Panchromatic 

band NA No 

Omer et al. (2015) 5 6: T WorldView-2 2 Spectral bands NA No 

Chávez et al. (2016) 6 1: T Quickbird2 0.6 
Panchromatic 

band NA No 
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Table A.1 continued        

Murfitt et al. (2016) 7 1: T WorldView-2 0.5 
Spectral bands; 
Panchromatic 

band 
NA No 

Leduc and Knudby 
(2018) 

8 1: H 
Airborne optical 
sensor (CMOS) 

0.05 
Vegetation index 

(GCC) 
NA No 

Liu et al. (2018) 9 1: T 
Airborne optical 

sensor (Sony 
A6000) 

0.12 

Topographic; 
Spectral bands; 

Vegetation indices 
(NDVI; PRI; 

RENDVI; SIPI); 
Texture indices; 

Geometric indices  

NA No 

Paz-Kagan et al. (2018) 10 1: T LiDAR; HiFIS 2 

Structural 
(Canopy height; 
Canopy volume 

profiles); Spectral 
bands 

NA No 

Poursanidis et al. (2018) 11 1: H WorldView-2 0.46 

Spectral bands; 
Panchromatic 
band; Wetness 
index (NDWI); 

Water 
transparency 

NA No 

López-Jiménez et al. 
(2019) 

12 1: T Airborne optical 
sensor (CMOS) 

0.1 to 
0.15 

Traditional colour 
imagery 

NA No 
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Table A.1 continued        

Maděra et al. (2019) 13 1: T Pleiades 0.5 to 1 Vegetation index 
(NDVI) 

NA No 

Meiforth et al. (2019) 14 1: T Airborne optical 
sensor (AISA) 

1 
Spectral bands; 
Wetness indices 

(mNDWI) 
NA No 

Rominger and Meyer 
(2019) 

15 1: H Airborne optical 
sensor (CMOS) 

0.0191; 
0.0232 

Traditional colour 
imagery 

NA No 

Slingsby and Slingsby 
(2019) 16 1: T Pleiades 0.5 

Traditional colour 
imagery NA No 

Lobo Torres et al. (2020) 17 1: T Airborne optical 
sensor (CMOS) 

0.01 Traditional colour 
imagery 

NA No 

High spatial resolution (3–29m) 

Pasqualini et al. (1998) 18 1: H Airborne optical 
sensor 

5 Traditional colour 
imagery  

NA No 

Zhao et al. (2016) 19 1: T SPOT 5 
Topographic; 
Spectral bands NA No 

Indirect approach (prediction)  

Very high spatial resolution (<3m)  123 



 

 

 

Table A.1 continued        

Ishii et al. (2009) 20 8: H Airborne optical 
sensor (AISA) 

1.5 
Spectral bands; 

Vegetation index 
(NDVI) 

NA No 

Robinson et al. (2019) 21 5: H; S LiDAR 2 Topographic NA No 

Cursach et al. (2020) 22 1: H 
LiDAR; 

Airborne optical 
sensor (camera) 

2 
Topographic; 

Vegetation index 
(NDVI); 

Soil type No 

High spatial resolution (3–29m) 

Sellars and Jolls (2007) 23 1: H LiDAR 3 Topographic NA No 

Varghese et al. (2010) 24 8: T LISS IV 5.8 
Topographic; 

Vegetation type Soil No 

Pouteau et al. (2012) 25 3: S, T Quickbird 5 Topographic; 
Vegetation type 

NA No 
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Table A.1 continued        

Baker et al. (2016) 26 1: S LiDAR; Landsat 9.327 

Topographic; 
Spectral bands; 

Band ratio; 
Normalized band 
ratios; Vegetation 
indices (NDVI; 
Greenness); Soil 

(Brightness; 
Yellownes); 

Wetness index 

NA No 

Traganos and Reinartz 
(2018) 

27 1: H Sentinel-2 10 

Bathymetry; 
Spectral bands; 

Water 
transparency 

NA No 

Medium spatial resolution (30–300m) 
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Table A.1 continued        

Lauver and Whistler 
(1993) 

28 2: H Landsat 30 

Vegetation indices 
(NDVI; 

Greenness); Soil 
brightness index; 
Wetness indices 
(including raw 

SWIR1 and 
SWIR2 bands) 

NA Yes 

Sperduto and Congalton 
(1996) 

29 1: H Landsat 30 
Topographic; 

Vegetation index 
(raw NIR band) 

Topographic; 
Soil; Land-use 

Yes 

Wu and Smeins (2000) 30 8: H, S Airborne optical 
sensor 

30 Topographic; 
Vegetation type  

Soil No 
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Table A.1 continued        

Crase et al. (2006) 31 2: S 

Airborne optical 
sensor 

(Exploranium 
GR-820); 
Airborne 
optically 
pumped 

magnetometer 
sensor (Scintrex 

CS2)  

100; 
250 

Topographic; 
Geological 

(Radiometric data) 
NA No 

Zimmermann et al. 
(2007) 

32 12: T SRTM; Landsat 90 

Topographic; 
Spectral bands*; 

Vegetation 
indices* (NDVI; 

Greenness); 
Surface 

temperature 
index*; Soil 

brightness index*; 
Wetness index* 

Climatic No 
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Table A.1 continued        

Williams et al. (2009) 33 6: H, S MODIS 150 
Topographic; 

Vegetation index 
(NDVI) 

Climatic; 
Geological 

Yes 

Ishihama et al. (2010) 34 4: H 
Airborne optical 
sensors (ADS40; 

RC30) 
100 

Topographic; 
Spectral bands*; 
Vegetation index 

(Vegetation 
height*) 

NA No 

Padalia et al. (2010) 35 1: T LISS IV 150 

Vegetation type; 
NDVI-derived 
density class; 

Land-use 

Topographic; 
Soil; Geological No 

Buechling and Tobalske 
(2011) 36 4: H Landsat 30 

Topographic; 
Spectral bands*; 

Vegetation indices 
* (TNDVI; 

Greenness); Soil 
brightness index*; 

Wetness index* 

Climatic; Soil 

Yes 
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Table A.1 continued        

de Queiroz et al. (2012) 37 6: H Landsat 30 

Topographic; 
Geological 
(Gypsum 

springmound 
occurrence 
probability) 

NA Yes 

Zucchettaa et al. (2016) 38 1: H 

SRTM30_PLUS; 
MERIS; 

MODIS; SSM/I; 
TMI; AMSR-E; 

SeaWinds 

300 

Bathymetry; 
Surface 

temperature index; 
Water 

transparency; 
Wind induced 

disturbance 
(Relative 

Exposure Index)  

Water salinity No 

Adhikari et al. (2018) 39 1: T MODIS 250 Vegetation index 
(EVI*) 

NA Yes 

Kim et al. (2018) 40 1: H LiDAR; Landsat 30 

Topographic; 
Vegetation index 
(NDVI); Wetness 

index (NDWI) 

Climatic; Soil; 
Flood area 

No 
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aThe number indicates the location of the reference study in Figure A.1. 
bTotal number of target rare plants with capital letters indicating the type of species based on their growth form (H: herbaceous; S: shrub; 
T: tree). 
cSensors from which remote sensing information was extracted. 
dSpatial resolution of analysis 
eOnly data/predictors used for detection/prediction purposes are included. 
fVegetation indices refer to continuous spectral information, while vegetation type refers to classified information. 

Table A.1 continued        

Attanayake et al. (2019) 41 9: H; S Landsat 30 Spectral bands NA No 

Borfecchia et al. (2019) 42 1: H Landsat 30 
Bathymetry; 

Vegetation indices 
(NCVI; NGVI) 

NA No 

Hernández-Lambraño et 
al. (2020) 43 1: H LiDAR; Landsat 30 

Topographic; 
Vegetation index 
(SAVI); Surface 

temperature index; 
Wetness index 

NA Yes 
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A.5 Remote sensing direct approach— Detection of rare plants 

The direct detection of rare plants and their traits through RS requires previous 

knowledge of a species’ ecology and distribution, as well as the use of high spatial 

resolution imagery. Despite these constrains, 19 articles following this RS approach 

were found (Table A.1; Figure A.1). Direct detection can be carried out either by visual 

identification or by image classification methods that allow the detection of distinctive 

spectral features of the target species. Specifically, Fletcher and Erskine (2012) and 

Rominger and Meyer (2019) showed the usefulness of very high spatial resolution 

traditional color aerial imagery for the visual detection of the rare plant Boronia deanei 

Maiden & Betche (Deane's Boronia) and the endangered and gypsophile endemic plant 

Arctomecon humilis Coville (dwarf bear-poppy), respectively. The uniqueness of the 

morphological characteristics exhibited by these two species at detection was key to 

their identification. Likewise, the classification of traditional color aerial imagery 

allowed the detection of the endemic cactus Neobuxbaumia tetetzo (F.A.C. Weber ex 

K. Schum.) Backeb. in the Tehuacan-Cuicatlan Valley in Mexico with high validation 

accuracy (0.95; López-Jiménez et al., 2019). When morphological features extracted 

from traditional color imagery are not enough to discriminate rare plants, spectral bands 

and derived indices, either alone or in combination with other types of RS indices, has 

proven to be an effective alternative approach for their direct detection (Liu et al., 2018). 

For instance, the endangered Allium tricoccum Aiton (wild leek) and the endemic 

Agathis australis (D.Don) Lindl. ex Loudon (kauri) were successfully detected using 

vegetation and wetness indices derived from multi- and hyperspectral airborne sensors, 

respectively (Leduc and Knudby, 2018; Meiforth et al., 2019). Likewise, the rare plant 

Firmiana danxiaensis H.H.Hsue & H.S.Kiu, J. S. was detected in Danxia Mountain 

(China) using multispectral bands and RS-derived vegetation, topographic, texture and 

geometric indices (Liu et al., 2018). 
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Figure A.1 Distribution map of reviewed studies. Numbers correspond to those 
appearing in the column "location on map" in Table A.1. 

The utility of high and very high spatial resolution satellite sensors for direct detection 

of rare plants has also been highlighted. Omer et al. (2015) detected with high accuracy 

5 of the 6 target endangered tree species in Dukuduku forest in South Africa using 

WorldView-2 satellite spectral imagery at 2m spatial resolution. Similarly, the use of 

5m resolution SPOT imagery allowed to map the endangered and endemic alpine tree 

Larix chinensis Beissn. (Shaanxi larch) on Mount Taibai in China (Zhao et al., 2016). 

Other studies have also tested the combined use of RS data from passive and active 

sensors for direct detection purposes. This combination provides a powerful approach, 

since active sensors, which allow the assessment of rare plant structural properties, can 

provide valuable information complementary to the optical information derived from 

passive sensors. Specifically, the use of hyperspectral information along with LiDAR-

derived structural data, namely canopy height and canopy volume profiles, allowed a 

successful detection of the rare trees Quercus garryana Douglas ex Hook. (Garry oak) 

in southern Gulf Islands (British Columbia) and Sequoiadendron giganteum (Lindl.) J. 

Buchholz (giant sequoia) in the western Sierra Nevada of California (Jones et al., 2011; 

Paz-Kagan et al., 2018). On the other hand, RS has also allowed the direct detection of 

rare plants in aquatic environments, as demonstrated by Pasqualini et al. (1998) and 
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Poursanidis et al. (2018), who detected and mapped the species Posidonia oceanica 

(L.) Delile (Neptune grass) endemic to the Mediterranean Sea using aerial traditional 

colour imagery and WorldView-2-derived information, respectively.  

The RS direct approach not only offers the possibility to detect and map rare plants but 

also to assess their status (e.g. water stress, health; Chávez et al., 2013, 2016; Murfitt 

et al., 2016). This ability may allow the implementation of monitoring systems for these 

species, which can provide valuable additional information for management and 

conservation purposes. The studies reviewed here well exemplify the potential of a 

direct RS approach not only to detect rare plants, but also to monitor them in space and 

time (Landenberger et al., 2003; McGraw et al., 1998), or even to discover new 

populations (Fletcher and Erskine, 2012). 

A.6 Remote sensing indirect approach— Prediction of rare plant distributions 

The indirect RS approach allows the prediction of rare plants under environmental 

conditions where their direct detection is not possible (Levin et al., 2007). Most of the 

studies included in this section were performed in the Northern Hemisphere, while only 

three were conducted in the Southern Hemisphere (Figure A.1). RS has been used to 

spatially characterize different biophysical conditions at multiple spatial, spectral, and 

temporal resolutions related to topography, vegetation, structure, climate, soil, geology, 

moisture, bathymetry, and water transparency, as well as to anthropogenic and natural 

disturbances (Table A.1). RS information have been acquired primarily from passive 

satellite sensors, although active satellite sensors, and airborne sensors both active and 

passive, have also been used. 

Only three studies have used very high resolution RS to model the distribution of rare 

plants, being limited exclusively to LiDAR-derived topographic predictors, NDVI and 

hyperspectral data. The usefulness of 2m resolution topographic predictors alone to 

predict rare plants was proven by achieving excellent accuracies (AUC = 0.99–1) for 
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five rare plants modeled in semiarid south-western Australia (Robinson et al., 2019). 

Similarly, high predictive performance (AUC = 97) was obtained for the endemic plant 

Euphorbia fontqueriana Greuter by combining 2m resolution topographic and NDVI 

predictors, with almost not contribution from the non-RS soil type variable (Cursach et 

al., 2020). More modest predictions were however obtained in the mapping of habitat 

types for 8 threatened species in Watarase wetland (Japan) using hyperspectral data 

(Ishii et al., 2009). 

A higher diversity of RS predictors has been tested in models developed at high 

resolution, while topographic (or bathymetric) variables have been the common 

element in all of them. One example used LiDAR-derived elevation at 3m resolutuion 

to predict up to 88% of Amaranthus pumilus Raf. (seabeach amaranth) occurrences 

across the North Carolina coastline (Sellars and Jolls, 2007). The integration of a 

Quickbird-derived vegetation type map along with topographic variables also provided 

accurate predictions (AUC = 89–97.9) for three endangered or endemic plant species 

on the island of Moorea (Pouteau et al., 2012). Likewise, the endemic plant 

Schoenocrambe suffrutescens (Rollins) S.L. Welsh & Chatterley (shrubby reed-

mustard) was successfully mapped (AUC = 0.85) by combining a wide variety of RS 

predictors, including topographic variables, spectral bands (and ratios), as well as 

vegetation, wetness and soil indices (Baker et al., 2016). 

Rare plant studies using medium resolution RS are more common and have used a 

much wider diversity of RS predictors than those developed at high and very high 

resolutions (Table A.1). The variety of RS predictors that can be successfully integrated 

into rare plant models at this resolution was exemplified by Zimmermann et al. (2007). 

The authors modeled 19 tree species distributions ranging from rare to common and 

found that models combining RS and non-RS predictors consistently provided better 

performance for all species, and more so for rare species. Medium resolution RS-only 

SDMs are also very useful for predicting rare plant occurrences. Suitable habitats for 
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the endemic tree Adinandra griffithii Dyer were accurately predicted (AUC = 0.99) by 

using EVI time series (Adhikari et al., 2018). Similarly, robust predictions were 

achieved for the narrow-range endemic species Antirrhinum lopesianum Rothm. in the 

Iberian Peninsula using RS-derived topographic, vegetation, surface temperature and 

wetness indices (Hernández-Lambraño et al., 2020). RS can also provide useful 

geology-related information for predicting rare plants. The Landsat-derived geological 

predictor “Gypsum springmound occurrence probability” alone was able to 

successfully predict habitat suitability (AUC = 0.92) for 6 edaphic endemic plants in 

White River Valley, Nevada (de Queiroz et al., 2012). Robust models were also 

developed for the rare sandstone shrubs Melaleuca triumphalis Craven and Stenostegia 

congesta A.R. Bean using a RS radiometric map representing thorium, uranium and 

potassium in combination with two and one topographic predictors, respectively (Crase 

et al., 2006). Likewise, the usefulness of the indirect RS approach to characterize 

aquatic habitats of rare plants has been demonstrated by several studies (Borfecchia et 

al., 2019; Traganos and Reinartz, 2018; Zucchettaa et al., 2016). While all these studies 

focused on the same species, the endemic plant P. oceanica, they exemplify the variety 

of RS predictors that can be employed for predictive mapping purposes in aquatic 

environments (Table A.1). 

Overall, RS has provided valuable information on rare plant niches with good 

predictability at high and medium resolution. These results highlight the potential of 

RS to not only characterize the habitats of rare plants but also to monitor them spatially 

and temporally (Bartel and Sexton, 2009; Neumann et al., 2015). Several authors have 

also demonstrated the practical utility of predictive models built partially (Buechling 

and Tobalske, 2011; Sperduto and Congalton, 1996; Williams et al., 2009) or 

completely (e.g. de Queiroz et al., 2012; Hernández-Lambraño et al., 2020; Lauver and 

Whistler, 1993) with RS predictors at those resolutions by discovering previously 

unknown populations of rare plants (Table A.1). While SDMs-based predictions are 
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valuable tools to guide the search for rare plants in the field, the integration of 

abundance estimates derived from species abundance models (“SAMs”) could further 

facilitate their detection. Likewise, when probability of occurrence estimated from 

SDMs and predicted abundance are uncorrelated and determined by different sets of 

predictors, SAMs can provide valuable additional information on habitat quality or 

ecological species preferences (Duff et al., 2012). Since RS also has the ability to feed 

SAMs (e.g. Arenas-Castro et al., 2019; Duff et al., 2012; Guarino et al., 2012), 

abundance estimates can also be obtained at high or medium resolutions. Therefore, 

the combination of both RS-based SDM and SAM model types may represent a new 

and strong practical approach for detection of rare plants, by guiding field search efforts 

towards predicted habitats where higher plant abundance makes them more detectable. 

A.6.1 Considerations of predictive performance measures for rare plants 

Currently there is still no consensus on which are the most suitable metrics to evaluate 

the predictive performance of SDMs, which has the use of multiple metrics as the best 

solution (Amini Tehrani et al., 2020; Breiner et al., 2015). However, since each 

accuracy metric provides a type of information, the choice should ideally be based on 

their intended use (Fielding and Bell, 1997) rather than on the arbitrary selection of 

different metrics. As rare plants typically show low prevalence (i.e. high 

absences/presences ratio), overall predictive performance metrics (e.g. accuracy or 

AUC) can lead to overly optimistic results about model accuracy (Buechling and 

Tobalske, 2011; Lobo et al., 2008). Furthermore, those metrics are not sensitive to 

overprediction, which can be common for rare plant presence. Based on these 

drawbacks, we propose the use of two complementary metrics to evaluate in isolation 

the ability of the model to predict presences of rare plants, namely sensitivity and 

precision. Sensitivity is the proportion of true positives correctly predicted, while 

precision is the proportion of positive predictions corresponding to true positives 

(Fawcett, 2004). The use of both metrics provides information on the proportion of 
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actual presences correctly predicted and possible instances of overestimation. 

Therefore, sensitivity and precision are ultimately metrics indicative of the practical 

utility of models to find new localities of rare plants. 

A.7 Remote sensing based on the characteristics of rare plants 

Rare plants, like all plant species, have distinct features that allow their differentiation 

and identification, but is it possible to capture some of the distinguishing features of 

rare plants through RS? Can these features influence the performance of RS to detect 

or predict rare plants? In this section, rare plant features related to morphology, 

phenology, physiology, and ecological niche are discussed. Since rare and common 

plants are not categorized as such based on the plant features presented, we are aware 

that some aspects of our discussion may also apply to common plants. 

A.7.1 Morphology 

Morphological features of rare plants can provide decisive information for their direct 

detection. Two conditions must be met to ensure the success of this approach (also 

applicable to common plants): i) very high spatial resolution is required to capture 

morphological characters considered important, and ii) the date on which RS imagery 

is taken must correspond to a time when the target plant exhibits distinctive 

morphological characters that allow its discrimination. The direct detection of the rare 

shrub Boronia deanei based on its pink flowers and growth form exemplifies these 

criteria (Fletcher and Erskine, 2012). 

A.7.2 Phenology 

Multi-temporal RS imagery at high temporal resolution has the potential to capture 

phenological traits of rare plants, such as flowering, fruiting, or leaf growth/fall 

(Campbell and Wynne, 2011; Turner et al., 2003). This phenological information can 

be advantageous for both RS approaches. Direct detection can benefit from 
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phenological processes as long as the conditions mentioned in the previous subsection 

are met. However, multi-temporal imagery can only provide useful information when 

morphologically and phenologically similar target and cohabitating species display 

these features at different times. By contrast, single-date images provide similar 

information if the detection date captures the uniqueness of morphological characters 

derived from phenological features. 

In the indirect approach, the spectral radiation associated with phenological features of 

rare plants can directly influence the information captured from remote sensors during 

the characterization process of their ecological niche, which is subsequently used to 

model rare plant occurrence. This fact has been defined as a source of unintentional 

bias when predicting potentially suitable habitats of plants, since the captured 

information is associated with their actual distribution (Bradley et al., 2012). However, 

this type of bias can be considered advantageous when RS-based predictions are used 

to locate actual rare plant occurrences. For instance, predictions of rare trees improved 

with the inclusion of multi-temporal predictors whose spectral information was directly 

influenced by their leaf phenological features (Zimmermann et al., 2007). Similarly, 

the detection of leaf phenological changes in the Watarase wetland allowed to 

accurately predict the occurrence of two of four rare plants studied (Ishihama et al., 

2010). The authors highlighted that one of these species, Ophioglossum namegatae 

Nish. & Kurita, because of its sprouting period (early spring) and rapid growth, could 

directly contribute to the spectral information captured in early May, which was one of 

the most important predictors for both species. Likewise, the flowering phenological 

stage of the endemic tree A. griffithii played an important role in predicting its 

distribution, since the EVI for the periods of June and July were the most influential 

predictors (Adhikari et al., 2018). 
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A.7.3 Physiology 

Plant spectral information is influenced by plant physiological traits such as 

concentration and distribution of biochemical components (Peñuelas and Filella, 1998), 

which can be identifiable and quantifiable based on their spectral absorption features 

(Asner and Vitousek, 2005; Blackburn, 1998; Sims and Gamon, 2003). The use of 

multispectral bands and physiological indices at high spatial resolution have been 

shown to significatively contribute to the detection of rare tree species (Liu et al., 2018; 

Omer et al., 2015). However, the detection of rare plants could also benefit from 

hyperspectral bands and LiDAR sensors, which have the capacity to assess plant 

physiological traits in more detail (Andrew and Ustin, 2006; Asner, Jones, et al., 2008; 

Ustin and Gamon, 2010). 

A.7.4 Ecological niche 

The vertical position occupied by rare plants in their respective habitats (e.g. overstory 

or understory) influences their direct detection by RS. Active airborne sensors (e.g. 

LiDAR) are required to detect subcanopy plants (Asner, Hughes, et al., 2008; 

Hernandez-Santin et al., 2019). On the other hand, the effectiveness of the RS indirect 

approach in characterizing species' ecological niches depends on two conditions. First, 

sensor spatial resolution must be adapted to habitat size. This is especially important 

for rare plants that are associated with small habitat patches (e.g. de Queiroz et al., 

2012), which can remain indistinguishable if they are smaller than the RS imagery pixel 

(Luoto et al., 2002). Secondly, habitat specificity of rare plants has been shown to 

influence prediction accuracy (Buechling and Tobalske, 2011; Parviainen et al., 2013). 

Prediction accuracy of rare plants can increase when their habitat specialization 

increases (Hernandez et al., 2006), making habitats where they occur more distinct than 

habitats where they are absent. For rare plants with wider habitat specificity and few 

occurrences, insufficient prior knowledge seems to be the main limiting factor rather 
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than capacity of RS to successfully discriminate between suitable and unsuitable 

habitats. 

A.8 Relating rarity forms with model predictive performance 

The rare species classification developed by Rabinowitz (1981) suggests that predictive 

performance of models could vary by type of rare species. This section addresses this 

assumption starting at the criterion level. 

The geographic distribution of species has an indirect rather than direct effect on model 

predictive performance through the acquisition of RS products. Availability and cost 

of RS imagery could restrict analyses to coarser spatial resolutions unable to capture 

species-environment relationships, especially when dealing with widely distributed 

rare plants. A practical solution to this drawback would be to guide modeling studies 

to smaller areas within a species' distribution range where their conservation status is 

most critical or their study is more urgently required. 

Habitat specificity can positively influence model predictive performance, with 

increases in model predictive performance as habitat specificity increases. Local 

population size can also strongly affect model predictive performance. Species with 

smaller populations are more vulnerable to demographic, environmental, and genetic 

stochastic events as well as anthropic pressure, which can reduce their probability of 

persistence (Fischer and Stöcklin, 1997; Matthies et al., 2004; Ouborg, 1993; Thomas, 

1994). This can result in lower proportion of occupied suitable sites or “fidelity”, which 

can lead to an increase in false positives and thus decrease model predictive accuracy. 

In contrast, species with larger populations are more resistant to stochastic events and 

therefore more stable over time, which would increase their probability of presence and 

fidelity. 
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Summarizing the previous ideas regarding the influence of Rabinowitz's rarity 

classification criteria on model predictive performance, predictive performance can be 

negatively influenced by geographic distribution range and positively influenced by 

habitat specificity and local population size (Figure A.2). Nonetheless, predicting 

widely distributed rare plants throughout their entire distribution range is not practical 

for their detection; thus, the effect of the geographic distribution range on model 

performance becomes negligible when prioritizing smaller areas for predictions. At this 

point and using the same classification as Rabinowitz (1981), better results in terms of 

predictive performance can be expected for predictable and endemic rarity forms 

showing large local population size (Figure A.2). However, because the assumption 

initially raised in this section has been only theoretically addressed, the veracity of 

these final conjectures must be tested empirically. 
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Figure A.2 Classification of rarity forms showing the potential changes in model 
predictive performance (solid arrows), based on the three criteria used for such 
classification: geographic distribution range, habitat specificity, and local population 
size. The arrowhead indicates the direction of improvement (+) in predictive 
performance. Adapted from Rabinowitz (1981). 

A.9 Conclusion 

Direct and indirect RS provide great potential for the detection and prediction of rare 

plants in both terrestrial and aquatic environments. While direct detection is often 

limited, it was shown to be possible with high and very high spatial resolution data for 

species with distinctive traits. Remote sensors were also able to capture important 

biophysical conditions that drive rare plant distributions at very high to medium 

resolutions. Generally, RS predictors contributed positively to the predictive 

performance of SDMs when they were combined with non-RS predictors. RS 

predictors by themselves also provided accurate predictions of rare plant occurrences 

and allowed the discovery of new locations, highlighting the practical utility of these 

tools for conservation purposes. Likewise, the capacity for RS to feed SAMs and 

provide abundance estimates at high resolutions can offer, in combination with 
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traditional SDMs, a valuable approach to guide future field surveys and facilitate the 

detection of new populations, as well as for monitoring these species and their 

populations in space and time. Additionally, accuracy metrics were proposed for future 

modeling studies that focus on predicting actual rare plant occurrences. 

Some characters of rare plants can influence the capacity for direct RS to detect them. 

The effectiveness of this RS approach will depend on the space occupied by a species 

within its habitat and the distinctive morphological, phenological, and/or physiological 

features that facilitate its identification. On the other hand, the predictive performance 

of RS-based SDMs can be influenced by the habitat size, habitat specificity, and 

phenological features of rare plants. The spatial resolution of RS imagery must match 

the habitat size occupied by species; otherwise, small habitats can remain 

indistinguishable at coarse resolutions. Likewise, higher habitat specificity for rare 

species facilitates the capture and integration of environmental variability associated 

with the species, and better discrimination between suitable and unsuitable habitats. In 

addition, the influence of phenological features of rare plants on the spectral 

information captured by remote sensors can improve SDM performance for predicting 

actual occurrences. Similarly, model predictive performance can be influenced by the 

rarity form of the target species according to the rarity classification criteria, but this 

requires empirical testing. 

In conclusion, RS is a powerful information source to generate predictions and guide 

the discovery of new rare plant populations. New rare plant occurrences can 

subsequently be used as inputs for improving predictive models, to acquire better 

knowledge on ecological requirements and restrictions of species to help understand 

the causes of their rarity, and to review and update when necessary their conservation 

status. With this synthesis we have highlighted the strong potential of RS for the 

purposes of detection and prediction of rare plants, with practical applications for rare 

species conservation and management. 
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APPENDIX A 

Out-of-bag mean square error OOB MSE versus ntree, mtry and nodesize parameter 

values of the Random Forest regression models for bryophytes, mosses, liverworts 

and sphagna 

 

Evolution of the out-of-bag mean square error (OOB MSE) in function of the values of 
the ntree, mtry and nodesize parameters of the Random Forest algorithm (first, second 
and third row, respectively) for each of the regression models (from left to right: total 
bryophytes, mosses, liverworts and sphagna). 

 



 

 

 

APPENDIX B 

Modeled rare bryophyte species including their number of occurrences, ESMs' 

predictive performance, and species traits 

Modeled rare bryophyte species (n = 52) indicating the number of available 
occurrences as well as the predictive performance of ESMs as measured by AUC, TSS 
and Sensitivity. Bryophyte species traits, namely substrate preference, reproduction 
mode, and spore size are also included. 

Species # of 
occurrences AUC TSS Sensitivity Substrate 

preference 
Reproduction 

mode 
Spore size 

(µm) 

Liverworts (n = 14) 
      

Anastrophyllum 
minutum 8 0.858 0.767 0.8 R V 12-14 

Barbilophozia 
attenuata 23 0.5 0 0 G V 10-14 

Bazzania 
trilobata 7 0.936 0.933 1 T NA 12-17 

Calypogeia 
integristipula 7 0.839 0.834 1 G V 10-13 

Calypogeia 
suecica 5 0.584 0.384 1 EO V 9-11 

Cephaloziella 
elachista 15 0.686 0.494 1 G S 9-11 

Cephaloziella 
spinigera 10 0.966 0.962 0.95 G S 7-10 
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Chiloscyphus 
coadunatus 21 0.5 0 0 G S 15-20 

Gymnocolea 
inflata 10 0.5 0 0 G VS 12-18 

Jungermannia 
leiantha 18 0.5 0 0 G S 12-15 

Lophozia 
ascendens 20 0.798 0.657 0.975 EO V 9.5-10.5 

Lophozia 
bicrenata 8 0.949 0.93 0.9 G VS 12-16 

Plagiochila 
porelloides 7 0.908 0.705 1 G S 14-20 

Tritomaria 
exsectiformis 27 0.771 0.523 0.84 G V 9-12 

Mosses (n = 33)        

Amblystegium 
serpens 17 0.888 0.842 0.8668 G S 8-15 

Brachythecium 
erythrorrhizon 5 0.973 0.968 1 R S 14-20 

Brachythecium 
populeum 5 0.872 0.871 1 G S 12-20 

Brachythecium 
rutabulum 18 0.772 0.734 0.975 G S 12-18 

Brachythecium 
velutinum 20 0.721 0.487 0.8 G S 13-16 
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Breidleria 
pratensis 7 0.5 0 0 G S 10-13 

Brotherella 
recurvans 14 0.693 0.496 0.8668 G S 13-18 

Bryum 
caespiticium 5 0.887 0.882 1 T S 10-18 

Callicladium 
haldanianum 23 0.693 0.449 1 G S 10-18 

Calliergon 
richardsonii 6 0.706 0.555 1 P S 17-31 

Campyliadelphu
s chrysophyllus 7 0.813 0.81 1 G S 14-14 

Campylophyllum 
hispidulum 13 0.5 0 0 G S 9-13 

Campylium 
stellatum 5 0.551 0.538 1 P S 12-18 

Drepanocladus 
aduncus 13 0.82 0.646 0.9667 P S 16-16 

Hygroamblystegi
um varium 8 0.5 0 0 G S 10-16 

Isopterygiopsis 
muelleriana 7 0.74 0.739 1 R VS 8-12 

Leptodictyum 
riparium 8 0.556 0.323 0.9 G S 12-16 

Mnium 
spinulosum 10 0.827 0.718 1 G S 16-24 
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Plagiomnium 
cuspidatum 10 0.806 0.703 0.9 G S 18-31 

Plagiomnium 
drummondii 5 0.945 0.943 1 T S 18-25 

Plagiomnium 
medium 8 0.604 0.415 0.9 T S 20-36 

Plagiothecium 
denticulatum 29 0.5 0 0 EF S 9-13 

Platygyrium 
repens 18 0.703 0.623 0.85 G V 13-18 

Platydictya 
subtilis 6 0.58 0.527 1 EO S 9-13 

Pogonatum 
dentatum 8 0.936 0.892 1 G S 18-24 

Polytrichastrum 
longisetum 9 0.968 0.95 1 P S 18-28 

Polytrichastrum 
pallidisetum 5 0.768 0.761 1 G S 12-16 

Rhizomnium 
pseudopunctatu
m 24 0.5 0 0 T S 40-50 

Rhizomnium 
punctatum 11 0.5 0 0 G S 29-41 

Sarmentypnum 
exannulatum 19 0.5 0 0 P S 16-20 

Tomentypnum 
falcifolium 24 0.789 0.578 0.98 P S NA 
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Tomentypnum 
nitens 14 0.5 0 0 P S 16-20 

Trematodon 
ambiguus 11 0.979 0.973 1 T S 30-36 

Sphagna (n = 5)        

Sphagnum 
cuspidatum 6 0.785 0.743 1 P S 29-38 

Sphagnum 
pulchrum 6 0.562 0.517 1 P S 25-28 

Sphagnum 
squarrosum 19 0.5 0 0 G S 17-30 

Sphagnum 
subtile  22 0.5 0 0 T S 19-29 

Sphagnum 
tenerum 14 0.97 0.937 0.9667 P S 22-25 

Substrate preference abbrev.: EF, facultative epixylic; EO, obligate epixylic; G, generalist; P, 
peatland; R, rock; T, terricolous. Reproduction mode abbrev.: S, sexual; V, vegetative; VS, 
vegetative and sexual. Information on bryophyte species traits was found in Faubert (2012, 
2013, 2014), Boudreault et al. (2018), Barbé et al. (2017), Crum & Anderson (1981), BFNA 
(http://www.efloras.org/flora_page.aspx?flora_id=50), BRYOATT (Hill et al., 2007), and 
based on personal experience (laboratory of N.J. Fenton). 
 



 

 

 

APPENDIX C 

Species occurrence coordinates used for modeling 

Rare bryophyte species occurrence coordinates used for modeling. 

Species x_lon y_lat 
Anastrophyllum minutum -77.569253 50.5843075 
Anastrophyllum minutum -76.108279 49.8784826 
Anastrophyllum minutum -77.514714 50.5721486 
Anastrophyllum minutum -79.3088 49.7410387 
Anastrophyllum minutum -76.28157 49.7427071 
Anastrophyllum minutum -76.119009 49.9550212 
Anastrophyllum minutum -76.10822 49.8780001 
Anastrophyllum minutum -78.46555 49.41563 
Barbilophozia attenuata -76.300497 49.7434854 
Barbilophozia attenuata -77.51246 50.5725778 
Barbilophozia attenuata -74.62631 50.6013069 
Barbilophozia attenuata -74.853916 50.5504147 
Barbilophozia attenuata -74.845739 50.5523812 
Barbilophozia attenuata -76.30754 49.7619118 
Barbilophozia attenuata -76.300875 49.7429968 
Barbilophozia attenuata -77.512402 50.5723798 
Barbilophozia attenuata -74.855167 50.5500158 
Barbilophozia attenuata -76.281295 49.7423701 
Barbilophozia attenuata -77.514714 50.5721486 
Barbilophozia attenuata -74.856373 50.5494175 
Barbilophozia attenuata -79.030797 49.8150734 
Barbilophozia attenuata -76.307396 49.7628233 
Barbilophozia attenuata -77.514346 50.5719872 
Barbilophozia attenuata -74.856909 50.5492466 
Barbilophozia attenuata -78.771267 49.395417 
Barbilophozia attenuata -79.075046 49.8157375 
Barbilophozia attenuata -78.46555 49.41563 
Barbilophozia attenuata -76.28373 49.17232 
Barbilophozia attenuata -78.48627 49.43067 
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Barbilophozia attenuata -76.77185 49.19325 
Barbilophozia attenuata -76.54262 48.95425 
Bazzania trilobata -76.119675 49.9624052 
Bazzania trilobata -76.307947 49.7622753 
Bazzania trilobata -76.108494 49.8783377 
Bazzania trilobata -76.75473 49.19441 
Bazzania trilobata -78.6312 49.21166 
Bazzania trilobata -78.63873 49.18228 
Bazzania trilobata -78.54087 49.38384 
Calypogeia integristipula -76.109693 49.9486279 
Calypogeia integristipula -76.108494 49.8783377 
Calypogeia integristipula -76.2802 49.7449718 
Calypogeia integristipula -76.119009 49.9550212 
Calypogeia integristipula -76.282069 49.7431831 
Calypogeia integristipula -79.306981 49.7387841 
Calypogeia integristipula -78.68008 49.18813 
Calypogeia suecica -77.569253 50.5843075 
Calypogeia suecica -76.120026 49.9508003 
Calypogeia suecica -76.304391 49.7432298 
Calypogeia suecica -76.067417 49.457733 
Calypogeia suecica -76.119042 49.9546511 
Cephaloziella elachista -76.127196 49.9489462 
Cephaloziella elachista -76.305678 49.7499746 
Cephaloziella elachista -76.121271 49.9497325 
Cephaloziella elachista -79.282351 49.747359 
Cephaloziella elachista -79.30808 49.7421242 
Cephaloziella elachista -76.118985 49.9556754 
Cephaloziella elachista -79.074728 49.8147542 
Cephaloziella elachista -74.62582 50.6008219 
Cephaloziella elachista -74.63809 50.6083907 
Cephaloziella elachista -79.041715 49.796027 
Cephaloziella elachista -75.970933 49.67545 
Cephaloziella elachista -79.249474 49.7807209 
Cephaloziella elachista -79.287476 49.7463647 
Cephaloziella elachista -76.12017 49.9598684 
Cephaloziella elachista -79.041687 49.7957438 
Cephaloziella spinigera -79.249693 49.7841002 
Cephaloziella spinigera -77.517366 50.5744163 
Cephaloziella spinigera -76.120981 49.9503332 
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Cephaloziella spinigera -77.56931 50.5845054 
Cephaloziella spinigera -74.63809 50.6083907 
Cephaloziella spinigera -79.041715 49.796027 
Cephaloziella spinigera -79.321583 49.538067 
Cephaloziella spinigera -74.857981 50.5486199 
Cephaloziella spinigera -79.041687 49.7957438 
Cephaloziella spinigera -78.46555 49.41563 
Chiloscyphus coadunatus -79.276028 49.7545564 
Chiloscyphus coadunatus -74.820354 50.5661632 
Chiloscyphus coadunatus -76.279988 49.7438949 
Chiloscyphus coadunatus -77.512402 50.5723798 
Chiloscyphus coadunatus -76.108279 49.8784826 
Chiloscyphus coadunatus -76.280171 49.7441196 
Chiloscyphus coadunatus -77.51706 50.5731419 
Chiloscyphus coadunatus -76.126576 49.874086 
Chiloscyphus coadunatus -76.307396 49.7628233 
Chiloscyphus coadunatus -76.2802 49.7449718 
Chiloscyphus coadunatus -74.624256 50.6003918 
Chiloscyphus coadunatus -78.475667 49.410383 
Chiloscyphus coadunatus -76.1915 49.516483 
Chiloscyphus coadunatus -76.10822 49.8780001 
Chiloscyphus coadunatus -76.304278 49.7437714 
Chiloscyphus coadunatus -78.46626 49.41651 
Chiloscyphus coadunatus -78.46809 49.4109 
Chiloscyphus coadunatus -78.44347 49.39995 
Chiloscyphus coadunatus -78.44025 49.40106 
Chiloscyphus coadunatus -78.63749 49.18093 
Chiloscyphus coadunatus -78.63873 49.18228 
Gymnocolea inflata -79.308487 49.7418214 
Gymnocolea inflata -79.30808 49.7421242 
Gymnocolea inflata -79.30478 49.7399919 
Gymnocolea inflata -74.62582 50.6008219 
Gymnocolea inflata -79.304844 49.7401884 
Gymnocolea inflata -76.108494 49.8783377 
Gymnocolea inflata -79.011967 49.386433 
Gymnocolea inflata -79.277217 49.505117 
Gymnocolea inflata -78.46926 49.41026 
Gymnocolea inflata -78.67995 49.18873 
Jungermannia leiantha -79.282574 49.7482319 
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Jungermannia leiantha -79.30468 49.7398824 
Jungermannia leiantha -79.30478 49.7399919 
Jungermannia leiantha -76.108279 49.8784826 
Jungermannia leiantha -79.030805 49.814703 
Jungermannia leiantha -76.280171 49.7441196 
Jungermannia leiantha -79.304844 49.7401884 
Jungermannia leiantha -77.51706 50.5731419 
Jungermannia leiantha -76.307396 49.7628233 
Jungermannia leiantha -79.282744 49.7456616 
Jungermannia leiantha -79.305078 49.7403205 
Jungermannia leiantha -79.287277 49.7461456 
Jungermannia leiantha -76.119009 49.9550212 
Jungermannia leiantha -78.511483 49.414583 
Jungermannia leiantha -78.771267 49.395417 
Jungermannia leiantha -76.280434 49.7453947 
Jungermannia leiantha -79.287476 49.7463647 
Jungermannia leiantha -78.63873 49.18228 
Lophozia ascendens -76.307785 49.7613967 
Lophozia ascendens -76.300497 49.7434854 
Lophozia ascendens -76.279581 49.7435313 
Lophozia ascendens -79.286547 49.7454659 
Lophozia ascendens -74.845739 50.5523812 
Lophozia ascendens -76.119467 49.9628343 
Lophozia ascendens -76.30754 49.7619118 
Lophozia ascendens -77.512402 50.5723798 
Lophozia ascendens -79.287044 49.7460135 
Lophozia ascendens -76.118885 49.9552786 
Lophozia ascendens -76.108494 49.8783377 
Lophozia ascendens -78.771267 49.395417 
Lophozia ascendens -76.282069 49.7431831 
Lophozia ascendens -78.46546 49.41556 
Lophozia ascendens -78.46555 49.41563 
Lophozia ascendens -78.46809 49.4109 
Lophozia ascendens -78.44467 49.3983 
Lophozia ascendens -78.44347 49.39995 
Lophozia ascendens -78.44261 49.40078 
Lophozia ascendens -78.54163 49.37795 
Lophozia bicrenata -79.036254 49.8048529 
Lophozia bicrenata -74.633589 50.6041966 
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Lophozia bicrenata -76.127196 49.9489462 
Lophozia bicrenata -74.646849 50.6110259 
Lophozia bicrenata -79.282574 49.7482319 
Lophozia bicrenata -76.121271 49.9497325 
Lophozia bicrenata -74.623676 50.6000774 
Lophozia bicrenata -76.119042 49.9546511 
Plagiochila porelloides -79.282574 49.7482319 
Plagiochila porelloides -79.249734 49.7836428 
Plagiochila porelloides -79.282351 49.747359 
Plagiochila porelloides -79.287044 49.7460135 
Plagiochila porelloides -78.308983 49.69765 
Plagiochila porelloides -76.282069 49.7431831 
Plagiochila porelloides -78.68008 49.18813 
Tritomaria exsectiformis -79.03065 49.814026 
Tritomaria exsectiformis -76.300497 49.7434854 
Tritomaria exsectiformis -79.286547 49.7454659 
Tritomaria exsectiformis -74.653244 50.6122043 
Tritomaria exsectiformis -76.120981 49.9503332 
Tritomaria exsectiformis -76.305454 49.7409978 
Tritomaria exsectiformis -76.30754 49.7619118 
Tritomaria exsectiformis -76.300875 49.7429968 
Tritomaria exsectiformis -76.28098 49.7421188 
Tritomaria exsectiformis -76.307947 49.7622753 
Tritomaria exsectiformis -76.281295 49.7423701 
Tritomaria exsectiformis -79.282337 49.7459642 
Tritomaria exsectiformis -77.569271 50.584592 
Tritomaria exsectiformis -79.287044 49.7460135 
Tritomaria exsectiformis -77.514714 50.5721486 
Tritomaria exsectiformis -77.558361 50.5758474 
Tritomaria exsectiformis -76.307396 49.7628233 
Tritomaria exsectiformis -76.28157 49.7427071 
Tritomaria exsectiformis -79.282744 49.7456616 
Tritomaria exsectiformis -79.287277 49.7461456 
Tritomaria exsectiformis -76.119009 49.9550212 
Tritomaria exsectiformis -78.308983 49.69765 
Tritomaria exsectiformis -78.771267 49.395417 
Tritomaria exsectiformis -76.011517 49.622833 
Tritomaria exsectiformis -75.8473 49.799767 
Tritomaria exsectiformis -76.440733 49.415333 
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Tritomaria exsectiformis -78.45592 49.45592 
Amblystegium serpens -77.558902 50.5766025 
Amblystegium serpens -76.280171 49.7441196 
Amblystegium serpens -76.120454 49.9604903 
Amblystegium serpens -78.308983 49.69765 
Amblystegium serpens -76.636883 49.419817 
Amblystegium serpens -79.306981 49.7387841 
Amblystegium serpens -78.46546 49.41556 
Amblystegium serpens -78.46758 49.41831 
Amblystegium serpens -78.44261 49.40086 
Amblystegium serpens -76.6013 49.10045 
Amblystegium serpens -78.61356 49.48611 
Amblystegium serpens -78.61349 49.48624 
Amblystegium serpens -78.6119 49.48584 
Amblystegium serpens -78.63095 49.21301 
Amblystegium serpens -78.63873 49.18228 
Amblystegium serpens -78.63735 49.1809 
Amblystegium serpens -78.55132 49.37499 
Brachythecium erythrorrhizon -79.039665 49.7975361 
Brachythecium erythrorrhizon -77.514714 50.5721486 
Brachythecium erythrorrhizon -76.307396 49.7628233 
Brachythecium erythrorrhizon -78.63873 49.18228 
Brachythecium erythrorrhizon -78.55132 49.37499 
Brachythecium populeum -76.280171 49.7441196 
Brachythecium populeum -76.2802 49.7449718 
Brachythecium populeum -76.280434 49.7453947 
Brachythecium populeum -78.46668 49.41376 
Brachythecium populeum -78.55118 49.37511 
Brachythecium rutabulum -76.279297 49.7429102 
Brachythecium rutabulum -79.308487 49.7418214 
Brachythecium rutabulum -76.279581 49.7435313 
Brachythecium rutabulum -79.30468 49.7398824 
Brachythecium rutabulum -77.569271 50.584592 
Brachythecium rutabulum -76.2802 49.7449718 
Brachythecium rutabulum -79.305078 49.7403205 
Brachythecium rutabulum -79.306981 49.7387841 
Brachythecium rutabulum -78.46626 49.41651 
Brachythecium rutabulum -78.46926 49.41026 
Brachythecium rutabulum -78.46668 49.41376 
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Brachythecium rutabulum -78.61347 49.48646 
Brachythecium rutabulum -78.61338 49.48572 
Brachythecium rutabulum -78.63095 49.21301 
Brachythecium rutabulum -78.63746 49.18096 
Brachythecium rutabulum -78.63873 49.18228 
Brachythecium rutabulum -78.67911 49.18961 
Brachythecium rutabulum -78.54903 49.37536 
Brachythecium velutinum -76.115411 49.8757773 
Brachythecium velutinum -76.119476 49.9631186 
Brachythecium velutinum -79.30468 49.7398824 
Brachythecium velutinum -77.51246 50.5725778 
Brachythecium velutinum -76.127015 49.8740661 
Brachythecium velutinum -79.286781 49.745598 
Brachythecium velutinum -77.512402 50.5723798 
Brachythecium velutinum -76.108279 49.8784826 
Brachythecium velutinum -76.119675 49.9624052 
Brachythecium velutinum -79.032495 49.795755 
Brachythecium velutinum -77.51706 50.5731419 
Brachythecium velutinum -76.120297 49.9611178 
Brachythecium velutinum -76.307396 49.7628233 
Brachythecium velutinum -79.282744 49.7456616 
Brachythecium velutinum -76.120454 49.9604903 
Brachythecium velutinum -78.511483 49.414583 
Brachythecium velutinum -79.282953 49.7451398 
Brachythecium velutinum -78.46546 49.41556 
Brachythecium velutinum -78.46555 49.41563 
Brachythecium velutinum -78.54073 49.38416 
Breidleria pratensis -79.282574 49.7482319 
Breidleria pratensis -79.249734 49.7836428 
Breidleria pratensis -79.282351 49.747359 
Breidleria pratensis -74.638088 50.6086755 
Breidleria pratensis -78.308983 49.69765 
Breidleria pratensis -78.61347 49.48646 
Breidleria pratensis -78.55132 49.37499 
Brotherella recurvans -76.300497 49.7434854 
Brotherella recurvans -76.280171 49.7441196 
Brotherella recurvans -76.118885 49.9552786 
Brotherella recurvans -76.108494 49.8783377 
Brotherella recurvans -76.28157 49.7427071 
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Brotherella recurvans -77.569368 50.5847034 
Brotherella recurvans -78.308983 49.69765 
Brotherella recurvans -78.771267 49.395417 
Brotherella recurvans -76.011517 49.622833 
Brotherella recurvans -79.306981 49.7387841 
Brotherella recurvans -76.10822 49.8780001 
Brotherella recurvans -78.46555 49.41563 
Brotherella recurvans -76.6013 49.10045 
Brotherella recurvans -78.46668 49.41376 
Bryum caespiticium -76.28194 49.17344 
Bryum caespiticium -78.63749 49.18093 
Bryum caespiticium -78.63735 49.1809 
Bryum caespiticium -78.55132 49.37499 
Bryum caespiticium -78.53313 49.38706 
Callicladium haldanianum -77.558651 50.5761817 
Callicladium haldanianum -76.307396 49.7628233 
Callicladium haldanianum -74.624256 50.6003918 
Callicladium haldanianum -76.119009 49.9550212 
Callicladium haldanianum -76.108312 49.8781126 
Callicladium haldanianum -76.011517 49.622833 
Callicladium haldanianum -78.44261 49.40078 
Callicladium haldanianum -78.44261 49.40086 
Callicladium haldanianum -78.46069 49.41317 
Callicladium haldanianum -78.46668 49.41376 
Callicladium haldanianum -78.6136 49.48602 
Callicladium haldanianum -78.61349 49.48624 
Callicladium haldanianum -78.61347 49.48646 
Callicladium haldanianum -78.63091 49.21284 
Callicladium haldanianum -78.63095 49.21301 
Callicladium haldanianum -78.63749 49.18093 
Callicladium haldanianum -78.63746 49.18096 
Callicladium haldanianum -78.6363 49.18156 
Callicladium haldanianum -78.63735 49.1809 
Callicladium haldanianum -78.67995 49.18873 
Callicladium haldanianum -78.63079 49.17515 
Callicladium haldanianum -78.63248 49.18825 
Callicladium haldanianum -78.53313 49.38706 
Calliergon richardsonii -79.282574 49.7482319 
Calliergon richardsonii -79.282267 49.7461382 
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Calliergon richardsonii -79.287044 49.7460135 
Calliergon richardsonii -79.282744 49.7456616 
Calliergon richardsonii -78.68008 49.18813 
Calliergon richardsonii -78.67995 49.18873 
Campyliadelphus chrysophyllus -79.03065 49.814026 
Campyliadelphus chrysophyllus -77.558651 50.5761817 
Campyliadelphus chrysophyllus -76.108279 49.8784826 
Campyliadelphus chrysophyllus -76.280434 49.7453947 
Campyliadelphus chrysophyllus -79.282953 49.7451398 
Campyliadelphus chrysophyllus -78.46555 49.41563 
Campyliadelphus chrysophyllus -78.55132 49.37499 
Campylophyllum hispidulum -77.558902 50.5766025 
Campylophyllum hispidulum -74.653244 50.6122043 
Campylophyllum hispidulum -77.517486 50.5735012 
Campylophyllum hispidulum -79.040682 49.7971522 
Campylophyllum hispidulum -76.280171 49.7441196 
Campylophyllum hispidulum -79.287277 49.7461456 
Campylophyllum hispidulum -77.517217 50.5727958 
Campylophyllum hispidulum -78.5876 49.954517 
Campylophyllum hispidulum -76.1617 49.540967 
Campylophyllum hispidulum -79.249474 49.7807209 
Campylophyllum hispidulum -78.46555 49.41563 
Campylophyllum hispidulum -78.63749 49.18093 
Campylophyllum hispidulum -78.63746 49.18185 
Campylium stellatum -79.298405 49.7290824 
Campylium stellatum -79.30808 49.7421242 
Campylium stellatum -79.282267 49.7461382 
Campylium stellatum -78.774567 49.513567 
Campylium stellatum -78.67995 49.18873 
Drepanocladus aduncus -79.249734 49.7836428 
Drepanocladus aduncus -79.282351 49.747359 
Drepanocladus aduncus -79.30478 49.7399919 
Drepanocladus aduncus -79.304844 49.7401884 
Drepanocladus aduncus -76.28157 49.7427071 
Drepanocladus aduncus -79.282744 49.7456616 
Drepanocladus aduncus -79.305078 49.7403205 
Drepanocladus aduncus -79.303017 49.460617 
Drepanocladus aduncus -76.282069 49.7431831 
Drepanocladus aduncus -77.517063 50.5724864 
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Drepanocladus aduncus -78.46926 49.41026 
Drepanocladus aduncus -78.67995 49.18873 
Drepanocladus aduncus -78.67911 49.18961 
Hygroamblystegium varium -76.284811 49.7426038 
Hygroamblystegium varium -76.279297 49.7429102 
Hygroamblystegium varium -76.279988 49.7438949 
Hygroamblystegium varium -79.308999 49.7412577 
Hygroamblystegium varium -76.280171 49.7441196 
Hygroamblystegium varium -76.2802 49.7449718 
Hygroamblystegium varium -76.280434 49.7453947 
Hygroamblystegium varium -79.041687 49.7957438 
Isopterygiopsis muelleriana -79.30468 49.7398824 
Isopterygiopsis muelleriana -79.30478 49.7399919 
Isopterygiopsis muelleriana -79.287044 49.7460135 
Isopterygiopsis muelleriana -76.108494 49.8783377 
Isopterygiopsis muelleriana -76.28157 49.7427071 
Isopterygiopsis muelleriana -76.282069 49.7431831 
Isopterygiopsis muelleriana -79.287476 49.7463647 
Leptodictyum riparium -77.51246 50.5725778 
Leptodictyum riparium -77.557502 50.5770955 
Leptodictyum riparium -77.569271 50.584592 
Leptodictyum riparium -79.287044 49.7460135 
Leptodictyum riparium -79.030797 49.8150734 
Leptodictyum riparium -76.301722 49.742132 
Leptodictyum riparium -79.287476 49.7463647 
Leptodictyum riparium -78.54073 49.38407 
Mnium spinulosum -76.2802 49.7449718 
Mnium spinulosum -76.28157 49.7427071 
Mnium spinulosum -76.282069 49.7431831 
Mnium spinulosum -76.6013 49.10045 
Mnium spinulosum -76.2812 49.1744 
Mnium spinulosum -76.28233 49.17467 
Mnium spinulosum -78.61349 49.48624 
Mnium spinulosum -78.63749 49.18093 
Mnium spinulosum -78.63873 49.18228 
Mnium spinulosum -78.53313 49.38706 
Plagiomnium cuspidatum -77.512402 50.5723798 
Plagiomnium cuspidatum -76.307396 49.7628233 
Plagiomnium cuspidatum -76.1617 49.540967 
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Plagiomnium cuspidatum -79.282953 49.7451398 
Plagiomnium cuspidatum -78.6136 49.48602 
Plagiomnium cuspidatum -78.61349 49.48624 
Plagiomnium cuspidatum -78.61347 49.48646 
Plagiomnium cuspidatum -78.61128 49.4858 
Plagiomnium cuspidatum -78.63873 49.18228 
Plagiomnium cuspidatum -78.55132 49.37499 
Plagiothecium denticulatum -79.286547 49.7454659 
Plagiothecium denticulatum -77.51246 50.5725778 
Plagiothecium denticulatum -76.279988 49.7438949 
Plagiothecium denticulatum -79.282267 49.7461382 
Plagiothecium denticulatum -77.512402 50.5723798 
Plagiothecium denticulatum -77.558651 50.5761817 
Plagiothecium denticulatum -79.282337 49.7459642 
Plagiothecium denticulatum -76.307396 49.7628233 
Plagiothecium denticulatum -76.2802 49.7449718 
Plagiothecium denticulatum -76.28157 49.7427071 
Plagiothecium denticulatum -79.305078 49.7403205 
Plagiothecium denticulatum -77.569368 50.5847034 
Plagiothecium denticulatum -79.287277 49.7461456 
Plagiothecium denticulatum -76.120454 49.9604903 
Plagiothecium denticulatum -76.304391 49.7432298 
Plagiothecium denticulatum -78.5876 49.954517 
Plagiothecium denticulatum -78.308983 49.69765 
Plagiothecium denticulatum -76.1617 49.540967 
Plagiothecium denticulatum -76.011517 49.622833 
Plagiothecium denticulatum -76.440733 49.415333 
Plagiothecium denticulatum -76.282069 49.7431831 
Plagiothecium denticulatum -79.282953 49.7451398 
Plagiothecium denticulatum -78.46546 49.41556 
Plagiothecium denticulatum -78.44261 49.40086 
Plagiothecium denticulatum -78.61338 49.48572 
Plagiothecium denticulatum -78.63091 49.21284 
Plagiothecium denticulatum -78.55132 49.37499 
Plagiothecium denticulatum -78.54073 49.38407 
Plagiothecium denticulatum -78.53313 49.38706 
Plagiomnium drummondii -78.61356 49.48611 
Plagiomnium drummondii -78.61349 49.48624 
Plagiomnium drummondii -78.63873 49.18228 
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Plagiomnium drummondii -78.54073 49.38407 
Plagiomnium drummondii -78.54073 49.38416 
Plagiomnium medium -76.119467 49.9628343 
Plagiomnium medium -79.305078 49.7403205 
Plagiomnium medium -76.6013 49.10045 
Plagiomnium medium -76.28389 49.17217 
Plagiomnium medium -78.46668 49.41376 
Plagiomnium medium -78.61349 49.48624 
Plagiomnium medium -78.55132 49.37499 
Plagiomnium medium -78.54073 49.38407 
Platygyrium repens -76.279988 49.7438949 
Platygyrium repens -76.28098 49.7421188 
Platygyrium repens -76.108279 49.8784826 
Platygyrium repens -76.280171 49.7441196 
Platygyrium repens -76.2802 49.7449718 
Platygyrium repens -76.28157 49.7427071 
Platygyrium repens -77.558318 50.577245 
Platygyrium repens -79.307145 49.7390901 
Platygyrium repens -76.119009 49.9550212 
Platygyrium repens -76.280434 49.7453947 
Platygyrium repens -76.282069 49.7431831 
Platygyrium repens -79.249474 49.7807209 
Platygyrium repens -78.46546 49.41556 
Platygyrium repens -78.46933 49.41018 
Platygyrium repens -78.46926 49.41026 
Platygyrium repens -78.46255 49.41814 
Platygyrium repens -76.6013 49.10045 
Platygyrium repens -78.63873 49.18228 
Platydictya subtilis -79.303017 49.460617 
Platydictya subtilis -78.44467 49.3983 
Platydictya subtilis -76.6013 49.10045 
Platydictya subtilis -78.63873 49.18228 
Platydictya subtilis -78.68089 49.18738 
Platydictya subtilis -78.55132 49.37499 
Pogonatum dentatum -74.633589 50.6041966 
Pogonatum dentatum -76.127196 49.9489462 
Pogonatum dentatum -76.119042 49.9546511 
Pogonatum dentatum -76.28112 49.17339 
Pogonatum dentatum -76.28126 49.17422 
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Pogonatum dentatum -76.2812 49.1744 
Pogonatum dentatum -76.77223 49.19369 
Pogonatum dentatum -78.61168 49.48597 
Polytrichastrum longisetum -79.305078 49.7403205 
Polytrichastrum longisetum -76.28126 49.17422 
Polytrichastrum longisetum -76.2812 49.1744 
Polytrichastrum longisetum -76.2836 49.17248 
Polytrichastrum longisetum -76.77221 49.19354 
Polytrichastrum longisetum -76.75454 49.1938 
Polytrichastrum longisetum -76.75452 49.19384 
Polytrichastrum longisetum -78.61232 49.48579 
Polytrichastrum longisetum -78.54073 49.38416 
Polytrichastrum pallidisetum -76.28098 49.7421188 
Polytrichastrum pallidisetum -76.108279 49.8784826 
Polytrichastrum pallidisetum -76.108494 49.8783377 
Polytrichastrum pallidisetum -76.75454 49.1938 
Polytrichastrum pallidisetum -78.61169 49.48649 
Rhizomnium pseudopunctatum -79.30468 49.7398824 
Rhizomnium pseudopunctatum -79.30478 49.7399919 
Rhizomnium pseudopunctatum -77.512402 50.5723798 
Rhizomnium pseudopunctatum -76.108279 49.8784826 
Rhizomnium pseudopunctatum -79.304844 49.7401884 
Rhizomnium pseudopunctatum -79.287044 49.7460135 
Rhizomnium pseudopunctatum -76.108494 49.8783377 
Rhizomnium pseudopunctatum -79.282744 49.7456616 
Rhizomnium pseudopunctatum -79.305078 49.7403205 
Rhizomnium pseudopunctatum -79.287277 49.7461456 
Rhizomnium pseudopunctatum -74.638088 50.6086755 
Rhizomnium pseudopunctatum -76.304391 49.7432298 
Rhizomnium pseudopunctatum -78.5876 49.954517 
Rhizomnium pseudopunctatum -78.511483 49.414583 
Rhizomnium pseudopunctatum -76.302633 49.46265 
Rhizomnium pseudopunctatum -76.1617 49.540967 
Rhizomnium pseudopunctatum -76.334683 49.24555 
Rhizomnium pseudopunctatum -79.282953 49.7451398 
Rhizomnium pseudopunctatum -79.287476 49.7463647 
Rhizomnium pseudopunctatum -78.61349 49.48624 
Rhizomnium pseudopunctatum -78.61347 49.48646 
Rhizomnium pseudopunctatum -78.61173 49.48665 
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Rhizomnium pseudopunctatum -78.67995 49.18873 
Rhizomnium pseudopunctatum -78.53313 49.38706 
Rhizomnium punctatum -79.282574 49.7482319 
Rhizomnium punctatum -79.249734 49.7836428 
Rhizomnium punctatum -79.282351 49.747359 
Rhizomnium punctatum -79.282267 49.7461382 
Rhizomnium punctatum -77.558651 50.5761817 
Rhizomnium punctatum -79.282337 49.7459642 
Rhizomnium punctatum -79.304844 49.7401884 
Rhizomnium punctatum -78.511483 49.414583 
Rhizomnium punctatum -79.321583 49.538067 
Rhizomnium punctatum -78.308983 49.69765 
Rhizomnium punctatum -78.61338 49.48572 
Sarmentypnum exannulatum -79.282267 49.7461382 
Sarmentypnum exannulatum -77.558167 50.5756246 
Sarmentypnum exannulatum -79.307145 49.7390901 
Sarmentypnum exannulatum -79.277217 49.505117 
Sarmentypnum exannulatum -78.511483 49.414583 
Sarmentypnum exannulatum -78.308983 49.69765 
Sarmentypnum exannulatum -79.305346 49.7403656 
Sarmentypnum exannulatum -76.11962 49.9519427 
Sarmentypnum exannulatum -79.034623 49.8123807 
Sarmentypnum exannulatum -78.46926 49.41026 
Sarmentypnum exannulatum -76.6013 49.10045 
Sarmentypnum exannulatum -76.28098 49.17384 
Sarmentypnum exannulatum -78.46668 49.41376 
Sarmentypnum exannulatum -78.45592 49.45592 
Sarmentypnum exannulatum -78.61347 49.48646 
Sarmentypnum exannulatum -78.61352 49.48655 
Sarmentypnum exannulatum -78.63873 49.18228 
Sarmentypnum exannulatum -78.6363 49.18156 
Sarmentypnum exannulatum -78.67911 49.18961 
Tomentypnum falcifolium -79.03338 49.7646841 
Tomentypnum falcifolium -79.249693 49.7841002 
Tomentypnum falcifolium -79.249734 49.7836428 
Tomentypnum falcifolium -79.282351 49.747359 
Tomentypnum falcifolium -79.30808 49.7421242 
Tomentypnum falcifolium -79.074728 49.8147542 
Tomentypnum falcifolium -79.040244 49.7971704 
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Tomentypnum falcifolium -79.282267 49.7461382 
Tomentypnum falcifolium -77.517486 50.5735012 
Tomentypnum falcifolium -77.557813 50.5770588 
Tomentypnum falcifolium -76.301171 49.7426799 
Tomentypnum falcifolium -79.074685 49.8152115 
Tomentypnum falcifolium -79.249901 49.7814427 
Tomentypnum falcifolium -74.624256 50.6003918 
Tomentypnum falcifolium -74.638088 50.6086755 
Tomentypnum falcifolium -76.301702 49.7415639 
Tomentypnum falcifolium -79.282953 49.7451398 
Tomentypnum falcifolium -79.287476 49.7463647 
Tomentypnum falcifolium -74.650785 50.6114883 
Tomentypnum falcifolium -78.44444 49.39832 
Tomentypnum falcifolium -78.67995 49.18873 
Tomentypnum falcifolium -78.67911 49.18961 
Tomentypnum falcifolium -78.67906 49.18966 
Tomentypnum falcifolium -78.63079 49.17515 
Tomentypnum nitens -79.03338 49.7646841 
Tomentypnum nitens -79.282574 49.7482319 
Tomentypnum nitens -79.282351 49.747359 
Tomentypnum nitens -79.282337 49.7459642 
Tomentypnum nitens -79.287277 49.7461456 
Tomentypnum nitens -74.638088 50.6086755 
Tomentypnum nitens -78.6097 49.928 
Tomentypnum nitens -79.321583 49.538067 
Tomentypnum nitens -76.302633 49.46265 
Tomentypnum nitens -76.1617 49.540967 
Tomentypnum nitens -79.249474 49.7807209 
Tomentypnum nitens -79.287476 49.7463647 
Tomentypnum nitens -78.44347 49.39995 
Tomentypnum nitens -78.44261 49.40086 
Trematodon ambiguus -79.036254 49.8048529 
Trematodon ambiguus -74.654047 50.6126612 
Trematodon ambiguus -76.2812 49.1744 
Trematodon ambiguus -76.28381 49.17203 
Trematodon ambiguus -76.28389 49.17217 
Trematodon ambiguus -76.2836 49.17248 
Trematodon ambiguus -76.28363 49.17254 
Trematodon ambiguus -76.28185 49.17398 
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Trematodon ambiguus -76.28429 49.17241 
Trematodon ambiguus -76.28233 49.17467 
Trematodon ambiguus -78.61189 49.48665 
Sphagnum cuspidatum -79.03338 49.7646841 
Sphagnum cuspidatum -78.6097 49.928 
Sphagnum cuspidatum -78.771267 49.395417 
Sphagnum cuspidatum -78.9936 49.500967 
Sphagnum cuspidatum -76.60106 49.12339 
Sphagnum cuspidatum -78.54171 49.37817 
Sphagnum pulchrum -79.074728 49.8147542 
Sphagnum pulchrum -77.514714 50.5721486 
Sphagnum pulchrum -77.557871 50.5772568 
Sphagnum pulchrum -76.282069 49.7431831 
Sphagnum pulchrum -76.119042 49.9546511 
Sphagnum pulchrum -78.67995 49.18873 
Sphagnum squarrosum -79.276028 49.7545564 
Sphagnum squarrosum -77.547936 50.5683146 
Sphagnum squarrosum -77.512149 50.5726143 
Sphagnum squarrosum -76.127015 49.8740661 
Sphagnum squarrosum -77.517486 50.5735012 
Sphagnum squarrosum -77.558361 50.5758474 
Sphagnum squarrosum -76.301722 49.742132 
Sphagnum squarrosum -76.119009 49.9550212 
Sphagnum squarrosum -79.346317 49.4696 
Sphagnum squarrosum -76.12017 49.9598684 
Sphagnum squarrosum -78.46926 49.41026 
Sphagnum squarrosum -78.44342 49.39977 
Sphagnum squarrosum -76.28381 49.17203 
Sphagnum squarrosum -76.28363 49.17254 
Sphagnum squarrosum -76.28185 49.17398 
Sphagnum squarrosum -78.61347 49.48646 
Sphagnum squarrosum -78.61169 49.48649 
Sphagnum squarrosum -78.55132 49.37499 
Sphagnum squarrosum -78.54166 49.37768 
Sphagnum subtile  -79.276028 49.7545564 
Sphagnum subtile  -79.03338 49.7646841 
Sphagnum subtile  -74.654047 50.6126612 
Sphagnum subtile  -74.853514 50.5506141 
Sphagnum subtile  -79.249734 49.7836428 
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Sphagnum subtile  -79.249745 49.7829019 
Sphagnum subtile  -74.855167 50.5500158 
Sphagnum subtile  -79.074756 49.8150377 
Sphagnum subtile  -79.032495 49.795755 
Sphagnum subtile  -74.638045 50.6084761 
Sphagnum subtile  -76.118885 49.9552786 
Sphagnum subtile  -76.108494 49.8783377 
Sphagnum subtile  -76.120297 49.9611178 
Sphagnum subtile  -79.074685 49.8152115 
Sphagnum subtile  -79.282744 49.7456616 
Sphagnum subtile  -74.638088 50.6086755 
Sphagnum subtile  -74.856909 50.5492466 
Sphagnum subtile  -79.074883 49.8154311 
Sphagnum subtile  -76.011517 49.622833 
Sphagnum subtile  -79.282953 49.7451398 
Sphagnum subtile  -79.075046 49.8157375 
Sphagnum subtile  -79.034623 49.8123807 
Sphagnum tenerum -79.050741 49.8045359 
Sphagnum tenerum -77.512149 50.5726143 
Sphagnum tenerum -74.654047 50.6126612 
Sphagnum tenerum -74.847035 50.5521816 
Sphagnum tenerum -74.653244 50.6122043 
Sphagnum tenerum -74.63809 50.6083907 
Sphagnum tenerum -79.032495 49.795755 
Sphagnum tenerum -79.032396 49.7956452 
Sphagnum tenerum -79.032467 49.7954714 
Sphagnum tenerum -77.557702 50.5753519 
Sphagnum tenerum -74.650785 50.6114883 
Sphagnum tenerum -74.623676 50.6000774 
Sphagnum tenerum -74.844308 50.5499899 
Sphagnum tenerum -79.032537 49.7952976 

 

 



 

 

 

APPENDIX D 

Standardized predictor values used for modeling 

Standardized predictor values used for modeling the distribution of the rare bryophytes 
species. 

Predictors 
EVI2 NDWI1 PALSAR_HVHH TPI VCF 

1.39696237 0.3300764 1.414159117 0.89753846 -0.5212923 
1.66387272 0.75854119 -0.701438562 1.07762694 -0.8667483 
1.96414687 0.60019551 0.073221727 0.75019333 -0.3485643 
1.35247731 0.33939085 -0.516998591 0.25904291 -0.8667483 
1.35247731 0.33939085 -0.516998591 0.25904291 -0.8667483 
1.25794656 0.24624633 -0.427195837 0.29178628 -1.9031164 
1.21902213 0.32076195 1.378609361 0.09532611 -2.4213005 
1.21902213 0.32076195 1.378609361 0.09532611 -2.4213005 
1.5915845 0.78648455 -0.476217874 1.12674198 -0.5212923 
1.6249483 0.67471113 -0.581759372 1.17585702 -0.3485643 
1.6249483 0.67471113 -0.581759372 1.17585702 -0.3485643 

1.19121897 0.24624633 0.10681625 1.38868887 -0.6940203 
1.19121897 0.24624633 0.10681625 1.38868887 -0.6940203 
1.13005201 0.33939085 -0.14519338 0.25904291 -0.4349283 
2.09204142 0.89825797 0.296023874 0.48824644 -0.3485643 
1.05220316 0.14378736 -0.268536203 0.48824644 -0.3485643 
2.05867762 0.81442791 -0.524302623 0.22629955 -0.3485643 
2.83160553 1.25220715 -1.026357692 0.47187476 -0.3485643 
1.4358868 -0.1449606 -1.60704238 -1.0670632 0.08325579 

-0.2100604 -0.7504 0.133793695 0.17718451 -0.6940203 
0.57954941 -0.6945133 -0.107165316 1.04488358 -0.3485643 
-0.9551851 -1.6911597 -0.836068798 0.50461812 -0.3485643 
-0.9551851 -1.6911597 -0.836068798 0.50461812 -0.3485643 
-1.033034 -1.8495054 -0.770689299 0.09532611 0.60143984 

-0.4936526 -1.4396695 -1.14572124 -0.1011341 0.60143984 
-0.7939268 -1.7097886 0.025057164 0.04621107 -0.4349283 
-0.7939268 -1.7097886 0.025057164 0.04621107 -0.4349283 
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-0.5548196 -1.4117261 0.082845901 -1.1980367 -0.0031082 
-0.5548196 -1.4117261 0.082845901 -1.1980367 -0.0031082 
-0.9051394 -1.0950348 -1.309542327 -1.0506915 0.42871183 
-0.3045911 -0.3871364 -0.325420239 -0.821488 0.51507584 
0.56842814 0.22761743 -0.367174314 -0.870603 -0.0894722 
-0.2267423 -0.7597145 -1.316347726 -0.5431694 -0.0894722 
-1.3777932 -1.719103 0.449808372 0.55373316 0.51507584 
-1.3777932 -1.719103 0.449808372 0.55373316 0.51507584 
-0.6771535 0.0599573 -0.084714424 -0.002904 0.60143984 
-0.1933785 -0.1822185 -0.517243682 -0.0356473 -0.0894722 
-0.3490762 -0.5361676 -0.204833505 -0.1011341 -0.6076563 
-0.3490762 -0.5361676 -0.204833505 -0.1011341 -0.6076563 
0.9910362 0.78648455 0.470461689 -0.002904 0.42871183 
0.2347902 1.15906263 -0.657132375 -0.002904 1.72417196 

-0.0488021 0.37664866 -0.745751745 -0.870603 0.25598381 
0.57954941 0.61882441 0.153027562 -0.5431694 -0.0894722 
0.57954941 0.61882441 0.153027562 -0.5431694 -0.0894722 
-0.3935613 -0.0425017 -0.496415931 -0.0356473 1.03325989 
-0.6104259 0.24624633 2.075911996 0.24267123 1.63780795 
0.46833676 1.34535167 -0.159950555 0.89753846 0.1696198 
0.31263905 1.33603722 -0.034850284 1.1103703 0.1696198 
1.25238593 1.76450201 1.366417036 0.5209898 1.37871592 
1.13561265 1.475754 0.379016214 0.79930837 1.29235191 
0.26259336 1.62478523 0.691802622 1.06125526 1.55144394 
0.16806261 0.91688688 1.062477392 1.01214022 1.81053597 
0.42941233 1.35466612 2.305795659 0.60284821 1.55144394 
0.42941233 1.35466612 2.305795659 0.60284821 1.55144394 

-0.065484 1.28946496 0.334546923 -1.0179482 1.37871592 
0.87982356 1.67135749 1.655566325 -0.461311 1.46507993 
-1.4723239 0.5443088 0.070511909 1.55240568 1.72417196 
-0.9551851 0.89825797 0.908678308 1.6997508 1.55144394 
-0.443607 0.34870531 0.121833914 2.42010475 1.20598791 

-0.5047739 0.5443088 -0.085111642 2.09267113 1.29235191 
-0.3991219 0.51636544 0.327594526 -0.2812225 1.03325989 
-0.7271992 0.17173072 1.434224168 -0.1011341 2.41508403 
-0.8717756 0.45116428 0.848872505 0.40638804 1.37871592 
1.30799225 -0.1822185 -0.947810529 1.01214022 -2.1622084 
1.77508537 0.0599573 -2.313334154 1.94532601 -1.8167524 
1.58602387 0.15310182 -0.95340749 -0.2812225 -0.9531123 
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0.40160917 -0.4243942 -2.261917682 1.29045879 -2.2485724 
0.40160917 -0.4243942 -2.261917682 1.29045879 -2.2485724 
0.62403447 -0.5175387 -2.178437859 1.536034 -2.3349364 

-0.443607 -0.9460035 -2.133204374 0.84842341 -2.6803925 
-0.7661236 -1.2626949 -2.380132126 0.88116678 -2.8531205 
1.58602387 0.15310182 -0.95340749 -0.2812225 -0.9531123 
1.13561265 -0.0890739 -0.34386703 -0.0192757 -1.0394763 
1.13561265 -0.0890739 -0.34386703 -0.0192757 -1.0394763 
-0.4992133 0.5443088 -1.092550259 -0.3958243 -2.6803925 
0.56842814 -0.3498786 0.61868657 -0.2157358 -2.3349364 
1.69723652 0.38596311 -2.359646181 -0.5759128 -1.2122043 
2.14208711 0.50705099 -1.96835003 -0.3958243 -1.8167524 
1.46368996 -0.0611306 -1.272076125 0.34090132 -1.1258403 
1.46368996 -0.0611306 -1.272076125 0.34090132 -1.1258403 
1.46368996 -0.0611306 -1.272076125 0.34090132 -1.1258403 
-1.2999443 -2.1941401 0.512431743 1.22497207 -0.9531123 
-2.4231921 -3.2187298 -0.871148661 1.0285119 -0.6076563 
-2.4787984 -2.976554 -0.135483659 3.07497197 -0.2622002 
-2.4787984 -2.976554 -0.135483659 3.07497197 -0.2622002 
-1.2610199 -1.2720093 -0.235121771 2.50196315 0.08325579 
-0.3323943 -0.070445 -0.665086179 2.50196315 -0.0031082 
1.01883937 -0.1635896 -1.458056206 2.45284811 -0.5212923 
1.33023478 -0.2008474 -0.108556477 2.32187466 -0.8667483 
-1.5279303 -2.501517 -0.741357184 1.15948534 -0.4349283 
-1.5279303 -2.501517 -0.741357184 1.15948534 -0.4349283 
-0.6271078 0.05064284 -1.754156045 1.30683047 -0.1758362 
-0.5603802 0.0972151 0.639437215 0.5209898 0.42871183 
-1.6669461 -2.2034545 1.700187092 -0.2484792 -0.0031082 
-2.2396912 -3.0510697 0.059022356 -0.7560013 -0.5212923 
-1.1442466 -1.2999527 -0.565092394 0.47187476 -0.7803843 
-1.6447036 -1.4489839 -0.203220681 0.45550308 -0.1758362 
-1.1275647 -0.7131422 -1.419752896 0.19355619 -0.6076563 
-0.4158038 0.23693188 -1.398712908 -0.2812225 0.42871183 
-2.0728722 -2.3245424 -0.891948928 0.17718451 0.86053187 
-2.923649 -2.6598627 -0.645112494 0.45550308 -0.0031082 

0.41829107 0.38596311 -0.041610263 -0.870603 0.60143984 
0.55730688 0.81442791 -0.800283359 2.35461802 0.68780385 
1.02996063 1.41986728 0.741099915 -0.9852048 1.46507993 
0.35156348 -0.7597145 1.717280037 0.25904291 -1.2122043 
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-1.2721412 -1.6818452 -0.66290734 -0.1502491 -0.8667483 
-1.3666719 -1.327896 -0.930575105 -0.6741429 -0.9531123 
-0.9162607 -1.3930972 -0.604909725 0.12806947 -0.9531123 
-1.6780673 -2.1475678 -0.073995419 0.06258275 -0.7803843 
-1.2999443 -1.8960776 -0.036133962 0.04621107 -0.6940203 
-0.8550938 -1.3930972 -0.127360866 -0.2157358 -0.8667483 
-0.8550938 -1.3930972 -0.127360866 -0.2157358 -0.8667483 
0.47945802 -0.7783434 -0.676983648 -0.052019 -0.6076563 
-0.8328512 -1.4024117 -1.431921736 -0.002904 -1.0394763 
-0.9885489 -1.7563608 -0.492475567 -0.6741429 -0.7803843 
-0.9885489 -1.4955562 -1.079183441 -0.8378597 -1.2985683 
-0.0988477 0.28350414 0.45265312 1.91258265 0.1696198 
-0.6715929 -1.5700718 0.414102642 -1.1980367 -0.6076563 
-0.6715929 -1.5700718 0.414102642 -1.1980367 -0.6076563 
0.42941233 -0.4802809 -0.44973931 -1.590957 -0.5212923 
1.69167589 0.61882441 -0.182374727 -1.5745853 -0.6940203 
0.42941233 -0.4802809 -0.44973931 -1.590957 -0.5212923 
-1.7948406 -2.5480893 0.110816666 0.78293669 -0.5212923 
0.46277613 -0.9646324 -0.033368312 0.16081283 0.25598381 
-2.0673116 -2.6784916 -0.363970601 0.68470661 -0.4349283 
-1.2498987 -1.5048706 -1.604589979 1.04488358 0.42871183 
-0.6215472 -0.6572555 -2.104669517 1.09399862 0.34234782 
-1.3333081 -0.5454821 -0.226801421 2.3709897 0.34234782 
-0.9496245 -0.2474196 -0.438002772 4.0572728 1.20598791 
-0.0599233 -0.7876578 -0.06819984 2.61656491 -0.2622002 
-0.0599233 -0.7876578 -0.06819984 2.61656491 -0.2622002 
-0.9885489 -2.1941401 -0.608178333 0.45550308 -0.3485643 
-0.3935613 -0.461652 0.105019565 0.09532611 0.42871183 
1.07444569 0.75854119 -1.760470689 -0.6741429 -0.0031082 
-0.4658495 -1.4489839 -0.04022116 -0.9852048 -0.2622002 
-0.4658495 -1.4489839 -0.04022116 -0.9852048 -0.2622002 
-0.1322115 -0.66657 0.226865383 -2.4913994 0.42871183 
-0.1322115 -0.66657 0.226865383 -2.4913994 0.42871183 
-0.9607458 0.25556079 0.479377578 -1.6073287 1.81053597 
-0.6493504 -0.4895954 -0.912983758 -0.3139659 1.46507993 
-2.6011323 -2.8554662 -0.760312235 -0.4449393 0.1696198 
-1.4667633 -2.5946615 -0.418980318 -0.2648509 -0.1758362 
0.07909249 0.14378736 -0.037971196 0.93028182 -0.1758362 
1.24126466 1.23357824 -0.132416407 -1.0179482 0.34234782 
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0.95211178 1.14974818 -0.807532534 -0.6250278 0.77416786 
0.78529281 1.31740831 0.245711315 -0.2975942 1.1196239 
1.33579541 1.41055283 1.108911199 -0.2321075 1.1196239 
-0.0098776 0.67471113 0.885883724 0.68470661 1.46507993 
-0.0098776 0.67471113 0.885883724 0.68470661 1.46507993 
-0.321273 0.14378736 1.38572041 0.9466535 0.77416786 

-0.0209989 0.27418969 1.638396255 0.42275972 -0.0031082 
0.47389739 0.795799 0.551671212 0.04621107 1.03325989 
-0.0265595 0.3114475 1.39944184 -0.1666208 1.1196239 
-0.3657581 0.0599573 0.48489349 -0.3958243 1.20598791 
0.0290468 0.64676777 0.591727395 -0.4285677 1.63780795 

1.0244 1.13111927 1.623309562 -1.4436119 0.51507584 
1.03552126 1.12180482 1.599580389 -1.6564437 0.60143984 
-0.4769707 0.45116428 -0.381843826 1.04488358 -0.6940203 
0.41273044 0.84237126 -0.221667558 0.9466535 -0.5212923 
0.29039652 1.14043372 1.978747741 1.35594551 1.20598791 
0.45165486 0.96345914 -0.175814897 0.75019333 1.1196239 
0.76305028 1.38260948 -0.728858414 0.11169779 1.20598791 
0.72412585 1.63409968 0.181576535 -0.3467093 1.20598791 
0.72968648 1.0100314 1.633846504 -0.1829925 0.86053187 
0.56286751 -0.1356462 1.322234542 -1.6891871 -0.6076563 

-0.171136 -0.275363 0.099601307 0.83205173 -0.8667483 
0.69632269 0.72128339 0.931273144 0.4391314 -0.3485643 
-0.0432414 -0.3126208 -1.32287031 0.25904291 -0.4349283 
0.05684996 0.46979318 1.258612204 -0.1175057 -0.6076563 
-0.0543627 0.82374236 -1.356647277 0.61921989 -1.9894804 
1.50261439 0.86100017 0.068555996 0.20992787 -0.8667483 
1.74728221 1.14043372 0.61318175 0.2754146 1.1196239 
1.06888506 1.33603722 0.639444919 -0.870603 0.51507584 
-0.3768794 0.01338504 2.050455014 -0.1011341 0.08325579 
0.26815399 0.72128339 0.340875118 -0.6905146 -0.6076563 
0.86870229 0.44184983 -0.596297583 0.71744997 -0.4349283 

-0.109969 -0.4709665 1.605506389 0.61921989 -1.2122043 
1.49705375 0.49773654 1.061417386 -2.3113109 -0.6076563 
-2.2674944 -2.892724 -0.732521225 -2.049364 -0.4349283 
-0.215621 -0.66657 0.501840002 -1.1489216 -0.6940203 

-0.6048653 -1.1695504 0.657359373 -0.3467093 -0.6940203 
-0.1210903 -0.3964509 -0.156918444 -0.4285677 -0.6940203 
0.8353385 -0.070445 -0.055514195 -0.002904 -1.9894804 
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1.58602387 1.05660366 -1.617051167 -0.870603 -1.2985683 
0.16250198 -0.0425017 -1.557933647 -0.772373 -1.6440244 
0.0123649 0.18104517 0.780813678 -1.5745853 -0.0031082 
0.5962313 -0.3126208 -0.892341848 0.19355619 -1.2122043 

0.91874798 0.86100017 0.430116384 -0.1175057 -0.3485643 
-3.3907421 -3.3211888 0.498101338 -0.4940544 0.42871183 
0.49613992 0.88894352 -0.355796492 0.02983939 0.25598381 
1.49705375 1.39192393 1.967980254 1.14311366 -0.0031082 
0.91874798 0.73059784 -1.098708823 -1.0670632 -0.5212923 
0.49057929 0.21830298 0.055975785 -0.6577712 -0.6076563 
-0.6104259 0.81442791 0.242189587 0.14444115 1.20598791 
-0.654911 0.74922674 0.736055619 0.39001636 1.20598791 

0.00680427 0.36733421 0.997044357 -1.0343198 1.46507993 
-0.6604716 0.11584401 0.508693242 0.4391314 0.25598381 
-0.7661236 -0.5827399 -0.057232223 -0.7232579 1.03325989 
-0.7661236 0.00407058 0.182273144 0.86479509 0.86053187 
-0.0488021 0.89825797 2.046892718 -1.4436119 1.81053597 
-0.1933785 0.62813887 1.526867411 -2.0657357 1.1196239 
0.17918387 0.78648455 0.109291897 -0.870603 1.63780795 
-0.4658495 0.92620133 -0.00489879 0.16081283 1.03325989 
-0.7216386 0.39527757 -0.601707697 -1.9675056 1.29235191 
0.14582008 0.46047873 1.23704472 -0.9360898 0.51507584 

-0.321273 0.94483023 -0.029333511 -0.4285677 1.37871592 
-1.0663978 0.21830298 -1.272974128 1.1103703 0.08325579 
-0.2323029 -0.5734254 0.007294597 0.30815796 0.86053187 
-0.1377722 0.39527757 0.316391025 -0.4285677 1.81053597 
-0.6271078 0.76785565 1.794719133 -0.6250278 1.72417196 
-0.5715015 0.16241627 0.58353495 -0.870603 1.03325989 
-1.0441553 0.30213305 -0.940089547 1.0285119 1.55144394 
0.03460743 -0.0518161 0.473439059 -1.2798951 -0.4349283 
-0.3435156 -0.0983884 -0.658187557 -0.3467093 -0.6940203 
-0.5158952 0.44184983 -1.636271655 -0.1502491 -1.9031164 
-0.9607458 0.02269949 -0.038346737 -0.2321075 1.20598791 
-0.488092 0.94483023 -0.076700156 0.55373316 1.89689997 

-0.6104259 0.13447291 1.620549022 -1.23078 1.72417196 
-0.004317 0.87031462 1.896670898 0.17718451 1.20598791 

-0.7438811 0.29281859 -0.260200723 0.68470661 1.46507993 
-0.6604716 0.46979318 1.21996702 -0.5267978 1.29235191 
-0.6048653 0.36733421 0.013922586 -0.3303376 0.86053187 
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-4.7252939 -1.8960776 0.037977028 0.9466535 0.51507584 
-0.6771535 -0.0890739 -0.271371055 -0.412196 1.63780795 
-0.9941096 -0.1170173 0.768365314 -0.0847624 0.68780385 
-1.138686 -0.0983884 -0.402192019 0.63559157 0.42871183 

-1.2554593 -0.2194763 -0.465219412 0.02983939 -0.2622002 
-0.593744 0.3114475 -0.798832174 -0.002904 -1.0394763 

1.20234024 0.65608222 2.276221256 -0.9033464 -0.0894722 
-0.9774277 -0.0983884 0.286805971 0.73382165 0.77416786 
-0.6827141 -0.275363 -1.321083578 -0.6905146 -0.7803843 
0.57954941 1.58752742 -1.568385167 -0.3630809 -1.8167524 
-0.5826228 0.26487524 1.565642346 0.29178628 0.77416786 
-0.3268337 0.55362325 -0.975590323 0.04621107 0.60143984 
0.78529281 0.60950996 -0.852317496 -1.7546738 -0.3485643 
-0.4158038 -0.4709665 0.207166207 0.79930837 -0.6940203 
0.26259336 0.68402558 -0.532110626 0.50461812 0.86053187 
-0.4158038 -0.6386266 -0.96569744 0.48824644 -0.2622002 
0.35156348 0.85168571 -0.89167393 0.11169779 0.1696198 
-0.3546368 0.44184983 -1.507287207 0.12806947 -1.9031164 
1.07444569 0.97277359 -0.466353778 0.19355619 0.08325579 

1.0244 0.73059784 1.650204569 1.04488358 0.86053187 
1.16341581 1.19632044 0.365810777 -0.412196 0.34234782 
1.55822071 1.2801505 0.588407568 -0.002904 0.60143984 
-0.0321202 0.41390647 -0.068960225 -0.5922845 0.86053187 
-0.7383205 -0.564111 3.230880674 0.32452964 0.34234782 
0.11245629 0.14378736 -0.821990547 0.71744997 -0.0894722 
1.08556696 0.42322092 0.636869044 -1.9347623 -0.8667483 
-1.6280217 -1.8588198 0.789037552 -2.0821074 -0.5212923 
-0.2934699 -0.5268532 -0.976137284 -1.3781251 0.25598381 
-0.0932871 -0.3964509 -0.186257335 -0.9852048 0.34234782 
0.35712411 0.46979318 -1.218877477 -0.4285677 -0.3485643 
0.89650545 0.25556079 0.077420427 -0.3139659 -0.8667483 
1.05220316 1.0286603 0.234852548 -0.4449393 -0.9531123 
0.05684996 0.08790065 0.322206491 -0.5595411 -0.6076563 
0.11245629 0.33939085 -0.818816214 -1.5745853 0.51507584 
0.5962313 -0.3126208 -0.892341848 0.19355619 -1.2122043 

-0.3713187 0.26487524 -0.117152063 0.24267123 0.77416786 
-1.1053222 -0.4337087 -0.734938638 -0.5922845 0.94689588 
0.70744395 0.74922674 1.503155493 0.04621107 0.77416786 
1.78620664 1.61547077 2.3549051 1.07762694 0.1696198 
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-0.0154383 0.51636544 -0.524942405 -1.0343198 0.51507584 
1.78620664 1.42918174 2.089354485 -0.821488 -0.2622002 
-1.0385946 0.40459202 0.334486899 -0.1829925 0.25598381 
0.36824538 0.38596311 -1.099109486 -1.3290101 -0.1758362 
-0.3546368 -0.5082243 -1.352460971 1.06125526 -0.7803843 
-0.4491676 0.89825797 -0.659459302 0.73382165 0.1696198 
-0.4825314 -0.461652 -0.30534066 0.47187476 -0.2622002 
-0.3935613 0.38596311 0.54704893 -0.002904 -0.0031082 
-0.3435156 -0.1077028 -0.325932345 0.12806947 -0.8667483 
-0.2601061 0.80511345 -0.203090738 -0.5759128 1.37871592 
0.99659684 0.78648455 0.522567019 1.38868887 0.60143984 
1.16341581 1.19632044 0.365810777 -0.412196 0.34234782 
0.29595716 1.27083605 0.336984576 -0.2484792 1.89689997 

-0.654911 0.50705099 -1.323002655 -0.3467093 0.77416786 
-2.0506297 -2.11031 0.219329994 0.50461812 1.03325989 
-0.3713187 0.27418969 0.349254678 0.55373316 1.03325989 
-0.0710446 0.55362325 0.608448492 -1.951134 0.68780385 
-0.9551851 -1.4117261 -0.172997214 -2.0657357 -0.7803843 
0.36824538 0.39527757 1.921698134 -1.2635234 0.77416786 
-0.8384119 -0.4243942 0.4364677 -1.4436119 1.20598791 
0.27371463 0.39527757 -0.169761403 -0.412196 -0.0894722 
0.8353385 0.37664866 -0.538511324 -0.3467093 -0.6076563 

0.08465312 0.75854119 1.454894692 -0.3139659 0.1696198 
-0.1433328 0.23693188 2.095714998 -0.5922845 0.42871183 
-0.2378636 -0.2008474 -0.372941901 -1.5418419 0.68780385 
0.74636838 0.01338504 1.96425496 -0.0192757 -1.2122043 
-0.4992133 0.50705099 0.895930983 0.24267123 1.20598791 
-0.760563 -0.0890739 -0.631890701 -0.2321075 1.03325989 

0.41273044 1.11249037 0.746000171 -0.052019 1.03325989 
-0.4992133 0.35801976 0.028249143 1.7816092 1.81053597 
-0.1488934 0.19967408 -0.12204452 -0.821488 0.77416786 
-0.1322115 0.81442791 -0.072777047 -0.6086562 1.1196239 
-0.9162607 0.45116428 2.300348537 -0.1829925 1.37871592 
0.19030514 0.23693188 -1.195912028 -1.1161783 0.51507584 
-0.3546368 -0.5082243 -1.352460971 1.06125526 -0.7803843 
-0.549259 0.28350414 -1.26589265 0.79930837 0.08325579 

-0.3435156 0.03201394 0.601387781 0.4391314 0.08325579 
-0.488092 0.19035962 0.934364197 0.14444115 0.08325579 

-0.3435156 -0.1077028 -0.325932345 0.12806947 -0.8667483 
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0.85758103 1.08454701 2.57355901 0.02983939 1.63780795 
0.99659684 0.78648455 0.522567019 1.38868887 0.60143984 
1.25794656 1.07523256 -0.087144096 0.07895443 0.1696198 
0.29595716 1.27083605 0.336984576 -0.2484792 1.89689997 
0.04016806 0.61882441 2.509788373 -0.1502491 0.42871183 
-2.7623907 -2.6598627 -0.47487176 0.89753846 1.37871592 
-0.5603802 0.32076195 -1.942576 1.45417559 1.03325989 
-0.4658495 0.61882441 -0.148444819 -1.4599835 1.29235191 
-0.9551851 -1.4117261 -0.172997214 -2.0657357 -0.7803843 
-0.7939268 -0.6386266 0.577890483 -1.2635234 -0.8667483 
-0.9329426 -0.8808024 -0.952471801 -1.1489216 -0.9531123 
0.80753534 0.28350414 -1.362227682 -0.5922845 0.1696198 
0.8353385 0.28350414 -0.547531097 -0.3630809 -0.2622002 

-0.0877265 0.48842209 -0.115806523 -0.1666208 0.51507584 
0.38492727 0.42322092 -0.349427539 -0.6577712 0.60143984 
0.03460743 0.48842209 -0.073345934 -1.3126384 -0.0894722 
0.74636838 0.01338504 1.96425496 -0.0192757 -1.2122043 
-0.6271078 0.41390647 0.425768103 -0.2812225 0.68780385 
-0.9774277 -0.1077028 0.130893604 0.47187476 0.94689588 
0.85758103 1.41986728 0.279747949 0.01346771 0.60143984 
0.17362324 1.27083605 -0.266972446 1.45417559 1.55144394 

-0.065484 0.41390647 -0.489760304 -0.8051163 0.94689588 
0.09577439 0.58156661 0.800217501 -1.0179482 0.86053187 
0.01792554 0.40459202 0.104235839 -0.5431694 1.1196239 
0.36824538 0.49773654 -0.780921395 -1.0343198 0.25598381 
-0.7105173 -0.7783434 -0.136961583 0.83205173 -0.4349283 
-0.549259 0.28350414 -1.26589265 0.79930837 0.08325579 

0.34044221 0.36733421 0.509518474 0.09532611 -0.3485643 
-0.5659409 0.0972151 0.058860822 0.24267123 -0.0894722 
-0.0543627 0.0599573 -1.45240436 0.12806947 -0.3485643 
0.34600285 0.95414468 0.807170443 0.61921989 0.42871183 
0.19586577 0.65608222 -0.259563306 1.48691895 0.60143984 
1.35803794 1.43849619 0.402824513 -0.7232579 0.51507584 
0.59067067 0.73991229 -0.337635216 -0.0192757 -0.3485643 
0.06241059 0.3114475 -0.489842626 -0.2812225 -0.6076563 

-2.000584 -1.8122476 -0.518905716 0.63559157 1.37871592 
0.86314166 0.61882441 -0.334707103 2.22364458 0.86053187 
-0.3935613 -0.564111 -0.371058405 -1.0343198 0.08325579 
-0.4380463 -1.2068082 -1.23030224 -2.2785676 -1.3849324 
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-1.1609285 -0.6293122 0.165412246 -1.7710455 0.86053187 
0.84645976 -0.1635896 0.680031344 -1.5090986 0.42871183 
0.11801692 -0.5454821 0.008614049 -0.2812225 -1.6440244 
0.51282182 -0.1635896 0.933767625 -0.3794526 -0.9531123 
-0.3713187 -0.7038278 -0.022613659 -0.2648509 -0.5212923 
1.34691668 1.0100314 -0.429131432 -0.412196 -0.2622002 
0.30707842 0.3300764 1.926519494 -1.2962667 0.1696198 
0.0457287 -0.275363 1.972063452 -0.002904 -1.5576604 

-0.5548196 -0.1077028 0.253251748 -0.3794526 0.1696198 
-0.1155296 0.42322092 1.380804009 0.16081283 0.68780385 
1.48037186 1.19632044 2.672163127 0.12806947 0.51507584 
0.68520142 1.19632044 1.067282253 1.19222871 1.55144394 
-0.3768794 0.05064284 1.146139076 -0.9688331 -0.1758362 
1.0077181 1.17769153 1.615683745 -1.1980367 0.25598381 

-0.7049567 0.67471113 0.655431778 -0.002904 1.20598791 
0.53506435 0.53499435 -1.229258044 -1.0506915 -0.0031082 
-0.7550024 -0.5734254 -0.823269 0.81568005 -1.0394763 
0.78529281 0.18104517 -0.282056871 0.17718451 -0.9531123 
-0.0710446 0.28350414 0.341834876 0.34090132 -0.3485643 
1.20790087 1.60615632 -0.007792613 0.81568005 -0.0894722 
1.39140174 0.50705099 -0.182111692 -0.461311 -0.0894722 
-0.8161693 -0.9646324 0.26418565 1.40506055 -2.1622084 
-0.0209989 -0.5454821 -1.087351673 -0.9524614 -0.6076563 
-0.8439725 -0.7876578 1.698420189 -1.4436119 -0.0894722 
0.21254767 -0.6106832 0.221222466 -1.181665 -1.1258403 
-0.4324857 -0.9460035 -0.233619109 -0.002904 -1.2122043 
1.36359858 0.99140249 -0.553165659 -0.3958243 -0.4349283 

1.0244 0.69334003 -1.123024032 -0.002904 -1.1258403 
-0.2823486 0.10652956 0.171151974 -0.1829925 -0.0894722 
0.72412585 0.95414468 0.445787859 0.9466535 0.34234782 
0.77417154 0.32076195 0.558906941 -0.9197181 -0.4349283 
0.89094482 0.42322092 0.646546619 -1.3617535 -0.1758362 
-0.1377722 0.62813887 -0.387447238 0.70107829 -1.6440244 
-1.7614768 -1.8867632 0.094387553 -0.9033464 -0.5212923 
0.75748964 0.0785862 -0.359002234 -0.461311 -0.3485643 
0.31263905 0.0599573 -0.895386917 0.37364468 -1.7303884 
0.96323304 0.47910763 -0.581103541 0.61921989 -0.7803843 
0.4071698 -0.5082243 -1.078260833 0.17718451 -1.3849324 

-0.1377722 0.5443088 0.000547748 0.17718451 0.34234782 
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1.96970751 0.17173072 0.514870545 -1.0834349 -0.9531123 
-0.654911 -0.7690289 -1.997197859 1.27408711 -2.4213005 

-0.2823486 -0.4243942 -0.692161334 -1.4436119 -0.0031082 
1.10780948 0.83305681 0.316853128 0.34090132 -1.8167524 
-0.2434242 0.00407058 -0.265089132 -0.1175057 -1.4712964 

1.0244 1.00071694 -1.179514458 -0.6413995 -0.6076563 
1.10224885 -0.1170173 1.033181882 2.04355609 -1.6440244 
0.86870229 0.04132839 -1.541671504 -0.1175057 -1.3849324 
1.58046324 1.08454701 0.97051223 -0.7887446 -0.2622002 
0.75192901 0.38596311 1.681517346 -1.2798951 -0.6940203 
0.57398877 -0.1915329 0.489614718 1.48691895 -1.4712964 

 



 

 

 

APPENDIX E 

Re-scaled Lee’s L bivariate spatial association between rare and overall bryophyte, 

moss, liverwort, and sphagna species richness 

 

Re-scaled Lee’s L bivariate spatial association between rare and overall (A) bryophyte, 
(B) moss, (C) liverwort, and (D) sphagna species richness for the study area of Cerrejón 
et al. (2020) at 300 m spatial resolution.



 

 

 

APPENDIX F 

Lichen species identified and used for modeling 

Lichen species identified in the present study and used for modeling (n = 116). 

Lichen species 
Arctoparmelia_centrifuga Evernia_mesomorpha 
Bryoria_americana Heterodermia_galactophylla 
Bryoria_furcellata Hypogymnia_bitteri 
Bryoria_fuscescens Hypogymnia_incurvoides 
Bryoria_nadvornikiana Hypogymnia_physodes 
Bryoria_pikei Hypogymnia_pulverata 
Bryoria_simplicior Hypogymnia_vittata 
Bryoria_trichodes Icmadophila_ericetorum 
Calicium_glaucellum Imshaugia_aleurites 
Calicium_parvum Imshaugia_placorodia 
Calicium_trabinellum Melanelia_hepatizon 
Cetraria_ericetorum Melanelia_sorediata 
Cetraria_islandica Melanelia_stygia 
Chaenotheca_balsamconensis Melanohalea_olivacea 
Chaenotheca_chrysocephala Melanohalea_septentrionalis 
Chaenothecopsis_nana Montanelia_panniformis 
Cladonia_amaurocraea Nephroma_arcticum 
Cladonia_arbuscula Nephroma_bellum 
Cladonia_bacilliformis Parmelia_sulcata 
Cladonia_bellidiflora Parmeliopsis_ambigua 
Cladonia_borealis Parmeliopsis_capitata 
Cladonia_botrytes Parmeliopsis_hyperopta 
Cladonia_carneola Peltigera_aphthosa 
Cladonia_cenotea Peltigera_didactyla 
Cladonia_chlorophaea Peltigera_elisabethae 
Cladonia_coccifera Peltigera_extenuata 
Cladonia_coniocraea Peltigera_neopolydactyla 
Cladonia_cornuta Peltigera_polydactylon 
Cladonia_crispata Peltigera_scabrosa 
Cladonia_cristatella Phaeocalicium_compressulum 
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Cladonia_cyanipes Phaeophyscia_orbicularis 
Cladonia_deformis Physcia_adscendens 
Cladonia_digitata Physcia_aipolia 
Cladonia_fimbriata Physciella_chloantha 
Cladonia_glauca Platismatia_glauca 
Cladonia_gracilis Ramalina_roesleri 
Cladonia_grayi Stenocybe_major 
Cladonia_macilenta Stereocaulon_alpinum 
Cladonia_macrophylla Stereocaulon_dactylophyllum 
Cladonia_merochlorophaea Stereocaulon_grande 
Cladonia_multiformis Stereocaulon_paschale 
Cladonia_norvegica Stereocaulon_tomentosum 
Cladonia_phyllophora Tuckermannopsis_americana 
Cladonia_pleurota Tuckermannopsis_orbata 
Cladonia_pyxidata Tuckermannopsis_sepincola 
Cladonia_rangiferina Umbilicaria_deusta 
Cladonia_rei Umbilicaria_hyperborea 
Cladonia_squamosa Umbilicaria_muehlenbergii 
Cladonia_stellaris Umbilicaria_polyphylla 
Cladonia_stricta Umbilicaria_torrefacta 
Cladonia_stygia Usnea_dasopoga 
Cladonia_subulata Usnea_hirta 
Cladonia_sulphurina Usnea_perplexans 
Cladonia_symphycarpa Usnea_scabrata 
Cladonia_uncialis Usnea_subfloridana 
Cladonia_verticillata Usnea_substerilis 
Crustose Vulpicida_pinastri 
Cyphobasidium_hypogymniicola Xanthomendoza_hasseana 



 

 

 

APPENDIX G 

Pearson correlation coefficients among variable pairs at both targeted spatial 

resolutions 

Pearson correlation coefficients among variable pairs at both targeted spatial 
resolutions (WorldView-3 at 1.2m resolution; Sentinel-2 at 10m resolution). Values in 
bold indicate variables pairs highly correlated (|Pearson r| > 0.7). 

WorldView-3 Green Red NIR EVI2 Sentinel-2 Green Red NIR EVI2 
Green  0.94 0.19 -0.74 Green  0.92 0.07 -0.28 
Red 0.94  0.01 -0.86 Red 0.92  -0.04 -0.41 
NIR 0.19 0.01  0.45 NIR 0.07 -0.04  0.92 
EVI2 -0.74 -0.86 0.45  EVI2 -0.28 -0.41 0.92  



 

 

 

APPENDIX H 

List of microhabitats included 

List of different microhabitats included in this study (n = 14). 

Microhabitats 
Shrub base 
Tree base 
Rock 
Bare soil 
Moss 
Peat hummock 
Root 
Dead branch 
Snag 
Burned snag 
Unburned log of decay class 1 and 2 
Unburned log of decay class 3, 4 and 5 
Burned log of decay class 1 and 2 
Burned log of decay class 3, 4 and 5 



 

 

 

APPENDIX I 

Mantel test results between lichen species composition (Sørensen’s dissimilarity) and 

microhabitat-based dissimilarity 

Mantel test results based on Pearson’s correlation between lichen species composition 
(Sørensen’s dissimilarity) and microhabitat-based dissimilarity. 

R2 Sig 90% 95% 97.50% 99% 
0.2171 0.001 0.066 0.083 0.0974 0.1145 



 

 

 

APPENDIX J 

Species rarefaction curve 

 

Rarefaction curve showing the sample coverage (percentage of species) as a function 
of the number of plots sampled (n = 45; outliers included). 



 

 

 

APPENDIX K 

Diagnostic graphs of the WV3 band model including outliers 

 

Diagnostic graphs of the WV3 band model (45 plots including outliers).



 

 

 

APPENDIX L 

Diagnostic graphs of the WV3 EVI2 model including outliers 

 

Diagnostic graphs of the WV3 EVI2 model (45 plots including outliers).



   

 

 

APPENDIX M 

Diagnostic graphs of the S2 band model including outliers 

 

Diagnostic graphs of the S2 band model (45 plots including outliers)



 

 

 

APPENDIX N 

Diagnostic graphs of the S2 EVI2 model including outliers 

 

Diagnostic graphs of the S2 EVI2 model (45 plots including outliers)



 

 

 

APPENDIX O 

Diagnostic graphs of the WV3 band model excluding outliers 

 

Diagnostic graphs of the WV3 band model (42 plots excluding outliers).



 

 

 

APPENDIX P 

Diagnostic graphs of the WV3 EVI2 model excluding outliers 

 

Diagnostic graphs of the WV3 EVI2 model (42 plots excluding outliers).



 

 

 

APPENDIX Q 

Diagnostic graphs of the S2 band model excluding outliers 

 

Diagnostic graphs of the S2 band model (42 plots excluding outliers)



 

 

 

APPENDIX R 

Diagnostic graphs of the S2 EVI2 model excluding outliers 

 

Diagnostic graphs of the S2 EVI2 model (42 plots excluding outliers)



 

 

 

APPENDIX S 

PCoA on lichen community composition (including outliers) 

 

PCoA on lichen community composition (45 plots including outliers). Habitat type 
abbrev.: B, bog; B_B, bog burned; CF, coniferous forest; CF_B, coniferous forest 
burned; DF, deciduous forest; Fen, Fen; R, Rock.



 

 

 

APPENDIX T 

Boxplots of microhabitat richness per habitat type 

 

Boxplots of microhabitat richness per habitat type. Different letters indicate significant 
differences in microhabitat richness among habitat types based on the Tukey test. 
Outliers were not included. Habitat type abbrev.: B, bog; B_B, bog burned; CF, 
coniferous forest; CF_B, coniferous forest burned; DF, deciduous forest; Fen, Fen; R, 
Rock.



 

 

 

APPENDIX U 

Number of lichen species versus the number of habitat types in which they occur 

 

Number of lichen species versus the number of different habitat types in which they 
occur.



 

 

 

APPENDIX V 

Boxplots of variables included in the models at both targeted spatial resolutions per habitat type 

 

Boxplots of variables included in the models at both targeted spatial resolutions (WV3, WorldView-3 at 1.2m resolution; S2, 
Sentinel-2 at 10m resolution) per habitat type. Different letters and boxplot colors indicate significant differences in variable 
values among habitat types based on the Tukey test. Boxplot colors were not associated here to different habitat types to 
facilitate the visualization of these significant differences. See section 4.4.3 for variable description. Habitat type abbrev.: B, 
bog; B_B, bog burned; CF, coniferous forest; CF_B, coniferous forest burned; DF, deciduous forest; Fen, Fen; R, Rock. 
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