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ABSTRACT To cope with the computational complexity of the traditional model predictive control, and
to reduce the error of the linearization and prediction processes, this paper presents an improved model
predictive control algorithm, based on Laguerre functions, for the motion tracking of an omnidirectional
mobile robot with non-iterative linearization. To design the controller, the kinematic modeling of the
three-wheeled omnidirectional robot was first performed. Next, the model predictive algorithm was devel-
oped using Laguerre functions to parametrize the control signals. At each sampling instant of the online
optimization, a linearization along the predicted trajectory, based on the duality principle between optimal
control and stochastic filtering, was carried out to deal with the nonlinearities of the system. This non-iterative
linearization provides better approximation of the nonlinear behavior which improves the prediction process
and the tracking performance, with lower computational burden due to the use of the Laguerre functions. The
new controller is applied to solve the trajectory-tracking problem of an omnidirectional robot. A comparative
study between the proposed controller, the conventional model predictive control, and the nonlinear model
predictive approach is made. Simulation results confirm that the new controller outperform the latter ones
regarding tracking accuracy with considerably low computational effort. The feasibility of the controller is
demonstrated by real-time experiment on the Robotino-Festo omnidirectional mobile robot.

INDEX TERMS Laguerre functions, linearization, model predictive control (MPC), omnidirectional mobile
robot, stochastic filtering, trajectory-following.

I. INTRODUCTION
Nowadays, wheeled mobile robot (WMR), the fruit of combi-
nation of the latest sensing technology with advanced control
strategies, becomes an important player in modern society
[1], [2]. Due to their abilities to increase productivity, and
improve work environments safety, WMRs are increasingly
entrusted to occupy significant roles in variant sectors such as
agriculture, space, surveillance, and mining [3], [4], [5], [6].
In an intelligent mining industry, these robots are expected
to act autonomously while completing complex tasks such as
automated transportation, automatic inspection and exploring
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hazardous unsafe areas [7], [8]. One of the key operating con-
ditions ofWMR is trajectory tracking which aims to converge
the robot’s actual position toward a predefined path which
can be uploaded as an offline map or generated online by
path-planning methods [9]. An omnidirectional mobile robot
(OMR) is a special type of WMR with the abilities to move
instantly in all directions without any reorientation, which
gives it a great advantage to complete the tracking task in
such unpredictable dynamic environments [10], [11]. Track-
ing accuracy and constraints handling are two main criteria
in developing the control algorithms along with the ability
to deal with nonlinear and multivariable characteristics of
the systems. In recent years, many control strategies have
been proposed to solve the trajectory-tracking problem of
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the WMR [12], [13]. In [14], a PI controller tuned by an
adaptative fuzzy logic was used as a high-level controller
for an OMR. The fuzzy-PI, which corrects the kinematic
errors, was paired with a linear quadratic regulator (LQR)
as a low-level control of the velocities and accelerations.
This combination showed significant improvement over a
PI control alone; however, the use of an LQR for low-level
control caused a deviation between the desired and the actual
paths which greatly increased in the real-time application and
led to unsatisfactory results. A control scheme taking into
consideration the kinematic and dynamic uncertainties of the
OMR was proposed in [15]. A sliding-mode-based observer
was used to estimate these uncertainties, then a feedback
linearization controller was used to handle such uncertain-
ties. The controller showed a good trajectory-tracking per-
formance. Nonetheless, since these methods cannot handle
constraints directly, saturation was used to limit the control
signals, which is not acceptable in practice. Another con-
troller for the OMR was presented in [16], which uses a
linearizing adaptative algorithm for the kinematic control.
This causes some singularities in the control signals. Such
singularities are dealt with by switching to a sliding mode
controller around them. Indeed, the resulting approach helps
to reduce the control effort and eliminate the singularities;
however, the risk of chattering appears which may harm the
actuators. In [17], a bioinspired backstepping controller was
proposed. It performs the tracking task while reducing the
large velocity jumps that occur in the traditional backstepping
control; however only constant reference speeds were consid-
ered. Model-free control schemes were used in [18] and [19].
Using a visual serving strategy in [19] provides a unified algo-
rithm for tracking and regulation. However, these model-free
methods ignore useful information from the system model,
and they are less adequate compared to systematic methods.
In addition, when it comes to harsh environments, physical
and operational constraints are expected, and need to be taken
into consideration in which the previous methods are limited.

To overcome the above-mentioned problems, one can con-
sider the model-based predictive control (MPC). It is one of
the advanced techniques that now has a huge impact on the
development of control systems and on research in feedback
control areas and has achieved remarkable success in the
practical field [20], [21]. This success of theMPC is attributed
to many reasons. First, due to the finite control horizon, non-
linear systems dynamics, and process inputs, state and output
constraints can be handled directly by the MPC algorithms.
Moreover, the prediction aspect of this method over a future
time horizon makes it possible to anticipate and remove the
effect of disturbances, which leads to better tracking of the
future trajectory. Finally, MPC principles and algorithms are
relatively easy to understand and to extend to multi-input
multi-output systems [22], [23]. The general idea of MPC is
to solve an online open-loop optimization problem at each
sampling time, and to find a trajectory of future manipulated
variables that optimize the future behavior of the system out-
puts within a limited time window. Traditionally, MPC was

only applied to sufficiently slow systems due to the high
computational cost required to perform the online optimiza-
tion, but thanks to increased hardware efficiency,MPC is now
applicable to systems with faster dynamics.

The MPC can explicitly handle nonlinearities, and since
most systems are inherently nonlinear, many nonlinear model
predictive control (NMPC) algorithms have been developed
using iterative solutions to solve the optimization problem
[24]. In [25], a basic NMPC algorithm that uses the gra-
dient descent method was applied to solve an OMR trajec-
tory tracking with obstacle avoidance. The algorithm gave
effective results in both simulation and real-time experiments;
however, in the experiments, due to the high computational
load, the movement direction and speed were fixed and only
the orientation was controlled by NMPC. Using nonlinear
systems directly in the NMPC algorithm often leads to unde-
sired complexity and high computational demand. Therefore,
studies have been conducted to overcome these problems.
In [26], the nonlinear system was modeled in the Weiner
model structure, which divides the system into two parts,
a linear time invariant system followed by a static nonlinear
element. Then, linear MPC was used for the linear part and
polynomial representation for the nonlinear part; however, for
the Weiner model to properly describe the nonlinear aspects
of the system, prior knowledge of these nonlinearities should
be available, which is not the case for most systems, and
a simple polynomial representation does not give an accu-
rate description of these nonlinearities. Similarly, in [27],
a NARMA-Volterra model was selected to represent the brain
and used to predict neural activity. In addition, Laguerre
functions were introduced to reduce the number of estima-
tion parameters in the Volterra model, and then linear MPC
was applied to solve the optimization problem. Nonethe-
less, Volterra models exhibit high level of complexity, which
makes it impractical in modeling strong nonlinearities, and in
order to reduce it, prior knowledge of the nonlinear aspect is
required. Another popular way to deal with nonlinearities is
to linearize the system at each time instant, along the desired
trajectory, and to use this linear approximation to compute
the predicted future trajectory and then apply the well-known
linear MPC [28]; however, when using an approximation at
the current time instant to predict the whole future trajectory,
the error of the linearization will accumulate, which leads
to a poor prediction process. In [29], a duality-based con-
trol algorithm has been developed to control a two-wheeled
differential robot. The approach uses the duality between
optimal control and stochastic filtering to approximate the
manipulated variables, and to linearize the nonlinear systems.
The linearization and prediction processes were based on
the duality without dependence on the future control signals.
The algorithm led to better approximation of the nonlinear
plants compared to other linearization-based methods; how-
ever, the algorithm consists of two passes, forward for lin-
earization and prediction, and backward for smoothing and
control signals approximation, which double the computation
time. In addition, it cannot explicitly handle constraints.
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Even with today’s advanced computing technology, reduc-
ing the computational cost in both MPC and NMPC remains
a challenge, especially when dealing with systems of fast
complex dynamics. To cope with this issue, many studies
have been carried out in the last few years [30], [31], [32].
A fast NPMC algorithm was presented in [33] for aerial vehi-
cles. The 1-norm was used in the cost function along with
the Resilient Propagation to solve the optimization where
only the sign of the partial derivative is used. The opti-
mized approach was validated on small aerial vehicles with
limited computation capability. Nonetheless, using a simple
1-norm in the evaluation function reduces the tracking per-
formance. Deep-learning-based methods are powerful tools
to reduce optimization’s time [34], [35]. In [36] Neural-
dynamic optimization was considered where the MPC was
iteratively transformed to a quadratic programing problem,
which is solved using primal-dual neural network. The pro-
posed algorithm was applied to solve the trajectory tracking
of a mobile robot and significantly reduced the computation
complexity; however, when using a nonconvex cost func-
tion, the algorithm can easily get trapped in a local mini-
mum, hence the global solution is hard to obtain. In [37], a
learning-by-imitation scheme for mobile medical robot was
presented. NMPC was used with the optimization solved by
a one-layer projection neural network. Although these meth-
ods can reduce the computational cost, a large data set is
needed to train and optimize the network, which is hard to get
from an unpredicted environment like underground mines.
Another method in literature is to introduce a set of discrete
orthonormal basis functions, called the Laguerre functions,
to parametrize the control signals. This allows the realiza-
tion of a longer control horizon with fewer optimization
parameters, which consequently reduces the computational
time [38], [39]. In [40], Laguerre functions were used to
parametrize both linear MPC and NMPC. The resulting algo-
rithmswere compared to other approaches and showed signif-
icant improvement regarding the computational cost and the
number of optimization variables; however, only simulation
results were given without real-time implementation.

In [41], the effect of the parametrization using Laguerre
functions on the feasibility and performance of the MPC was
analyzed, and it showed great improvement on the feasibility
while maintaining a good performance; however, only dual
modeMPC,which uses an infinite horizon for prediction, was
considered. Recently in [42], anMPC controller parametrized
by Laguerre functions was used to control a fast-switching
electronic DC-DC converter allowing the use of a signifi-
cantly short sampling time. Laguerre functionswere first used
with MPC in [43], which later has been expanded in [44]
where a comprehensive study on the use of Laguerre func-
tions with MPC is given, and which all the above-mentioned
studies refer to; however, only linear systems that are sup-
posed to remain constant during the entire prediction process
are considered.

Inspired by these ideas and motivated to find a more
practical tracking algorithm that deals with nonlinearities

accurately while maintaining good performance and low
computational demand, this paper proposes an enhanced
MPC algorithm, based on Laguerre functions (LMPC), for
trajectory tracking of OMR. To ensure a good tracking per-
formance and reduce the linearization’s error, this controller
deals with nonlinearities by noniteratively linearizing the sys-
tem along the predicted trajectory, which, to the best of our
knowledge, has never been done before. The duality between
optimal control and stochastic filtering is used to compute
the linearization points, which allows the linearization of the
system without dependence on the to be computed control
variables. Contrary to existing approaches, the duality is used
only for the prediction, then it is combined with an opti-
mizer to compute the optimal solution. This will enhance the
prediction process, but also increase the computation cost.
To compensate for this increase, Laguerre functions will be
used to parametrize the control variables, which will reduce
the number of optimization variables and consequently the
computational burden. This makes it suitable for real-time
implementation allowing the robot to make fast decisions
and swiftly adapt to sudden changes in complex environ-
ments. The existing Laguerre parametrization method is fur-
ther developed to consider the change of the linear system
at each prediction instant. The performance of the proposed
algorithm is evaluated by simulation and by experiment on the
Robotino-Festo OMR and a comparative study of accuracy
and computational efficiency is carried out with the tradi-
tional MPC and NMPC. The main contributions of this paper
are summarized as follows:

1. The non-iterative linearization along the future optimal
state trajectory prevents the accumulation of the lin-
earization’s error, which gives a better approximation
of the nonlinear behavior and improves the prediction
process and consequently the tracking performance.

2. Parametrization using Laguerre functions reduces the
computational cost of the online optimization allowing
real-time implementation with longer prediction hori-
zon for better performance.

This paper is organized as follows. In Section II, the kine-
matic model of the OMR is presented along with the state-
space representation and the transitionmatrix of linearization.
An introduction to Laguerre’s functions and the LMPC devel-
opment is done in Section III. In Section IV, a comparison
with the NPMC and the traditional linear MPC approaches is
illustrated with simulation and experimental results. A con-
clusion is given in Section V.

II. MODELING OF THE OMNIDIRECTIONAL MOBILE
ROBOT
For this study, a three-wheels OMR is considered. This robot
has three degrees of freedom and can achieve any transla-
tional and rotational movements regardless of its initial ori-
entation. The three omni-wheels, placed at 120◦ from each
other, allow the robot to turn on the spot and to move in
any direction (Fig. 1). The method developed in this paper
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FIGURE 1. Omni-drive of the omnidirectional robot.

is a model-based algorithm, hence an accurate kinematic
model is essential to accurately perform the trajectory track-
ing tasks. Fig. 2 illustrates the location of the robot using
global and local (moving) coordinates. Let (x, y, θ) denote
the position and orientation of the robot in the global frame,
and (xr , yr , θr ) denote the position and orientation in the local
frame. The local coordinates can be transposed into the global
coordinates by  x

y
θ

 = T ×

 xr
yr
θr

 (1)

where T is the transformation matrix that maps the local
coordinates into the global coordinates

T =

 cos θ − sin θ 0
sin θ cos θ 0
0 0 1

 (2)

Let q =
(
x y θ νx νy ω

)T be the state vector of the vehi-
cle with position (x, y), orientation (θ), the components of
translational velocity (vx , vy) and rotational velocity (ω). The
state evolves through translational accelerations (ax , ay) and
rotational acceleration (aθ ) which represent the manipulated
variables, then the kinematic equations can be written as

ẋ = νx cos θ − νy sin θ

ẏ = νx sin θ + νy cos θ

θ̇ = ω

ν̇x = ax
ν̇y = ay
ω̇ = aθ (3)

Remark 1: The relation between the wheels’ velocities and
the translational and rotational velocities of the OMR is as
follows:wheel1wheel2

wheel3

 = 1
r

 0 1 R
−
√
3/2 1/2 R

√
3/2 −1/2 R

VxVy
ω



FIGURE 2. Local and global coordinates.

where wheeli is the rotational speed of the ith wheel, r is
the wheel’s radius, and R is the distance from the center of
the robot to the wheel. However, since the translational and
rotational accelerations of the center of gravity of the robot
are our control variables, this relation is not used.

By using the forward differences method to approximate
the state and input variables, we obtain the following discrete-
time state-space representation of the kinematic model

xk+1
yk+1
θk+1
νx,k+1
νy,k+1
ωk+1

 =

xk + νxk1t cos θk − νyk1t sin θk
yk + νxk1t sin θk + νyk1t cos θk

θk + ωk1t
νxk
νyk
ωk



+


0 0 0
0 0 0
0 0 0
1t 0 0
0 1t 0
0 0 1t


 axk
ayk
aθk



which in compact form becomes:

qk+1 = f (qk )+ Buk
zk = Cqk (4)

with 1t is the simulation step, f (qk ) is a nonlinear function
of the state, B is the input matrix, zk is the output vector
which contains the position, orientation, and velocities of the
OMR, and C is the output matrix. The proposed controller
is based on linearization, thus the transition matrix to the
linearized system, i.e. the Jacobian matrix, is needed and can
be obtained by (5), as shown at the bottom of the next page,
which will be used to compute the linear approximation of
the system at each prediction step.

III. CONTROL SYSTEM ARCHITECTURE
The main objective of robot control is to reach the desired
trajectory with the desired orientation and to stay on it for all
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future time. To achieve this goal, an MPC algorithm based
on Laguerre functions denoted as LMPC, is proposed. The
LMPC controller consists of two major parts, a non-iterative
linearization and a parametrization using Laguerre functions.

A. NON-ITERATIVE LINEARIZATION
Since nonlinear optimal control problems are hard to solve
and computationally demanding, linearization is often used.
Choosing the linearization points is the main problem of lin-
earization approaches. Using the optimal trajectory as lin-
earization points would be the best solution but since they
depend on the control to be computed and the control depends
on them, iterative methods are required [29]. Iterative Lin-
ear Quadratic Regulator (iLQR) is one of the approaches
that uses iterative linearization. It uses the standard linear
quadratic regulator to compute the optimal increments of
the manipulated variables, re-linearizes the system around
the obtained optimal trajectory, and then repeats this process
until convergence is reached [45]. Another method based on
iterative linearization is NMPC. It can deal with nonlinear
cost functions and outputs functions by solving an open loop
optimization using a nonlinear optimization algorithm that,
in most cases, computes gradients of the cost function which
depends on model’s gradients [23]. These methods can give
high performance; however, they require a high number of
iterations and are highly computationally demanding which
make them unfeasible in practice. To avoid applying iter-
ative algorithms, we are going to use the duality between
stochastic filtering and optimal control to achieve non-
iterative linearization by approximating the future optimal
trajectory.

To use such duality, we first consider the stochastic dynam-
ics for the control problem as:

qk+1 = f (qk )+ Buk + wk
zk = Cqk + σk (6)

where wk and σk are fictitious Gaussian noise with covari-
ances Vk and Wk , respectively. The cost function to be mini-
mized at each simulation step is considered quadratic with no
final cost and is given by:

Jk =
Np∑
k=1

eTk Qkek +
Np∑
k=0

uTk Rkuk (7)

with ek = sk−Cqk where sk are the desired set points, which
act as the observation in the duality problem, Np is the length
of the prediction horizon, and Qk ,Rk are known symmetric
positive definite matrices.

The stochastic dynamics for the dual estimation problem is
considered as:

q̄k+1 = f (q̄k )+ wk
sk = Cq̄k + σk (8)

The duality between the optimal control problem (6) and (7),
and the estimation dynamics (8) is established by choosing
Vk = BR−1k B−1 andWk = Q−1k [46]. The computation of the
optimal linearization points can be done using the following
Kalman filter equations:

Kk = PkCT (CPkCT
+ Q−1k )−1

Pk+1 = Ak (I − KkC)PkATk + BR
−1
k BT

q̂k+1 = q̂k + Kk (sk − Cq̂k ) (9)

with Kk is the Kalman gain matrix, Pk is the estimation error
covariance matrix [29], [46] and Ak is the transition matrix
(5).

B. CONSTRAINTS
The key advantage of MPC is the capability to handle
inequality constraints explicitly. Also, OMR exhibits numer-
ous physical and operational constraints that need to be satis-
fied by the control algorithm. First, there are limits on the
acceleration of the OMR, which in this case represent the
control variables and can be expressed as follows:

umin ≤ uk ≤ umax

where umin and umax are vectors of the same size as uk that
contain the lower and upper acceleration limits respectively.
Furthermore, when tracking a reference trajectory, the robot
velocities must not exceed the velocity constraints. In this
study, vx and vy have the same maximum value denoted vmax,
and the maximum rotational speed is denoted ωmax, then the
speeds constraints can be written as: −vmax

−vmax
−ωmax

 ≤
 vxkvyk
ωk

 ≤
 vmax
vmax
ωmax

 (10)

Ak =
∂f (qk )
∂qk

=


1 0 −νxk1t sin θk − νyk1t cos θk 1t cos θk −1t sin θk 0
0 1 νxk1t cos θk − νyk1t sin θk 1t sin θk 1t cos θk 0
0 0 1 0 0 1t
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (5)
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Finally, using (4), the operational constraints of the OMR can
be written together as follows

−uk ≤ −umin

−uk ≤
1
1t

 vmax
vmax
ωmax

+
 vxkvyk
ωk


uk ≤

1
1t

 vmax
vmax
ωmax

−
 vxkvyk
ωk


uk ≤ umax (11)

C. MPC WITH LAGUERRE FUNCTIONS
The second part of the LMPC algorithm is to compute the
optimal control action by minimizing the quadratic cost func-
tion (7) using the MPC method with Laguerre functions.
Although linearizing the system at each prediction step will
give more accurate approximation, it is more demanding
computationally. Therefore, we introduce the Laguerre func-
tions in the problem formulation to solve the open-loop
optimization.

1) INTRODUCTION TO LAGUERRE FUNCTIONS
To reduce the computational complexity of the standard
MPC, we approximate the future control trajectory by com-
bining a set of orthonormal functions (Laguerre Functions)
linearly with few coefficients, which helps to cover the
entire control horizon without the need for massive optimiza-
tion parameters [38]. The Laguerre orthonormal sequence is
described by the following z-transforms:

01(z) =

√
1− a2

1− az−1

02(z) =

√
1− a2

1− az−1
z−1 − a
1− az−1

...

0N (z) =

√
1− a2

1− az−1

(
z−1 − a
1− az−1

)N−1
(12)

where a is the scaling factor of the Laguerre sequence, and
0 ≤ a < 1 for the stability of the sequence [44]. Let li(k) be
the inverse z-transform of 0i(z, a), then the set of discrete-
time Laguerre functions can be written in vector form as:

L(k) =
[
l1(k) l2(k) · · · lN (k)

]T (13)

Taking advantage of the sequence realization

01(z) =
(√

1− a2
)
/
(
1− az−1

)
0k (z) = 0k−1(z)

z−1 − a
1− az−1

k = 2, 3, . . .N

We can describe the sequence by the following state space
representation:

L(k + 1) = AlL(k) (14)

with Al(N × N ) and the initial condition L(0) given by:

Al =


a 0 0 · · · 0
β a 0 · · · 0
−aβ β a · · · 0
...

...
. . .

. . .
...

(−1)N−2aN−2β · · · · · · β a


L(0)=

√
β
[
1 −a a2 −a3 . . . (−1)N−1aN−1

]T
(15)

where β = 1−a2. The orthonormality of Laguerre functions
can be expressed in the time domain by:

∞∑
k=0

li(k)lj(k) = 0 for i 6= j

∞∑
k=0

li(k)lj(k) = 1 for i = j (16)

Finally, this set of Laguerre functions can be used to capture
the response H (k) of an arbitrary system by:

H (k) = c1l1(k)+ c2l2(k)+ . . .+ cN lN (k) (17)

where c1, c2, . . . , cN are the coefficients to be determined
using the system data, and N is the number of terms used
to capture the response [44].

2) LAGUERRE-BASED MPC
The linear approximation of the kinematic model (4) at a
random time instant k is given as:

qk+1 = Akqk + Buk
zk = Cqk (18)

Since the OMR has three motors, i.e., three control inputs, let
the matrix B be partitioned into

B =
[
B1 B2 B3

]
(19)

and define

Am =
1∏

i=m

Ak,i (20)

where Ak,i is the transition matrix computed at the ith future
instant, and m is the current prediction instant. Here, the
linearization at every prediction sample is considered, and
Ak,i is computed using the duality principle. Using (17), each
control variable can be approximated at an arbitrary future
instant with

ui(k + m) = Li(m)Tηi =
Ni∑
j=1

cij(k)l
i
j (m) (21)

where k is the initial time of the moving horizon, m is the
future instant where k ≤ m ≤ k +Np− 1, i = 1, 2, 3 implies
the ith control variable, cij are the coefficients, which are
functions of the initial time of the moving horizon, Ni is the
number of parameters used to capture the ith control variable,
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ηi is a vector containing the coefficients, ηi =
[
ci1 . . . c

i
N

]T
,

and Np is length of the prediction horizon. By using (18)
and (21), the prediction of the future state variables can be
written as:

q(k + m)

= Amq(k)

+
[
B1L1(m− 1)T B2L2(m− 1)T B3L3(m− 1)T

]
η

+

m−2∑
j=0

Am−j−1
[
B1L1(j)T B2L2(j)T B3L3(j)T

]
η

= Amq(k)+ φ(m)T η (22)

with η =
[
ηT
1
ηT
2
ηT
3

]T
and

φ(m)T

=
[
B1L1(m− 1)T B2L2(m− 1)T B3L3(m− 1)T

]
+

m−2∑
j=0

Am−j−1
[
B1L1(j)T B2L2(j)T B3L3(j)T

]
Here we have taken into consideration that the matrix Ak
is not constant during the prediction process, it is changing
at each future instant. With a sufficiently large prediction
horizon, the orthonormal property becomes

Np∑
k=0

li(k)lj(k) = 0 for i 6= j

Np∑
k=0

li(k)lj(k) = 1 for i = j (23)

Using (21) and (23), the sum of the future control inputs can
be computed by:

Np∑
m=0

u (k + m)T Rku(k + m) = ηTRLη (24)

where RL is a block-diagonal matrix where each block con-
tains one of the elements of Rk on its diagonal. Define QL =
CTQkC, putting (22) and (24) in the cost function (7) will
lead to the following form:

J = ηT

 Np∑
m=1

φ(m)QLφ(m)T + RL

 η
+ 2ηT

 Np∑
m=1

φ(m)QLAm

 q(k)

− 2ηT

 Np∑
m=1

φ(m)CTQks(k + m)


+

Np∑
m=1

(s(k + m)− CAmq(k))T

×Qk (s(k + m)− CAmq(k))

= ηT�η + 2ηT (9q(k)− ξ )

+

Np∑
m=1

(s(k + m)− CAmq(k))T

×Qk (s(k + m)− CAmq(k)) (25)

where

� =

Np∑
m=1

φ(m)QLφ(m)T + Rl

9 =

Np∑
m=1

φ(m)QLAm

ξ =

Np∑
m=1

φ(m)CTQks(k + m) (26)

By setting the partial derivative (relative to η) of the cost
function (25) to zero, the optimal solution can be found as:

η = �−1 (ξ −9q(k)) (27)

and the first control action can be computed using

uk =

 L1(0)T 0T2 0T3
0T1 L2(0)T 0T3
0T1 0T2 L3(0)T

 η (28)

Here Li(0) is the initial condition for the Laguerre functions of
the ith input, and 0i is a zero vector with the same dimension
as Li(0).
Remark 2:We note that the Laguerre functions parameters

N and a can be assigned to each input variable independently
of the others, which gives more flexibility in the control
design.
Remark 3: Scaling factor a and the number of terms needed

to approximate uk are closely related. If we set a = 0 and
the number of terms N = Nc the control horizon, we obtain
the traditional MPC approach, and by choosing 0 < a < 1,
we can achieve similar performance with N far less than Nc
and reduce the computational cost [44].

3) CONSTRAINED OPTIMAL SOLUTION
The Laguerre functions can also be introduced in the con-
straints’ description, which gives more flexibility for the
designer to force the constraints at any specified future
instant. The constraints on the control variables at an arbitrary
future time m is:

Umin ≤ u(k + m) ≤ Umax

with m = 0, 1, . . . ,Np − 1, and Umin,Umax are the control
bounds from (11). This can be written in terms of η as:

Umin ≤

 L1(m)T 0T2 0T3
0T1 L2(m)T 0T3
0T1 0T2 L3(m)T

 η ≤ Umax

The constrained optimal solution is obtained by solving a
dual-quadratic problem using the Hildreth method [42], [44].
First the active set of the inequalities constraints is selected
in matrix Mact , then the Lagrange multipliers λact are found
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using the Hildreth’ algorithm, and finally the optimal con-
strained solution is computed by

η = �−1
(
ξ −9q(k)−MT

actλact

)
(29)

Algorithm 1 is the resulting algorithm named LMPC. It shows
the two steps, the linearization and the control computing.
Unlike the algorithm used in [29], which uses the duality to
linearize the system and approximate the control inputs, the
LMPC uses the duality only for linearization. The control
inputs are computed by introducing the Laguerre functions
and performing online optimization. Contrary to existing
methods, the parameterization using Laguerre functions takes
into consideration the linearization at each future instant.
In the case of constrained control, the LMPCuses theHildreth
algorithm to identify the active constraints and compute the
Lagrange multipliers. All the state variables are considered
available for measurement. Therefore, the LMPC is a deter-
ministic state feedback controller.

Algorithm 1 LMPC
1: Initialization
2: q̂k = qk ;Pk = 0
3: Prediction
4: for m = k+ 1, . . . , k+ Np
5: Linearization
6: q̄ = f

(
q̂m−1

)
7: Am−1 =

∂f
∂qm−1

∣∣∣
qm−1=q̂m−1

8: km = Pm−1CT
(
CPm−1CT

+ Q−1k

)−1
9: Pm = Am−1 (I− KmC)Pm−1AT

m−1 + BR−1k BT

10: q̂ = q̄m + km
(
sm − Cq̄m

)
11: Compute Convolution Sums
12: �;9; ξ ; (Eq.19)
13: end for
14: Set The Constraints
15: Mact and λact using Hildreth Algorithm
16: Compute Optimal Coefficients Vector
17: ηk = �

−1
(
ξ −9qk −MT

actλact
)

18: Compute First Optimal control action
19: uk = Lzeroηk

IV. CASE STUDIES ANS ANALYSES
In this section, the performance of the proposed LMPC algo-
rithmwill be analyzed. To show the outstanding performance,
the traditional linear MPC and NMPC approaches are intro-
duced for comparisons.

A. SIMULATIONS SETUP
The simulations are carried out using theMATLAB/Simulink
software. The aim is to drive the OMR to track a given tra-
jectory by minimizing the cost function (7). All the strategies
compared will minimize the same cost function. The follow-
ing approaches will be compared:

1) LMPC: this algorithm linearizes the system at each
future prediction step using the duality principle (9),
and then solves the optimality using Laguerre func-
tions (29). The number of terms and the scaling factor
will be the same for all input variables.

2) MPC: this method solves the optimization problem
using a linearized model and standard optimization
algorithm. Implementation is based on [44].

3) NMPC: this algorithm solves the open-loop optimiza-
tion using the nonlinear model. Implementation is
based on the optimized algorithm in [23], where the
active-set method is used for the minimization. The
convergence threshold is set to 10−8 and the maximum
number of iterations is 103.

To ensure a fair comparison, some unifying conditions need
to be set:

1) The prediction horizon Np is the same for the three
strategies and it is set to Np = 20, which ensure the
convergence and practical feasibility.

2) For both MPC and NMPC, prediction horizon Nc is the
same; however, term Nc does not appear in the LMPC
algorithm, since it has been replaced by the number
of parameters N and scaling factor a. In [43], it has
been shown that for a small N ,Nc and a are related by
a ≈ e−5/Nc .

3) The weighting matrices for the strategies compared are
set to

Rk = diag(0.01, 0.01, 0.01)

Qk = diag(25, 25, 25, 0.1, 0.1, 0.1)

These tuning parameters were chosen through trial
and error, therefore their optimality cannot be guaran-
teed. Nonetheless, they have demonstrated good per-
formance in this study.

B. TRACKING ANALYSIS AND COMPUTATIONAL
RESOURCES
To thoroughly evaluate the tracking performance, we use
a desired trajectory given by reference speed components
vxd = 0.5ms−1 and vyd = 0.5ms−1, reference positions
xd = vxd t; yd = vyd t m, orientation θd = 0 rad, and angular
velocity ωd = 0 rads−1. The trajectory is supposed to be
known along the prediction horizon, and all the state variables
are considered available for measurement.

We consider a set of H = 5 simulations, and a random
uniformly distributed initial state

qh0 = Rand([−1, 1], [−1, 1], [−π/6, π/6], 0, 0, 0)T

For each simulation h, and iteration k, the cost achieved for
each approach is denoted Jr (h, k), r = 1, . . . , 3. The desired
reference minimum of the cost function is chosen to be 5.
On each iteration, the method with the best cost, lower than 5,
is taken as reference Jbest (h, k) to be compared to the other
methods [29], i.e, Jbest = min1<r<3(Jr (h, k), 5). The average
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FIGURE 3. Average Cost Ratio (ACR) per iteration.

cost ratio (ACR) over all simulations is computed by:

ACRr = 1/H
H∑
h=1

Jr (h, k)
Jbest (h, k)

, r = 1, . . . , 3. (30)

Furthermore, to compare the tracking performance of differ-
ent strategies, an additional index is used, which quantifies
the tracking quadratic error [38], and it is given by

Mi = 1/H
H∑
h=1

√√√√√√
Tsim/1t∑
j=1

(
yref (j)− ysys(j)

)2
Tsim/1t

; i ∈ {x, y, θ}

(31)

with 1t = 0.07s. In this experiment, the control horizon for
MPC and NMPC is set to Nc = 5, and for the parameters of
LMPC are chosen a = 0.5,and N = 3.
Fig. 3 shows the ACR of each method for the first 10 itera-

tions in the logarithmic scale. It can be clearly seen that after
the first iteration, the initial cost realized by the LMPC is sig-
nificantly lower than the ones realized by MPC and NMPC,
and after 10 iterations, LMPC yields the best performance.
Both the LMPC and NMPC converge after the third iteration
with LMPC achieving a lower final cost, while MPC took
much longer to converge. The numeric values of Table 1 rep-
resent the number of variables involved in the optimization
process of each strategy, along with the average time for the
first ten iterations. For MPC and NMPC, the number opti-
mization variables are computed by multiplying the number
of control inputs by the length of the control horizon Nc,
whereas for LMPC, it is equal to the number of parameters
used to parametrize the manipulated variables. Only 9 vari-
ables are involved in the optimization process of the LMPC,
while 15 parameters are involved in both MPC and NMPC.

TABLE 1. Number of control parameters and time per iteration.

TABLE 2. Mean quadratic tracking errors for different strategies.

FIGURE 4. Overview of the trajectory tracking experiment.

This gives the LMPC a great computational advantage
(100 times faster) over the NMPC while maintaining good
performance. Even with linearization performed at each pre-
diction instant, LMPC still managed to keep up with theMPC
with only 1ms difference.

Table 2 shows the mean-quadratic tracking errors for the
three methods. It can be appreciated that LMPC significantly
reduces the tracking error compared to MPC with almost the
same computational demand, and it is not that far behind
NMPC. In fact, in the orientation tracking, LMPC showed
better performance than the other two methods. NMPC
showed slightly lowerMx andMy compared to LMPC, at the
cost of higher computation time. This is due to the NMPC
iterative aspect. As a result, LMPC can be considered a
computationally effective method to obtain optimal results in
practice.

C. EXPERIMENTAL RESULTS
In this section, the three algorithms are tested on the
Robotino-Festo omnidirectional robot (Fig. 4). The whole
system is controlled by an embedded PC to COM Express
specifications with Intel i5, 2.4 GHz dual core, 8 GB RAM
and 23 GB SSD. For the motor control, a 32-bit microcon-
troller is used. It generates the PWM signals for actuating
the DC motors using a PID controller. The microcontroller
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FIGURE 5. Tracking the eight-shaped trajectory in real time: (a) using
LMPC and MPC, (b) using NMPC.

FIGURE 6. Reference positions (black solid line) and real positions (red
solid line) using LMPC.

is also used to correct the sensors data. A planetary gear unit
with transition ratio 32:1 is used between the drive shafts and
omni-wheels [47]. The robot has a maximum translational

FIGURE 7. Reference speeds (black solid line) and measured speeds (red
solid line) using LMPC.

FIGURE 8. Applied control inputs (black solid line) and estimated
accelerations (red solid line) using LMPC.

and rotational speeds of 2m/s and 2rad/s respectively. The
algorithms are implemented using the Robotino MATLAB-
Simulink toolbox. The robot accepts translational and rota-
tional velocities as inputs, which are expected to be updated
every 70ms. Since the compared approaches have acceler-
ations as manipulated variables, integrators are included in
the algorithms. The aim is to drive Robotino to follow the
eight-shaped trajectory described by the following equations:

xd = − sin((2π/T )t)

yd = 0.5 sin(2(2π/T )t)

vxd = ẋd ; vyd = ẏd (32)

where T = 25 s is the trajectory period, θd = 0 and ωd = 0.
The control horizon is chosen 10 for MPC and 5 for NMPC,
as for the LMPC,N = 3 and a = 0.8. The weightingmatrices
are chosen as

Rk = diag(15, 15, 15)

Qk = diag(80, 80, 80, 0.1, 0.1, 0.1)

and initial position is given as q0 = [−0.5, 0, π/6, 0, 0, 0].
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Fig. 5 shows the performance of each method when track-
ing the eight-shaped trajectory. In Fig. 5(a), the advantage
of the LMPC performance over MPC is well illustrated. The
NMPC needs longer than the update time of the microcon-
troller (70ms) to compute the next inputs values, whichmakes
it unsuitable for practice, as shown in Fig. 5(b).

Fig. 6 and Fig. 7 show the state variables of the system over
time when using the LMPC: x and y positions, orientation θ ,
translational velocities vx and vy, and angular velocity ω.
The computed input accelerations before integration (black
lines) and the real robot acceleration (red lines) estimated by
differentiating and filtering the odometry data are shown in
Fig. 8.

V. CONCLUSION AND FUTURE WORK
In this paper, an enhanced MPC algorithm based on Laguerre
functions, LMPC, for trajectory tracking of an OMR has been
presented. Non-iterative linearization was performed using
the duality between optimal control and stochastic filtering
to approximate the nonlinear system, and the Laguerre func-
tions were used to describe the control variables and reduce
the number of optimization variables. The method presented
provides a way to ameliorate the prediction process, prevent
the accumulation of the linearization’s error and improve
the tracking performance. The computational time was also
reduced significantly allowing the algorithm to make fast
accurate decisions.

The performance of the proposed algorithm was validated
on the trajectory tracking problem of the OMR and com-
pared to the traditional linear MPC algorithm and the NMPC.
Experiments show that LMPC can achieve high tracking
accuracy, outperforming both MPC and NMPC. Feasibility
and suitability for real-time applications were also demon-
strated by experiment on Robotino Festo mobile robot.

As future work, we will consider optimizing the tuning
parameters using automated tuning algorithms. We will also
consider the use of Laguerre Functions directly in the NMPC.
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