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RÉSUMÉ 

Le drainage minier acide (DMA), suivant l’oxydation des sulfures déclenchée par l’oxygène 

atmosphérique et l’eau libre, occasionne une détérioration de la qualité de l’eau en terme d’acidité 

et de concentration des métaux et oxyanions. Le DMA constitue un danger environnemental 

d’ampleur mondiale vu son effet néfaste sur les systèmes aquatiques et les formes de vies fauniques 

et floristiques. Les contributions scientifiques menées par le gouvernement, l’industrie minière, les 

universités et les établissements de recherche se concentrent sur l’évaluation, la prévention et le 

traitement du DMA pour préserver les écosystèmes avoisinant les installations minières. La plupart 

des contributions scientifiques abordent les aspects avals de la gestion du DMA impliquant les 

étapes opérationnelles et post-fermeture du cycle minier. Peu de solutions pratiques ont été 

suggérées pour la phase de développement en raison du manque de rejets solides in-situ et les 

données expérimentales nécessaires pour envisager lesdites contributions scientifiques. Par 

conséquent, le concept de gestion en amont a reçu très peu d'attention. De même, les approches de 

modélisation utilisées pour prévoir le DMA sont largement étudiées. Bien qu'elles offrent de 

nombreux avantages, la majorité de ces études de modélisation sont réalisées pendant les phases 

d'exploitation et de fermeture du cycle minier, car elles abordent les stratégies de conception et la 

performance des scénarios de restauration. En outre, la recherche scientifique basée sur des 

approches interdisciplinaires pour atténuer le risque environnemental du DMA devrait être 

davantage mise en évidence et développée. 

La revue de la littérature souligne trois concepts principaux ; la géométallurgie, le principe de 

conception pour la fermeture et la réflexion en amont. La géométallurgie a été principalement 

développée pour dissoudre les limites interdisciplinaires entre le géologue, le métallurgiste et 

l'ingénieur minier afin d'optimiser les profits économiques et d'atténuer les risques techniques. Plus 

récemment, divers chercheurs ont inclus les enjeux environnementaux miniers dans la réflexion 

holistique de la géométallurgie. Le principe de conception pour la fermeture exige que les 

problèmes environnementaux potentiels soient pris en compte et planifiés avant et pendant les 

étapes de l'exploitation minière. De même, la réflexion en amont propose d'introduire des pratiques 

préventives dans les filières de gestion des rejets miniers. Ces pratiques doivent être entreprises 

dès les premières étapes possibles du cycle minier, appelées étapes en amont. Bien que de 

nombreuses contributions scientifiques aient abordé les concepts susmentionnés, elles se sont 
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principalement concentrées sur des expériences en laboratoire et/ou sur le terrain. Aucune 

recherche n'a abordé la réconciliation entre les approches de modélisation pour soutenir 

l'atténuation des risques environnementaux du DMA. Le lien entre le géologue et le géochimiste 

environnemental est une préoccupation croissante qui devrait être abordée pour fournir au 

gestionnaire des rejets miniers de nouvelles options pour aller au-delà des méthodes de gestion 

conventionnelles. 

L'objectif principal du présent travail est de dissoudre les limites interdisciplinaires entre les 

approches de modélisation pertinentes pour améliorer la gestion en amont des rejets miniers solides 

et la prévention du DMA. Ainsi, trois objectifs principaux ont été définis : (1) lier la modélisation 

géologique et les attributs environnementaux du DMA pour effectuer une classification spatiale 

proactive des rejets miniers en fonction de leur risque environnemental inhérent; (2) réconcilier les 

outils de modélisation cinétique avec les contraintes des stades amonts du cycle minier (ex. le stade 

de développement) et (3) intégrer la composante spatiale développée selon le premier objectif et la 

dimension temporelle de la modélisation cinétique pour concevoir une approche de modélisation 

holistique permettant la classification en amont des rejets miniers et supportant l'atténuation des 

risques environnementaux. Pour atteindre ces objectifs, l'approche méthodologique a consisté dans 

un premier temps à lier les informations géologiques, collectées tout au long des campagnes du 

logging géologique, à la modélisation numérique. Ce lien a été établi par une approche stochastique 

qui relie les variables discrètes et continues du logging géologique. Le résultat de la simulation 

stochastique soutient la modélisation géologique 3D en accomplissant la densité spatiale adéquate 

des données numériques. Cette partie permettait d'établir des modèles numériques 3D décrivant la 

distribution spatiale d'un contaminant donné contenu dans la roche hôte. Par la suite, l'approche de 

modélisation cinétique a été réalisée pour simuler le pH résultant des principales réactions de 

génération et de neutralisation de l'acidité. Le modèle cinétique prend en compte des conditions 

hautement oxydantes et des réactions contrôlées par la réactivité minérale et la surface disponible. 

Par conséquent, la diffusion d'oxygène n'a pas été considérée comme l'étape limitant le processus 

d’oxydation-neutralisation. Le modèle a été calibré et étalonné par rapport à des tests cinétiques 

expérimentaux dont les conditions opératoires sont conformes à l'hypothèse du modèle. Enfin, les 

modèles spatiaux et cinétiques susmentionnés ont été intégrés pour permettre une classification 

dynamique de la roche abritant le minerai. Le modèle spatio-temporel intégré implique le logging 
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géologique, la simulation stochastique, la modélisation géologique 3D, la modélisation cinétique 

et la modélisation de l’écoulement non saturé. Cette approche holistique décrit la distribution 

spatiale des principaux minéraux générateurs et neutralisants d'acide et entreprend une 

modélisation du transport réactif 1D pour chaque constituant volumétrique élémentaire, nommé 

voxel. Par la suite, une classification en amont des rejets miniers pourrait être effectuée en fonction 

de la teneur inhérente d'un contaminant donné dans la roche hôte et en fonction du pH qui pourrait 

être libéré à l'emplacement X, Y, Z du corps minéralisé si l'assemblage minéral correspondant est 

soumis à des conditions oxydantes. Les résultats de chaque axe sont résumés ci-dessous.  

L’utilisation de la modélisation géologique 3D pour la gestion des rejets miniers a permis de 

visualiser la distribution spatiale des contaminants dans un corps minéralisé et sa roche hôte. Par 

la suite, les responsables en matière de gestion pourraient facilement entreprendre la classification 

des stériles. À cet égard, le site minier Éléonore a fourni une base de données restreinte des teneurs 

en arsenic, l'élément le plus délétère dans son environnement minier, pour créer un modèle spatial 

3D de la teneur en arsenic. Leapfrog Geo a été utilisé pour effectuer la modélisation géologique 

3D et le logiciel de modélisation géostatistique de Stanford (SGeMS) a été utilisé pour entreprendre 

l'analyse du variogramme spatial. Le résultat de ce travail consiste en un modèle spatial 3D en 

multi-réalisation de la teneur en arsenic à travers le gisement et la roche encaissante. Chaque 

réalisation a été évaluée à l'aide des analyses chimiques mesurées pour souligner la fiabilité du 

modèle. Les résultats ont révélé un vaste halo géochimique d'arsenic qui s'étend jusqu'à 500 m du 

gisement d'or, avec jusqu'à 94 % des teneurs en arsenic dépassant 50 ppm. 

Les résultats de la modélisation cinétique à l'aide de PHREEQC ont montré un bon accord avec les 

données des mini-cellules d'altération. L'objectif principal de simulation du pH à l'aide de la 

modélisation cinétique des essais en mini-cellules d'altération a été atteint. Cependant, le modèle 

n'inclut pas les processus de rétention géochimique tels que la coprécipitation et la sorption. Étant 

conscient de ces limites, le modèle cinétique PHREEQC n'est pas conforme aux objectifs de 

conception liés à la restauration minière. Cependant, il est conforme aux études préliminaires tout 

au long de la phase de développement, qui a peu bénéficié des outils de modélisation géochimique. 

Le principal atout du modèle cinétique proposé est la capacité d'entreprendre une analyse 

paramétrique pour l'identification en amont des risques en se basant sur une base de données 

restreinte et un raisonnement de modélisation conservateur. À cet égard, les données d'entrée sont 
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constituées de la caractérisation minéralogique habituelle, les tests de mini-cellule d'altération et 

les taux de réactivité minérale tirés de la littérature, respectant ainsi deux contraintes principales 

qui orientent l'étape de développement : la disponibilité des matériaux et le coût d'évaluation.  

Les résultats du modèle intégrant la modélisation spatiale et la modélisation du transport réactif 

montrent l'évolution spatio-temporelle du pH tout au long du plan central d'exploitation minière. À 

cet égard, 527 simulations de transport réactif ont été effectuées tout au long du plan minier 

composé de voxels de 40х40х40 mètres. Le géomodèle spatio-temporel met en évidence l'effet de 

la réactivité des minéraux neutralisants sur le pH lors de l'oxydation des sulfures. 

L'intégration de la géologie et la géochimie environnementale est la solution clé pour des 

opportunités de production plus propres. Le présent projet a fait progresser les connaissances sur 

la classification en amont des rejets miniers et a mis en place des méthodes prometteuses pour 

intégrer des approches de modélisation multidisciplinaires en vue d'un meilleur contrôle des rejets 

solides dans les mines métalliques. Les méthodes appliquées ici ne se limitent pas aux études de 

cas abordées et pourraient être appliquées à d'autres projets miniers atteignant les stades de 

développement et/ou d'exploitation.  

Mots clés: Logging géologique, Modélisation géologique, Simulation Stochastique, Cinétique 

minérale, Classification des rejets miniers. 
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ABSTRACT 

Acid mine drainage (AMD), following oxidation of sulphides triggered by atmospheric oxygen 

and through-flowing water, causes water quality exceedances in terms of water acidity and metals 

and oxyanions concentrations. AMD is a worldwide ecological-security threat with the ability to 

toxify freshwaters and impair life forms and their support systems. Scientific research contributions 

adopted by governments, the mining industry, universities, and research establishments focus on 

assessment, prevention, and treatment of AMD to safeguard ecosystems neighbouring mine 

facilities. Most of the scientific research contributions tackle downstream aspects of the AMD 

management involving operational and post-closure stages of the mine life. Few practical solutions 

were suggested during the development stage because of the lack of in-situ waste materials and the 

data-intensive nature of the solutions being used. Consequently, the concept of upstream 

management has received very little attention. Likewise, modeling approaches used to forecast 

AMD are extensively investigated. Although they provide many benefits, the majority of these 

modeling case studies are carried out during the operation and closure stages of the mine life cycle 

as they tackle design strategies and the performance of reclamation scenarios. Besides, scientific 

research based upon cross-disciplinary approaches to mitigate AMD environmental risk should be 

further highlighted and developed. 

The literature review underlines three main concepts; the geometallurgy, the design for closure 

principle and the upstream thinking. The geometallurgy was primarily developed to dissolve the 

interdisciplinary barriers among the geologist, the metallurgist and the mining engineer to optimize 

the economic profits and mitigate technical risks. More recently, miscellaneous researchers 

included the mining environmental issues in the geometallurgical holistic thinking. The design for 

closure principle requires that potential environmental issues are considered and planned for both 

before and during the production stages of mining operation. Likewise, the upstream thinking 

proposes introducing preventive practices into mine waste management streams. These practices 

should be undertaken at the earliest possible stages of a mine’s life cycle, known as upstream 

stages. Although numerous scientific contributions tackled the aforementioned concepts, they were 

mainly focused on lab and/or field experiments. No research has addressed the bridging among 

modeling approaches to support the AMD environmental risk mitigation. The nexus between the 

geologist and the environmental geochemist is a growing concern that should be addressed to 
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provide the mine waste manager with novel options to move beyond conventional management 

methods. 

The main aim of the present work is to dissolve interdisciplinary barriers among the relevant 

modeling approaches to enhance mine waste upstream management and AMD prevention. 

Accordingly, three main objectives were defined: (1) bridging geological modeling and AMD 

environmental attributes to perform proactive spatial classification of mine waste based on their 

inherent environmental risk; (2) using the time dimension of the AMD geochemical modeling 

modules that should comply with the framework of the upstream stages of the mine life (e.g., the 

development stage); and (3) integrating the spatial component developed according to the first 

objective and the temporal dimension mentioned in the second objective to conceive a holistic 

modeling approach enabling upstream mine waste classification and supporting environmental risk 

mitigation. To achieve these objectives, the methodological approach consisted firstly of linking 

the geological information, collected throughout the geological logging surveys, to the numerical 

modeling. This linkage was established through a stochastic approach that relates the discrete and 

continuous variables of the geological logging. The outcome of the stochastic simulation supports 

the subsequent 3D geological modeling as it fulfills the data-density requirement. This part enables 

the establishment of 3D numerical models describing the spatial distribution of a given contaminant 

contained in the host rock. Thereafter, the kinetic modeling approach was performed to simulate 

the pH resulting from the main acid-generating and acid-neutralizing reactions. The kinetic model 

considers highly oxidizing conditions and surface-controlled reactions. Consequently, oxygen 

diffusion was not considered as the rate-limiting step. The model was calibrated and benchmarked 

against experimental kinetic tests whose operating conditions comply with the model hypothesis. 

Finally, the aforementioned spatial and kinetic models were integrated to enable a dynamic 

classification of the ore hosting rock. The spatiotemporal integrated model involves geological 

logging, stochastic simulation, 3D geological modeling, kinetic modeling and unsaturated 

environment modeling. This holistic approach portrays the spatial distribution of the main acid-

generating and acid-neutralizing minerals and undertakes a 1D reactive transport modeling for each 

elementary volumetric constituent, named voxel. Subsequently, an upstream mine waste 

classification could be carried out based on the inherent content of a given contaminant in the host 

rock and based upon the pH that could be released at X, Y, Z location of the orebody if the 
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corresponding mineral assemblage undergoes highly oxidizing conditions. Results of each part are 

summarized in the following.  

Repurposing the 3D geological modeling for mine waste management allowed for the visualization 

of hazardous metals spatial distribution throughout an orebody and its hosting rock. Subsequently, 

a mine manager could seamlessly undertake waste rock classification. In this respect, the Éléonore 

mine site provided restricted grades of arsenic, the most deleterious element within the mine 

setting, to create a 3D spatial model of arsenic content. Leapfrog Geo was used to perform the 3D 

geological modeling and the Stanford Geostatistical Modeling Software (SGeMS) was used to 

undertake the spatial variogram analysis. The outcome of this work consists of multi-realization 

3D spatial model of arsenic grade across the ore deposit and the hosting rock. Each realization was 

assessed using available chemical analyses to underline the model’s reliability. The results revealed 

a spacious geochemical halo of arsenic that reaches up to 500 m away from the gold deposit, with 

up to 94% of arsenic grades exceeding 50 ppm. 

Results from the kinetic modeling using PHREEQC exhibited a good agreement with weathering 

cell data. The main objective of simulating the pH using kinetic modeling of weathering cell tests 

was fulfilled. However, the model does not include geochemical retention processes such as 

coprecipitation and sorption. Being cognizant of these limitations, the PHREEQC kinetic model 

does not conform to design purposes related to mine reclamation. However, it complies with the 

upstream scoping studies along the development stage, which has barely benefited from 

geochemical modeling tools. The main asset of the present kinetic model is the ability to undertake 

parametric analysis for upstream risk identification based upon restricted datasets and conservative 

modeling reasoning. In this regard, the input datasets consist of the usual mineralogical 

characterization, weathering cell tests, and literature rate laws, thereby abiding by two main 

constraints that steer the development stage: material availability and assessment cost.  

Results from the model integrating the spatial modeling and reactive transport modeling displays 

the spatio-temporal evolution of the pH throughout the central plane of mining. In this regard, 527 

reactive transport simulations were performed throughout the mining plane consisting of 40х40х40 

meters voxels. The spatiotemporal geomodel highlights the effect of neutralizing minerals 

reactivity on the pH during the sulphide oxidation. 
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Geology and environmental geochemistry integration is the key solution for cleaner production 

opportunities. The present project progressed the knowledge of upstream mine waste classification 

and set up promising methods to integrate multidisciplinary modeling approaches for the sake of a 

better control over solid waste in hard rock mines. Methods applied herein are not limited to the 

case studies framework and could be applied to other mining projects reaching development and/or 

operation stages. 

Keywords: Geological logging, Geological modeling, Stochastic simulation, Mineral kinetics, 

Mine waste classification. 
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 INTRODUCTION 

1.1 The project framework 

Mining and quarrying activities generate overwhelming volumes of solid waste deposited in above-

ground containment facilities, which receive up to 90% of the extracted ore (Mudd, 2007; Yilmaz, 

2011). Mining companies are increasingly interested in low-grade, high tonnage deposits due to 

the expanding international demand for metals. The waste rock stream is roughly threefold higher 

than the ground ore in Australia and the United States, and about 1.5 times higher in Canada (Mudd, 

2007). As the stripping ratio (which refers to the amount of waste that must be removed to release 

a given ore quantity) increases, challenges related to the geotechnical and geochemical stability of 

waste storage facilities exacerbate. With regard to geotechnical challenges, the International 

Council on Mining and Metals (ICMM) issued the global industry standard on tailings management 

in 2020 aiming at zero harm to people and the environment surrounding tailings facilities. One of 

the main axis of the standard is the integrated knowledge base that underlines the role of the 

interdisciplinary approach in addressing geotechnical safety issues. Regarding the geochemical 

aspect, the sparse sulphides in solid waste, previously sequestered in a reducing environment, are 

inevitably exposed to oxidizing conditions upon mine waste disposal. Atmospheric oxygen and 

through-flowing water trigger oxidation of sulphides such as pyrite and pyrrhotite, resulting in 

potentially highly contaminated effluents known as acid mine drainage (AMD). In this respect, 

United States Environmental Protection Agency (USEPA) ranked water contamination from 

mining activities as one of the top three ecological-security threats in the world (Dold, 2008). In 

response, mining societies started to consider environmental issues in their design plans. 

“Designing for closure” principle has then emerged during the last decades to deal with 

environmental issues even before production stages (Aubertin et al., 2016). Similarly, upstream 

mine waste management is another promising concept that proposes introducing preventive 

practices into mine waste management streams. Benzaazoua et al. (2008) used the upstream mine 

waste management reasoning, suggesting that this type of management allows for better control 

over potential environmental issues. Upstream mine waste management involves any practice that 

aims to prevent or alleviate a negative environmental impact from the beginning of the mine cycle. 
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To face AMD environmental risks, a new research trend reconciles advanced mineralogical 

characterization as well as textural mineralogy of the solid waste (e.g. degree of liberation), AMD 

prevention and mine waste management (Brough et al., 2017; Bye, 2011; Chopard, 2017; Elghali 

et al., 2018; Erguler and Erguler, 2015; Paktunc, 1999; Parbhakar-Fox et al., 2013; Weisener and 

Weber, 2010). Exhaustive mineralogical characterization of the solid waste bridges mineralogy, 

previously used exclusively by metallurgists and exploration geologists, and AMD assessment, 

prevention and management. Undertaking such reconciliation effort relates to the holistic thinking 

adopted in geometallurgy. This mineralogy-based assessment usually requires the use of time-

consuming and cost-intensive techniques. Nevertheless, it can increase the efficiency of mine waste 

management when used as a screening tool from the very beginning stages of the mine cycle. 

Likewise, new studies establish geo-environmental protocols consisting of classifying the orebody 

in geo-environmental domains based on mineralogy and lab tests (Duvernois, 2022; Vermette, 

2018). Identifying mine waste with high risk of AMD before mining helps in controlling 

contamination spread (Brough et al., 2013; Parbhakar-Fox et al., 2011; Vermette, 2018). Such 

protocols inherit their sequence from the geometallurgical procedures covering the exploration, the 

prefeasibility and the feasibility stages as they mainly depend on the available samples and their 

representativeness.  The outcomes of such approach relate deposit typology to the geo-

environmental behaviour after exposing mine wastes to atmospheric conditions. For example, 

volcanogenic massive sulphide base-metal deposits are deemed acid generating since the ratio of 

reactive neutralizing minerals to reactive sulphide minerals is low; moreover, toxic trace elements 

such as Cu, Zn, Pb and Cd are common to be released in such deposit type. Whereas, orogenic gold 

deposits mineralogy often hinder acid generation because of higher neutralizing minerals to 

reactive sulphide minerals ratio, nevertheless arsenic leaching from arsenopyrite is a common 

concern in orogenic gold deposits (Jamieson, 2011).  

As pointed out earlier, integrated approaches were extensively investigated to tackle AMD-related 

aspects. Nonetheless, modeling disciplines frequently used in mining geology and environmental 

geochemistry received a very little benefit from the integration concept and the holistic thinking 

suggested by geometallurgy. Geologists began to establish their geological models since the 

exploration stages. Likewise, environmental geochemists start their modeling as soon as mine 

waste material is available. Nevertheless, no cross-disciplinary flow of information and skills 
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connects them for the sake of a better control over mine solid waste. Consequently, a new bridging 

approach is needed to establish a nexus between the modeling toolboxes of the geologist and the 

environmental geochemist to enhance mine waste classification. 

1.2 The general problematic 

Although numerous scientific contributions advanced the modeling of AMD geochemistry and 

miscellaneous geometallurgical studies carried out interdisciplinary integration to face AMD-

related issues, few studies focused on integrating geological modeling, environmental 

geochemistry modeling and mine waste management. Besides, slight effort has been directed 

toward extending the capabilities of geological modeling to geochemical processes. Geostatistics 

is considered as an efficient tool to provide estimations because drilling could not be performed 

throughout the entire extent of the deposit owing to its cost and the initial investment constraints. 

In this regard, new insights are necessary to consolidate the high sense of teamwork and 

collaboration between the geologist and the environmental geochemist to implement a cross-

disciplinary flow of information and skills, thereby, providing the opportunity for the formulation 

of proactive upstream mine waste management options that could prevent and/or alleviate future 

environmental liabilities. 

1.3 The project novelty 

Capabilities of 3D geological modeling have been extensively used to guide exploration and 

mining operations. The AMD-related disciplines have benefited very little from this modeling tool. 

Therefore, the main novelty is combining the geochemistry modeling tools and the geology 

modeling capabilities to create a promising way enhancing mine waste management and assisting 

decision makers. To the author’s knowledge, this project is the first of its type to suggest upstream 

management based on cross-disciplinary modeling. Other aspects of novelty may include the use 

of stochastic simulation in conjunction with 3D geological modeling and the use of kinetic 

modeling during the development stage. 
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1.4 The research hypotheses 

This project embeds the following hypotheses: 

• A 3D geological model of a given contaminant could be established based on the available 

data from the drilling surveys; 

• Geochemical models could be envisioned since the development stage even if actually most 

geochemical models were performed during the operation and post-closure stages;     

• Combining a geochemical model with a spatial model could result in a good risk 

identification and localization during the development stage. 

1.5 Objectives 

The general objective of this study is to develop a cross-disciplinary modeling approach that 

enables dynamic upstream mine waste classification (Figure 1.1). 

To reach the general objective three main specific objectives were set up: 

• Repurpose 3D geological modeling for mine waste classification based upon the inherent 

content of a given contaminant in the hosting rock; 

• Develop a straightforward kinetic modeling approach that could be applied during the 

development stage; 

• Merge the spatial and kinetic attributes of the aforementioned models into one consolidated 

model that enables dynamic classification of the hosting rock (upcoming waste rock). 

1.6 The dissertation content 

This work consists of 9 chapters; four chapters are research articles published or submitted in 

refereed journals or peer-reviewed conference. The present chapter discussed the general 

framework and the problematic of integrating multidisciplinary modeling tools. The aimed 

modeling aspects were succinctly evoked. Besides, linkage to upstream mine waste management 

was underlined. This chapter also stressed the project novelty, the research hypotheses and the 

objectives as well as the dissertation organization.  
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Figure 1.1 Visualization of the project objective 
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The chapter 2 presents a succinct critical literature review about the main axes of the project 

including AMD formation, conventional and integrated management approaches, stochastic 

simulation, geological modeling and reactive transport modeling. The field of application of each 

modeling approach is revisited to highlight the interdisciplinary barriers existing among the 

aforementioned disciplines. The main concepts of AMD formation and conventional management 

approaches are briefly invoked to underline the need for a research integrating management 

concerns and AMD mitigation before mining. Few researches tackled integrated methods to foster 

upstream management of mine waste. The chapter 2 ends with final remarks and considerations 

that guide the methodology of the project.   

The chapter 3 portrays the methodology implemented throughout the project. The methodology 

scheme progressed as the project advanced. Therefore, the final methodological approach is 

slightly different from its initial version, some refinements and trade-offs were necessary in the 

course of this work to achieve the objectives.  

The chapter 4 is a research article issued in the Journal of Geochemical Exploration in 2021. This 

chapter reconciles the upstream mine waste classification, 3D geological modeling and stochastic 

simulation. Therefore, it achieves the following specific objective:  

• Repurposing 3D geological modeling for mine waste classification based upon the inherent 

content of a given contaminant in the hosting rock. 

The suggested modeling method overcomes the shortcomings of the As grade database, supplied 

by Éléonore mine site, by coupling a correlation-based stochastic simulation with geological 

logging database. The 3D geological modeling coupled to the stochastic simulation via the 

geological logging exhibited interesting outcomes that could improve waste rock classification 

based upon their metal(loid) content. Through the newly developed method, mine managers could 

depict metal(loid) grades across the ore and its hosting rock with known margins of error based 

upon a restricted geochemical database. More importantly, the stochastic simulation is a powerful 

tool that could be applied to mine waste management to move beyond deterministic methods. 

Likewise, links between geology and mine waste management should be encouraged to dissolve 

interdisciplinary barriers and move towards integrated waste management solutions. However, the 
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suggested method does not include a kinetic component; it only considers the metal(loid) grade in 

the hosting rock as a proxy guiding the waste rock classification. 

The chapter 5 is a research article issued in Minerals in 2021. This chapter tackles the kinetic 

modeling as a separate component to be used throughout the development stage despite the lack of 

in situ mine waste materials. Only based on the mineralogical characterization of drill core samples 

collected during the exploration stages, a preliminary prognosis of the pH could be performed using 

the previously issued kinetic rate laws and assuming highly oxidizing conditions. This article 

achieves the following specific objective:   

• Developing a straightforward kinetic modeling approach that could be applied during the 

development stage. 

Kinetic modeling using PHREEQC (Parkhurst and Appelo, 2013) was used to simulate weathering 

cell tests. This test provides highly oxidizing conditions and could be performed on 67 g of solid 

media. Hence, the test operating conditions foster kinetically controlled reactions mainly dependent 

on the minerals reactivity and their available surface for reaction. This test is a reliable tool 

frequently used for environmental scoping surveys during the development stage. The kinetic 

model was intended to simulate the pH released throughout the weathering cell test duration. The 

main controlling factors included in the model are the mineral rate laws, the chemical elements 

diffusion from the grain surfaces to the through-flowing water and chemical elements advection. 

After simulating the pH and benchmarking the model, a parametric analysis was undertaken to 

explore the effect of slow-reacting neutralizing minerals on the pH evolution. The results 

underlined the neutralization time lag needed for slow-reacting neutralizers to buffer the pH. 

Performing such parametric analysis during the development stage yields a preliminary assessment 

of the possible scenarios of AMD generation. However, this research article does not include a 

spatial component; it only considers the time-dependent evolution of the pH based on the mineral 

reactivity issued in the literature. 

The chapter 6 is a conference article issued in Tailings and Mine waste Proceedings in 2021. This 

conference paper revisits the aforementioned approaches and initiates the concept of integrating 

geological modeling and kinetic modeling for a better upstream mine waste classification. The 
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content of the article triggers the integration thinking and its intended outcomes. The following 

objective was announced during the conference: 

• Merging the spatial and kinetic attributes of the aforementioned models in one consolidated 

model that enables dynamic classification of the hosting rock. 

The chapter 7 is a research article published in the journal of Environmental Pollution in 2022. 

This article addresses the general orientation of the project and fulfills the aforementioned specific 

objective.  

The 3D geological modeling, the stochastic simulation and geological logging were used to 

represent the ante-mining 3D spatial distribution of pyrite, albite and calcite considered as the main 

acid-generating and acid-neutralizing minerals in a given case study. Along the main mining plan, 

a block model was produced for each mineral spatial model. The kinetic modeling approach was 

implemented using PHREEQC combined to VS2DRTI (Hsieh et al., 2000) to consider variably 

saturated conditions, assuming highly oxidizing conditions. The 1D reactive modeling simulated a 

1D column for each elementary component of the block model along the specified plan. 

Subsequently, the simulated pH for different periods was assigned to its respective voxel. The 

results consist of a spatiotemporal visualization of the pH circumscribing geo-environmental 

domains, thereby providing the opportunity for the formulation of proactive options for upstream 

mine waste management that could prevent future environmental liabilities. 

The chapter 8 is a general discussion that begins with the advantages of the approaches developed 

throughout the project followed by the main limitations. An emphasis on other integration 

possibilities is presented to provide future research horizons that should be tackled to achieve a 

higher stage of integration.  

Finally, the chapter 9 consists of concluding statements and recommendations. 

1.7 The project sequence 

To elaborate this project several steps were carried out. The following introduces these steps and 

yields an overview on the technical detail of each step.  

The first step was to provide a critical literature review including the main axes of the project. The 

objective was to document the AMD-related research and explore the state of the art in hard rock 
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mines management methods. Subsequently, the focus was redirected to AMD modeling research 

to grasp the framework of the application of these models; why, when and how the geochemists 

establish these models? During this step, it was noticed that most AMD modeling case studies were 

performed during operation and post-closure stages. Accordingly, the following question emerged: 

why AMD modeling is not used before mining? The answer was that the programs being used to 

simulate water quality are data-intensive and case-specific. Furthermore, the AMD models 

frequently rely on laboratory and/or in situ rate laws of oxidation measured by the geochemists to 

take into consideration the solid waste reality in their models. Consequently, AMD geochemical 

models devoid of a high stage of complexity are not relevant for water quality prediction since real 

life AMD formation is an intricate system. Because stages before mining are data-restricted, the 

AMD models are not complex enough and therefore not relevant. Nonetheless, if we shift the 

objective from water quality prediction to preliminary scoping surveys and initial upstream risk 

identification there will be an opportunity to carry out geochemical modeling based upon minimal 

data and lower degree of complexity. Weathering cell test is the best experimental example of a 

geochemical tool for preliminary scoping surveys; such surveys should also include the modeling 

axis. However, a straightforward model of the mineral kinetics occurring in weathering cell test is 

insufficient as novelty.  

At this stage, the concept of interdisciplinary integration emerges and it was borrowed from the 

geometallurgical thinking. The integration thinking was previously used by Vermette (2018) who 

established a staged experimental protocol merging environmental and geological information. The 

modeling approaches integration was not addressed by Vermette (2018), however; his work was 

the key knowledge to clearly define the scope of the present project. Benzaazoua et al. (2008) was 

also a key article as it discussed the relevance of upstream and integrated approaches. The 

following sentence stated by Benzaazoua et al. (2008) contributed to define the aim. 

«For more general cases, an upstream mine waste management program that aims at 

reducing the downstream environmental costs corresponds well to the old saying: 

‘‘prevention better than cure” (or to the principle of ‘‘designing for closure” often 

invoked in the mining industry).» 

Combining the straightforward geochemical model to other modeling methods that could be 

performed before mining was the original insight that could increase the model relevance. 
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Subsequently, the second step of the literature review was to explore several modeling methods 

including geological modeling, dynamic modeling and stochastic simulation and further learn 

about reactive transport modeling to find a nexus among these methods leading to a clear outcome. 

Afterwards, an opportunity of a Mitacs training was offered to the author by the Éléonore mine. 

The training topic complied with the PhD project; the environment department in Éléonore desired 

to establish links with the geology department to define underground sectors containing high As 

grades in the orebody. Because the two departments speak different technical languages, the flow 

of information was lacking, thereby, halting agreement and understanding even after many 

meetings. Consequently, the presence of a mediator with geological background and environmental 

knowledge was necessary to use the available geological information for a better control of the As 

problematic. After realizing that the As spatial distribution is not lithology-dependent, the first 

original idea relied on using 3D geological modeling to depict the spatial distribution of As 

throughout the orebody. Geologists are frequently using this spatial modeling to depict the gold (or 

any other element of interest) spatial distribution based on drill cores and geostatistic methods. The 

geologists use these spatial geomodels for exploration purposes and the mining engineers used 

them to establish their mining schedule. Repurposing 3D geological modeling for contaminant 

visualization could become a good practice that supports proactive management of mine waste. 

However, such geostatistical approaches require large numerical datasets to ascertain high 

interpolation quality. Frequently, the available numerical data of contaminants are restricted 

because these elements are not of interest and do not undergo exhaustive chemical analyses. 

Without adequate data spatial density, 3D geological modeling could not be carried out. 

Consequently, the second original idea was introduced; it consists of using stochastic simulation 

to fulfill the requirement of data spatial density.  

The stochastic process considers two continuous and independent variables A and B. Thereafter, 

an auxiliary variable is produced by normalizing the values of A variable by their respective values 

of B variable. Subsequently, the resulting power law (y=axb) exhibits significant correlation in the 

logarithmic scale and constitutes the objective function of the process. Afterwards, a Monte Carlo 

simulation is carried out based upon correlated random sampling of the probability density 

functions (PDFs) of the auxiliary variable and B variable. The PDF of the B variable is defined 

relying on its comprehensive sample size while the parameters of the auxiliary variable PDF are 
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iteratively updated until attaining a power law parameters as similar as possible to the objective 

function. This Monte Carlo simulation allowed the generation of a linear-shaped scatter with a 

large number of points. A Gaussian distribution centred on the correlation coefficient controls the 

scatter dispersion. The definition of the correlation as a stochastic parameter rather than a static 

value allows for the epistemic uncertainty approximation. Finally, the user selects the desired 

values of the B variable along with their respective values of the auxiliary variable and cancels the 

normalization to obtain the newly generated data of A variable.  

Using the aforementioned stochastic process, sufficient numerical data was generated. Thereafter, 

variography analysis was performed using SGeMS and numerical implicit modeling was 

performed using Leapfrog Geo. The established 3D model of As was overlaid on the mine plan to 

circumscribe sectors with high to extreme As grade. These sectors could be defined and classified 

before mining them, thereby, fostering the upstream mine waste management.  

Although the 3D geoenvironmental model supports mine waste classification before mining, it only 

considers the contaminant content in the host rock; it is static. Therefore, the next step was to 

establish a kinetic model enabling the pH simulation using a public domain software. The kinetic 

model is based upon minimal characterization data of drill core samples and could be used during 

upstream stages. The model reports the resulting pH from surface controlled reactions mainly 

involving oxidation and neutralization. Unsaturated flow modeling was added later to the kinetic 

model to enable simulations of larger-scale systems. In this respect, the 3D geoenvironmental 

modeling method was coupled to reactive transport modeling approach to create an integrated 

spatiotemporal model. This model allows the definition of geoenvironmental domains based upon 

the pH and supports dynamic classification of mine waste even before mining. Therefore, the third 

original idea was the integration of geological modeling, stochastic simulation, kinetic modeling 

and unsaturated flow modeling to inform dynamic mine waste classification prior and during the 

mining stages. 
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 LITERATURE REVIEW 

This chapter supplements the literature review included in the introduction parts of the research 

articles. Furthermore, the main modeling background knowledge used in the subsequent chapters 

is underlined in this chapter.  

2.1 Acid mine drainage formation 

Mine managers tackle geotechnical issues via thorough design efforts and continuous monitoring 

measurements. However, in hard rock mines, besides geotechnical challenges, mine managers 

should meet water quality requirements. AMD is the most common dilemma in hard rock mines, 

as it fosters contaminants spread. This section supplies an overview on AMD and its main driving 

reactions. 

Acid drainage is observed wherever sulfide minerals are exposed to atmospheric conditions, it 

occurs in naturally exhumed sulfides as well as in anthropogenic land disturbances (Blowes et al., 

2003). Acid drainage stemming from mining activities is by far the most deleterious source of acid 

drainage. Nordstrom et al. (2000) reported one of the lowest AMD water qualities with negative 

pH values as low as -3.6, metal concentration amounted to 200 g/L and sulfate concentration as 

high as 760 g/L. Unlike the naturally exhumed ore, mining involves crushing and milling, thus the 

ore grain size is reduced to reach a typical range for optimal processing. Blowes et al. (2003) issued 

particle size ranging from 25 μm to 1 mm, Bussière (2007) reported a grain size as fine as silty 

material (2 to 80 μm). In both cases, the available grain surface of milling wastes is sharply 

increased, this explains to some extent the magnitude of acid drainage in mining framework.    

AMD formation is a chemical process that involves miscellaneous chemical reactions; sulfides 

oxidation, acid neutralization and secondary minerals precipitation. The ore mineralogical 

assemblage is noticeably correlated to water quality, since mineralogy controls the nature of 

oxidation and neutralization reactions that could occur. Water and oxidant availability are also 

deemed as prerequisite to trigger sulfides oxidation (Akcil and Koldas, 2006; Evangelou and 

Zhang, 1995). Pyrite is frequently used to express oxidation reactions, note, however, that not all 

sulphides behave like pyrite. For the sake of clarity, this document lists chemical reactions with 

regard to pyrite oxidation since it is considered as the most abundant sulphide mineral in the 

metalliferous ore deposits as well as in coal deposits (Blowes et al., 2003; Bouzahzah et al., 2014; 
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Nordstrom et al., 2000).  The oxidation of 1 mole of pyrite produces two moles of SO4
2−, one mole 

of Fe2+ and two moles of H+. The released Fe2+is oxidized to Fe3+consuming one mole of H+, 

however, at slightly high pH, Fe3+ solubility drops to form iron hydroxides yielding 3 moles of 

H+, the corresponding overall reaction is described as follows (Blowes et al., 2003; Nordstrom, 

1982) :  

FeS2(s) + 15
4

O2(aq) + 7
2

H2O(aq) ⟶ 2SO4
2−(aq) + Fe(OH)3(s) + 4H+(aq)          2.1 

Equation 2.1 known as direct oxidation of pyrite shifts the pH to values as low as 4.5, high H+ 

activity results in a shielding effect strengthening around Fe3+ atoms, and this increases the iron 

solubility. As Fe3+ becomes more available in the aqueous solution, it acts as oxidizing agent. 

Furthermore, it is widely accepted that Fe3+ oxidizes pyrite more rapidly than O2 (Blowes et al., 

2003; Evangelou and Zhang, 1995). One could ask the following question regarding pyrite 

oxidation by Fe3+: why pyrite oxidation is fostered and further accelerated when Fe3+ ions are 

available? Based on electronegativity concept, O atom is ranked second on Pauling’s scale. This 

suggests that O atoms accept electrons much more easily than Fe atoms. However, 

electronegativity-based reasoning leads to erroneous insights as it speculates that O2 should oxidize 

pyrite more rapidly than any other oxidizing agent should. Since electronegativity-based reasoning 

does not answer the previous asked question, one could adopt activation energy-based reasoning 

and speculate that electron transfer between pyrite and  Fe3+ is favored through lower activation 

energy. Nonetheless, Wiersma and Rimstidt (1984) issued that pyrite oxidation by the aqueous 

ferric ion, over a temperature range of 25 to 50°C, requires an activation energy of 95 kJ/mol.  

McKibben and Barnes (1986) stated that pyrite oxidation by dissolved oxygen, over a temperature 

range of 20 to 30°C, requires an activation energy of 56.9 kJ/mol. Regardless of the crystalline 

structure effect on the activation energy, Blowes et al. (2003) related the activation energy to the 

pH and stated that H+ high activity reduces the activation energy. Once again, the activation 

energy-based reasoning does not fully match the answer. Luther III (1987) linked the higher 

oxidation rate of pyrite by Fe3+ to orbital theory; the positively charged iron ions bond to pyrite 

surface more rapidly and interact with the partially-negatively charged sulfur. Thus, electrons 

transfer is enhanced when Fe3+ is involved in the pyrite oxidation. This oxidation known as indirect 

oxidation results in lower pH values as compared to the direct oxidation, because all oxygen atoms 
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of the sulfate species are released from water rather than oxygen molecules. The indirect oxidation 

reaction is expressed as follows (Evangelou and Zhang, 1995): 

FeS2 + 7Fe2(SO4)3 + 8H2O ⟶ 15FeSO4 + 8H2SO4          2.2 

Although oxygen molecules initiate pyrite oxidation at circumneutral pH, Fe3+ ions are an effective 

oxidant by dint of pyrite magnetic properties (Moses et al., 1987). Thus, the oxygen role consists 

of maintaining the process through Fe2+ oxidation (Evangelou, 1995; Singer and Stumm ,1970). 

Biotic processes foster indirect pyrite oxidation through maintaining high rate of Fe2+ oxidation 

(Kleinmann et al., 1981). Likewise, some chemical processes in abiotic framework could maintain 

a high rate of Fe2+ oxidation; Asghar and Kanehiro (1981) issued that 95% of 100 ppm of ferrous 

sulfate was oxidized to ferric within a day when added to a soil sample of pH 4.4 containing 3.04% 

of manganese oxide content. Evangelou (1995) emphasized the occurrence of sulfide oxidation 

under abiotic and anoxic conditions by means of transitional metal oxides; in case of manganese 

oxide, he suggested two possible mechanisms driven by the following reactions:  

MnO2 + 4H+ + 2Fe2+  ⟶  Mn2+ + 2H2O + 2Fe3+          2.3 

4MnO2 + 8H+ + 0.5FeS2 ⟶ 4Mn2+ + SO4 + 0.5Fe2+ + 4H2O          2.4 

As pointed out, the oxidation rate of pyrite is dependent on miscellaneous factors such the oxidant, 

pH, crystallography, etc. However, one could ask why under atmospheric conditions the pyrite is 

unstable and prefers to be disintegrated into other products. Regardless of the pyrite genesis 

process, once exposed to atmospheric conditions its oxidation is triggered. With regard to 

thermodynamic concepts, pyrite oxidation is spontaneous under isobaric conditions. Spontaneous 

reactions, also named exergonic reactions, imply negative change of Gibbs free energy. In terms 

of pyrite oxidation, the reaction is exothermic and entails a positive change in entropy since it 

increases the microstates of the system. These features result in a negative change of Gibbs free 

energy making the reaction spontaneous at all temperature ranges. Evangelou (1995) pointed out 

that pyrite exposed to atmospheric conditions exhibits a change of Gibbs free energy of -1200 

kJ/mol. Nonetheless, the reader should notice that the magnitude of the change in Gibbs free energy 

does not reflect the rate at which the oxidation occurs, because spontaneity is not related to kinetics 
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or reaction rate. A classic example is the exergonic process of carbon in the form of a diamond 

turning into graphite. This reaction is very slow that it is not noticeable on the human timescale. 

In terms of pyrite oxidation kinetics, Blowes et al. (2003) reported in his review miscellaneous rate 

expressions that involves either dissolved oxygen or dissolved iron in their formula. Nonetheless, 

dissolved oxygen and ferric ions could act simultaneously to oxidize pyrite because pyrite 

oxidation is a surface-controlled process. Evangelou (1995) suggested a reaction rate based on both 

oxidation pathways and included the surface area available for oxidation: 

                                  −d[FeS2]
dt

= [k1(O2)ν1 + k2(Fe3+)ν2] (S)          2.5 

ki denotes rate constants, 𝜈𝜈1 and 𝜈𝜈2 refer to reaction order with respect to O2 and Fe3+ respectively, 

(O2) is the partial pressure of oxygen, (Fe3+) is the concentration of ferric ions and S denotes the 

surface area available for oxidation. As the pH controls the iron hydroxide solubility, the equation 

2.5 is further developed as follows (Evangelou, 1995): 

−d[FeS2]
dt

= �k1(O2)ν1 +  k2 �
Ksp

(OH−)3� �
ν2
�  (S)          2.6 

Ksp denotes the solubility product constant. The equation 2.6 describes pyrite oxidation rate in 

abiotic conditions, it indicates that a decreasing pH results in higher oxidation rate. The iron 

hydroxide precipitation hinders free ferric ions adsorption on pyrite surface thereby reduces pyrite 

oxidation rate. Then one could expect low oxidation rate as iron hydroxide solubility drops, when 

the pH values shifts from 3.5 to circumneutral and neutral pH. However, Nicholson and Scharer 

(1994) reported that the oxidation rate at pH=6 has been found to be as much as twice the rate at 

pH=2 when temperature is slightly increased (at 33°C). Nicholson and Scharer (1994) findings are 

in line with Singer and Stumm (1970) results who found high oxidation rates at neutral pH under 

atmospheric conditions. Their findings supported observations related to accelerated oxidation of 

pyrite in the presence of limestone (Evangelou, 1995). Singer and Stumm (1970) explained this 

fact based on the rate-determining step of oxidation; at pH lower than 3.5 the oxidation of Fe2+to 

Fe3+ is closely dependent on Fe2+ concentration and O2 partial pressure, whereas at greater pH 

values, the Fe2+ oxidation is second order with respect to OH−activity. Thus, OH− ions foster 

Fe2+oxidation, this would increase pyrite oxidation rate by Fe3+as long as iron hydroxide are not 

precipitated and/or the formed iron hydroxide is not stable enough. No single model can describe 
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pyrite oxidation kinetics because of the tremendous controlling factors such as particle size, 

crystallinity, crystal imperfections, impurities, ionic strength, type of oxidant, mineralogical 

associations etc. The choice of a particular rate should be based on the scope while being cognizant 

of the rate limitations. 

The sulfides-bearing minerals could be hosted in non-sulfide gangue minerals, reactive enough to 

buffer the generated acidity completely or partially. The acid-consuming minerals refer to the 

neutralizing minerals that trigger the neutralization mechanisms.  The neutralization potential was 

extensively assessed by means of chemical and mineralogical approaches (Blowes et al., 2003; 

Bouzahzah, 2013; Jambor et al., 2003; Lawrence and Scheske, 1997; Paktunc, 1999; Plante et al., 

2012; Skousen et al., 1997; Sobek, 1978). Carbonate minerals are the most effective neutralizing 

minerals because of their high dissolution rate. The most common carbonate minerals are calcite, 

dolomite, ankerite and siderite (Blowes et al., 2003). One mole of pure calcite buffers two moles 

of acid at low pH values as follows: 

CaCO3 + 2H+  ⟶  Ca2+ + H2CO3          2.7 

Dolomite is also an important acid-consuming mineral: 

CaMg(CO3)2 + 2H+  ⟶  Ca2+ + Mg2+ + 2HCO3
−          2.8 

If sufficient amount of the carbonate minerals is present and available to neutralize the produced 

acidity, the pore water pH is maintained at neutral values. However, depending on the chemical 

formula and the impurities embedded in these minerals, several cations could be released to the 

environment such as: Mn, Fe, Mg, Ca (Blowes et al., 2003). Furthermore, the dissolution rate of 

carbonates varies depending on mineralogy. Bouzahzah (2013) stated that the dissolution rate of 

dolomite does not allow the complete release of the neutralization potential within 24-hour span. 

Moreover, the presence of Fe and/or Mn in the carbonate minerals induces the release of acidity 

following hydrolysis process and hydroxide mineral precipitation.  When neutralization potential 

related to carbonate minerals is depleted, the Al hydroxide minerals buffer the pH at a range of 4 

– 4.5 (Blowes et al., 2003). The pH buffering reactions result in geochemical sequence fostered by 

the depletion of a given neutralizing mineral. 

Strömberg (1997) compiled results that indicated the calcite dissolution rate at ambient temperature 

and neutral pH values is 106 times higher than biotite, anorthite and albite dissolution rate (Bussière 



17 

  

 

et al., 2005). Albeit silicates dissolution is slow at neutral pH values, pH-buffering capacity of 

silicates contribute to enhancing water quality at low pH values. Silicates dissolution is undertaken 

through congruent (equation 2.9) and/or incongruent mechanism (equation 2.10). Incongruent 

mechanism results in clay minerals formation, which fosters contaminants adsorption and a 

possible attenuation of the contaminants release.  

CaAl2Si2O8 + 2H+ + 6H2O ⟶   Ca2+ + 2Al3+ + 2H4SiO4 +  6OH−          2.9 

CaAl2Si2O8 + 2H+ + 6H2O ⟶  Ca2+ +  Al2Si2O5(OH)4          2.10 

AMD propagation is closely controlled by methods used to manage the mine waste facilities. 

Therefore, AMD and mine waste management constitute a feedback loop of causal relationships. 

Even though, AMD is a spontaneous geochemical process under subsurface conditions, it could be 

mitigated through integrated and responsible management procedures. Otherwise, it could be 

further exacerbated if the management approaches do not include a high sense of environmental 

responsibility. Therefore, the following subsection describes common mine waste management 

methods classified into conventional and integrated approaches.  

2.2 Overview on mine waste management approaches 

Tailings production is amounted to 5 billion tonnes per year worldwide (Lu and Wang, 2012). 

Upon closure, reclamation costs of an acid-generating tailings impoundment in Canada may raise 

to more than 250,000 $ per hectare (Aubertin et al., 2002). For instance, the reclamation cost of 

Lorraine mine site in Abitibi-Témiscamingue is amounted to 1.3M$ over 11 hectares in 1999 

(Bussière et al., 2005). 

Geotechnical issues and contaminants release raise serious concerns as they may result in 

detrimental ecological footprints. Emblematic examples include the spillage of 600 000-700 000 

m3 of caustic bauxite tailings over 40 km2 in Hungary (Klebercz et al., 2012). The Bafokeng 

platinum tailings storage facility in South Africa crumpled because of above average rainfall, 

releasing more than 3 million tonnes of tailings during the resulting flowslide (Fourie, 2009),  and 

more recently the Brumadinho dam failure affirms the hazardous risk of the conventional 

management approaches. Most mines around the world still adopt the conventional management 

approaches (Edraki et al., 2014) disregarding the overall footprint and optimizing costs at the 
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expense of the responsible and integrated waste management plans. Aubertin et al. (2016) stated 

that the integrated management approaches and “Designing for closure” concepts are seldom being 

applied diligently by the industry. Nonetheless, stringent regulation has been proven reliable to 

streamline stakeholders’ interests.    

The conventional tailings management approaches consist of pouring low solid content slurry into 

the tailings impoundment, which is partly (side-hill dyke or closure to existing pit) or fully 

(complete ring-dyke) surrounded by dykes (Blight, 2009; Bussière, 2007). The slurry is 

hydraulically transported at solid content of 25% to 45% and discharged via a line discharge or a 

single-point discharge. The low solid content implies large above ground containment to store the 

tailings inventory. Hence, some mining frameworks impose constraints related to the available 

construction material. In some cases, the tailings geochemical and physical features allow dykes 

construction using coarse-grained tailings and/or the overburden (Beier, 2015; Blight, 2009). 

Beaching and/or hydrocyclone classification have proven suitable to raise the dyke height 

progressively. Three configurations are available for the staged dykes: upstream, downstream and 

centerline (Figure 2.1). The water pore pressure could be decreased using drains and filters to 

mitigate liquefaction. Despite the mitigation measures, Fourie (2009) reported that the presence of 

large quantities of stored water is the primary factor contributing to most of the recent tailings 

storage facility failures. For this reason, Beier (2015) carried out a simulation project to assist mine 

managers in water balance assessment.  

Figure 2.1 The staged construction methods of the tailings-made impoundments 

(Modified from The Wall Street journal www.wsj.com) 
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The conventional waste rock disposal methods include the end-dumping and the push-dumping 

practices. These methods result in a significant gravity sorting and foster physical and chemical 

heterogeneities (Amos et al., 2015). Blight (2009) stated that the end-dumping method entails a 

loose state that raises infiltration rates. This may cause physical issues such pore water pressure 

increase and fine-grained particles blowouts. Furthermore, oxygen ingress coupled to the increase 

of infiltration rate trigger oxidation mechanisms and could cause geochemical issues. 

Emerging alternatives for mine waste management is required to enhance physical and 

geochemical stability. These emerging alternatives raise operational costs and may be considered 

at the first sight as profitability-reducing approaches. However, with regard to reclamation costs 

and the failure risk of the disposal areas, these alternatives should be regarded as a promising 

horizon for mining. For instance, the Hungarian government claimed 179M$ compensation against 

mine owners when the Baia Mare catastrophe in Romania resulted in the release of 100,000 m3 of 

cyanide contaminated liquid into the Lapus Stream (Fourie, 2009). This section is not intended to 

supply detailed technical reviews. It outlines, however, the benefits of the alternative mine 

management methods.    

Thickening, also termed gravitational sedimentation, is a dewatering technique commonly used in 

mineral processing and tailings classification. The thickener aims to generate a high solid content 

tailings, called thickened tailings, and a clear supernatant (Wills and Finch, 2015). The thickening 

principle relies on gravity sedimentation when the slurry exhibits a large density difference 

between the solid and the carrier liquid. Essentially, the slurry flows into a large cylindrical tank 

to settle under gravity force; thereafter the suspended solid is removed by rotating rakes as 

underflow while the released water is collected at the top of the vessel as overflow (Beier, 2015; 

Wills and Finch, 2015).  There are several types of thickeners; the choice depends upon the desired 

final solid content. The conventional thickeners increase the solid content range to 50% or up to 

70% (Bussière, 2007). With slightly improved geometry and chemical additives, the high rate 

thickeners yield a solid content range between 70% and 85%. High density and paste thickeners 

have steeper cone angles and higher sided tanks (Wills and Finch, 2015); this geometry yields 

higher pressure on the sediment beds and results in a solid content up to 85%. 

Besides thickening, filtration is also a common technology to separate solid particles from the pulp 

via porous medium.  The porous screen traps solid particles and supports the “cake”, via a vacuum 
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or pressure the filtrate passes through the medium (Beier, 2015). This type of filtration is termed 

“cake filtration” or “dead-end filtration” because the pulp is fed perpendicularly to the filter 

medium (Beier, 2015; Richardson et al., 2002). Filtration normally follows thickening to achieve 

high quality dewatering (Wills and Finch, 2015). Filtration is essentially a mechanical process, the 

filtrate rate decreases as the resistance to flow increases as function of the cake build up 

(Richardson et al., 2002). Cross flow filtration and tube press are two filtration variants that tackle 

the negative effects of the cake build up. The filtration process achieves a final solid content greater 

than 85% (Bussière, 2007). Thickening coupled to filtration technology improve the geotechnical 

stability and reduce pore water pressure in the tailings impoundment. Furthermore, tailings 

volumes are could be reduced using this technology allowing safe tailings management. These 

technologies reduce or eliminate the need for large retaining dykes as well. 

The aforementioned technologies focus on geotechnical stability improvements. However, they do 

not eliminate the geochemical issues and even could foster oxidation mechanisms in some cases.  

The environmental desulphurization is a promising management approach that focuses on 

minimizing the quantities of the acid generating tailings by separating the sulphide minerals from 

the slurry (Leppinen et al., 1997). Thereafter, the resulting fractions are managed accordingly. 

Bussière et al (1994) and Bussière et al (1995) performed one of the earliest studies about 

desulphurization as an integrated management approach. This approach was subsequently 

investigated and miscellaneous studies carried out desulphurization assessment (Benzaazoua et al., 

2008; Benzaazoua et al., 2000; Benzaazoua et al., 1998; Benzaazoua and Kongolo, 2003; Demers 

et al., 2008; Leppinen et al., 1997). The desulphurization efficiency has been demonstrated at the 

laboratory scale and at the plant scale as well (Bussière, 2007). The desulphurization increases the 

net neutralization potential of the treated fraction. Benzaazoua et al. (2008) demonstrated that the 

treated fraction of Doyon tailings was non-acid generating. Furthermore, Demers et al. (2008) 

demonstrated that desulphurized tailings could be used as monolayer cover at the top of the existing 

tailings in the Doyon impoundment. This laboratory scaled study revealed that the cover made of 

desulphurized tailings enhanced water quality and limited oxygen increase. With regard to the 

sulphide concentrate Benzaazoua et al. (2008) suggested that it could be used in paste backfill 

when thorough care is taken to choose the binder and its proportion. On the other hand, Bussière 
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et al (2004) demonstrated that low sulphides desulphurized tailings could be effectively used in the 

covers with capillary barrier effects. 

In addition to the aforementioned strategies, the co-disposal of tailings and waste rocks exhibits a 

vigorous alternative to the conventional disposal practices. Waste rocks exhibit low compressibility 

and high strength but their high permeability favors oxygen ingress and water infiltration. Tailings, 

on the other hand, display low permeability and high saturation degree but low shear strength and 

slow self-consolidation process. The co-disposal of the two streams leads to a strength gain with 

low oxidation risk. Wickland and Wilson (2005) tested mixtures of 5:1 waste rock to tailings by 

dry mass, they issued that the mixtures have a hydraulic conductivity similar to tailings and total 

settlement similar to waste rock.  

The co-disposal approaches could be carried out as layering as well. The tailings layers introduced 

within a waste rock dump develop the capillary barrier effect at the interface between tailings and 

waste rock. This naturally occurring effect could hamper AMD, nonetheless, Bussière (2007) stated 

that the layering co-disposal alleviates AMD and does not eliminate it completely. The co-disposal 

strategies include also waste rock deposition within tailings impoundment (Aubertin et al., 2002).  

This method consists of dividing the impoundment into cells surrounded and underlaid with waste 

rock, this design enhance pore water drainage and strength gain. This impoundment conception 

opens a promising horizon to reduce geotechnical issues via favoring drainage. Nonetheless, the 

design geometry, the particle size and tailings and waste rock thicknesses should be considered to 

achieve a good agreement between tailings and waste rock hydrogeological properties (Bussière, 

2007). Besides, Poirier (2015) and Vermette (2018) mentioned the waste rock segregation into geo-

environmental domains to avoid downstream AMD related issues. Finally, Bussière and Guitonny 

(2020) provided a recent and detailed review of various mine waste management methods and hard 

rock mine reclamation. The subsequent chapters focus on enhancing the waste rock classification 

and segregation through an integrated modeling approach.  

In conclusion, this axis underlines the emerging management approaches (Figure 2.2) and 

underscores the necessity of adopting an integrated management approaches in order to overcome 

failures and contaminants spread. It summarizes the main features of the emerging management 

approaches and outlines their benefits with regard to geotechnical and geochemical stability. 

However, it does not supply detailed theoretical and technical background. The aim of this part is 
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to highlight the existing management insights and to stress the need of practical upstream 

management methods. Few studies included the upstream reasoning in their mine waste 

management approaches and more importantly, this section underlines that most approaches are 

experimental. To the author’s knowledge, there is no direct and practical nexus between mine waste 

management and geological modeling. The following section describes the geological modeling 

and its related techniques to seek the aforementioned nexus. 

2.3  Geological modeling 

This section is intended to provide theoretical and technical background of geological modeling to 

determine how this modeling discipline could be repurposed for mine waste management. 

Generally, the term model is defined as a tested hypothesis regarded as the best approximation of 

reality, mainly based upon the observations and measurements, to solve an engineering problem 

(Parry et al., 2014).  The need of geological models emerged as geo-scientists needed to understand 

the Earth structure. James Hall, one of the scientists who pioneered structural geology and 

tectonics, performed the first roughly laboratory scale models to test the hypothesis stating that 

lateral compression of initially horizontal strata produces folding observed in real-scale geological 

structures (Ranalli, 2001). From simple physical models to more realistic physical and intricate 

Figure 2.2 Summary of integrated approaches used to overcome the issues related to 

conventional disposal methods 
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numerical models, geological modeling evolved to grasp various types of Earth natural resources. 

Modeling geology includes three main types (O'Connor, 2015):  

• Geological conceptual models: these models aim at understanding the geological history 

based upon universal geological theories, subjective judgment and the experience of the 

geologist; 

• Process models: the aforementioned James Hall model is an experimental process model. 

Examples of theoretical process models may include hydrothermal processes related to ore 

genesis, geological processes controlling ore traps and/or processes identifying ore primary 

sources. A set of connected process models are usually used to establish the conceptual 

model of a geological setting; 

• Descriptive models: these models are spatial representations of geological surfaces and/or 

geological volumes known as 2D and/or 3D geological mapping. These descriptive models 

are extensively established to assist exploration geology and mining. Although they 

constitute a separate type of geological models, they implicitly incorporate geological 

information highlighted by the conceptual and process models. Establishing descriptive 

models is a staged process that evolves along with the geological information flow 

including subjective and quantitative types of information.   

Because descriptive models are involved before and throughout mining stages, linkage to mine 

waste management could be feasible. Therefore, this section focuses on steps commonly used to 

establish descriptive models. 

2.3.1 Key concepts: from statistics to geostatistics 

Data processing using statistics provides quantitative parameters regarding data distribution such 

as the mean and the standard deviation. Although statistics is relevant for space-independent 

frameworks, it presents serious shortcomings regarding space-dependent processing. Abzalov 

(2016b) highlighted these shortcomings through three different spatial patterns presenting the same 

statistical parameters.      

The statistical model does not consider spatial parameters such as spatial continuity and anisotropy 

(Figure 2.3). Therefore, geostatistics was developed (Krige, 1951; Matheron, 1963, 1965) to merge 
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statistical and spatial analyses. Applications of geostatistical methods in mining industry include 

mineral resources estimation (Bargawa and Tobing, 2020; Battalgazy and Madani, 2019; Emery 

and Maleki, 2019; Guo et al., 2022; Taghvaeenezhad et al., 2020), uncertainty assessment 

(Abzalov, 2016a; Mery and Marcotte, 2022; Paithankar and Chatterjee, 2018) and optimization of 

drilling grids (Heriawan et al., 2020; Saikia and Sarkar, 2006; Silva et al., 2019). In the following, 

the focus is on the key concepts steering spatial interpolation methods used throughout mineral 

resources estimation to establish descriptive models. 

The key concept of geostatistics is considering the spatial distribution of a given variable, such as 

metal grade, as a random spatial realization Z(x) of the function z(x) which defines the spatial 

pattern of the considered variable at a point x (Abzalov, 2016b; Matheron, 1963). This concept is 

referred as regionalised variable (Abzalov, 2016b; Matheron, 1965). For instance, the 

tridimensional distribution of metal grades within an orebody is one realization that occurred 

among miscellaneous realizations of the regionalised function. Therefore, geostatistics consists of 

methods that aimed at defining the characteristics of the function z(x) based upon sparse values of 

the realizations Z(x) to estimate the values of the regionalised variable in locations lacking samples 

(Wackernagel, 1996).    

Figure 2.3 Three different spatial patterns presenting the same normal distribution (From 

Abzalov (2016)) 
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To define the characteristics of the regionalised variable based upon the available experimental 

data considered as realizations, a second key concept is involved; two measurements z(x) and 

z(x+h) separated by a small distance h are belonging to realizations Z(x) and Z(x+h) whose 

distributions have the same first two moments (the mean and the variance) (Abzalov, 2016b; Krige, 

1951; Matheron, 1963; Wackernagel, 1996). This hypothesis is known as intrinsic hypothesis or 

intrinsic stationarity (Haining et al., 2010). Thereby, the space could be classified in multiple 

subdomains that validate the intrinsic stationarity. The term stationarity means that some properties 

of the random function are identical along spatial translations. Whereas intrinsic stationarity 

assumes identical parameters of the random function along small distances. Therefore, within each 

subdomain a spatial continuity pattern of the regionalised function could be identified and used for 

interpolation. The subsequent section summarizes computation methods used to define the spatial 

continuity within a subdomain along with an example of estimation methods.     

2.3.2 Spatial continuity 

Based upon the intrinsic hypothesis, z(x) and z(x+h) belong to two realizations with the same first 

two moments, therefore (Haining et al., 2010): 

E(Z(x) − Z(x + h)) = 0           2.11 

E([Z(x) − Z(x + h)]2) =  Var(Z(x) − Z(x + h))          2.12 

E() is the first moment and Var() is the second moment. Using the variance addition theorem along 

with the intrinsic hypothesis the equation 2.12 becomes (Bachmaier and Backes, 2011): 

Var�Z(x) − Z(x + h)� = Var�Z(x + h)� + Var�Z(x)� − 2Cov� Z(x + h), Z(x)�  

= 2 �Var�Z(x)� − Cov� Z(x + h), Z(x)�� 

= 2𝛾𝛾(ℎ)                                                            2.13 

γ(h) is the variogram that only depends on the distance separating pairs of measurements. γ(h) 

was first defined by Matheron (1963) as the half average squared differences between values 
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separated by a distance h. In other words, γ(h)  assesses the spatial autocorrelation exhibited by 

equidistant measurements. The variogram could be computed for a given distance h as follows: 

γ(h) = 1
2m(h)

∑ [z(x) − z(x + h)]2m(h)
i=1           2.14 

m(h) is the number of pairs separated by the distance h. If h→0,  𝛾𝛾(ℎ) →0 because at infinitesimal 

distances the Cov� Z(x + h), Z(x)� → Var�Z(x)�. However, if  𝛾𝛾(ℎ) does not tend to zero at 

infinitesimal distances this implies spatial discontinuities named nugget effect (Figure 2.4). 

Likewise, when h tends to ∞, the Cov� Z(x + h), Z(x)� tends to 0. Accordingly, the obtained value 

of Var�Z(x)� is called sill (Figure 2.4). When the sill is reached, Z(x + h) and Z(x) do not exhibit 

any spatial continuity. Values of the variograms calculated before reaching the sill, indicate the 

extent of the spatial continuity along a specific direction, named range (Figure 2.4) (Bachmaier and 

Backes, 2011; Wackernagel, 1996). Variograms calculated along a specific direction are called 

directional variograms and variograms computed for all directions are named omnidirectional 

variograms (Remy et al., 2009).  

Most geostatistical methods rely on variogram parameters to perform estimation throughout 

locations lacking samples. Basic concepts of ordinary kriging are provided herein to exemplify 

geostatistical methods. Ordinary kriging performs estimation based on the neighbouring numerical 

Figure 2.4 An example of experimental variogram fitted to an exponential 

model. 



27 

  

 

data. Each available numerical datum is associated with a weight to compute the estimation as 

follows (Abzalov, 2016c; Wackernagel, 1996):  

𝑧𝑧 ∗ (𝑥𝑥0) = ∑ 𝜆𝜆𝛼𝛼 𝑧𝑧(𝑥𝑥𝛼𝛼)𝑛𝑛
𝛼𝛼=1     where    ∑ 𝜆𝜆𝛼𝛼 = 1𝑛𝑛

𝛼𝛼=1           2.15 

𝑧𝑧 ∗ (𝑥𝑥0) is the estimated value at location 𝑥𝑥0, 𝑧𝑧(𝑥𝑥𝛼𝛼) is the available numerical value at location 𝑥𝑥𝛼𝛼, 

𝜆𝜆𝛼𝛼 is the weight of the available numerical value at location 𝑥𝑥𝛼𝛼, n is the number of the neighbouring 

numerical data. To determine the weights at locations 𝑥𝑥𝛼𝛼, the following matrix calculation is 

undertaken (Abzalov, 2016c; Wackernagel, 1996):  

�

γ(x1 − x1) ⋯ γ(x1 − xn)      1
⋮ ⋱ ⋮

γ(xn − x1) ⋯ γ(xn − xn)     1
          1               ⋯           1                   0   

��

𝛌𝛌𝟏𝟏
⋮
𝛌𝛌𝐧𝐧
𝛍𝛍

�  = �
γ(x1 − x0)
γ(xn − x0)

𝟏𝟏
�          2.16 

The left-hand side of the equation 2.16 denotes values of the variogram computed for each pair of 

points. The right-hand side of the equation 2.16 denotes values calculated from the variogram 

model for pairs involving the location 𝑥𝑥0.  

2.3.3 Practical steps for building spatial models  

Throughout exploration and mining stages, two types of spatial models are involved; grid models 

and solid models, used for surface and volume mapping respectively (Reed, 2007). In most cases, 

Figure 2.5 Practical steps to build grid and solid models 

(From Reed (2007)) 
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numerical data are acquired through drilling surveys and subsequent quantitative assays and/or 

measurements. The first step for both types of spatial models is to project the available numerical 

data, referred as the control points, in the 2D or 3D space depending on the model objective. 

Thereafter, an imaginary grid defining the model resolution should be created (Figure 2.5).  

The dimension of the grid, called voxel for 3D models, depends on the spatial density of the 

available dataset (Che and Jia, 2019; Cheng, 2021; Deng et al., 2019; Gao et al., 2019; Jessell, 

2001; Wu and Xu, 2004; Zu et al., 2012). As a guideline, Reed (2007) stated that the grid dimension 

could be set equal to the average minimum distance between the control points. Afterwards, the 

aforementioned geostatistics concepts and methods are performed to assign an estimation to each 

grid center node. Most software enable the creation of color-coded maps based upon the control 

points and the estimated points. Most geographic information systems (GIS) and spatial modeling 

software inherently embed algorithms that promptly undertake the aforementioned steps, however, 

the user is responsible for the model assessment and its compliance with geological information 

collected so far.   

Emery and Maleki (2019) used geological modeling to unravel the relationship between the grade 

and the rock type for a better mineral resources estimation. Wang et al. (2015) established a 3D 

geomodel to guide exploration surveys and perform potential targeting. Carpentier et al. (2016) 

used several realizations of the geological model to schedule mining operations and take into 

consideration the geological uncertainty. Wang et al. (2012) coupled 3D geological modeling and 

geophysical data to establish the space-time genesis of metallogenic mineral targets. Zhang et al. 

(2018) repurposed 3D geological modeling for geotechnical engineering. Di Maio et al. (2020) 

developed a multidisciplinary approach integrating geological, geotechnical and geophysical 

models to identify flowslide controlling factors. Thornton et al. (2018) linked the bedrock geology 

and 3D models to grasp the main hydrological controlling factors. Høyer et al. (2019) developed a 

high-resolution 3D geological model of the geological lithology neighbouring a landfill site to 

grasp the leachate flow and the associated risk. Geological modeling was also applied to petroleum-

related studies (e.g., Abdelwahhab et al. (2021), Badejo et al. (2021), Elatrash et al. (2021), 

Radwan et al. (2022)). Furthermore, Fala et al. (2013) used geostatistics to model 2D spatial 

continuity within waste rock piles. Despite the wide spectrum of geological modeling applications, 

few attempts were directly linked to mine waste management and/or AMD challenges. 
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Furthermore, geostatistics and geological modeling provide estimations of the numerical values of 

a variable. Nonetheless, these estimations do not capture the local spatial variability. Therefore, 

geological models should be coupled to a simulation method that considers uncertainty. The 

following section describes the most common simulation engine used to tackle uncertainties.   

2.4 Monte Carlo simulation 

Throughout the subsequent subsections, the Monte Carlo simulation is introduced after defining its 

main related concepts. Differences between estimation and simulation are underlined, afterwards 

an overview of basic mathematical concepts related to the theory of probability are presented. 

Finally, based upon the defined mathematical concepts, the Monte Carlo simulation is elucidated. 

Applications of Monte Carlo simulation in the mining industry are underlined.   

2.4.1 Estimation and simulation 

The aforementioned geostatistical concepts yield local estimation of a variable based upon the 

available data. Dimitrakopoulos (2011) stated that the main downside of the estimation methods is 

that they are unable to reproduce the regional variability that conforms to the available data initially 

used to perform the estimation. In other words, the geostatistical estimation methods honor the 

regional spatial variability, however, a smoothing effect is generated regarding the local spatial 

variability. Furthermore, the ultimate result of geostatistical methods is a single spatial model used 

for mining optimization and operation guidance (Dimitrakopoulos, 2011). Unlike the estimation, 

the simulation generates equiprobable realizations of the spatial model that are conditional to the 

available data and span a wide range of scenarios constrained to the geological uncertainty 

(Dimitrakopoulos, 2011; Furtado e Faria et al., 2022; Kamali et al., 2013). Generating equiprobable 

realizations to propagate uncertainty related to one or more inputs is called a stochastic approach. 

Unlike static inputs, stochastic inputs are mainly probability functions including all probable static 

values that the stochastic input could take (Figure 2.6). Dimitrakopoulos (2011) provided 

quantitative insights regarding the net present value (NPV) of an ore deposit computed with a 

deterministic estimation method that results in one model and NPV values computed based upon 

equiprobable realizations. It was demonstrated that the deterministic approach overestimated the 

NPV of the deposit. Thereby, relying on one model to preform mining optimization presents a 
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high-risk inherited from the accumulated geological uncertainties. Whereas simulation propagating 

uncertainties to the outputs generates a wide range of probable realizations. These approaches are 

mainly based on probability functions, the following subsection underlines basic notions of the 

probability theory that are used throughout the subsequent chapters; however, it is not intended to 

provide an advanced and detailed theoretical background. 

2.4.2 Probability concepts 

The main concepts of probability defined hereafter are recapitulated from the following probability 

textbooks; Gut (2013), Pinsky and Karlin (2010), Kolmogorov and Bharucha-Reid (2018), 

Gnedenko and Ushakov (2018).  A probability could be intuitively defined as the relative frequency 

of occurrence of a given outcome when carrying out the experiment many times. Accordingly, the 

theory of probability relies first on the randomness of the experiment being performed and the 

stabilization of the relative frequencies after performing these experiments n times. A probability 

should be defined through the following: 

• A sample space Ω that contains all the possible outcomes of the experiment; 

Figure 2.6 Example of a probability function of a stochastic input. 
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• ℱ a collection of events measurable in Ω, an event is a subset of Ω including several 

outcomes of the random experiment; 

• P is the probability measure, the relative frequency after performing the random 

experiment n time (n→ ∞); 

Every probability triple (Ω, ℱ, P) should honor the Kolmogorov axioms:  

• P(Ω)=1; 

• A∈ ℱ: 0 ≤ 𝑃𝑃(𝐴𝐴) ≤ 1; 

• For disjoint events : P(𝐴𝐴1⋃𝐴𝐴2⋃⋯ ) = ∑ 𝑃𝑃(𝐴𝐴𝑖𝑖)+∞
𝑖𝑖=1 , disjointed events couldn’t occur at the 

same time; 

Within a probability space, it is common to define a random variable, which is generally a function 

defined in Ω. The variable inherits its randomness from its random events that define the function. 

A random variable in a probability space should fulfill the following condition: 

X−1(x) = ω ∈ Ω    x ∈ ℝ          2.17 

X is the random value and x is a possible real value that X could take in the real line ℝ. 𝜔𝜔 is a 

portion of the sample space Ω that defines the random process. In other words, each possible real 

value x of the random variable X should stem from an event or associated events defined previously 

in the probability space. X−1(x) is called the inverse image of x that establish the link between the 

probability space and the real line.  For instance, X sums up the outcomes of rolling two dice once, 

P(X=1) = ∅ because x = 1 has no inverse images in Ω, which includes{1, 2, 3, 4, 5, 6}. 

Given that the random variable X could take many values x depending on the random process to 

be considered, a cumulative distribution function (CDF) spanning all the possible values along with 

their cumulative probabilities should be defined for X such that: 

FX(x) = P(X ≤ x)      −∞ < x < +∞     2.18 

P(X > x) = 1 − FX(x)                             2.19 

P(x < X ≤ y) =  FX(y) − FX(x)              2.20 

lim
x→−∞

FX(x) = 0 , lim
x→+∞

FX(x) = 1            2.21 
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In this respect, two types of the random variables are defined: discrete random variables and 

continuous random variables. A discrete variable X implies distinct countable values xn such that: 

X: �𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛�          2.22 

P(X=𝑥𝑥𝑖𝑖) > 0 and ∑ P(X = xi) = 1i=n
i=1           2.23 

Unlike the CDF that cumulates the probabilities of X, a function named probability mass function 

(PMF) represents graphically the probability of the discrete variable X for each value xi such that: 

FX(x) = P(X = x)      −∞ < x < +∞          2.24 

A random variable X is called continuous when its outcomes imply a range of the real line ℝ 

including uncountable real values. For a continuous random variable X, a probability density 

function (PDF) is defined as: 

P(a < X ≤ b) = ∫ fX(x)dxb
a     −∞ < a < b < +∞          2.25 

Unlike the PMF, the PDF depicts the probability density over a continuous interval of values. 

Accordingly, the probability is computed through integration over a range of values. The most 

common PDFs are the normal and log-normal distributions that conform with a wide range of 

random processes because of the Central Limit Theorem (CLT). The CLT states that the 

combination of random variables, determined according to independent random processes, results 

in normally distributed random variable. In most cases, we are interested in a random variable 

occurring as a result of interaction amongst other parents random variables justifying the wide 

range of applications of the Gaussian (normal) distribution. 

2.4.3 Monte Carlo simulation and applications 

Monte Carlo methods belong to an experimental branch of mathematics that aims at generating 

random realizations using random sampling performed on distribution functions (e.g., PDFs) that 

define the process variables (Hammersley, 1964; Kalos and Whitlock, 1986; Niederreiter, 1992). 

Each realization is a simulation describing a possible outcome of the system being studied using 

the same initial conditions, but with different input values randomly selected from the respective 

random variable PDF. This random sampling process, named stochastic, results in a large number 
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of separate, independent and equally likely results (Bonate, 2001; Couto et al., 2013; Cox et al., 

2003; Cox and Siebert, 2006; Papadopoulos and Yeung, 2001; Raychaudhuri, 2008). 

Monte Carlo simulation is a stochastic process mainly based upon the aforementioned CLT and 

the Law of Large Numbers (LLN). The LLN states that the sample mean tends to the population 

mean when the size of the random samples is sufficiently high (Gilks et al., 1995). Figure 2.7 

illustrates the stochastic sampling process used to undertake a Monte Carlo simulation to propagate 

the epistemic uncertainty from the inputs to the degree of saturation. To carry out the process, the 

porosity and the volumetric water content should be defined as a stochastic input data whose PDFs 

were determined based upon a large dataset and the CLT. Afterwards, the PDF of the degree of 

saturation is portrayed using the LLN. 

The Monte Carlo simulation methods were widely used for mining optimization. Dimitrakopoulos 

(1998) stated that Monte Carlo techniques provide an efficient tool to consider uncertainty 

regarding the ore grade variability that directly affects several aspects of open pit design and 

planning. In this respect, Dimitrakopoulos (1997) suggested the use of stochastic simulations to 

generate several deposit models that each represents a probable deposit realization. The equally 

probable realizations of the in situ orebody aimed at moving beyond traditional optimization 

method and including uncertainties from the upstream modeling stages to define the possible NPV 

Figure 2.7 Example of the random sampling process used to perform Mont Carlo simulation 
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outcomes (Dimitrakopoulos et al., 2002; Dimitrakopoulos and Sabour, 2007). Thereby, risks 

associated to the deposit inherent uncertainty could be alleviated and/or mitigated. Moreover, 

Abdel Sabour and Dimitrakopoulos (2011) suggested incorporating geological uncertainty into the 

mining design through Monte Carlo techniques. Kumar and Dimitrakopoulos (2021) developed a 

Monte Carlo simulation algorithm considering the equipment performance uncertainty to enhance 

the production scheduling. Ugwuegbu (2013) used Monte Carlo simulation to consider metal prices 

uncertainty. Given the future price fluctuations, Monte Carlo techniques are relevant to evaluate 

the mining projects and their respective NPV (Lima and Suslick, 2005; Lima and Suslick, 2006; 

Sohrabi et al., 2021).  

Besides, the Monte Carlo simulation is widely used to solve various problems related to a broad 

range of scopes (Kroese et al., 2014). Specifically, Monte Carlo simulation was used to tackle 

geology-related problems. For instance, González-Garcia and Jessell (2016) suggested the 

assessment of the geological uncertainty using Monte Carlo simulation. Pakyuz-Charrier et al. 

(2018b) carried out a Monte Carlo simulation to consider uncertainty related to structural 

measurements and propagate it to 3D structural modeling. This enabled the establishment of a 

probabilistic 3D structural model consisting of a range of 3D models. Likewise, Xavier et al. (2022) 

established a probabilistic structural model through integrating uncertainty related to joints and 

foliation measurements. Furthermore, Pakyuz-Charrier et al. (2018a) simulated the uncertainty 

linked to drill hole locations and orientations to propagate it throughout 3D geological modeling 

and produce miscellaneous realizations of the geological model. Wang et al. (2020) used Monte 

Carlo simulation to approximate uncertainty related to geological, geochemical and geophysical 

datasets to enhance the mineral prospectivity mapping.  

Up until now, sections of geological modeling and Monte Carlo simulation do not exhibit a direct 

link to AMD and/or mine waste management. The following section discusses the reactive 

transport modeling of AMD to further explore studies that may link one of the aforementioned 

modeling approaches to AMD modeling. Based on the findings, final remarks are provided to guide 

the project methodology and concretise the research originality. 
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2.5 Reactive transport modeling 

Reactive transport modeling is regarded as a multidisciplinary and multiscale approach that 

integrates hydrology, geochemistry, soil physics and fluid dynamics to simulate water quality. 

Therefore, reactive transport models inherit all the difficulties associated with these disciplines 

along with complexities resulting from the coupling of the processes (Steefel et al., 2005). These 

models integrate time-discretized mass and heat transport along with surface complexation, liquid-

gas partitioning, precipitation reactions and mineral dissolution and numerous biogeochemical 

reactions (Seigneur et al., 2019; Steefel and Lichtner, 1998). Consequently, most of the reactive 

transport models are highly data-intensive and require thorough characterization of the system 

being simulated. This characterization should include microscale and macroscale features. Vriens 

et al. (2020) summarized the main controlling factors related to solid, aqueous and gaseous phases 

(Figure 2.8), which are usually integrated in reactive transport models to forecast water quality 

stemming from geological or engineered porous media, undertake sensitivity analyses to 

investigate the main processes that affect water quality and to assess design or reclamation 

scenarios.  

 

Figure 2.8 Processes included in multiscale reactive transport modeling (Vriens et al., 2020) 
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Unlike the two aforementioned modeling approaches, geological modeling and Monte Carlo 

simulation, reactive transport modeling was specifically developed to solve water contamination 

problems including AMD. In this respect, several programs were established and used as a 

simulation engine incorporating simultaneously solved formulations of the physical and 

geochemical processes. For instance, Walter et al. (1994) developed the MINTRAN 2D reactive 

transport model that simulates advective-dispersive transport. Afterwards, Wunderly et al. (1996) 

upgraded MINTRAN through the integration of the sulphide oxidation kinetics. Then, Gerke et al. 

(1998) updated the program by adding the oxygen diffusion and unsaturated flow. Mayer et al. 

(2002) developed the MIN3P program that simulates surface and transport-controlled reaction 

within multiphase and unsaturated systems. Jurjovec et al. (2004) utilized MIN3P to simulate acid 

neutralization reactions occurring in column tests. Ouangrawa et al. (2009) used MIN3P to 

simulate column experiments AMD prevention through high water saturation. Likewise, Demers 

et al. (2013) performed numerical modeling of contaminated neutral drainage collected from field 

test cells. Wilson et al. (2018) used the reactive transport model MIN3P to simulate leachate quality 

from humidity cells performed to assess the geochemical behaviour of low-sulphide waste rock. 

Raymond et al. (2020) carried out reactive transport modeling using MIN3P to simulate leachate 

from laboratory-scale waste rock designed to alleviate AMD by controlling infiltration paths. 

Kalonji-Kabambi et al. (2020) used the MIN3P model to simulate the geochemical behaviour of 

covered and uncovered highly reactive tailings. Molson et al. (2005) coupled HYDRUS program 

and POLYMIN program to simultaneously simulate AMD flow and reactive transport occurring 

within 2D conceptual models of waste rock. Parkhurst and Appelo (2013) presented PHREEQC; a 

geochemical program also utilized to address AMD-related issues (Embile Jr et al., 2019; Kirk 

Nordstrom, 2020; Muniruzzaman et al., 2020). Lahmira et al. (2017) simulated waste rock pile 

heterogeneity and its effect on AMD. More recently, several research contributions aimed at 

integrating reactive transport modeling and uncertainty analysis through stochastic processes 

(Pedretti et al., 2017, 2020). These studies underscored the importance of including such analysis 

in reactive transport models given the effect of heterogeneities on water quality. For instance, using 

Monte Carlo simulation Pedretti et al. (2017) demonstrated that a waste rock facility encompassing 

a relatively high neutralization potential could generate low-quality effluents due to spatial 

mineralogical heterogeneities upon disposal.    
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2.6 Final remarks 

This chapter focuses on: 

• AMD drainage formation to highlight the major problematic encountered in hard rock 

mines; 

• Conventional mine waste management to emphasize the need for integrated management 

approaches that overcome the downsides of the conventional methods; 

• Integrated management approaches to introduce the upstream thinking and its worthwhile 

outcomes regarding environmental risk mitigation and to underline that its application was 

only introduced in experimental approaches; 

• Geological modeling to grasp how geologists model the spatial features of the orebodies; 

• Monte Carlo simulation to understand how data analysts simulate and propagate 

uncertainty; 

• Reactive transport modeling to underline modeling methods used by environmental 

geochemists to assess water quality;  

As pointed out, several studies merged geological modeling and Monte Carlo simulation to enhance 

the ore descriptive models. On the other hand, recent scientific contributions incorporate Monte 

Carlo simulation in reactive transport models to unravel the effect of the heterogeneous 

configuration of waste rock piles on water quality. Other studies used geostatistics concepts to 

model the mineralogical spatial anisotropy within waste rock piles. However, to the author 

knowledge, these modeling applications are not integrated with the upstream reasoning introduced 

in mine waste management. Namely, modeling contributions related to AMD consider downstream 

configurations of the mine waste facilities. Instead of modeling complex heterogeneities within 

mine waste facilities, it is more convenient to apply an upstream approach to prevent them and 

classify hazardous mine waste beforehand. Therefore, this literature review highlights the need of 

upgrading the upstream thinking not only regarding experimental approaches but also in terms of 

modeling methods. Carrying out upstream modeling throughout the mine cycle will alleviate the 

modeling complexities through staged and progressive models that describe the environmental 

attributes of the host rock before mining. Moreover, the integration concept introduced by 

geometallurgical studies is barely applied when dealing with modeling. Several types of models 
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are built and interpreted separately. For instance, there is a firm interdisciplinary barrier between 

geological modeling and reactive transport modeling. Even though, information supplied by 

geological models, usually established before reactive transport models, could be relevant to 

mitigate geo-environmental risks. Therefore, this chapter underscores the need for a modeling 

application integrating 3D geological modeling, Monte Carlo simulation and reactive transport 

modeling to inform mine waste upstream management.  
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 METHODOLOGY  

To fulfill the general objective of the project the following steps were carried out: 

• Complete a critical literature review to highlight the main lack of knowledge related to the 

project scope; 

• Learn how the geologist describes the drill cores using the geological logging; 

• Learn how to project categorical and numerical geological information into the 3D space 

using Leapfrog Geo, a specialized spatial software; 

• Acquire knowledge related to geological data analysis using geostatistical software; 

• Acquire knowledge of 3D implicit modeling to establish spatial numerical models; 

• Comprehend how to run a Monte Carlo simulation using specialized software (GoldSim 

Kossik and Miller, 2004; Rizzo et al., 2006); 

• Establish a methodology that merges 3D implicit modeling and Monte Carlo simulation to 

classify the host rock based upon their contaminants grade (more details are presented in 

the chapter 4); 

• Acquire knowledge related to geochemical assessment of AMD during upstream stages and 

perform weathering cell testing; 

• Grasp kinetics simulation using PHREEQC (Parkhurst and Appelo, 2013) to simulate the 

main controlling factors of weathering cell test to introduce kinetic modeling during the 

development stage of a mine cycle (more details are provided in chapter 5); 

• Understand how to run unsaturated flow simulation using VS2DRTI software (Hsieh et al., 

2000);  

• Couple PHREEQC and VS2DRTI to run reactive transport simulations embedding a degree 

of complexity that complies with the upstream stages;   

• Integrating the use of GoldSim (Kossik and Miller, 2004; Rizzo et al., 2006), Leapfrog Geo 

(Seequent), SGeMS (Remy et al., 2009), PHREEQC and VS2DRTI to preform a dynamic 

classification of the host rock during the upstream stages based upon the in situ spatial 

distribution of the main gangue minerals and a space-discretized reactive transport 

simulations assuming auspicious oxidation conditions (chapter 7); 
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These steps are illustrated in the Figure 3.1.  It is a staged modeling protocol that could be applied 

to any case study as long as it validates a main condition: the availability of drill cores and their 

geological logging along with the available characterization data including contaminant grades and 

mineral weight proportions.  

In this research, Monte Carlo simulation was used to propagate uncertainty and to infer numerical 

data with larger sample size. This stochastic process enabled the achievement of the spatial data 

density requirement, which is essential for high-quality interpolation outcomes. Afterwards, the 

3D implicit geological modeling was performed while maintaining the collected geological 

information as constraints of the model. Finally, a 3D geomodel of a contaminant is produced and 

benchmarked using the available numerical data. The result enabled mine waste classification 

beforehand based upon the contaminant grades.  

Figure 3.1 The general methodology of integrating multidisciplinary modeling tools to inform 

upstream mine waste classification 
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Subsequently, simulation of the oxidation kinetics was suggested to be incorporated in the 

geochemical assessment protocol during the early stages of a mine project to perform parametric 

analysis based upon restricted characterization database and the weathering cell test. In this regard, 

four weathering cells were implemented. Each weathering cell encompasses a sample of geo-

environmental domain identified previously by Vermette (2018) for a mine project in the 

development stage (The Akasaba West project). A geo-environmental domain consists of various 

proportions of the lithologies recognized through the drilling surveys. The leaching device of a 

weathering cell test is a Buchner funnel measuring 100 mm in diameter and containing 67 g of 

sample (dry mass). The sample was positioned upon two nylon membrane filters that were sealed 

with silica grease along their circumference. These filters inhibit the loss of fine-grained particles 

that could escape through Buchner holes during the flushes. The silica grease impedes undesirable 

seepage and allows water retention inside the Buchner funnel. A 250 mL receiving flask was placed 

under each funnel to recover the leachate. Each sample was flushed with 50 mL of deionized water 

on the first day, followed by two days of drying conditions. On the fourth day, samples were flushed 

again with the same volume of the leach solution and exposed to the ambient air throughout the 

rest of the seven-day leaching cycle. The leachates were recovered after 4 ± 0.5h of retention by 

applying suction on the filtering flask. The leachates were weighed and analyzed for electrical 

conductivity, Eh, and pH. The filtrates obtained using a 0.45 μm nylon filter were analyzed for the 

main dissolved elements. To ensure sample preservation, the filtrates were acidified to 2% HNO3 

prior to ICP-AES chemical analysis. Subsequently, a kinetic model was established to simulate the 

kinetic reactions occurring in the weathering cells. A weathering cell was used for calibration of 

the kinetic model while the remaining weathering cells were used for benchmarking.  

Mineralogy was the main input of the kinetic model. Therefore, the mineralogical composition was 

identified using an X-ray diffractometer (XRD; Bruker AXS D8 ADVANCE). The XRD analyses 

were carried out on dried and micronized samples at room temperature. Bruker AXS equipment as 

well as EVA and TOPAS software were used throughout the data compilation to produce 

mineralogical identification and semiquantification based upon the reconciliation with chemical 

results. The mineralogical quantification was refined using a scanning electron microscope (SEM) 

equipped with energy dispersive X-ray spectroscopy probe (EDS; HITACHI S-3500N). The 



42 

  

 

mineralogical identification with SEM-EDS focused on quantifying silicate and sulphide minerals, 

as they are the main source of neutralization and acid generation, respectively. 

Afterwards, the kinetic aspect was coupled to the unsaturated flow aspect using two synchronized 

public programs; PHREEQC and VS2DRTI. The conceptual model merging kinetic modeling and 

unsaturated flow modeling is displayed in the Figure 3.2. The oxidation and neutralization kinetic 

reactions were implemented in PHREEQC and the drying/wetting cycles as well as the unsaturated 

flow were simulated using VS2DRTI.  

Finally, the realization-based simulations based upon the aforementioned 3D geomodeling 

approach was used to portray the spatial distribution of the main reactive minerals. A block model 

was produced for each reactive mineral. The generated block models of the main reactive minerals 

were overlapped along the plane of interest. Subsequently, the reactive transport modeling was 

performed for each voxel along the aforementioned plane to simulate the geochemical behaviour 

of a given voxel, once blasted and excavated. For each voxel a 1D column of 20 m high, containing 

minerals proportions designated by the block models, was simulated to assign a pH value to the 

given voxel. The result enabled dynamic mine waste classification based upon the pH. Specific 

details regarding the methods are supplied in the research articles reported in the chapters 4, 5, 6 

and 7.  

Figure 3.2 The conceptual model of the reactive transport simulation carried out using 

PHREEQC and VS2DRTI for geochemical simulation that are not O2 diffusion-limited. 
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 ARTICLE 1: MERGING 3D GEOLOGICAL MODELING 

AND STOCHASTIC SIMULATION TO FOSTER THE WASTE ROCK 

UPSTREAM MANAGEMENT 

This article was published in the Journal of Geochemical Exploration in 20211. 

4.1 Abstract 

Three-dimensional geological modeling is an efficient tool to visualize orebody features during 

both the exploration and operation phases of mines. Repurposing the 3D geological modeling for 

mine waste management allows for the visualization of hazardous metals distribution throughout 

an orebody and its host rock. With this information, a mine manager could carry out waste rock 

management based upon their classification. The major prerequisite to such an approach is to 

procure sufficiently large datasets in order to ensure high interpolation quality and suitable 

resolution. Apart from metals of economic interest, other elements, and more precisely the 

deleterious elements, usually do not undergo exhaustive geochemical analyses throughout the 

footwall and the hanging wall of orebodies. Based on that premise, the Éléonore mine site provided 

restricted grades of arsenic, the most hazardous element within the mine solid waste, to create a 

3D spatial model of arsenic content.  A stochastic process coupled with the geological logging of 

drill cores was created to fulfill the 3D modeling prerequisite with known margins of error. The 

outcome of this work consists of multi-realization 3D spatial model of arsenic content across the 

ore deposit and the hosting rock. Each realization was assessed using available chemical analyses 

to underline the model’s reliability. The results revealed a spacious geochemical halo of arsenic 

that could reach up to 500 m away from the gold deposit, with up to 94% of arsenic grades 

exceeding 50 ppm. The process developed in this work will enable mine waste classification before 

 

1 Toubri, Y., Demers, I., Poirier, A., Pépin, G., Gosselin, M.-C. and Beier, N.A. (2021). Merging 3D geological 

modeling and stochastic simulation to foster the waste rock upstream management. Journal of Geochemical 

Exploration, 106739.  
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stripping, thereby providing the opportunity for proactive upstream mine waste management 

options that could prevent future environmental liabilities.         

Keywords: Geological logging, Geological modeling, Monte Carlo simulation, Mine waste 

classification. 

4.2 Introduction 

Exploration geologists and mining companies are increasingly gaining interest in low-grade, high 

tonnage deposits due to an expanding international demand for metals. For example, porphyry 

copper-gold deposits supply up to 60% of copper reserves worldwide (Sun et al., 2010). Although 

these mining operations are more frequently producing favorable economic outcomes, they also 

usually require higher stripping ratios compared to high-grade lode swarms. Furthermore, low-

grade, high-tonnage deposits exhibit thinly disseminated mineralization and/or randomly oriented 

thin veins (i.e., stockwork). Therefore, ore processing plants should liberate economically valuable 

minerals at smaller grain sizes to optimize mill recovery. For instance, in Cu mines, tailings account 

for up to 95% of the ground ore (Edraki et al., 2014). The waste rock stream is roughly threefold 

higher than the ground ore in Australia and the United States, and about 1.5 times higher in Canada 

(Mudd, 2007). These deposit-inherent features feed waste disposal sites with overwhelming 

amounts of the dry stream (waste rock) and require large above-ground structures to store the wet 

stream (tailings). Consequently, the capital investment is not only constrained by the decrease in 

new discoveries of metal deposits but also by the economic framework and environmental 

regulations. With regard to environmental considerations, the United States Environmental 

Protection Agency (EPA) has classified water contamination from mining activities as one of the 

top three ecological-security threats in the world (Dold, 2008). Acidic drainage stemming from 

mining activities is by far a deleterious source of water contamination in hard rock mines. The 

environmental surveys of acid mine drainage (AMD) may include assessment, prevention and/or 

treatment to safeguard the surrounding ecosystems (Akcil and Koldas, 2006; Benzaazoua et al., 

2004; Bouzahzah et al., 2014; Bussière et al., 2001; Bussière et al., 2005; Evangelou, 1995; Jouini 

et al., 2020; Neculita et al., 2010; Plante et al., 2012). 

Geotechnical issues and contaminant transport present serious concerns as they may result in 

detrimental ecological impacts (Fourie, 2009; Klebercz et al., 2012). Numerous improvements in 
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waste management practices have been proposed to enhance conventional management approaches 

and alleviate issues related to AMD (Benzaazoua et al., 2008; Benzaazoua et al., 2000; Benzaazoua 

and Kongolo, 2003; Bussière, 2007; Demers et al., 2015; Demers et al., 2008; Demers et al., 2017; 

Elghali et al., 2019; Lessard et al., 2018; Wickland and Wilson, 2005). One novel advance in mine 

waste management is the “design for closure” principle, which requires that potential 

environmental issues are considered and planned for both before and during the production stages 

of mining operation (Aubertin et al., 2016). Similarly, upstream mine waste management is another 

promising concept that proposes introducing preventive practices into mine waste management 

streams. These practices should be undertaken at the earliest possible stages of a mine’s life cycle, 

known as upstream stages. Benzaazoua et al., (2008) proposed the use of the upstream mine waste 

management reasoning, suggesting that this type of management allows for better control over 

potential environmental issues. Upstream mine waste management involves any practice that aims 

to prevent negative environmental impacts from the beginning of a mine’s life cycle. The ultimate 

goal of both the “design for closure” principle and upstream mine waste management is to ensure 

that only mine wastes with low potential of environmental contamination will be stored in above-

ground waste disposal facilities, thereby avoiding the need for costly environmental remediation 

work. 

Practically, these concepts were coupled with the geometallurgy framework resulting in more 

holistic geometallurgical approaches. Thus, merging advanced mineralogical surveys and mine 

waste management promotes the geo-environmental assessment of mine waste (Brough et al., 

2017; Bye, 2011; Chopard, 2017; Elghali et al., 2018; Erguler and Erguler, 2015; Paktunc, 1999; 

Parbhakar-Fox et al., 2013; Weisener and Weber, 2010). This mineralogy-based assessment 

usually requires the use of time-consuming and cost-intensive techniques. Nevertheless, it can 

increase the efficiency of mine waste management when used as a screening tool from the very 

beginning stages of the mine cycle. This is because, at early stages, mine planners could, for 

example, segregate the waste rock stream based on the acid-generating potential of different 

fractions that could be firmly established by mineralogical surveys and geochemical testing 

(Vermette, 2018). Waste rock segregation is becoming a promising management option because it 

focuses on delineating the hazardous loci within the hosting lithologies in order to manage them 

separately. Unfortunately, this management approach is highly impacted by a lack of representative 
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and exhaustive sampling. Therefore, it is necessary to determine how relatively small sample sizes 

can be used to lead to the visualization of geo-environmental domains with known margins of error. 

Thus, the present study deals with the in situ classification of waste rocks based upon geochemical 

analyses of metal contents, with a particular focus on addressing shortcomings related to sample 

sizes.  In this study, an integrated geo-environmental approach, based on the geological and 

geochemical analyses, was developed to aid in the upstream waste management of an ore deposit. 

The newly proposed upstream management approach relies on 3D numerical modeling to examine 

the spatial distribution of potential contaminants within the ore and the country rock. This approach 

could represent an efficient troubleshooting tool that can produce proactive assessments of country 

rock, even before stripping operations begin. As 3D spatial models typically require large and 

complete datasets, a stochastic and geology-based process was used to overcome the lack of 

available geochemical data in the 3D space. The aforementioned process was applied to the 

Éléonore gold mine to determine the spatial distribution of As within the hanging wall and the 

footwall of the orebody. The outcome of the stochastic, geology-based process is intended to 

provide a 3D visualization of As grades across the orebody and surrounding rock. This outcome 

will then be used to suggest effective and efficient management measures for newly produced waste 

rocks.   

4.3 Materials and methods 

4.3.1 Geological background 

The Éléonore mine site is located in the Eeyou Istchee James Bay municipality in northern Quebec 

(Canada), 540 km northeast of Rouyn-Noranda. The main orebody, the Roberto deposit, is 

comprised of gold mineralization hosted in the vicinity of the tectonometamorphic contact between 

the La Grande and the Opinaca subprovinces that belong to the Superior Province. The Roberto 

deposit host rock belongs to the Low Formation, which is made of a heterogeneous 

metasedimentary sequence. This sequence consists of massive wacke, thinly bedded wacke, 

conglomerate, arenite and aluminosilicate bearing pelites (Figure 4.1) (Fontaine et al., 2017). The 

sedimentary sequence has undergone amphibolite facies metamorphism that evolved to anataxis 

towards the Opinaca-La Grande contact (Ravenelle, 2013). Various dyke swarms intrude the 
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metasedimentary sequence, including pegmatite and dioritic dykes (Fontaine et al., 2017; 

Ravenelle, 2013).  

The Roberto deposit exhibits multiple mineralization styles along a deeply plunging orebody 

encompassing (Fontaine, 2019; Fontaine et al., 2017): i) stockworks of quartz, dravite, microcline, 

phlogopite, pyrrhotite, arsenopyrite and löllingite; ii) quartz veins and breccias containing 

muscovite, actinolite, diopside, hedenbergite, schorl, pyrrhotite, arsenopyrite and löllingite; iii) 

highly deformed quartz-feldspar veins with pyrrhotite, arsenopyrite and löllingite; and iv) 

pervasive alteration associated with disseminated pyrrhotite, arsenopyrite and löllingite. The 

metallic paragenesis includes prevalent Fe-bearing sulfides and As-bearing sulfides: pyrrhotite, 

arsenopyrite and löllingite. The mining method is long-hole stoping (downhole drilling) 

longitudinal retreat with consolidated backfill (pastefill) or unconsolidated rockfill (Goldcorp, 

2018). 

Figure 4.1 Local geological setting of the Roberto deposit (Modified from Fontaine et al., 2017) 
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4.3.2 Geochemical and geological database 

Sampling surveys are continuously conducted at the Éléonore gold mine to update the ore 3D 

model. In contrast, As analyses do not span the full extent of the mineralization and are insufficient 

to support a 3D numerical modeling approach (Figure 4.2). 

Using only the available As analyses, common geostatistical procedures yield poor interpolation 

results due to sparsity of these data; only about thirty drill holes with complete geochemical 

analysis of As versus 12,000 performed drill hole. However, up-to-date geological logging supplies 

qualitative insights (user-defined) about the presence of arsenopyrite within drill cores. In terms of 

prevalence of metal-bearing minerals, arsenopyrite is ranked second in mass percentage after 

pyrrhotite, with proportions ranging from 1% to 15% (Fontaine, 2019). Fontaine (2019) reported 

the presence of centimetric veins with up to 40% arsenopyrite content. Löllingite is also an arsenic-

bearing mineral commonly found in the mineral paragenesis; however, löllingite is frequently 

encapsulated within arsenopyrite crystals (Fontaine, 2019). Consequently, arsenopyrite is the main 

As-bearing mineral and the overriding As-pathfinder. Therefore, the geological logging describing 

the arsenopyrite distribution can be related to the As distribution within the Roberto deposit. 

Figure 4.2 Available geochemical arsenic data from drill core samples neighbouring the 

orebody (plane view) 
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In the course of geological exploration in Éléonore mine site, the geological logging included a 

qualitative assessment of the arsenopyrite proportions based on a standard scale (Goldcorp, 2018) 

ranging from 0.01 to 100 (Figure 4.3). 

Each standard scale number refers to a class that subjectively portrays the arsenopyrite proportions. 

The class scale is used to describe sulfide mineral content based upon crystal size and prevalence, 

where a low-class number implies that a mineral is present at low proportions. However, this 

classification is prone to a high epistemic uncertainty that is closely related to the subjectivity of 

logging. Forty classes have been used from the standard scale to profile the prevalence of 

arsenopyrite in up to 12,000 drill cores. Furthermore, the geological logging reports class lengths 

within the drill cores, which are termed intervals (Figure 4.4). Up to 83,960 intervals have been 

measured and appraised using the standard scale classification. From the total sample size, 

geologists have ascribed 96% of the intervals to five classes (Figure 4.4). 

Figure 4.3 Drill core logging of arsenopyrite throughout the orebody and the host rock 

(plane view) 
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Although geological logging has been performed based on the qualitative scale, the subjectivity 

factor and the resulting epistemic uncertainty are unavoidable. Therefore, the main requirement 

identified in the process being used in the present study is that the sample size of the five qualitative 

classes should be constrained to the available chemical analyses of As. Firstly, this is to assess the 

agreement between geological logging and geochemical assays, and secondly, this allows for 

determination of variability in As grade within each class. As displayed in Figure 4.5, the median 

of As grade increases as the class number increases, thereby fulfilling agreement between 

geological logging and the geochemical analyses (i.e., high classes correspond to high As median 

and vice versa). The variability exhibited within each class (Figure 4.5) should be maintained and 

propagated throughout the modeling process as it reflects the extent of the epistemic uncertainty 

stemming from the arsenopyrite classification. 

Based on limited geochemical As data and unrestricted geological logging data (Table 4.1), the 

present study is intended to setting up trade-offs among qualitative and quantitative datasets to 

overcome the lack of geochemical data. For instance, Table 4.1 shows that 71 chemical analyses 

of As have been performed on 37 intervals belonging to the class 0.1. Nonetheless, the sample size 

Figure 4.4 Illustration of the geological logging concept coupled to the treemap layout of the 

sample size of logging intervals per class 
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of intervals that belong to the class 0.1 is amounted to 4203 intervals. Therefore, the main concern 

of this study is to assign at least one simulated As grade per interval while maintaining variability 

(mean and standard deviation) of each class of arsenopyrite. As a primary building block of 

numerical models, spatial continuity should be investigated as well. The overall contribution of 

this work focuses on bridging geological data and mine waste management challenges via 3D 

numerical modeling to promote geology-based upstream management practices.  

Table 4.1 Error margins related to each sample size ranked based on arsenopyrite classes 

Arsenopyrite 
classes 0.1 0.5 1 2 3 

Logging 
intervals 4203 43719 21193 8769 3132 

Assays 
sample size 71 666 256 83 59 

Error margin 
(%) 11.53 3.77 6.09 10.71 12.64 

Confidence 
Interval (%) 95 

Figure 4.5 The available arsenic geochemical analyses constrained to the arsenopyrite classes 
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4.3.3 Modeling method 

4.3.3.1 Stochastic simulation 

Linkages among the logging data and geochemical analyses were created through a stochastic 

simulation intended to forecast As values that reproduce the variability (variance, mean, median) 

observed within each logging class (shown in Figure 4.5). A Monte Carlo simulation was 

performed to carry out a multi-realization process. Monte Carlo methods belong to an experimental 

branch of mathematics that is concerned with generating random realizations using random 

sampling performed on distribution functions that define the process variables (Hammersley, 1964; 

Kalos and Whitlock, 1986; Niederreiter, 1992). The law of large numbers proposes that the result 

is as accurate as desired when the size of the random samples is sufficiently high (Gilks et al., 

1995). Monte Carlo methods usually deal with the independent variables of a system; however, 

several problems may involve correlated variables. In this respect, the random sampling cannot be 

performed independently, otherwise the generated realizations will overlook the variables’ 

dependencies. Thus, a correlation-based Monte Carlo simulation is more effective. The modeling 

method used in the present study relies on a correlation-based Monte Carlo simulation to constrain 

the generated data against known correlation parameters, which define the results’ reliability and 

steer the random sampling.  

Before performing the Monte Carlo simulation to output equiprobable realizations, the process 

variables and their related distribution functions must be defined. The scope of the present study 

encompasses three primary variables: two continuous numerical variables (As grade and intervals), 

and one discrete variable (logging classes of arsenopyrite). The first step consists of classifying As 

grade datasets based on the discrete variable, resulting in five batches (Figure 4.5). In order to 

maintain the As variability of each class, computations were carried out in batches, and thus the 

overall process was comprised of five stages (one per class). With respect to the continuous 

numerical variables, they are completely independent. Monte Carlo simulation could be performed 

on independent variables; however, in this case, no basis is available to constrain the generated 

variability in As grade against the variability in the available data. Therefore, an auxiliary 

numerical variable was added and termed the normalized As grade. The auxiliary variable was 

computed by normalizing As grades to their intervals. Two main reasons warrant the use of this 
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auxiliary variable. First, the normalized As grade variable exhibits a power law (y=axb) when 

plotted against the intervals variable, thus the parameters a and b will be defined as the conformity 

parameters (Figure 4.6). Second, the normalization differentiates among intervals that contain the 

same As grade. Plotting the resulting power law on logarithmic scale displays a linear-shaped 

scatter stemming from a significant correlation coefficient (Figure 4.6) (A and B in Figure 4.6 

could represent As grade and interval length, respectively).   

Both the auxiliary variable and interval variable comply with log-normal distributions. The 

parameters of the probability distribution function (PDF) related to the interval variable were 

accurately determined because all the interval lengths are reported throughout the geological 

logging. In contrast, the amount of As grade data (from geochemical analyses) inherently restricts 

the sample size of the auxiliary variable. Therefore, PDF parameters related to the auxiliary 

variable were iteratively updated throughout the process until the outcome of the correlation-based 

Monte Carlo simulation met the initially computed parameters of the power law (a and b) of the 

As grade data. Regarding the dependency between the auxiliary variable and the interval variable, 

random sampling of the PDFs was controlled through the correlation coefficient highlighted on the 

logarithmic scale. Nonetheless, instead of setting the correlation as a static value, it was defined as 

a Gaussian PDF centred on the correlation coefficient with a standard deviation of 0.5. The 

correlation PDF was intended to roughly approximate the epistemic uncertainty throughout the 

simulation. Thereafter, the correlation-based Monte Carlo simulation was performed in order to 

yield numerous points displaying a linear trend on a logarithmic scale.  
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Figure 4.6 Synthetic raw data exemplifying the iterative Monte Carlo simulation based on log-

normal distributions. The simulation process is performed in steps (from a to e), A and B are two 

independent and continuous random variables created for illustration purposes 
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The conformity parameters (a and b) of the simulated power law should be as close as possible to 

those of the available dataset, if not, the simulation should be reiterated after reconsidering the PDF 

parameters of the auxiliary variable. Subsequently, the values of the interval variable were selected 

from the simulated scatter points along with the respective values of the auxiliary variable. 

Then, newly simulated As grades are calculated by cancelling the normalization through a 

calculation of the product of the interval variable values and their corresponding auxiliary variable 

values. The aforementioned steps are summarized in Figure 4.6 and applied to a synthetic raw data 

to highlight that this process can be performed on any data set regardless of the specific case study. 

Practically, the Monte Carlo simulation was set up using the GoldSim software package to carry 

out calculations. GoldSim is a versatile modeling software that enables the implementation of 

models in a dynamic and probabilistic framework (Kossik and Miller, 2004; Rizzo et al., 2006). 

GoldSim’s settings provide flexible built-in stochastic elements to run the correlation-based Monte 

Carlo simulation. It also embeds the importance-sampling algorithm to enhance sampling 

frequency of the PDF tails. Three linked stochastic elements were implemented in GoldSim: the 

auxiliary variable, the interval variable and the correlation. 

4.3.3.2 Hypothesis testing 

The hypothesis testing was required to check if the As variability (variance, mean and median) was 

maintained and to assess if the stochastic simulation fulfilled the homogeneity requirement 

between measured and simulated As grades. Levene's test is a variance homogeneity test, which is 

known as a statistical assessment concerned with the homoscedasticity (Gastwirth et al., 2009). 

Since the present dataset is log-normally disturbed, the Levene's test is suitable and robust in the 

face of non-normality (Garson, 2012). Along with the variance homogeneity test, Student’s t test 

can be used to check if the means of two sets of data are different from each other. However, 

Student’s t test is highly sensitive to unequal sample sizes and non-normality (Ruxton, 2006). 

Alternatively, Welch’s t test has proven to be a robust test of equality of means as it is insensitive 

to both the non-normality of datasets and inequalities in sample sizes (Algina et al., 1994; Gamage 

and Weerahandi, 1998). 
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4.3.3.3 Spatial continuity 

Geological logging marks the position of each interval within the 3D space. Accordingly, each 

simulated As grade inherits the coordinates of its interval. A 3D variography analysis was required 

to discern the spatial anisotropy of the As grades. The Stanford Geostatistical Modeling Software 

(SGeMS) has previously been used to investigate directional and omnidirectional variograms 

within the 3D space (Remy et al., 2009).  Several directional variograms that span the entire 

orebody were examined to determine the plane with the highest spatial continuity. The Leapfrog 

Geo software was chosen for the numerical modeling. The Leapfrog Geo software employs a rapid 

3D interpolation method (the radial basis functions; RBFs) to interpolate grade and lithological 

data in 3D space (Cowan et al., 2002). RBF interpolation techniques have increasingly gained 

interest as an efficient, meshless interpolation method (Aguilar et al., 2005; Buhmann, 2000; 

Cuomo et al., 2013; Floater and Iske, 1996; Hillier et al., 2014; Iske, 2002; Natali et al., 2013; 

Wright, 2003). Using the RBF interpolation method, along with the variography realizations and 

the structural measurements from the surface and underground mapping, ten 3D spatial models of 

As grades were produced. 

4.4 Results and discussion 

4.4.1 Monte Carlo simulation results 

The simulation process was undertaken for each class of arsenopyrite, which constitutes the 

discrete index variable. The process thus becomes a four-sided simulation encompassing three 

continuous numerical variables and one discrete variable.  The outcome of the iterative and 

correlation-based Monte Carlo simulation is shown in Figure 4.7. The trend in As grade for the 

five classes is maintained and the medians of the simulated grades are similar to those of the actual 

dataset. Figure 4.8 illustrates how the As simulated grades were generated from available analyses 

of As using correlation-based Monte Carlo simulation. From the generated points, values of the 

auxiliary variable were selected based upon the values of the interval variable reported in the 

geological logging dataset (Figure 4.9). Afterwards, the normalization is cancelled to obtain the 

newly created dataset (Figure 4.7). 
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In terms of hypothesis testing, the reported p-values obtained from the Levene’s test, Welch’s test 

and even Student’s t test comply with the null hypothesis (p-values > 0.05). Therefore, the 

difference between the actual As grade variability and the simulated As grade variability is not 

significant at a significance level of 0.05 (Table. 4.2).  The chosen conformity parameters in the 

stochastic simulation appear to be reliable at propagating the logging uncertainty and producing 

homoscedastic datasets. Thus, the simulated As grades are adequate to undergo the spatial 

continuity analysis. 

Table 4.2 Hypotheses testing based on a 0.05 significance level 

 Sample size Levene's test 
p-value 

Student’s t-test 
p-value 

Welch’s t-test 
p-value 

As available 
grades 1141 

0.367 0.412 0.217 
As simulated 

grades 80977 

Significance 
level 0.05 Not significant Not significant Not significant 

Figure 4.7 Output of the iterative stochastic simulation for each arsenopyrite class (Realization 1) 
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Figure 4.8 Data Generated through 

correlation-based and iterative Monte 

Carlo simulation. The simulation results 

are constrained to the available data 

features (Realization 1) 
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Figure 4.9 Selected values of the auxiliary 

variable from the generated points based on the 

reported interval values (Realization 1) 
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Results from the variography analysis showed that the plane defined at 165°N, 70°SW exhibited a 

variogram range of up to 28 m, whereas the other directional variograms and the omnidirectional 

variogram yielded lower ranges (10 to 17 m). Regardless of the anisotropy, the overall variography 

analysis underscores the high to extreme nugget effect, which exceeds 50% of the sill. Overall, the 

variography analysis highlights two features: (1) the highest spatial continuity was observed along 

165°N, 70°SW. Interestingly, this plane is in agreement with the structural trend of the gold-bearing 

orebody; (2) the extreme nugget effect obtained in the variograms is in line with the mineralization 

style, which mainly consists of stockworcks and disseminations (Dominy et al., 2003; Dominy et 

al., 2001). Thus, the simulated As grades are in agreement with the spatial geological features of 

the orebody. However, the effect of ergodic fluctuations on the variography should be interrogated. 

Consequently, the overall modeling process was undertaken ten times to produce ten realizations 

of the 3D numerical models. The first four realizations, the second four realizations and the 

remaining two realizations were performed based on standard deviations of the correlation PDF of 

0.5, 0.3, and 0.1, respectively. Table 4.3 displays the corresponding directional variograms 

computed along the aforementioned high-continuity plane. Variogram ranges were slightly 

affected by ergodic fluctuations, resulting in up to 10 m of difference. The nugget effect exceeded 

50% of the sill for all realizations. The parameters of each variogram realization were used to build 

numerical models to visualize the effect of ergodic fluctuations in the 3D space. 

Table 4.3 Variogram realizations highlighting the ergodic fluctuations effect on the ranges 

Realizations Nugget effect Sill Range (m) 
1 1.8e+06 2.7e+06 21 

2 1.7e+06 2.8e+06 22 

3 2.2e+06 3.65+06 16 

4 2.15e+06 3.9+06 22 

5 1.8e+06 3.0+06 17 

6 2.3e+06 3.4+06 24 

7 2.5e+06 3.5+06 28 

8 2.5e+06 3.5+06 21.5 

9 2.3e+06 3.5+06 19 

10 2.4e+06 3.45+06 28 
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4.4.2 Geological model and analysis 

The results from the first realization were chosen to represent the 3D spatial models (Figure 4.10). 

The numerical spatial models consist of six encapsulated casings; each casing delineates the spatial 

distribution of a specified range of As values. Figure 4.10 displays two casings from Realization 

1: the 500 ppm to 1100 ppm range, and the 1100 ppm to 2300 ppm range. 

Since the Au mineralization is closely associated with As-bearing minerals, the first key element 

of the 3D spatial model is that it inherits its shape from the orebody through the directional 

variogram features and structural measurements. In order to visualize the spatial relationship 

between the As grades and the orebody, the Au mineralization was overlaid with the 3D spatial 

model (Figure 4.11). The orebody displays high As grades of up to 3000 ppm in some loci. The 

close association of the Au mineralization and the As grades is highlighted in all realizations. 

Nonetheless, as the geographic extent of the 3D model straddles the geological logging extent, the 

Figure 4.10 a) The spatial distribution of arsenic grades ranging from 500 ppm to 1100 ppm, b) 

The spatial distribution of arsenic grades ranging from 1100 ppm to 2300 ppm (Realization 1) 
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3D spatial model does not span the lower part of the orebody, which is deeper than 850 metres. In 

spite of that, the results show that the stripped ore and perhaps the resulting subsequent tailings 

hold high As values. A 3D block model was created based upon an As cut-off grade of 200 ppm to 

spot blocks with high to extreme metal content throughout the orebody and surrounding rock; the 

building block dimensions are 20х20х10 m (Figure 4.12). 

The 3D spatial model stresses that the geochemical halo of As is tens of meters larger than the Au 

mineralization extent. Consequently, it is not only the stripped ore that could contain up to 2300 

ppm of As but also the country rock, which exhibits grades of up to 1100 ppm. Such a high As 

content in the waste rock requires proactive solution to prevent As mobilization. The upstream 

segregation of waste rock is a promising option to prevent, or at least mitigate the leakage of As-

rich effluents. The upstream management method suggested here relies on coupling the mine plane 

and the 3D spatial model of As grades to distinguish between underground stopes with high to 

extreme As content from those with low As content (Figure 4.13) 

 

Figure 4.11 Spatial relationship between the gold deposit and the arsenic grades in Realization 1 
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Accordingly, mine managers could seamlessly make substantive choices regarding the waste rock 

that should be used as backfill because of their high to extreme As grade. Therefore, only the waste 

rock with low to medium As content would feed the above-ground waste disposal facility. Figure 

4.13 shows that few underground stopes have As grades lower than 50 ppm. Furthermore, almost 

all the surrounding rocks located within 100 m from the orebody exceed the “generic soil criterion 

A” of the Soil Protection and Rehabilitation of Contaminated Sites Policy (SPRCSP) (Beaulieu, 

2020). This distance could increase to up to 500 m within the orebody’s footwall. This is supported 

by all the spatial realizations. Thus, with respect to the Éléonore case study, the portion of the waste 

rock stream used in backfilling should be as high as possible. The waste rock already stored in the 

surface disposal facility should be managed carefully. Two preventive measures are suggested: (1) 

lead the progressive reclamation of the waste rock disposal areas, and (2) reuse the maximum 

amount of waste rock as rockfill or/and paste backfill. 

Figure 4.12 a) Realization 1 of the block model delineating arsenic grades greater than 200 

ppm, b) Realization 1 of the block model of the arsenic grades along the footwall of the gold 

deposit 
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Analysis of the simulation results and the 3D modeling aimed at highlighting the magnitude of the 

ergodic fluctuations within the 3D space and their effect on the agreement between the measured 

and the simulated As grades. The agreement assessment was performed in two steps: the first step 

was to visualize the ten realizations as well as the measured As grades within the probability space 

using empirical cumulative density functions (ECDFs). The ECDF of each realization was 

computed based upon 80,977 simulated As grades. In contrast, the ECDF of the measured As 

grades was based on 1141 As analyses performed during the local exploration surveys (up to 1 km 

away from the Roberto deposit). The second step was to examine the agreement in the 3D space 

Figure 4.13 Underground stopes assessed through realization 1 of the spatial model 
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by spotting the intersections of the spatial 3D model and the As geochemical analyses performed 

on drill cores. Figure 4.14 shows that the ECDFs of the realizations agree with the local measured 

ECDF values. Therefore, the stochastic simulation outcome respects the agreement requirement 

within the probability space, while keeping the ergodic fluctuations at an acceptable level. The 

process used to maintain the variability features throughout the simulation has proven to be 

efficient. For the sake of comparison, a supplementary ECDF pertaining to the regional exploration 

surveys is also plotted in Figure 4.14. It includes 23,608 As analyses located in the vicinity of the 

Roberto deposit (up to a distance of 9 km). The median of the As grade roughly increases by forty-

fold from the regional scale to the orebody’s immediate surroundings (Figure 4.14). This 

comparison yields insights about the extent of the geochemical halos of the Roberto deposit that 

could reach up to 1 km away from the main orebody. 

In terms of the assessment of ergodic fluctuations in the 3D space, Figure 4.15 shows that the 

geochemical analyses of As performed on drill cores are consistent with the 3D spatial model. The 

Figure 4.14 The empirical cumulative distribution functions of the resulting realizations along 

with the local and the regional measured grades of arsenic 
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3D spatial model does not give the exact same As grade values present in the drill core intersection, 

but values are on the same magnitude (the same color scale is used for the analyzed drill core 

samples and the 3D model). Furthermore, by comparing the ten realizations of the evaluated mine 

plan, the effect of ergodic fluctuations is maintained at a fair level and no substantial differences 

were noted. The spatial visualization of the intersections of the measured and the simulated As 

grades underscores the effectiveness of the process being used.   

Although it provides many benefits, the modeling method developed in this work has some 

shortcomings. For example, the margins of error calculated for each class exceed 5% for the 0.1, 

1, 2 and 3 classes (Table 4.1). The reported margins of error are derived from the available sample 

size. Therefore, to enhance the 3D model’s accuracy, additional As analyses should be performed. 

The sample size should be increased by 281, 121, 285 and 283 samples for classes 0.1, 1, 2 and 3, 

Figure 4.15 Spatial intersections of the mine plan overlaid with the 3D spatial model (Realization 

1) and the chemical analyses performed on drill core samples 
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respectively in order to reach a 5% error margin. Furthermore, the suggested method does not 

involve kinetic considerations; it only considers the metal content in the country rock as a proxy 

guiding the waste rock classification for their upstream management. The As mobilization 

framework requires kinetic testing along with mineralogical surveys, both of which are outside the 

scope of the present study. Kinetic testing performed on several grain-sizes fractions is 

recommended. Furthermore, samples with high As content should be selected to undergo 

laboratory kinetic tests in order to identify links between the As content and the leaching potential. 

Field-scale kinetic tests are also advisable to assess the effect of climatic conditions on As 

mobilization. 

4.5 Conclusion 

The proposed modeling method overcomes the lack of available geochemical data on As content 

by coupling a correlation-based stochastic simulation with geological logging data. The 3D 

geological modeling coupled to the stochastic simulation via the geological logging revealed 

interesting results that could be used to enhance waste rock classification based on their metal 

content. Promising methods have been investigated to bridge geological modeling and upstream 

waste rock management. Through the newly described approach, mine managers could visualize 

metal content across an orebody and its host rock with known margins of error based on restricted 

geochemical data. Thus, the process is intended to provide an efficient troubleshooting tool for the 

proactive environmental assessment in hard rock mines. More importantly, the stochastic 

simulation represents a powerful tool that could be applied to mine waste management problems. 

Likewise, links between geology and mine waste management should be encouraged to overcome 

interdisciplinary barriers and move towards integrated waste management solutions. Promising 

prospects for upstream management should be further probed through integrated and 

multidisciplinary surveys. 

Supplementary materials 

The supplementary materials of this chapter are in Appendix A. 
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 ARTICLE 2: INCORPORATING KINETIC MODELING 

IN THE DEVELOPMENT STAGES OF HARD ROCK MINE PROJECTS 

This article was published in Minerals in 20212. 

5.1 Abstract 

Weathering cell test, designed specifically to overcome material-limited constraints, yields prompt 

and efficient experimental assessment during the development stages of mining projects. However, 

it has barely benefited from geochemical modeling tools despite its ease of use. Accordingly, this 

paper aims to strengthen the upstream geochemical assessment via parametric analysis that 

simulates the effect of various mineral assemblages on leachate quality recovered from weathering 

cells. The main objective is to simulate the pH in presence of silicate neutralizing minerals and Mn 

release from carbonates based upon minimal characterization data. The public domain code 

PHREEQC was used for geochemical kinetic modeling of four weathering cells. The kinetic model 

utilized a water film concept to simulate diffusion of chemical elements from mineral surfaces to 

the pore water. The obtained results suggest that the presence of the silicate neutralizing minerals 

slightly affects the Mn release from carbonates. Furthermore, plagioclase could supply a significant 

neutralization potential when they predominate the mineral assemblage. Finally, coupling 

weathering cell test and parametric analyses illuminates the pH evolution for various mineral 

proportion scenarios.  

Keywords: Kinetic modeling; Weathering cells; Parametric analysis 

5.2 Introduction 

Mining and quarrying activities produce substantial volumes of solid waste deposited in above-

ground containment facilities, which receive up to 90% of the extracted ore (Mudd, 2007; Yilmaz, 

2011). Based on the site-specific cut-off grade, the remnant lean grades and the final solid waste 

 

2 Toubri, Y., Vermette, D., Demers, I., Beier, N. and Benzaazoua, M. (2021). Incorporating Kinetic Modeling in the 

Development Stages of Hard Rock Mine Projects. Minerals, 11(12), 1306. 



76 

  

 

from ore processing are categorized as waste rock and tailings respectively (Park et al., 2019; 

Tabelin et al., 2021). The sparse sulphide minerals in solid waste, previously sequestered in a 

reducing environment, are exposed to oxidizing conditions. Atmospheric oxygen and through-

flowing water trigger oxidation of sulphides such as pyrite and pyrrhotite, resulting in potentially 

contaminated effluents. This naturally occurring phenomenon has aroused growing interest and is 

termed acid mine drainage (AMD) or contaminated neutral drainage (CND), depending on the 

neutralizing potential and the pH (Akcil and Koldas, 2006; Barfoud et al., 2019; Blowes et al., 

2003; Evangelou and Zhang, 1995; Heikkinen et al., 2009; Kleinmann et al., 1981; Moses et al., 

1987; Nicholson et al., 1988; Nicholson and Scharer, 1994; Nordstrom et al., 2000; Nordstrom, 

1982; Nordstrom and Alpers, 1999; Plante et al., 2010; Singer and Stumm, 1970; Weisener and 

Weber, 2010; Wiersma and Rimstidt, 1984). Other sources of contamination in the mine framework 

are also present (Ho et al., 2021; Tabelin et al., 2018; Tamoto et al., 2015). Sulphide oxidation and 

the subsequent effluent result in water quality exceedances in terms of metals and oxyanions 

concentrations as well as low pH in the case of AMD. Contaminated mine drainage is a worldwide 

ecological-security threat with the ability to toxify freshwaters and impair life forms and their 

support systems. Research endeavors adopted by governments, the mining industry, universities, 

and research establishments focus on assessment, prevention, and treatment of AMD and CND to 

safeguard ecosystems neighboring mine facilities (Aubertin et al., 1997; Benzaazoua et al., 2004; 

Benzaazoua et al., 2008; Benzaazoua et al., 2000; Bouzahzah et al., 2014a; Bussière, 2007; 

Bussière et al., 2007; Demers et al., 2015; Demers et al., 2008; Demers et al., 2009; Demers et al., 

2017; Elghali et al., 2018; Elghali et al., 2019; Jouini et al., 2020; Jouini et al., 2019; Michaud et 

al., 2017; Ouangrawa et al., 2010; Parbhakar-Fox et al., 2011; Plante et al., 2014). 

Forecasting water quality through simulations of coupled physical and geochemical processes 

using well-vetted programs is a worthwhile endeavor to set proactive measures (Nordstrom et al., 

2015; Tabelin et al., 2017a, 2017b). Calibrated numerical models via laboratory and/or field tests 

that provide long-term predictions and/or parametric analysis of water quality have been used 

extensively to assess the geochemical behavior of mine solid waste as well as the performance of 

reclamation scenarios (Demers et al., 2013; Fala et al., 2003; Fala et al., 2013; Kalonji-Kabambi 

et al., 2020; Molson et al., 2008; Molson et al., 2005; Nicholson et al., 2003; Pabst et al., 2018; 

Pabst et al., 2017). For instance, Wunderly et al. (1996) established the PYROX model to simulate 
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diffusion-controlled oxidation of pyrite. Romano et al. (2003) utilized PYROX to perform a 

comparative survey of different reclamation scenarios. Graupner et al. (2014) also investigated 

PYROX capabilities to predict mining impact on groundwater. Molson et al. (2005) assessed 

design strategies intended to minimize AMD from waste rock using HYDRUS and POLYMIN. 

Both codes were extensively used and investigated for a wide range of problems (Abbasi et al., 

2004; Fala et al., 2003; Fala et al., 2006; Fala et al., 2013; Kandelous and Šimůnek, 2010; Molson 

et al., 2005). In this respect, the MIN3P model has proven to be an effective and versatile numerical 

tool to simulate kinetically controlled and transport-controlled reactions (Brookfield et al., 2006; 

Jurjovec et al., 2004; Mayer et al., 2012; Mayer et al., 2002; Ouangrawa et al., 2009). Kalonji-

Kabambi et al. (2020) used the MIN3P model to simulate the geochemical behavior of uncovered 

and covered highly reactive tailings. Pabst et al. (2017) used MIN3P to evaluate the hydro-

geochemical behavior of covered preoxidized tailings. Although they provide many benefits, most 

of the geochemical modeling case studies are carried out during the operation and closure stages 

of the mine life cycle as they tackle design strategies and the performance of reclamation scenarios. 

The development stage of a mining project has received very little benefit from geochemical 

modeling tools because of the lack of in situ waste materials and the data-intensive nature of the 

programs being used. A geochemical assessment during the upstream stages of a mining project 

provides a proactive way to identify environmental risks and mitigate them during operation and 

closure stages. Advanced exploration, preliminary economic assessment, and feasibility study 

stages are globally referred to as the upstream stages of a mining project, during which deposit 

definition and preliminary environmental and operational data are gathered. As the upstream stage 

benefits from specific kinetic testing and suited management approaches (Amar et al., 2020; 

Bouzahzah, 2013; Cruz et al., 2001; Toubri et al., 2021; Villeneuve et al., 2009), it should be 

further expanded through geochemical modeling tools. 

This research is intended to underpin the geochemical assessment of solid waste through a 

numerical modeling method that complies with the upstream stage constraints. In this regard, 

simulations of weathering cell tests, performed during material-limited stages (exploration, 

feasibility stages), were used to forecast scenarios that may stem from various mineral 

assemblages. Conservative reasoning and worse case scenarios were adopted herein to (i) address 

shortcomings related to material availability, and (ii) avoid underestimations of the geochemical 
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response of solid waste. Adding a protective margin throughout the development stage is advisable 

to refine risk identification. This study aims to (i) simulate weathering cells designed specifically 

for the upstream stage, and (ii) introduce a straightforward geochemical screening tool that expands 

the geochemical assessment from the interpretation of experimental results to the parametric 

analysis throughout the development stage. PHREEQC is the modeling engine used for this study; 

it is a public domain code broadly used for speciation, batch-reaction, one-dimensional transport, 

and inverse geochemical calculation (Parkhurst and Appelo, 1999). However, it also encompasses 

other advanced capabilities such as solid solutions, surface complexation, and kinetics. PHREEQC 

was chosen mainly because of its flexible interface that allows the implementation of time-

dependent equations that could be solved using integration routines incorporated in the program. 

Unlike many other public codes, PHREEQC enables coupling of kinetics and 1D transport. 

Moreover, a wide range of geochemical databases are included in PHREEQC. Nicholson et al. 

(2003) employed PHREEQC kinetics and 1D transport keyword blocks to simulate metal leaching 

from acid-generating waste rock at a uranium mine. Labus and Grmela (2006) set up 1D kinetic-

based model in PHREEQC to simulate pyrite oxidation within coal waste piles. Similarly, Embile 

Jr et al. (2019) introduced locally measured dissolution rates of pyrrhotite and forsterite in 

PHREEQC to simulate long-term kinetic tests of a milling waste. Likewise, PHREEQC was 

utilized in the present study to simulate kinetically controlled reactions; unlike the aforementioned 

examples, this study involves a multi-mineral composition in the kinetics keyword block. 

The Akasaba West mining project was selected for this modeling study because it is in the early 

development stages. Vermette (2018) developed a staged geo-environmental protocol for the 

Akasaba West project based on static and weathering cell tests as well as mineralogy using 

materials from drill core surveys. Those findings recommended mine waste classification into geo-

environmental domains in order to prevent future environmental liabilities (Vermette, 2018). A 

geo-environmental domain includes lithologies with nearly the same geochemical behavior. This 

research focuses first on the assessment of the geochemical behavior of each suggested geo-

environmental domain based on the classification as well as the overall lithological units mixed. 

Secondly, simulation of the experimental results using PHREEQC is presented in order to perform 

parametric analyses. The expected outcome is to supply mine managers with a straightforward 
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screening method complying with data-limited and material-restricted situations to effectively 

simulate the pH of kinetically controlled reactions along the development stage of a mine life cycle. 

5.3 Materials and methods 

5.3.1 Geological background 

Agnico Eagle Ltd. owns the Akasaba West Au-Cu deposit located in the Abitibi-Témiscamingue 

region, approximately 15 km east of Val d’Or in Quebec, Canada. The geological field of Akasaba 

West site belongs to Héva Formation of the Louvicourt District, consisting of volcanic and 

volcanoclastic rocks (Vermette, 2018). The volcanism event is mainly expressed by the presence 

of basalt, dacite, and quartz-feldspar bearing porphyry rocks. Dyke and sill swarms crosscut 

volcanic and volcanoclastic outcrops (Vermette, 2018). Low pressure-low temperature 

metamorphic events resulted in low-grade greenschist facies. Exploration investigations in this 

region resulted in the discovery of a gold-copper deposit. The mineralization style consists of thinly 

disseminated sulphides hosted in moderately to strongly altered basalt, andesite, volcanoclastic 

dacite, and trachyandesite (Vermette, 2018). Geological descriptions from diamond drill core 

characterization suggest that the ore is characterized by < 5% pyrite occurring as disseminations 

and locally as clusters, veinlets, or thin massive sulphide lenses. The Akasaba West Au-Cu deposit 

will yield 5.12 Mt of ore containing 0.87 ppm Au and 0.49% Cu. Up to 7.62 Mt of waste rock will 

be stored in above-ground facilities. 

5.3.2 Samples preparation and characterization 

Prior to this study, materials from drill core surveys underwent interval sampling of 3 m. 

Afterwards, Vermette (2018) led a staged geo-environmental protocol and identified seven 

lithogeochemical units spanning the extent of the future open pit. Throughout the protocol, a 

selection process of samples was set up according to geometallurgical directives. The final stage 

of the selection process provided 86 samples allocated to seven litho-geochemical units (known as 

geometallurgical units). The number of samples per unit was dictated by the lithology prevalence 

in drill cores logging. Static and kinetic tests as well as mineralogical characterization were 

undertaken to classify the litho-geochemical units into a set of units with nearly the same 
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geochemical behavior; named geo-environmental domains. Accordingly, Vermette (2018) 

proposed a waste disposal plan based on mine waste sorting into three geo-environmental domains 

(mafic domain, dacite domain, and intermediate domain). This classification was determined from 

the individual geochemical assessment of each litho-geochemical unit. In the present study, a 

composite sample from each geo-environmental domain was prepared to assess the aforementioned 

disposal scenario. Furthermore, a fourth composite sample encompassing all units was evaluated 

to compare sorted and unsorted materials and to gain insights about the geochemical behavior of 

the solid in the case of mixed disposal. The blending proportions originated from the number of 

samples that represent each lithology. Blending and homogenization were accomplished under dry 

conditions. Figure 5.1 displays the blending proportions for each composite sample. 

*D1. the mafic domain, D2. the dacite domain, D3. the intermediate domain, T1. the all-embracing 

domain, Unit-1. andesitic basalt unit, Unit-2. Fe-Ti rich basalt, Unit-3. andesite, Unit-4A. dacite, 

dacitic tuff, dacitic intrusions, and quartz-feldspar porphyry type 1, Unit-4B. alkaline andesite and 

alkaline andesitic tuff, Unit-5A. dacite, dacitic tuff, dacitic intrusions, and quartz-feldspar porphyry 

type 2, Unit-5B. alkaline andesite and alkaline andesitic tuffs. 

Figure 5.1 Blend samples prepared to assess geochemical interactions among lithological units 

within geo-environmental domains (the size of the boxes represent blending proportions)*.  
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In previous works, kinetic assessment was undertaken on 11 ground drill core samples from 

Akasaba West with D50 ranging from 370 to 560 μm; all leachates maintained neutral to slightly 

alkaline pH values (Vermette, 2018). In the present study, the drill core samples were ground to 

less than 100 μm to deliberately expose thinly disseminated sulphides to favor optimal reaction 

conditions with the chosen kinetic test apparatus (Amar et al., 2021; Elghali et al., 2019).  

The specific gravity (Gs) of the homogenized composite samples was measured with a 

Micromeritics Helium Pycnometer (Quantachrome corporation, Unité de Recherche et de Service 

en Technologie Minérale URSTM, Rouyn-Noranda, Canada). The specific surface area (Ss) was 

determined with a Micromeritics surface area analyzer (Quantachrome corporation, URSTM, 

Rouyn-Noranda, Canada) using the BET (Brunauer, Emmett et Teller) method (Brunauer et al., 

1938). The geometric surface area (SGeo) was calculated using the method of Chapuis and Aubertin 

(2003) to compute the roughness factor. The grain size distribution was gauged using a Malvern 

Mastersizer laser particle size analyzer (Malvern instruments Ltd, URSTM, Rouyn-Noranda, 

Canada). Chemical analyses were conducted using acid digestion (HNO3-Br2-HF-HCl) followed 

by ICP-AES (inductively coupled plasma-atomic emission spectrometry, PerkinElmer, URSTM, 

Rouyn-Noranda, Canada) analysis of the digests using a PerkinElmer OPTIMA 3100 RL. An 

ELTRA CS-2000 induction furnace coupled with an infrared analyzer (ELTRA Elemental 

Analyzers, URSTM, Rouyn-Noranda, Canada) for carbon dioxide and sulphur dioxide detection 

analyzed the sulphur (Stotal) and inorganic carbon (Ctotal) contents. The Ctotal was determined after 

calcination of the solids for 16 h at 375 °C in a muffle furnace (Nabertherm HTCT 01/16) and then 

combustion in the induction furnace at 1360 °C. Stotal is expected to correspond to sulphide sulphur 

given the fresh state of the solids preserved in dry conditions before handling.  

The acid–base accounting (ABA) was conducted following the protocol described by Lawrence 

and Lawrence and Wang (1997) and modified by Bouzahzah et al. (2015). Lawrence and Wang 

(1997) modified the method of Sobek (1978) to determine the neutralization potential (NP) by 

adding HCl followed by back titration to an endpoint pH of 8.3 at ambient temperature. The NP 

was quantified after one week of acid digestion to stimulate low-reactive neutralizing minerals as 

suggested by Bouzahzah et al. (2015). The NP was also estimated based on the Ctotal content as 

shown in equation (5.1) assuming that Ctotal stems from carbonates (CNP) (Bouzahzah et al., 

2014b). Similarly, the acidic potential (AP) was calculated by assuming that all the sulphide 
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sulphur belongs to pyrite that will oxidize and generate acidity, as expressed by equation (5.2) 

(Bouzahzah et al., 2014b).  

Thereafter, the net neutralization potential (NNP in kg CaCO3/t; NNP = NP−AP) and the NP/AP 

ratio were computed for interpretation. CNP denotes carbonate-neutralizing potential in kg 

CaCO3/t and AP is the acidic potential (kg CaCO3/t).  

CNP = 83.33 × %Ctotal           5.1 

AP = 31.25 × %Stotal         5.2 

The mineralogical composition was investigated using an X-ray diffractometer (XRD; Bruker AXS 

D8 ADVANCE, URSTM, Rouyn-Noranda, Canada). The XRD analyses were conducted on dried 

and micronized samples at room temperature. Bruker AXS equipment as well as EVA and TOPAS 

software packages interacted throughout the data compilation to yield mineralogical identification 

and semiquantification based on reconciliation with chemical results, allowing a detection limit of 

less than 1 wt.%. The mineralogical composition and quantification were refined using a scanning 

electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy probe (EDS; 

HITACHI S-3500N, detection limit around 1000 ppm, HITACHI High-Tech, URSTM, Rouyn-

Noranda, Canada). The aforementioned geological setting and previous surveys from Vermette 

(2018) stressed that the future mine wastes from the Akasaba West open pit are expected to contain 

low weight proportion of calcite. Therefore, the mineralogical scrutiny with SEM-EDS had a 

particular focus on identifying and quantifying silicate and sulphide minerals, as they are the 

foremost source of neutralization and acid generation, respectively. The SEM-EDS analyses 

covered a range of 210–266 probed points distributed over 8 or 9 different bands on each polished 

section. 

5.3.3 Weathering cell test 

A weathering cell is a miniature version of a humidity cell. It consists of a leaching device that 

enables reaction rates comparable to those of humidity cells (Cruz et al., 2001). However, 

weathering cells are slightly more aggressive than humidity cells (Bouzahzah et al., 2014a; 

Villeneuve, 2004). Plante et al. (2014) reported a liquid to solid ratio for weathering cells that 

ranges from 5000 to 10,000 L/m3/week versus 2000 L/m3/week for humidity cells. The weathering 

cell concept was first developed by Cruz et al. (2001) to assess pyrite oxidation by leaching 20 g 
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of pyrite with 15 mL of leaching solution. Thereafter, the test was adjusted by increasing the sample 

mass to 67 g and maintaining the same liquid to solid ratio used by Cruz et al. (2001) (Bouzahzah 

et al., 2014a; Bouzahzah et al., 2014b; Plante et al., 2011). Weathering cell testing is a cost-

effective method largely used during the upstream geochemical assessment for its ease of 

implementation and limited manipulation requirements; more importantly, weathering cells cope 

with material-restrained situations. Moreover, Jouini et al. (2019) and Park et al. (2020) 

demonstrated the effectiveness of weathering cell tests even for downstream framework. In this 

respect, weathering cells were selected to elucidate the differences between the mixed scenario and 

the geo-environmental domains partitioning. 

Four weathering cells were implemented: D1, D2, D3, and T1. These samples encompass the mafic 

domain, the dacite domain, the intermediate domain, and the three mixed domains, respectively. 

The leaching device was a Buchner funnel measuring 100 mm in diameter and containing 67 g of 

sample (dry mass). The sample was placed upon two nylon membrane filters (Whatman 0.45 μm) 

that were sealed with silica grease along their circumference. The filters prevent the loss of fine-

grained particles that could escape through Buchner perforations during the flushes. The silica 

grease hinders undesirable seepage and enables water retention inside the Buchner funnel. A 250 

mL receiving flask was placed under each funnel to recover the filtrate (see supplementary 

materials). Each sample was flushed with 50 mL of deionized water on the first day, followed by 

two days of exposure to the ambient air. On the fourth day, samples were flushed again with the 

same volume of the leach solution and exposed to the ambient air for the rest of the seven-day 

leaching cycle. The leachates were recovered after 4 ± 0.5 h of retention by applying suction (with 

a vacuum pump) on the filtering flask. The obtained solutions were weighed and analyzed for 

electrical conductivity, Eh, and pH. The filtrates obtained using a 0.45 μm nylon filter (Whatman) 

were analyzed for the main dissolved elements. To ensure sample preservation, the filtrates were 

acidified to 2% HNO3 prior to ICP-AES chemical analysis. 

5.3.4 The conceptual model 

Weathering cell tests provide a highly oxidizing environment where atmospheric oxygen and water 

are not transport-limited throughout the test duration. Therefore, the effluent quality stems mainly 

from the inherent mineral reactivity and the available reactive surfaces. Oxidation and dissolution 
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reactions under such conditions are kinetically controlled (not thermodynamically controlled). The 

conceptual model relies on oxidation and dissolution rates of the sulphides and the gangue 

minerals, respectively. In accordance with the mineralogical characterization results, a kinetic 

reactivity rate for each mineral was selected from the literature based upon experimental 

conditions. The incoming leach solution as well as the pore water of the system were considered 

to be in equilibrium with oxygen and carbon dioxide. These equilibrium reactions allowed no 

restriction in oxygen supply; thus, gas transport problems were precluded, which is in line with 

PHREEQC limitations (Parkhurst and Appelo, 1999). This equilibrium component allowed the 

modeling of kinetically controlled reactions (Eary and Williamson, 2006; Salmon, 2003). 

Transport processes were embedded along the 1D discretized length of the system. The advective 

transport was intended to simulate leach solution advection as a function of the residence time and 

volumetric flow. The residence time would relate kinetic reactions to advective transport in order 

to control the time span of the water–rock interactions. The diffusive transport herein considers 

diffusion of dissolved species from the particle surfaces to the pore water. In this regard, the 

conceptual model assumed that a thin water film surrounded the particle surfaces, that kinetic 

reactions occurred within the water film, and that the products that were subsequently released 

were transferred to the bulk solution through a diffusion boundary. An oxygen reservoir was 

implemented within the water film to trigger and maintain sulphide oxidation (Figure 5.2). This 

modeling approach assumed that weathering rate laws for monomineralic samples can be utilized 

for mixtures of minerals (pyrite, carbonates, and silicates) evenly distributed over the uniform 

sample size distribution obtained after grinding (Eary and Williamson, 2006; Salmon, 2003). 

Opting for specific rates from literature aimed to (i) assess their reliability for a mixture of minerals 

and their relevance for the weathering cell test, and (ii) provide prompt scoping surveys during 

data-limited situations.  

Plante (2010) stressed that weathering cells are less prone to precipitation of secondary phases due 

to the high liquid to solid ratio as well as the thickness of the solid bed sample. Furthermore, 

previous kinetic testing undertaken by Vermette (2018) reported low ionic strength and negative 

saturation indices throughout the geochemical assessment of the separate lithologies. Accordingly, 
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the conceptual model precluded any retention process. This assumption abides by the conservative 

reasoning adopted herein to avoid underestimation of the contamination potential. 

5.3.4.1 Abiotic kinetic rates 

Pyrite is ubiquitous in Akasaba West ore and its host rock, representing a potential source of AMD. 

Pyrite was detected in all geo-environmental domains (Vermette, 2018). The specific rate of pyrite 

oxidation determined by Jerz and Rimstidt (2004) was chosen for the present study: 

rk = 10−6.6P0.5

t0.5           5.3 

Where p is the partial pressure of oxygen (atm) and t is time (s). Two main reasons warranted the 

use of the aforementioned specific rate in this study: (i) Jerz and Rimstidt (2004) established the 

specific rate formula for pyrite oxidation in unsaturated medium, which is in line with the 

experimental approach herein. In addition to the open system approach, using a specific rate of 

pyrite oxidation under unsaturated conditions will aid to overcome PHREEQC limitations. (ii) The 

specific rate from Jerz and Rimstidt (2004) considers pyrite aging attributed to the formation of a 

solution film on pyrite surfaces as oxidation progresses. Including the aging effect on pyrite 

reactivity is relevant for the actual framework as kinetic tests are usually undertaken for a 

considerable time span. It is worth mentioning that the aforementioned specific rate delineates 

direct oxidation of pyrite that is relevant for fresh samples under kinetic testing. 

The gangue minerals consisted mostly of silicates and minimal crystals of calcite (Table 5.1). To 

simulate gangue mineral dissolution in the KINETICS keyword block of PHREEQC the generic 

form of the rate expressions developed by Chou and Wollast (1985) and Casey and Ludwig (1995) 

Figure 5.2 The conceptual model of the weathering cell tests 
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and adopted by Palandri and Kharaka (2004) was implemented for each gangue mineral (see 

supplementary materials). Minteq.v4 database of PHREEQC was used; it includes the speciation 

of all the chemical elements involved in the model. 

Table 5.1 List of dissolution rate parameters used in this study to kinetically simulate the 

neutralization potential under a wide range of pH 

Mineral 
Acidic Mechanism Neutral 

Mechanism Alkaline Mechanism 

log k E n log k E log k E n 
K-feldspar*  −10.06 51.7 0.5 −12.41 38 −21.2 94.1 −0.823a 
Oligoclase*  −9.67 65 0.457 −11.84 69.8 -- -- -- 
Andesine*  −8.88 53.5 0.541 −11.47 57.4 -- -- -- 
Anorthite*  −3.5 16.6 1.411 −9.12 17.8 -- -- -- 

Augite*  −6.82 78 0.7 −11.97 78 -- -- -- 
Epidote*  −10.6 71.1 0.338 −11.99 70.7 −17.33 79.1 −0.556a 
Calcite*  −0.3 14.4 1 −5.81 23.5 −3.48 35.4 1b 

Tremolite*  −8.4 18.9 0.7 −10.6 94.4 -- -- -- 
Albited**  −10.07 58 0.34 −19.29 57 −9.85 56 0.32c 

Muscovite***  −2.5 44 0.8 −5.04 45 −0.3 61 0.6c 
Chlorite****  −4 30 0.74 −10.32 13 −8.82 15 0.43c 

*Palandri and Kharaka (2004), **Marty et al. (2015), ***Lammers et al. (2017), ****Smith and Carroll (2016). 
a Reaction order with respect to H+ activity. 
b Reaction order with respect to CO2 partial pressure, it is a carbonate mechanism. 
c Reaction order with respect to OH- activity. 
d For albite p1 = 0.48 and q1 = 100 (Marty et al., 2015). 
k: the rate constant in mol.m−2.s−1, E: the activation energy in kJ/mol, n: the reaction order, --: Not available. 

5.3.4.2 Diffusive transport 

Diffusion from the water film to the bulk solution along the sample height was simulated using 

diffusive transport in the TRANSPORT data block using a single diffusion coefficient for all 

chemical species (Parkhurst and Appelo, 2013). Parkhurst and Appelo (1999) included dual 

porosity modeling in the TRANSPORT data block to simulate diffusion between closed and 

interconnected porosity (named immobile and mobile cells in PHREEQC). Tiruta-Barna (2008) 

repurposed the Stagnant_cells modeling capability of the TRANSPORT data block for diffusion 

simulation in dynamic leaching tests. The same repurposing reasoning was suggested herein to 

bridge kinetics and transport. Regarding the drying wetting/cycles, the advection time step was at 
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2.5 days, which constitutes the drying period. During this period, the water retained by capillarity 

is reacting with minerals using immobile cell capability of PHREEQC. The Stagnant_cells 

capability of PHREEQC links immobile and mobile cells via diffusion. Therefore, chemical 

products emanating from kinetic reactions that occurred in the immobile cell were transported via 

diffusion to mobile cells. Based upon various discretization tests ranging from 5 to 100 cells, 30 

diffusion-linked cells was determined to be an optimal 1D discretization where the first mobile cell 

is a transfer cell mediating kinetics and diffusive transport. The longitudinal dispersivity was 

estimated using equation 5.4 from Neuman (1990), then PHREEQC internally computed the 

hydrodynamic dispersion coefficient DL to perform calculations of the diffusion term. 

αL = 0.0175L1.46          5.4 

Where L is the sample height (m). 

5.3.5 Calibration and parameter fitting 

Model calibration was carried out by matching the model results to kinetic testing data from the 

D2 weathering cell. The D1, D3, and T1 weathering cells were used as benchmarking cases. The 

main calibration parameters used to fit the experimental results were the reactive surface area and 

the effective diffusion coefficient (De) between the film and the pore water. De refers to the rate of 

transfer of chemicals between the film and the pore water. De is the key fitting parameter when a 

conceptual model considers the water film concept. The capability of stagnant zones in PHREEQC 

enables De implementation as input.  Furthermore, Mn was included in the system as a trace element 

in calcite according to previous work (Vermette, 2018). It is considered in this study because it 

could constitute an element of concern. The parameter used to calibrate Mn release was the 

stoichiometric coefficient of Mn within calcite. To perform the stoichiometric coefficient 

calibration, the fitting operation was undertaken using PHREEPLOT. The non-linear least squares 

(nlls) method was used in PHREEPLOT. The fineness of the fit was assessed based upon the 

weighted sum of the residuals (Kinniburgh and Cooper, 2011). The outcome was used to perform 

a parametric analysis to scope Mn leaching scenarios and highlight conditions under which CND 

or even AMD prevails. 
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5.4 Results and discussion 

5.4.1 Experimental datasets 

5.4.1.1 Characterization results 

Characterization results are summarized in Tables 5.2 and 5.3 and Figures 5.3 and 5.4. The grain-

size distribution of the composite samples is typical of the grain size of non-segregated tailings, 

compiled and classified by Bussière (2007) as sandy silts of low plasticity (ML). Specific gravity 

(Gs) values were subject to slight variations owing to high-density mineral content such as titanite, 

magnetite, and pyrite (Table 5.2). Likewise, the specific surface area (Ss) was affected by the 

presence of some phyllosilicates well known for their high specific surface (Benzaazoua et al., 

2004). Roughness factors (the ratio between the specific surface area and the geometric area) 

computed based on geometric specific surface areas were 2.7, 4.24, 3.5, and 3.66 for D1, D2, D3, 

and T1, respectively. 

The Al content confirmed that the samples were rich in aluminosilicates. The Fe content mainly 

originated from iron oxides such as magnetite, while iron-bearing sulphides provided a small 

contribution to the total iron grade as indicated by the sulfur content (Stotal). As no graphite was 

associated with the Akasaba West deposit, the inorganic carbon content (Ctotal) ascertained that all 

composite samples were carbonate-poor materials with barely significant differences. However, 

SEM-EDS investigations highlighted that calcite contains traces of Mn within its crystalline lattice. 

Calcium exhibited high grades ascribed to epidote that pertains to the greenschist facies mineral 

assemblage. Figure 5.4 emphasizes the felsic composition of the Akasaba West host rock with 

albite contents predominating the mineral assemblage. 

Regarding ABA, the NP after one week of acid digestion was twofold higher than the CNP and the 

NP measured after 24 h of acid digestion. Therefore, sufficient time was needed for slow-reacting 

silicates to neutralize acidity and shift samples from the uncertainty zone to the non-acid generating 

zone (Figure 5.3). Nonetheless, kinetic testing is required to investigate the reliability of the 

neutralization potential of the silicates and to quantify the prerequisite lag time to neutralize the 

sample inherent acidity produced during leaching cycles. 
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Table 5.2 Physical properties of composite samples 

The composite samples Gs Ss (m2/g) D10 (μm) D50 (μm) D90 (μm) 

D1 2.95 1.46 2 12 56 

D2 2.73 2.03 2.4 12 47.1 

D3 2.69 1.77 2.28 11.85 46.2 

T1 2.77 1.82 2.3 11.8 48.5 

Gs: the specific gravity; Ss: the specific surface area; Dx: the grain size such that x% of the particles 

mass is made of grains finer than the diameter Dx. 

Table 5.3 Chemical analysis of the composite samples 

The composite 
samples 

Mass fraction (wt%) 

Ctotal Al Ca Cu Fe K Mg Mn Na Stotal 

D1 0.36 9.4 9.09 0.04 8.1 1.1 1.9 0.06 1.78 0.23 

D2 0.25 8.97 2.07 0.13 4.5 1.5 1.4 0.03 2.78 0.45 

D3 0.37 13.5 2.34 0.02 3 0.9 0.75 0.02 3.46 0.56 

T1 0.3 9.08 3.29 0.08 3.8 1.2 1.36 0.03 2.66 0.43 
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Figure 5.4 Acid–base accounting classification based on the neutralization potential ratio 

Figure 5.3 Mineralogical composition of composite samples 
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5.4.1.2 Weathering cells results 

For modeling purposes, the accuracy of the chemical analysis was assessed to discern experimental 

uncertainties through the comparison of calculated and measured electrical conductivity as 

suggested by Appelo and Postma (2004). The calculated electrical conductivity was based upon 

measured molarity and molar conductivity in water at 25°C reported in the literature for each major 

ion (Appelo and Postma, 2004). The correlation coefficients between the calculated and the 

measured electrical conductivity ranged from 0.9 to 0.98 and the highest root mean square 

deviation (RMSD) was 10.36% (see supplementary materials). RMSD values provide some 

insights into experimental uncertainties related to equipment and/or manipulations. These 

uncertainties should be maintained as low as possible before delving into modeling. In the present 

study, the RMSD values were considered low enough for model calibration purposes. 

The electrical conductivity was as high as 1.5 mS/cm during the first leaching cycle and 

progressively decreased towards the end of the kinetic tests (189 days). This could be interpreted 

as a decrease in metal release. Neutral to slightly alkaline pH values were maintained throughout 

the duration of the test for the D1, D3, and T1 weathering cells (Figures 5.6, 5.7 and 5.8). 

Meanwhile, the D2 weathering cell released acidic leachates during the first 14 days of the test; the 

pH ranged between 3.8 and 3.9 (Figure 5.5). Subsequently, the pH gradually increased to 8 by the 

26th day. Sulfate concentrations SO4
2− measured in the leachate from D2 started at 447 mg/L and 

gradually decreased to 6 mg/L after 100 days. Likewise, the Fe concentration in the D2 leachate 

reached 3.74 mg/L and decreased to the detection limit after 40 days (Figure 5.5). Sulfate 

concentrations in the D1, D3, and T1 leachates started at 100.2, 167.1, and 303 mg/L, respectively, 

and exhibited the same tendency as D2. Despite the content of iron-bearing sulphides in D1 and 

D3, Fe was below the detection limit in the leachates or sporadically released over the course of 

few leaching cycles. Leachates from all weathering cells displayed sporadic Cu release with low 

concentrations ranging from 0.003 to 0.09 mg/L. Manganese exhibited a distinctive evolution, with 

concentrations in the D2 leachate decreasing from 0.2 to 0.01 mg/L after 100 days; thereafter, it 

gradually increased to 0.045 mg/L by the end of the test (Figure 5.5). The same Mn evolution was 

observed in the other weathering cells, though with lower concentrations at the beginning of the 

test and a more abrupt increase beyond the 100th day. 
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At the weathering cell scale, the classification scenario showed no substantial benefits in terms of 

water quality. Kinetic testing results suggest that the four weathering cells contain a sufficient 

proportion of neutralizing minerals to prevent AMD prevalence. Nonetheless, the risk of Mn 

contaminated neutral drainage is conspicuous in the four weathering cells, though at variable 

magnitudes. The D2 weathering cell released the highest Mn concentrations; as it shifted from 

AMD to CND, the acidic conditions accelerated the dissolution of Mn-bearing calcite. Even though 

the observed concentrations did not exceed 1 mg/L, which would threaten freshwater organisms 

according to World Health Organization (WHO) (Le Bourre et al., 2020), Mn should be carefully 

monitored throughout the Akasaba West lifetime. Furthermore, the assessment of the classification 

scenario should be undertaken at larger experimental scales during the upstream stages of the 

operation phase to confirm the laboratory test results. 

5.4.2 Modeling results 

Kinetic testing results from the D2 weathering cell were chosen to perform model calibration 

because the D2 sample exhibited the highest roughness factor that could underline the model 

sensitivity to SGeo versus Ss. More importantly, the D2 weathering cell illustrates a transition from 

AMD to CND. The remaining weathering cells were used as benchmarking cases to highlight the 

model reliability and limitations. 

5.4.2.1 Model calibration 

Figure 5.5 compiles the D2 kinetic modeling and testing results. Generally, a good agreement 

between the kinetic test data and the PHREEQC model was obtained using De = 8.10−11 m2/s for 

chemicals diffusing from the grain surface to the bulk solution. The obtained value of De within 

the water film was roughly one order of magnitude lower than the diffusion of ions in free water.  

Furthermore, differences between Ss model and SGeo model were scarcely significant. The 

calibration effort was focused on the specific surface area of albite to alleviate the Na-related 

discrepancy. Although the BET-based surface area of albite was reduced from 5.31 to 2 m2/dm3, 

the Na-Ss model was still prone to deviation from experimental results as time progressed (Figure 

5.5). The Na-related discrepancy was substantially decreased using the albite geometric-based 

surface area (1.63 m2/dm3) (Figure 5.5).  
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Three main controlling factors could elucidate the Na discrepancy:  

• The active surface area of albite was at least fourfold smaller than the BET-based surface 

area, suggesting relatively low concentrations of Na compared to the model; however, there 

was no noteworthy deviation of modeled Na from the experimental results at acidic to 

neutral pH values (before day 50).   

• The albite rate used in PHREEQC under subalkaline conditions (after day 50) expedited 

albite dissolution, thus yielding a high Na release rate compared to the kinetic test 

outcomes.  

• The release rate of Na was substantially slower than the dissolution rate of albite; 

nevertheless, plagioclase dissolution has been known to entail preferential release of Na-

Ca resulting in a Na-Ca poor thin layer at the plagioclase surface (Plante, 2010). Therefore, 

the aforementioned factor is precluded, and the first two controlling factors may have 

occurred jointly to explain the geochemical behavior of Na. 

Neither Ss model nor SGeo model captured the increase in Mg concentration between the 10th and 

50th day of the test. The calibration effort based upon specific surface areas and molar contents of 

the identified Mg-bearing minerals failed to improve the fit to the Mg experimental data. 

Presumably, a Mg-bearing mineral was not detected among the mineral phases or preferential 

release of Mg occurred at the surface of the Mg-bearing minerals. In contrast, the K, Al, and Ca 

modeling results provide a good fit to the kinetic test data (Figure 5.5). 

The nlls method of PHREEPLOT yielded a good fit of the Mn experimental data when using a 

stoichiometric coefficient of Mn that ranged between 0.00039 and 0.0015 for 1 mole of calcite. For 

instance, using a stoichiometric coefficient of 0.0006, D2 PHREEPLOT fitting yielded a 

correlation coefficient of 0.84 between kinetic data and model results and an RMSD of 0.014. Mn 

lixiviation is directly related to the carbon dioxide (CO2) partial pressure and pH that steer the 

calcite dissolution rate. The effect of CO2 partial pressure during the kinetic test was assumed to 

be constant and proportional to the atmospheric pressure; however, we expect that a setting with 

biotic activity and/or organic matter degradation could increase Mn lixiviation due to an increase 

in CO2 partial pressure within medium pores.  

 



94 

  

 

 

Figure 5.5 Weathering cell test D2 and PHREEQC modeling results using BET and geometric 

surface area-derived rates. (a) Experimental and simulated results of the pH. (b) sulfate. (c) 

sodium. (d) iron. (e) calcium. (f) magnesium. (g) aluminum. (h) potassium. (i) manganese. 
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The weathering cell setting displays the effect of sulphide oxidation on Mn lixiviation (Figure 5.5); 

throughout the first 50 days of the test, the Mn concentration dropped as pH values increase because 

calcite dissolution slowed at neutral and subalkaline conditions. This period reflects the delay 

needed for preponderant albite (15.6% wt) and disseminated calcite (1–1.8%) to fully neutralize 

acidity emanating mainly from 4.5% wt of pyrite. After the 50th day any produced acidity was 

promptly counteracted, thereby maintaining a relatively high pH and a low dissolution rate of 

calcite, thus reducing the extent of Mn lixiviation. The effect of pyrite content on Mn lixiviation 

will be further probed in the following sections.   

5.4.2.2 Model benchmarking  

(i) D1 weathering cell 

Based on the calibration insights, the kinetic modeling approach was carried out to simulate the 

D1, D3, and T1 kinetic testing results as benchmarking proxies to delineate the reliability and 

limitations of the model. Figure 5.6 portrays testing and modeling results for the D1 weathering 

cell. With a higher plagioclase content (25.8% wt) and lower pyrite grade (0.8% wt) compared to 

the D2 mineral assemblage (18.2% wt plagioclase versus 4.5% wt pyrite), measured and simulated 

leachate pH values oscillated between 7 and 8 throughout the test duration. The mineral assemblage 

of D1 hindered neutralization delay and maintained neutral to subalkaline conditions throughout 

the full test duration. Therefore, abiding by these mineralogical proportions, silicate neutralizing 

minerals are deemed reliable to prevent acid generation. 

On the first day, the simulated pH curve underwent a slight drop, reflecting pore water equilibrium 

with atmospheric CO2, and promptly increased to 8 after seven days. This behavior is regarded as 

an artifact of the model as the first leachate results were used as the initial pore water composition, 

which was in equilibrium with atmospheric O2 and CO2 throughout the simulation. However, the 

simulated pH curve displays a good agreement with the experimental results. 

The experimental sulfate concentrations indicated that the oxidation-neutralization process mainly 

occurred during the first 100 days of the test. The simulated SO4
2− curve underestimated sulfate 

concentrations between the 20th and the 50th day. Nonetheless, the general trend was correlative 

with the experimental data. At odds with SO4
2−, Fe was sporadically released or below the detection 

limit, thereby contradicting the oxidation implications. A geochemical retention mechanism of Fe 
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was suspected to occur; this mechanism will be ascertained based upon modeling results from 

weathering cells with a higher pyrite content (D3 and T1).  

Simulated Ca and Na concentrations conformed to the testing results displaying tolerable 

differences. In contrast, the Mg and K modeling results exhibited only modest agreement with the 

testing data. The simulated Al curve roughly followed the experimental data trend (Figure 5.6). 

The experimental Al concentrations from the D1 weathering cell were noticeably lower than those 

from the D2 weathering cell indicating that the aluminosilicate dissolution rate was considerably 

decreased under subalkaline conditions. Nonetheless, the Na concentrations were only twofold 

lower than the D2 results; this probably suggests preferential release of Na over Al from plagioclase 

surfaces. In this respect, Hellmann 1995 demonstrated preferential release of Na with respect to Al 

and Si from albite leached layers over a wide range of pH values and temperatures. Accordingly, 

the Na-depleted leached layers are 1500 and 1200 Å thick at acid and basic pH conditions, 

respectively (Hellmann, 1995). 

Simulated Mn concentrations completely deviated from the experimental data after the 110th day. 

The model was not able to capture the Mn evolution in the presence of mineral proportions as low 

as 0.4% wt of calcite and 0.8% wt of pyrite. The simulated Mn behavior was slightly improved 

when the pyrite content was increased to 3% wt (Figure 5.6). In addition to the simulated kinetic 

processes, perhaps other geochemical processes such as sorption and/or coprecipitation occurred 

and were overlooked within the PHREEQC model. Plante et al. (2010) demonstrated that 

plagioclase controlled Ni mobility through sorption in waste rock piles of the Tio mine. More 

recently, Reczek et al. (2020) and Trach et al. (2021) stated that volcanic tuff and basalt effectively 

adsorb Mn. Therefore, the next step of the geochemical assessment of Akasaba West materials 

should involve sorption experiments to investigate the effect of the sorption capacity of plagioclase 

on water quality. 
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Figure 5.6 Weathering cell test D1 and PHREEQC modeling results. (a) 

Experimental and simulated results of the pH. (b) sulfate. (c) sodium. (d) iron. 

(e) calcium. (f) magnesium. (g) aluminum. (h) potassium. (i) manganese. 
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(ii) D3 weathering cell 

Water quality from testing data and the PHREEQC model of the D3 weathering cell presented 

similar features as the D1 outcomes. However, the D3 mineralogical proportions were substantially 

different; in the presence of 26% wt of albite and 1.9% wt of calcite, the neutralization potential 

counteracted the overall acidity stemming from oxidation of up to 8.1% wt of pyrite. Unlike the 

simulated response that predicted iron and sulfate release emanating from the oxidation-

neutralization process, measured Fe concentrations were generally below the detection limit 

throughout the test duration emphasizing the occurrence of Fe-bearing secondary minerals and/or 

Fe sorption on plagioclase surfaces that could affect both iron and manganese mobility (Figure 

5.7). 

Due to the high albite content, the PHREEQC model predicted high Na concentrations as leaching 

progressed and deviated from the experimental results on the 30th day. Sodium results from the 

D3 weathering cell support the Na controlling factor discussed earlier; the dissolution rate of albite 

used in PHREEQC seemed to overestimate the albite-weathering rate in subalkaline conditions. 

Regarding Mn, the model roughly captured the experimental evolution. The pyrite content in D3 

was higher compared to D1. The high sulphide content triggered neutralization potential of calcite 

and involved high Mn lixiviation; nonetheless, as long as the pH remained neutral to subalkaline 

the calcite dissolution rate was limited. As a result, the Mn concentrations observed in D3 were 

much lower than those observed in D2. Silicate neutralizing minerals, specifically albite, 

effectively contributed maintaining high pH values; therefore, their neutralization potential slightly 

attenuated Mn lixiviation. 

(iii) T1 weathering cell 

Modeling and testing results for the T1 weathering cell were in good agreement and supported the 

aforementioned insights (Figure 5.8). In summary, the modeling approach showed a good 

agreement with the experimental data for the four weathering cells. However, benchmarking 

proxies underlined two main model limitations: (i) the model did not properly capture the Mn 

evolution when calcite and pyrite contents were as low as 0.4% wt and 0.8% wt, respectively; and 

(ii) the model did not incorporate sorption kinetics of iron and manganese on plagioclase surfaces 

as well as coprecipitation kinetics.  
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Figure 5.7 Weathering cell test D3 and PHREEQC modeling results. (a) Experimental and 

simulated results of the pH. (b) sulfate. (c) sodium. (d) iron. (e) calcium. (f) magnesium. (g) 

aluminum. (h) potassium. (i) manganese. 
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Figure 5.8 Weathering cell test T1 and PHREEQC modeling results. (a) Experimental 

and simulated results of the pH. (b) sulfate. (c) sodium. (d) iron. (e) calcium. (f) 

magnesium. (g) aluminum. (h) potassium. (i) manganese. 
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Nonetheless, the model capabilities complied with the conservative modeling reasoning adopted 

along the upstream scoping assessment studies, which overlooks geochemical retention processes 

in order to approach the overall leaching potential. Finally, the kinetic model captured the pH 

evolution in presence of silicates, which was the main objective of this modeling approach. 

5.4.3 Parametric analysis 

The parametric analysis performed herein was based on a what-if scenarios approach to lead an 

upstream scoping assessment. This scoping survey aimed at probable worse case scenarios linked 

to variations of mineralogical composition and water retention time. Worse case scenarios denote 

cases where water quality deteriorates. 

5.4.3.1 Mineral assemblages 

Through fixing the sulphide contents (4.2% wt of pyrite and 1.9% of chalcopyrite (Kimball et al., 

2010)), different neutralizing mineral assemblages were assessed to stress the effectiveness of 

albite neutralization. The first scenario sets forth a sulphide assemblage with no neutralizing 

minerals. The second set of scenarios included albite as the sole neutralizing mineral present at 

different proportions (5, 10, 18.8 and 30% wt). The third scenario involved 18.8% wt albite and 

1.1% calcite. The last scenario involved the complete mineral assemblage of T1. 

The parametric analysis results are shown in Figure 5.9. From an initial pH of 8.16, the pH values 

dropped to 2.78 in the presence of sulphides (pyrite and chalcopyrite) with no neutralizing minerals. 

The pH remained acidic throughout the simulation time, whereas Fe and SO4
2− reached their 

maximum concentrations after 139 days, with concentrations of 93.1 and 322 mg/L, respectively. 

In this scenario, Cu exceeded 10 mg/L after 50 days. After adding 5% wt of albite, the pH started 

to increase from 3 on the 80th day to 4.89 on the 189th day. The maximum concentrations reached 

for Fe and SO4
2− were slightly lowered compared to the first scenario (253 and 73 mg/L, 

respectively). Water quality was further improved in the presence of 10% wt of albite; the pH 

attained a value of 5 after 86 days. Iron, SO4
2−, and Cu concentrations were 71.3, 246, and 8.66 

mg/L, respectively, after 150 days. The neutralization delay was further curtailed in the presence 

of 30% wt of albite, thereby achieving circumneutral pH after 65 days. In this scenario, Fe, SO4
2−, 

and Cu concentrations after 150 days were 68.8, 238, and 2.76 mg/L, respectively. 
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According to the parametric analysis, the neutralization delay in the presence of 18.8% wt of albite 

was 128 days (pH reaches 6); adding 1.1% wt calcite to the mineral assemblage shifted the pH to 

8 and suppressed the neutralization delay. On the other hand, including the remnant silicate 

neutralizing minerals (epidote, chlorite, amphibole, etc.) in the simulation did not result in a 

Figure 5.9 Various scenarios underlining the effect of various mineral assemblages on leachate 

quality. (a) Sulfate concentrations obtained in the presence of different mineral proportions. (b) 

Cu concentrations obtained in the presence of different mineral proportions (c): Fe 

concentrations obtained in the presence of different mineral proportions. (d): Mn concentrations 

obtained in the presence of different mineral proportions. (e): The pH obtained from the 

simulated mineral proportion scenarios. 
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perceptible increase in pH. Nonetheless, their contribution manifested in Mn leaching; their 

neutralization potential withdrew a certain amount of acidity from the system. Consequently, the 

pH-dependent dissolution rate of calcite was slightly decreased along with the Mn leaching rate. 

The concentration of Mn after 50 days decreased from 0.2 to 0.13 mg/L in the presence of the 

complete silicate assemblage (Figure 5.9). Iron, SO4
2−, and Mn exhibited an arc-shaped evolution; 

this was caused by the pyrite aging effect expressed in the oxidation rate reported by Jerz and 

Rimstidt (2004). This behavior stresses that Mn release from calcite also relates to pyrite 

prevalence. The interactions between Mn-stimulating (sulphides) and Mn-hindering (silicates) 

components of the system determined the magnitude of Mn leaching. 

5.4.3.2 Various residence times 

This parametric analysis underlines the effect of residence time on water quality. Neutral flowing 

water leaching 4.2% wt pyrite at different volumetric flows (L/s) was simulated. Figure 5.10 

features the outcomes from 10 simulated residence times (7h, 48h, 10 days, 30 days, 60 days, 100 

days, 200 days, 500 days, 1000 days, and 2000 days). The range of values encompassed highly 

mobile and extremely slow-flowing water scenarios.  

As the residence time increased, water quality worsened due to longer water–mineral interactions. 

Systems with a residence time less than 30 days disposed of acidity after a lag time. For instance, 

the system with 30 days of residence time recovered its circumneutral pH after 60 days. Residence 

times greater than 30 days generated acid leachates highly concentrated in Fe and sulfate 

throughout the simulation. A residence time of 100 days produced leachate with pH = 3.66, 20.03 

mg/L sulfate, and 5.91 mg/L Fe after a simulation time of 150 days. Iron concentrations were as 

high as 73 mg/L in pores with extremely slow-flowing water. These outcomes indicate the impact 

of flow heterogeneity on water quality. The parametric analysis simulated different weathering 

cells with different flow conditions; however, at larger scales these heterogeneities could coexist 

in the same waste facility and jointly contribute to determining water quality at the effluent stream 

(Fala et al., 2013). Conducting such parametric analyses at the upstream stage could assist in risk 

identification and mitigation throughout the upcoming stages. 
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5.5 Conclusion  

Preliminary kinetic testing during the development stage of hard rock mine projects is of great 

importance to underline the geochemical behavior of the host rock. Weathering cell tests are often 

used for the aforementioned purpose. The present study simulates the kinetically controlled 

reactions occurring in four weathering cells using a film diffusion model implemented in 

PHREEQC. Results from the presented kinetic modeling approach using PHREEQC exhibited a 

good agreement with weathering cell data. The PHREEQC capabilities coupled to the literature 

rate laws proved to be reliable to simulate weathering cells set up to perform inceptive assessment 

modeling. The main objective of simulating the pH using kinetic modeling of weathering cell tests 

Figure 5.10 Various scenarios delineating the relationship between the residence time and leachate 

quality in weathering cell test simulation. (a) The pH obtained for various residence times. (b) 

Sulfate concentrations obtained for various residence times. (c): Total iron concentrations obtained 

for various residence times. 
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was fulfilled. However, the model presented herein does not include geochemical retention 

processes such as coprecipitation and sorption. These retention processes reduce the total dissolved 

concentrations and do not partake in the conservative reasoning that should be used during 

development stages. Being cognizant of these limitations, the PHREEQC kinetic model does not 

conform to design purposes related to mine reclamation. However, it complies with the upstream 

scoping studies along the development stage, which has barely benefited from geochemical 

modeling tools. The main asset of the present kinetic model is the ability to simulate various 

scenarios for upstream risk identification based upon restricted datasets and conservative modeling 

reasoning. In this regard, the input datasets consist of the usual mineralogical characterization, 

weathering cell tests, and literature rate laws, thereby abiding by two main constraints that steer 

the development stage: material availability and assessment cost. In terms of practical implications, 

this upstream modeling attempt was mainly performed to be combined with 3D geological 

modeling and stochastic simulation to undertake in situ upstream classification of the host rock and 

the orebody. The classification will be based on the pH that could be generated if a given mineral 

assemblage within the orebody is weathered under kinetically controlled conditions. This 

classification will be performed before mining to sort mine waste depending on their geochemical 

risk. 
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 ARTICLE 3: INTEGRATING MULTIDISCIPLINARY 

MODELING TOOLS TO FOSTER SCOPING SURVEYS AND 

UPSTREAM MINE WASTE MANAGEMENT 

This article was issued in the proceedings of Tailings and Mine waste conference in 20213. 

6.1 Abstract 

Hard rock mines may induce water quality exceedances stemming from mine drainage. 

Environmental issues identification at the upstream levels of the development and/or the operation 

phases steer sustainable solutions design. Nonetheless, this upstream reasoning presents data-

limited challenges. To overcome these challenges, the upstream reasoning was amended with a 

multidisciplinary modeling approach. In this regard, 3D geological modeling, core-logging datasets 

and stochastic simulation were combined into one modeling approach enabling mine waste 

classification. This modeling approach overcome issues related to small sample sizes and could be 

performed along the operation phase. Additionally, incorporating kinetic modeling in the upstream 

scoping surveys allowed a dynamic geochemical assessment that assists the aforementioned static 

3D geomodel. The upstream kinetic modeling and a what-if scenario approach were used to 

investigate worse case scenarios along the development stage. Finally, merging kinetic and 

stochastic approaches will produce a holistic screening tool for both development and operation 

stages. 

6.2 Introduction 

Geochemical assessment and management of mine wastes gave rise to growing endeavor to fulfill 

the environmental and social commitments requested by stakeholders. Thorough weighing of 

trade-offs related to ore profitability, mine wastes management costs and remediation liability is 

 

3Toubri, Y., Demers, I. and Beier, N. (2021). Integrating multidisciplinary modeling tools to foster scoping surveys 

and upstream mine waste management. In Proceedings of Tailings and mine waste conference, Banff, AB, Canada (p. 

585-594).    
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indispensable to sustain the mining business. Surface and underground water are the main 

vulnerable component of the hard rock mines surroundings. Acid mine drainage (AMD) or 

contaminated neutral drainage (CND) are by far a potential source of water quality deterioration. 

The United States Environmental Protection Agency (EPA) categorized water pollution within 

mining facilities as one of the top three ecological-security threats in the world (Dold, 2008). 

Therefore, water quality exceedances increase management and remediation costs and 

consequently could shrink the ore profitability. In this regard, several improvements have been 

suggested to enhance conventional assessment and management practices (e.g. Benzaazoua et al., 

2004; Bussière, 2007; Demers et al., 2015; Jouini et al., 2020; Lessard et al., 2018; Parbhakar-Fox 

et al., 2011). Meanwhile, mining companies and academic researchers realized that proactive 

solutions should be designed and incorporated in the mine cycle as early as possible to mitigate 

geo-environmental risks and to anticipate and/or alleviate their costs. In this respect, Aubertin et 

al. (2016) proposed the “design for closure” thinking, which aims to continuously incorporate 

environmental issues and their respective solutions in each design effort. Likewise, Benzaazoua et 

al. (2008) suggested the upstream mine waste management as a key reasoning to mitigate 

environmental risks. The upstream mine waste management implies any proactive practice 

designed beforehand specifically to eliminate or minimize an environmental footprint. 

Although an increasing attention is being given to geochemical assessment and integrated 

management via novel experimental approaches throughout the upstream stages of mines life, none 

has explored the capabilities of integrated multidisciplinary modeling approaches to support the 

upstream reasoning. The present paper focuses on bridging different types of modeling tools to 

enhance mine waste geochemical assessment and management during both the development and 

operation stages. Modeling approaches described herein are intended to supply efficient and cost-

effective screening tools designed not to replace the experimental protocols but to support them at 

the upstream levels. Since upstream stages are constrained by the lack of materials and data, 

suitable modeling approaches are needed for environmental risk identification. The first screening 

tool presented, merged 3D geological modeling, core-logging data and stochastic simulation to 

enable mine waste classification before stripping operations. The classification is mainly based on 

contents of deleterious elements in the orebody and its host rock. This multidisciplinary modeling 

approach was designed to repurpose the advantages of 3D geological modeling for mine waste 
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classification. However, to fulfill the 3D geological modeling requirements, sufficient datasets are 

needed to yield good resolution. In this regard, core-logging data and a stochastic approach were 

combined to address the shortage linked to sample sizes. Although this approach assists in mine 

waste classification, it yields static 3D geomodels that only describe the total contents of the desired 

deleterious element throughout the orebody and its host rock as mining operations progress. 

Therefore, the second screening tool was intended to incorporate kinetic modeling in the 

geochemical upstream assessment to take into account the temporal dimension. A kinetic model 

using a water film concept was developed to simulate the likelihood of contaminant release as 

function of time and to perform a parametric analysis for early risk identification. Since the first 

modeling toolkit is applicable for mine waste classification during operation and advanced 

exploration stages, the second modeling approach is devoted to the geochemical assessment during 

the development stage. Both approaches are based on minimal characterization data and core-

logging datasets. The next step will be to upgrade the kinetic model through the stochastic 

simulation to carry out broader scoping surveys and move beyond the deterministic thinking 

commonly used in geochemistry. As pointed out, the main objective is to foster the upstream 

modeling thinking, to overcome interdisciplinary barriers among different modeling disciplines 

and to move towards integrated multidisciplinary modeling reasoning during upstream 

geochemical assessment and mine waste management. 

6.3 Materials and methods 

6.3.1 Spatial modeling for mine waste classification 

3D spatial modeling could be performed for economic elements that constitute the orebody as 

exhaustive sampling and chemical analyses are continuously undertaken for these elements of 

interest. However, the task is more challenging when 3D spatial modeling is repurposed for 

classification of mine wastes in terms of their content of deleterious elements. The chemical 

analyses performed for these elements do not always wrap the entire extent of the orebody and its 

host rock. Therefore, performing 3D geological modeling only based on the available datasets will 

produce poor interpolation outcome. The following describes how to overcome this challenge in 
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order to produce high quality 3D geomodel that could be used for mine waste classification before 

stripping (upstream stage of stripping operation). 

6.3.1.1 Case study: Éléonore mine site 

The Éléonore mine site is located in the Eeyou Istchee James Bay municipality in northern Quebec 

(Canada), 540 km northeast of Rouyn-Noranda. The main orebody, the Roberto deposit, consists 

of gold mineralization hosted in the vicinity of the tectonometamorphic contact between the La 

Grande and the Opinaca subprovinces. The Roberto deposit displays multiple mineralization 

textures along a deeply plunging orebody (Fontaine, 2019). The mineralization is closely 

associated with arsenopyrite. Consequently, arsenic is the main deleterious element in Éléonore 

setting. Visualizing the 3D spatial distribution of As throughout the orebody and its country rock 

will provide the opportunity for mine waste classification; only mine waste with low As content 

will be deposited in the above-ground facilities, the remnant mine waste should be used as paste 

and/or rockfill. 

6.3.1.2 Stochastic simulation 

The prerequisite to perform the stochastic approach described herein is to use two continuous 

variables and one discrete variable. In the present study, the first continuous variable is the 

available chemical analyses of As, the second continuous variable is the length of arsenopyrite 

intervals described in the core-logging reports of up to 12 000 drill cores. The discrete variable is 

the qualitative assessment of the arsenopyrite proportions based on a standard scale ranging from 

0.01 to 100. Each number on the standard scale is referred herein as a class that qualitatively 

describes the prevalence of arsenopyrite in a given interval of occurrence. The class number and 

length were recovered from the core-logging dataset. Sufficient core-logging datasets should be 

available including exploration and mining drill cores. “Sufficient” refers to the required number 

of drill cores to portray a 3D geomodel of the orebody. This number varies depending on the 

geological setting and the mineralization style. This requirement justifies the use of this approach 

during the advanced exploration stage and/or the operation stage as they involve high number of 

drill cores. Table 6.1 summarizes the component of the database of core-logging as well as the 

number of arsenopyrite intervals that were analyzed for As. 
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Table 6.1 Number of arsenopyrite intervals per class and the sample size that was analyzed. 

Confidence interval: 95%. Adapted from Toubri et al. (2021) 

The classes 0.1, 0.5, 1, 2, and 3 were selected from the standard scale (0.01 to 100) because more 

than 95% of arsenopyrite intervals fell in these classes. The margin of error in table 1 was calculated 

based on the known sample size (intervals with As grade) and the confidence interval.  

Considering two independent continuous variables A and B (Figure. 6.1a), first we establish a 

power law between A and B by plotting A/B variable versus B variable. Using the logarithmic 

scale A/B correlates significantly with B (Figure 6.1b).  The parameters of the power law (a and b) 

as well as the correlation coefficient should be mentioned. The second step, we perform an iterative 

Monte Carlo simulation coupled to correlative sampling (Figure 6.1c). Firstly, we set a normal or 

log-normal probability distribution functions (PDFs) for A/B and B variables based on their initial 

sample size shown in Figure 6.1b. The Monte Carlo simulation should sample the PDF of each 

variable while maintaining the correlation trend among A/B and B variables. The correlation of 

sampling was not set at deterministic value but it follows a Gaussian distribution centred on the 

aforementioned correlation coefficient value. The standard deviation of the Gaussian distribution 

controlled the extent of scattering. The outcome is a linear-shaped scatter that should display 

comparable power law parameters as the initial sample size; if not the Monte Carlo simulation 

should be performed again after adjusting the PDFs properties. This is an iterative process to 

generate a large scatter while abiding by the features of the initial dataset. Afterwards, the desired 

values of variable B could be selected as well as their respective values of variable A/B (Figure 

6.1c). Finally, the normalization is cancelled and a larger dataset is obtained (Figure 6.1d). This 

method was used to enlarge the As sample size within each class. Furthermore, ten realizations 

were produced for each class to underline the effect of ergodic fluctuations. The available As grades 

were used as values of variable A, and lengths of intervals of occurrence of arsenopyrite represent 

the variable B. 

Arsenopyrite classes 0.1 0.5 1 2 3 

Arsenopyrite  intervals 4203 43719 21193 8769 3132 

Intervals with As grade 71 666 256 83 59 

Margin of error (%) 11.53 3.77 6.09 10.71 12.64 
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Figure 6.1 The iterative Monte Carlo simulation and the correlation based sampling. Adapted 

from Toubri et al. (2021) 
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6.3.1.3 Variography and spatial continuity 

Geological logging dataset provides the spatial position of intervals of occurrence of arsenopyrite. 

Consequently, each simulated As grade obtained from the stochastic process, inherits the 

coordinates of its interval. A 3D variography analysis was undertaken to highlight the spatial 

anisotropy, the spatial continuity, and the conformity of the 3D geomodel with the geological 

features of the deposit. The Stanford Geostatistical Modeling Software (SGeMS) was used to 

establish 3D directional and omnidirectional variograms. Afterwards, the Leapfrog Geo software 

to perform interpolation and establish the 3D geomodel based on the variograms and the structural 

measurements from the surface and underground mapping. 

6.3.2 Kinetic modeling approach for the pH assessment 

Geochemical transport modeling is extensively utilized during operation and remediation stages 

(Mayer et al., 2002; Wilson et al., 2018). Few studies used geochemical transport modeling during 

the development stage because the programs being used are data-extensive. Herein, the kinetic 

modeling was performed based upon minimal data characterization obtained from the feasibility 

study of a mine project. Subsequently, a parametric analysis was carried out to enhance the 

upstream geochemical scoping survey and risk identification. 

6.3.2.1 Case study: Akasaba West project 

The Akasaba West Au-Cu deposit is located in the Abitibi-Témiscamingue region, 15 km east of 

Val d’Or in Quebec, Canada. The mineralization style consists of thinly disseminated sulfides 

hosted in moderately to strongly altered metavolcanic rocks (Vermette, 2018). Geological core-

logging of diamond drill cores indicates that the ore is characterized by < 5 % pyrite and < 1% 

chalcopyrite occurring as disseminations and locally as clusters, veinlets, or thin massive sulfide 

lenses. 

6.3.2.2 Laboratory testing 

Four weathering cells were set up to assess the geochemical responses of different lithologies 

belonging to the Akasaba West orebody and its host rock. Weathering cell kinetic test is a cost-

effective method for geochemical assessment when limited amount of materials is available. Prior 
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to testing, samples were characterized to determine their specific surface area, grain size 

distribution, chemical and mineralogical composition. Special attention has been paid to Mn as it 

was mentioned that it could be present in the effluent (Vermette, 2018). 

6.3.2.3 Conceptual model 

Experimental results from weathering cells were simulated by using one weathering cell for 

calibration and three other weathering cells for benchmarking. Weathering cell setup provides 

highly oxidizing conditions; atmospheric oxygen and water are not transport-limited throughout 

the test period. Therefore, the conceptual model considers surface controlled oxidation and 

dissolution reactions, see Toubri et al. (2021b) for details. Based upon mineralogical 

characterization, the rate law for each mineral was compiled from the literature and integrated in 

the kinetic keyword block of the model. The kinetics was coupled with equilibrium and transport 

processes thought relevant for the system. The leaching solution as well as the pore water of the 

system were considered to be in equilibrium with the partial pressures of atmospheric oxygen and 

carbon dioxide. These equilibrium reactions allowed no restriction in oxygen supply. The advective 

transport was included to simulate the advection of the leach solution as a function of the residence 

time and volumetric flow. The residence time would relate kinetic reactions to advective transport 

in order to control the time duration of the water-rock interactions. The conceptual model assumed 

that a thin water film is surrounding the particle surfaces. Hence, kinetic reactions are assumed to 

occur within the water film - the particle surface boundary. Subsequently, the products of the 

kinetic reactions were transferred to the bulk solution through a diffusion boundary. An oxygen 

reservoir was implemented within the water film to trigger and maintain sulfide oxidation. This 

conceptual model was solved using PHREEQC; a freely available program that can solve 1D 

geochemical transport problems that do not include a gas transport component. 

6.3.3 Integration of kinetic modeling and stochastic simulation 

Using parametric analysis to highlight risks of water contamination is an efficient approach to 

simulate various mineral associations that were not tested in the laboratory because of the lack of 

materials. However, the parametric analysis is still a deterministic approach that could overlook 

other leaching scenarios. Furthermore, unlike the operation stage, the development stage has not 
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benefited from the capabilities of Monte Carlo simulation. In this respect, stochastic 2D spatial 

distribution of the main sulfides and neutralizing minerals will be produced for various realizations. 

The 2D space will represent the cross section of waste rock piles that do not exceed the critical 

length in order to maintain kinetically controlled conditions (Nicholson et al., 2003). Variography 

will be used to establish contour maps of the spatial distribution of minerals. Thereafter, kinetic 

modeling will be performed along mesh points to produce contour maps of water quality. This 

method will supply robust risk identification as it overcomes the deterministic approach and copes 

with a broader range of possible scenarios.   

6.4 Results and discussion 

6.4.1 Spatial modeling for mine waste classification 

6.4.1.1 Results of Monte Carlo simulation 

Results from the stochastic process suggested herein are shown in Figure 6.2. The process was able 

to propagate the epistemic uncertainty to the simulated sample size (Figure 6.2). 

Figure 6.2 Results of the first realization of the stochastic simulation compared to the initial 

sample size (G denotes the generated data by the stochastic process for each class). Adapted from 

Toubri et al. (2021) 
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It is worth mentioning that Figure 6.2 displays the first realization, nine other realizations were 

produced to underline the magnitude of the ergodic fluctuations. No substantial differences were 

noted among the ten realizations. More details are given in Toubri et al. (2021). 

6.4.1.2 Variography and spatial continuity 

The generated sample size of As grades is now sufficient to carry out 3D geological modeling. 

Nonetheless, it is worth mentioning that in each realization completely different As grade is 

attributed to each interval. Therefore, variography analysis was performed to verify if the ten 

realizations produce substantial differences in terms of 3D spatial continuity. Figure 6.3 displays 

the differences among the ten variograms produced from the realizations. The iterative process 

being used has proven to be reliable in producing coherent variograms that abide by the geological 

features of the deposit; the highest continuity plane in these realizations complies with the structural 

trend of the gold-bearing ore deposit (Toubri et al., 2021). 

6.4.1.3 Mine waste classification 

The 3D geomodel of As spatial distribution was produced for each variogram. Afterwards, the 3D 

geomodel was projected on underground stopes of Éléonore mine to visualize galleries with high 

to extreme content of As (Figure 6.4). Mine waste from these sectors will be mainly used in backfill 

Figure 6.3 Realizations of directional variograms showing the highest spatial continuity 
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to avoid the damage that could affect water quality in case they are stored in the above-ground 

facilities. To validate the 3D geomodel, measured As grades were projected on it to underline the 

agreement. Certainly, the 3D geomodel does not display the exact measured As grade, but values 

are on the same magnitude. Accordingly, the agreement is good enough to perform mine waste 

classification based on As content in the ore and its host rock. 

This process was applied during the operation stage of Éléonore mine to explore its reliability using 

underground drill cores information. Presently, it could be applied during advanced exploration 

stages using the drill core information utilized to build the 3D model of the orebody. The main 

requirement to achieve the process is that the deleterious element should be associated to a mineral 

phase that could be noticed and described during drill core logging. In cases where the bearing 

mineral phase is imperceptible, geological logging should comprise portable X-ray fluorescence 

analysis. Therefore, new perspectives for mine waste management could be envisioned to decrease 

the environmental footprint of the mine waste disposal using drill core logging.   

Figure 6.4 Underground stopes classified in terms of their As grades 
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6.4.2 Kinetic modeling 

6.4.2.1 Calibration and benchmarking 

The kinetic modeling approach was designed to comply with the upstream level of the development 

stage of Akasaba West project. According to mineralogical characterization, Mn was mainly 

detected in calcite (Vermette 2018). So it was simulated as trace element in calcite. The 

stoichiometric coefficient of Mn in calcite was used as a calibration parameter. Other parameters 

were used in calibration, such as the diffusion coefficient (De) of a chemical element from the water 

film towards the pore water, available surface of reaction of albite was also used in calibration as 

albite is present in high weight proportions. Besides the pH, the following elements were simulated 

in each weathering cell: Fe, Al, K, Na, Ca, Mg and Mn. Only the pH, Ca, Mn and sulfate are 

presented here. A good agreement between the experimental data and the PHREEQC kinetic model 

was achieved using De=8.10-11 m2/s for chemicals diffusing from the water film to the pore water. 

The obtained value of De within the water film was roughly one order of magnitude lower than the 

diffusion of ions in free water. A stoichiometric coefficient of Mn ranging between 0.00039 and 

0.0015 for 1 mole of calcite yielded a good agreement with the experimental leaching trends 

(Figure 6.5). The release of Mn is pH-dependent; at lower pH values the dissolution rate of calcite 

increases. Therefore, increasing the sulfide content would result in higher concentrations of Mn. 

Meanwhile, low reactive minerals such as silicates dissolve slowly and could raise the pH after a 

lag time. Despite their low reactivity, silicates contribute to alleviate Mn lixiviation. To underline 

the model reliability and limitation, three benchmarking cases were performed (not shown here). 

The benchmarking cases display a good agreement. However the model presented the following 

limitation: the model did not properly simulate the Mn leaching when calcite and pyrite contents 

were as low as 0.4% wt and 0.8% wt, respectively, but the simulated values are closer to laboratory 

results for calcite and pyrite contents above 1% wt and 4 % wt respectively. 
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6.4.2.2 Parametric analysis 

Based on results of the kinetic model, the parametric analysis was performed to underline the 

contamination risks under more acidic conditions (Figure 6.6). Through testing different mineral 

assemblages’ scenarios, the parametric analysis stresses a considerable contamination potential 

linked to Cu and Mn lixiviation. In the absence of calcite and the presence of less than 30% wt of 

albite, acidic conditions would set up and foster chalcopyrite dissolution. On the other hand, in the 

presence of calcite, the Mn concentrations increase especially when silicates are present at low 

weight proportions (Figure 6.6). 

 

 

 

Figure 6.5 Experimental (empty circles) versus modeling (solid line) results from the 

calibration case. Adapted from Toubri et al. (2021b) 
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6.5 Conclusion  

This work is a bridging effort to dissolve interdisciplinary barriers to assist mine manager’s 

decision-making throughout different upstream stages. A 3D geomodel was built using restrained 

datasets to assist in mine waste classification before extraction. Figure 7.7 summarizes the 

approach suggested in this work. Based on core logging data, the approach aimed to cope with two 

types of variability; the spatial variability and the mineral assemblage variability. The first was 

assessed to enable mine waste spatial classification and the second was deemed necessary to 

perform broader scoping surveys of the geochemical behaviour of mine wastes. 

This approach highlights that core-logging data are of great importance not only for geologists and 

mining engineers but also for mine waste managers. In this regard, core-logging data should be 

carefully compiled and upgraded throughout the entire life of a mine. Furthermore, using stochastic 

simulation to repurpose 3D geological modeling for mine waste classification revealed a promising 

horizon for mine waste management to be integrated with a broader spectrum of disciplines. The 

Figure 6.6 Parametric analysis using various scenarios of mineral assemblages 
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present work also bridged kinetic modeling and parametric analysis to geochemical assessment 

during the development stage without using data-intensive programs. This approach enables a 

better risk identification through coupling kinetic testing, kinetic modeling and assessment of a 

larger spectrum of scenarios that were not evaluated in the lab owing to the lack of material. Both 

upstream modeling attempts, however, could be further improved through merging kinetic 

modeling and stochastic simulation capabilities. Future work will be focused on this subject to 

improve the integration thinking suggested herein. 
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 ARTICLE 4: INTEGRATING 3D GEOLOGICAL 

MODELING AND KINETIC MODELING TO ALLEVIATE ACID MINE 

DRAINAGE THROUGH UPSTREAM MINE WASTE 

CLASSIFICATION 

This article is currently under review4. 

7.1 Abstract 

Mine waste classification preceding mining, constitutes a proactive solution to classify and 

segregate mine waste into geo-environmental domains based upon the magnitude of their 

environmental risks. However, upstream classification requires multi-disciplinary and integrated 

approaches. This study integrates geological modeling and kinetic modeling to inform upstream 

mine waste classification based on the pH generated from the main acid-generating and acid-

neutralizing reactions once waste rock is stored in oxidizing conditions. Geological models were 

used to depict the ante-mining spatial distribution of the main reactive minerals: pyrite, albite and 

calcite. Subsequently, the corresponding block models were created. The dimension of the 

elementary voxels for each block model was set at 40х40х40 meters for this study. The kinetic 

modeling approach was performed using PHREEQC and VS2DRTI to consider unsaturated 

conditions. The kinetic modeling simulated a 1D column for each voxel. The column simulates the 

excavated state of the hosting rock involving kinetic reactions and unsaturated flow under highly 

oxidizing conditions. Subsequently, the resulting pH for different intervals of time was assigned to 

its respective voxel. The outcome consists of a spatio-temporal visualization of the pH defining 

ante-mining geo-environmental domains, thereby providing the opportunity for formulating 

proactive management measures regarding the hazardous geo-environmental domains.   

 

4 Toubri, Y., Demers, I. and Beier, N. (2022). Integrating 3D geological modeling and kinetic modeling to alleviate 

acid mine drainage through upstream mine waste classification. Submitted to Environmental Pollution journal on 26th 

May 2022. 
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Keywords: Geological logging, Spatial models, Mineral kinetics, Unsaturated flow, Geo-

environmental domains.   

7.2 Introduction 

Generally, the mining cycle begins with regional and local exploration surveys to guide the 

development stage. This stage involves pre-feasibility and feasibility investigations to define the 

deposit resources and reserves to economically remove the hosting rock and mine the orebody 

throughout the mining stage. Boundaries between the orebody and its hosting rock are visualized 

using geological modeling, which delineates the ore casings based on the cut-off grade, the 

geological logging data and the numerical database. Geological modeling is a staged process that 

evolves along with the drilling surveys to establish the ore 3D geological model to guide the 

mineral exploration and the subsequent mining phases (e.g. Martin-Izard et al. (2015), Stoch et al. 

(2018), Wu and Xu (2014)). Therefore, links between the geology and mining were established 

and extensively adopted as corporate governance procedures known as applied mining geology 

(Abzalov, 2016). The applied mining geology embeds a set of practices, currently used by mining 

ventures to optimise the economic outcome of a deposit.  

In addition to challenges related to effective mining, tackled through efficient connection between 

the geologist and the mining engineer, mine stakeholders should fulfill environmental requirements 

and effectively manage the environmental footprint of the mine solid waste. The host rock below 

the cut-off grade is classified as waste rock that is frequently deposited in aboveground storage 

facilities in direct contact with the atmospheric conditions. Previously sequestered sulphides are 

exposed to oxidizing conditions upon surface disposal and become chemically unstable. 

Consequently, the oxidation process is triggered, manifested in most cases as acid mine drainage 

(Akcil and Koldas, 2006; Blowes et al., 2003; Evangelou and Zhang 1995; Jamieson, 2011; 

Nicholson and Scharer, 1994; Wunderly et al., 1996). Acid mine drainage (AMD), an 

anthropogenic process associated to mining, generates contaminated effluents known by their low 

pH values and high concentrations of dissolved metals and oxyanions (Nordstrom et al., 2000; 

Nordstrom and Alpers, 1999). These geochemical features entail an acute reduction of the water 

quality and hazardous exposure of the surroundings. Accordingly, AMD is considered by the 

United States Environmental Protection Agency (EPA) as one of the top three worldwide security 
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threats (Dold, 2008). In this regard, mining companies should dedicate portfolios and corporate 

governance procedures for AMD prevention, prediction, treatment and rehabilitation using 

practices explored so far (Aachib et al., 1994; Aubertin et al., 2016; Benzaazoua et al., 2008; 

Benzaazoua et al., 2004; Bouzahzah et al., 2014; Bussière, 2007; Bussière et al., 2007; Demers et 

al., 2015; Demers et al., 2017; Demers et al., 2013; Jouini et al., 2020; Lawrence and Wang, 1997; 

Mbonimpa et al., 2008; Neculita et al., 2010; Parbhakar-Fox et al., 2011). More recently, Toubri 

et al. (2021a) used the 3D implicit geological modeling for upstream waste rock classification to 

support contaminant-leaching prevention. Benzaazoua et al. (2008) used the upstream reasoning; 

it refers to any proactive practice that aims at the alleviation or the elimination of a given 

environmental risk by acting on its upstream attributes. Toubri et al. (2021a) established the 3D 

spatial distribution of arsenic (As) contained in the hosting rock of the Roberto gold deposit in 

Éléonore mine site. Thereafter, an in-situ classification of the hosting rock based on its content of 

As was carried out before stripping operations to identify underground stopes with high to extreme 

As content. This classification delineated sectors that are not recommended for surface disposal 

owing to their high As grade, thereby preventing As leaching and its related water exceedances 

from the upstream level. 

In this paper, the main objective is to establish the connection between geological modeling and 

AMD potential. In the same manners as the strong information flow between the mining engineer 

and the geologist to face mining-related issues, communication and concrete links between the 

geologist and the environmental geochemist are needed to cope with the AMD environmental 

challenges. Repurposing some of the geological modeling practices for AMD mitigation and 

dissolving interdisciplinary barriers among geological modeling tools and environmental 

geochemistry tools are the main intended outcomes of the present study. This cross-disciplinary 

study developed a new method for AMD risk mitigation. The main novelty is the integration of 3D 

geological modeling, kinetic modeling and unsaturated flow modeling to undertake a dynamic 

classification of mine waste beforehand. The modeling toolkit of the environmental geochemistry 

encompasses kinetic modeling and reactive transport modeling to forecast and/or simulate leachate 

quality. For instance, Molson et al. (2005) appraised design strategies intended to alleviate AMD 

from waste rock piles using HYDRUS and POLYMIN codes. Similarly, Pabst et al. (2017) used 

MIN3P to assess the hydro-geochemical behavior of covered pre-oxidized tailings. Most AMD-
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related models are centred on operation and post-closure stages (Demers et al., 2013; Kalonji-

Kabambi et al., 2020; Molson et al., 2008). More recently, Toubri et al. (2021b) used kinetic 

modeling during the development stage of a mine project with a focus on oxidation-neutralization 

kinetics and the resulting pH to foster the proactive reasoning. On the other hand, the modeling 

toolkit of the mining geology comprises 3D implicit numerical modeling, which is based upon 

spatial continuity analysis using variograms and spatial interpolation codes (Abzalov, 2016; Cowan 

et al., 2002; Hillier et al., 2014; Natali et al., 2013; Remy et al., 2009). Hence, the specific 

objectives of the present study are (i) the use of 3D implicit numerical modeling to establish the 

ante-mining spatial distribution of pyrite, albite and calcite; the main acid-generating and acid-

neutralizing minerals of a given mine project (ii) the establishment of the block model for each 

numerical model, and (iii) the use of 1D reactive transport modeling for each voxel to attribute the 

resulting pH values to their respective voxels. The reactive transport modeling setup assumes 

auspicious conditions to trigger oxidation-neutralization process. Therefore, an upstream spatial 

classification of the hosting rock, based upon the pH under oxidizing conditions, could be 

undertaken beforehand to assist in AMD prevention. 

7.3 Materials and methods 

7.3.1 Geological framework 

The study considers a gold-bearing deposit hosted in heterogeneous metasedimentary sequence. 

The deeply plunging and East-trending orebody exhibits three main types of mineralization types; 

stockworks (interconnected and randomly oriented veins), disseminations and massive 

occurrences. Exploration surveys delimited the deposit through meshless network of drill cores 

(drill core surveys without a regular mesh). Throughout the advanced exploration stages, resources 

and reserves were defined along with the deposit spatial features based upon the geological logging 

of the drill cores. The proven reserves are 500 meters deep while the indicated resources extend 

from 500 to 1000 meters below the surface. The definition of the mineral reserves was based upon 

CIM (the Canadian Institute of Mining) Definition Standards for Mineral Resources & Mineral 

Reserves. Comprehensive sampling of drill cores was conducted to measure the gold grades and to 

establish the 3D model of the mineralization accordingly. Samples were selected for mineralogical 
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characterization using X-ray diffraction; the most reactive gangue minerals include pyrite, calcite 

and albite. Pyrite described throughout the geological logging is frequently present as 

disseminations and seldom present as stockworks. Pyrite is present in 82% of the total number of 

drill core samples. The pyrite content was measured in 533 samples, the obtained mineral weight 

proportions found in the pyrite disseminations are ranging from 0.5 to 8 wt. %. Whereas, the 

stockworks could contain up to 25 wt. % of pyrite. Samples with pyrite disseminations account for 

95% of the sample size, while samples containing pyrite stockworks represents 5% of the sample 

size. Calcite is present as disseminations with mineral weight proportions ranging from 0.4 to 2 

wt.%. With regard to calcite occurrences reported throughout the geological logging, drill core 

samples containing calcite represent 2.65% of the total number of drill cores. Albite is present as 

massive occurrences with mineral weight proportions ranging from 4 to 50 wt. %. The quantitative 

dataset indicates that 61% of the analyzed sample size of albite ranges between 10 and 20 wt. %. 

Other gangue minerals include quartz, muscovite, biotite, augite and epidote. Toubri et al. (2021b) 

issued details of the mineralogical and chemical composition considered for the present study.    

7.3.2 3D implicit geomodeling 

The 3D implicit geo-modeling is utilized herein to build the 3D numerical models of pyrite, albite 

and calcite hosted within the considered orebody. Such models could be established using meshed 

or meshless numerical datasets depending on the used interpolation code abilities. Appropriate data 

density is required to ascertain suitable interpolation quality (Stoch et al., 2018). Nonetheless, 

exhaustive quantification of mine waste related parameters is not cost-effective as most chemical 

and mineralogical expenses are devoted to the economically valuable ore rather than its host rock. 

In this regard, Toubri et al. (2021a) disclosed a method relying on the available numerical data, 

geological logging data and stochastic simulation to overcome the database shortages. This 

approach is used in this study to output denser mineral proportion datasets. The relevant 

background of the aforementioned approach is summarised herein. The novelty is to integrate the 

stochastic approach developed for 3D geological modeling with reactive transport modeling to 

perform dynamic (time-dependent) classification of mine waste. 
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7.3.2.1 The stochastic method components 

(i) The geological logging 

Along with drilling surveys, geologists carry out geological logging of the drill cores. Geological 

logging is a detailed description of the mineral occurrences. It mainly reports the type of the mineral 

occurrence (dissemination, stockwerks, massive, etc.), the occurrence length known as the interval 

of occurrence. The interval of occurrence is the length of a drill core sample where the described 

mineral occurs as disseminations, stockworks or massive lodes. In addition to a qualitative 

judgment on the mineral prevalence within its interval of occurrence. Accordingly, an indicator 

value (discrete variable, such as visual classification of a given mineral content) is attributed to 

each interval. This indicator variable is named "class" after Toubri et al. (2021a); a class refers to 

occurrences with same indicator value. Figure 7.1 depicts the main geological logging information 

as well as the aforementioned terminology; colors were used to illustrate the class variable for a 

particular mineral.  

Figure 7.1 Illustration of the geological logging procedure and the associated raw data describing 

the occurrences of a given mineral within drill cores. The geological logging includes: the 

samples selected for analytical measurement of the mineral contents (double-highlighted areas), 

the interval of occurrence which is the length of a mineral occurrence in a drill core sample and 

the class which is the indicator value assigned to an interval of a mineral occurrence to describe 

its prevalence based upon the crystals size and their abundance. Uncoloured areas indicate the 

absence of the mineral 
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Some mineral occurrences reported in the logging reports may undergo a quantitative analytical 

method to measure their mineral weight proportion. Nonetheless, the analyzed sample size 

constitutes a slight portion of the reported intervals of occurrence. Consequently, the quantitative 

data do not fulfill the spatial density requirement of the 3D implicit geo-modeling.   

On the other hand, the interval and the class are a continuous variable and a discrete variable 

respectively, with complete sample sizes. The subsequent section describes how the logging-

related raw variables are coupled to the stochastic simulation to fulfill the spatial density 

requirement. 

(ii) Monte Carlo simulation 

The stochastic simulation portrayed in Figure 4.6 is a correlation-based Monte Carlo process that 

ensures homoscedasticity and uncertainty propagation throughout the generated data (Toubri et al., 

2021a). The problem to be solved using Monte Carlo simulation consists of restricted 

measurements of the variable A while the B variable is thoroughly sampled and measured. The 

purpose of the Monte Carlo simulation is to estimate the probability density function (PDF) of a 

restricted variable A based upon a well-defined PDF of the variable B. The first step is to consider 

two continuous and independent variables A and B. Figure 4.6.a depicts the sample size where both 

variables were measured. Thereafter, an auxiliary variable is created by normalising the values of 

A variable by their respective values of B variable. Using a logarithmic scale, the normalized 

variable (A/B) is represented in the y-axis and the B variable in x-axis. Consequently, the resulting 

power law (y=axb) exhibits significant correlation in the logarithmic scale and sets forth the 

objective function of the process being used (a and b are the power law parameters)  (Figure. 4.6.b). 

The parameters of the power law displayed by the measured dataset are used as criterion of 

convergence of throughout the following steps. Afterwards, a Monte Carlo simulation is performed 

based on correlated random sampling of the probability density functions (PDFs) set for the 

auxiliary variable and B variable. The PDF of the thoroughly sampled B variable is defined relying 

on its comprehensive sample size while the parameters of the auxiliary variable PDF are iteratively 

updated until obtaining a power law parameters (a and b) as similar as possible to the objective 

function (Figure 4.6.c). This Monte Carlo simulation enabled the generation of a linear-shaped 

scatter with a large number of points (Figure 4.6.c). The scatter dispersion is controlled through a 

Gaussian distribution centred on the correlation coefficient defined previously (Figure 4.6.b). The 
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definition of the correlation as a stochastic parameter rather than a static value allows for the 

epistemic uncertainty approximation as discussed by Toubri et al. (2021a). The final steps consist 

of selecting the desired values of the B variable along with their respective values of the auxiliary 

variable (Figure 4.6.d) and cancelling the normalisation to obtain the newly generated data of A 

variable (Figure 4.6.e). 

For a particular mineral logging information, the available quantitative data (the measured mineral 

proportions) were sorted by the user-defined classes. Subsequently, the aforementioned stochastic 

approach was performed for each class. In this case, the intervals are the continuous variable with 

complete sample size (B variable) and the mineral weight content assays constitute the continuous 

variable with incomplete sample size (A variable). The simulated values of the mineral weight 

proportion are then attributed to their respective intervals. Table 7.1 summarizes the number of 

intervals belonging to each class and the sample size that was analyzed for the mineral weight 

proportion. Relying on a confidence interval of 95%, margins of error were computed for each set 

of data. Only one class was used for describing calcite occurrences since it occurs as scarce 

disseminations. Given the slightly homogenous presence of albite throughout the hosting lithology, 

two classes were sufficient to portray its occurrences. Pyrite, though, exhibits a higher range of 

variability and its prevalence was described throughout logging using four classes. The margins of 

error computed for each mineral class are equal or lower than 15%. They could be further curtailed 

as more analytical data are imparted throughout the project phases. In the present study, 15% was 

considered low enough for the modeling purposes. Nonetheless, exhaustive logging data are the 

essential requirement to implement the spatial continuity analysis.  Practically, the Monte Carlo 

simulation was performed using the GoldSim software package. GoldSim is a multipurpose 

modeling software that enables the implementation of models in a dynamic and probabilistic 

framework (Kossik and Miller, 2004; Rizzo et al., 2006). Three linked PDFs were implemented in 

GoldSim using built-in stochastic elements: the auxiliary variable, the interval variable and the 

correlation. 

As pointed out, the power law parameters were used as conformity clues to ensure 

homoscedasticity between the measured and the simulated dataset in each class. Furthermore, 

abiding by the conformity parameters, the effect of ergodic fluctuations related to PDFs random 

sampling is minimal. (ergodic fluctuations are simply the differences among different realizations 
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generated using the same Monte Carlo simulation). Detailed insights on homoscedasticity, 

hypothesis testing, ergodic fluctuations as well as the method validation are issued in Toubri et al. 

(2021a). 

Table 7.1 Margins of error associated to the mineral classes computed based upon the logging 

interval populations and the available analyzed sample size 

 Pyrite classes Albite classes 
Calcite 

class 

 0.1 0.5 1 2 3 4 0.1 

Logging 

intervals 
4187 43 446 21 002 8667 10 187 4091 2500 

Analyzed 

sample 

size 

62 201 99 171 76 44 47 

Margins of 

error (%) 
12 7 10 7 11 15 14 

Confidence 

interval 

(%) 

95 

7.3.2.2 Spatial continuity analysis 

After generating denser dataset of the mineral weight proportion variable, each simulated value 

inherits the coordinates of its interval. Subsequently, a variogram analysis was performed using the 

Stanford Geostatistical Modeling Software (SGeMS) enabling the calculation of omnidirectional 

and directional variograms in the 3D space (Remy et al., 2009). The variogram analysis allows for 

the definition of the plane with the highest spatial continuity. The SGeMS outputs are then used in 

the course of the 3D implicit modeling undertaken in Leapfrog Geo. The Leapfrog Geo software 

employs a rapid 3D interpolation method named radial basis functions (RBFs) to interpolate grades 

and lithologies in 3D space based upon meshless datasets (Aguilar et al., 2005; Buhmann, 2000; 

Cowan et al., 2002; Cuomo et al., 2013; Floater and Iske, 1996; Hillier et al., 2014; Iske, 2002; 

Natali et al., 2013; Wright, 2003).  
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The variogram analysis provides the spatial continuity parameters of the dataset, including the 

nugget effect, the range and the sill. After, projecting the dataset in the 3D space, the variogram 

parameters were used for numerical modeling using Leapfrog Geo. This software undertakes 

spatial interpolation based upon the variogram parameters along with RBFs algorithm enabling 

mesh-free interpolants. Structural measurements were used to define the spatial model orientations 

for different depths. Finally, each numerical model was benchmarked against the available 

measurements of the mineral content. This process was performed for the datasets of pyrite, calcite 

and albite respectively. Afterwards, a block model was created for each numerical model; the 

dimension of the elementary volumetric constituent, known as voxel, was set at 40х40х40 meters. 

The dimension of the voxel could be further reduced as drill core surveys progress and computing 

capabilities are improved. 

7.3.3 1D reactive transport modeling 

Reactive transport modeling was performed for each voxel along the main plane of mining to 

simulate the geochemical behaviour of the given voxel, once blasted and excavated. For each voxel 

a 1D column of 20 m high, containing minerals proportions designated by the pyrite, albite and 

calcite block models, was simulated to assign a pH value to the given voxel. The simulated 

weathering conditions are similar to the weathering cell kinetic test. The extremely slow reacting 

minerals and inert minerals such as quartz and muscovite were considered as inert matrix 

throughout the simulation. It was demonstrated by Toubri et al. (2021b) that their effect on the pH 

is insignificant regarding the considered geochemical setting. The simulation sets highly oxidizing 

conditions assuming no oxygen restriction along the column height to assist in proactive reasoning 

upon disposal and conservative predictions. Accordingly, the through-flowing water and the pore 

water are in equilibrium with O2 and CO2 partial pressures during the whole duration of the 

simulation. Two days wetting event was simulated each month resulting in a liquid to solid ratio 

(L/S) of 5000 L/m3/week, which is similar to L/S used in weathering cell kinetic test (Plante et al., 

2014). The drying event lasts 28 days entailing unsaturated flow towards the water table set 10 m 

below the column base. Thereby, free drainage boundary condition was set at the column bottom. 

An infiltration boundary condition is applied to the column top during recharge periods. The 

drying-wetting cycles were simulated throughout 1 year. PHREEQC was used to implement the 
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kinetic reactions of the system and VS2DRTI was used to simulate the transport environment to 

overcome PHREEQC limitations (a conceptual model is provided in the supplementary file). Both 

software are released by the United States Geological Survey and are well synchronized at solving 

reaction kinetics along with the unsaturated flow Richard equation (Hsieh et al., 2000; Parkhurst 

and Appelo, 2013).  

Regarding the unsaturated environment, the Van Genuchten (1980) parameters of typical fine-sand 

grain size were used since particles smaller than 2.4 mm contribute the most in the geochemical 

reactions (Elghali et al., 2019). The unsaturated flow parameters are reported in the supplementary 

materials.  

Pyrite is the main acid-generating mineral found in the orebody. The specific rate of pyrite 

oxidation suggested by Jerz and Rimstidt (2004) was selected for the present study: 

rk = 10−6.6P0.5

t0.5           7.1 

P is the partial pressure of oxygen (atm) and t is time (s). Jerz and Rimstidt (2004) considered in 

their experiments the oxidation of pyrite under unsaturated conditions. Furthermore, they included 

the pyrite-aging factor in the specific rate, which passivates pyrite surface as oxidation proceeds. 

The generic form of the dissolution rate of gangue minerals issued by Chou and Wollast (1985) 

and Casey and Ludwig (1995) and adopted by Palandri and Kharaka (2004) is defined as: 

rk =

⎝
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          7.2 

Where EH+, E, and EOH− are the activation energies in acidic, alkaline, and neutral conditions, 

respectively; kH+, kOH−, and k are rate constants for acidic, alkaline, and neutral conditions, 

respectively; ni denotes the reaction order; Ω is the mineral saturation index; and pi and qi are 

dimensionless empirical parameters. The rate parameters of albite and calcite, the main neutralizing 

minerals hosting the orebody, are listed in the supplementary file. The entire process of the 

integrated modeling is summarized in figure 7.2. A practical step-by-step description of the 

methods is available in the supplementary file. 
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Figure 7.2 Workflow of the methods used to perform a dynamic classification of the host rock 

based upon the integration of geological logging information, Monte Carlo simulation, 3D 

geological modeling and the reactive transport modeling. (X denotes a reactive mineral present 

in the deposit setting, variable A denotes the available measurements of the X mineral weight 

proportions, and variable B denotes the intervals of occurrence of the mineral X reported 

throughout the geological logging). 
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7.4 Results and discussion 

7.4.1 Monte Carlo simulation results 

The iterative and correlation-based Monte Carlo simulation was carried out for each class indicator 

value. Figures 7.3 displays the simulation outcome constrained to the objective function (a power 

law; y=axb) portrayed by the available measured data. Pyrite classes, reported in Table 7.1, and 

their respective sample size are depicted in Figure 7.3 along with the simulated population. 

Figure 7.3 The Monte Carlo simulation outcome depicted for each pyrite class. a. The simulated 

and measured datasets of the class 0.1 of pyrite. b. The simulated and measured datasets of the 

class 0.5 of pyrite. c. The simulated and measured datasets of the class 1 of pyrite. d. The 

simulated and measured datasets of the class 2 of pyrite. (N_neighbours indicates the number of 

points neighbouring a given point in the graph) 
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Likewise, a figure in the supplementary material depicts the simulation results of albite and calcite 

classes as well as their respective related data. As stated earlier, the procedure enables the 

generation of linear-shaped scatter with a large number of points, mainly steered by the tendency 

of the normalised weight proportions obtained by analytical quantification. The number of intervals 

per class defines the size of the simulated dataset. For instance, 4187 simulated values were 

produced for the pyrite class 0.1, which classifies pyrite in 4187 intervals as feebly occurring pyrite. 

Thereby, each simulated normalised weight proportion was linked to its respective interval.  

Figure 7.4 outlines the newly created weight proportions after cancelling the normalisation along 

with measured weight proportions. As issued by Toubri et al. (2021a), the process being used 

propagates the same variability features from the measured sample size to the simulated dataset. 

Moreover, the epistemic uncertainty related to the subjective geological logging classification is 

approximated through measured data boxplots and propagated throughout the generated data.  

It is worth mentioning that producing other Monte Carlo realisations does not affect the variability 

features as long as the power law parameters are used to constrain the generated dataset (Toubri et 

al., 2021a).  

This newly created database of mineral weight proportions is used to undertake spatial data analysis 

as the obtained population size fulfills the aforementioned data density requirement. In sum, 77 

302, 14 278 and 2500 simulated weight proportions were generated for pyrite, albite and calcite 

respectively. Intervals of albite occurrences are much longer than pyrite and calcite intervals; 

Figure 7.4 Output of the Monte Carlo simulation after cancelling the normalisation along with 

the measured values depicted by class. (e.g., 0.1_Cal: measured values of calcite pertaining to 

the class 0.1, 0.1_Cal_G: generated data via simulation for the class 0.1 of calcite). 
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typically, albite intervals are comprised between 2 and 10 meters consisting of massive 

occurrences. Pyrite and calcite intervals typically ranged between 0.05 and 4 meters frequently 

occurring as disseminations and veins. 

7.4.2 The geomodeling results 

Miscellaneous directional variograms along with the omnidirectional variogram were computed 

using SGeMS. The variogram parameters obtained for the omnidirectional variogram and three 

main directional variograms that exhibited the highest ranges are reported in the supplementary 

file. The range is the main geostatistical parameter that relates to the spatial continuity as it reflects 

the extent of the autocorrelation among neighboring points.  

  

Figure 7.5 The calcite numerical geo-model. a. The core casing of the calcite geo-model 

including values higher than 1 % along with the calcite block model in the background. b. The 

calcite block model along the expected plane of mining 
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Figure 7.6 The pyrite and albite numerical geo-models. a. The core casing of the pyrite geo-model 

including values higher than 4.5 % along with the pyrite block model in the background. b. The 

pyrite block model along the expected plane of mining. c. The core casing of the albite geo-model 

including values higher than 10 % along with the albite block model in the background. d. The 

albite block model along the expected plane of mining 
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The direction defined as 270° N, 70° E exhibits the highest range for the three mineral datasets (see 

supplementary materials). This outcome complies with the major structural trend of the orebody. 

Consequently, the parameters of the directional variogram defined at 270° N, 70° E were used as 

inputs for 3D implicit modeling performed in Leapfrog Geo. The nugget effects of calcite and 

pyrite exceed 70% of the sill while the albite nugget effect is predominantly lower than 70% of the 

sill. This difference is in line with the geological characteristics of the gangue minerals; calcite and 

pyrite are frequently occurring as thin scattered disseminations while albite is generally described 

as phenocrysts throughout longer intervals of occurrences. In sum, the variography analysis 

underlines that the generated data conform to the geological features of the orebody. 

Results of numerical geo-modeling are summarized in Figures 7.5 and 7.6 for calcite, pyrite and 

albite respectively. The gangue minerals are East-trending with a deeply plunging dip, this 

structural tendency was inherited from geological logging that straddles the ore spatial trend and 

the structural measurements reported throughout logging. For each numerical model, a block model 

was established along the mining plane to discern sectors expected to be excavated. Block models 

could be produced along any given horizontal or vertical view. For instance, in case of open-pit 

mining, equidistant horizontal sights could be produced to visualize the mining plans. For 

underground mining, vertical sights are more relevant. As issued by Toubri et al. (2021a), to 

underline the numerical models reliability, drill cores with measured mineral proportions were 

projected on the 3D model. Consistency between measured data and simulated data in the 3D space 

is appropriate enough for the purpose of the study (see supplementary material). However, the 

model reliability could be further improved through quantitative data acquisition to refine the 

objective function parameters and reduce the margins of error to less than 5%. In this regard, the 

analyzed sample size should be comprised between 310 and 350 samples for each logging class.   

7.4.3 Reactive transport modeling results 

The albite and the calcite block models were overlaid on the pyrite block model. Subsequently, 

three mineral weight proportions (albite, calcite and pyrite) were assigned to each voxel. The 

reactive transport modeling was performed for over 500 voxels; kinetic parameters and 

environment transport features were held the same, only mineral weight proportions were adjusted 

accordingly. The resulting pH values after 15 days, 60 days, 180 days and 360 days are displayed 
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in Figure 7.7, respectively. To evaluate the reactive transport modeling reliability, the experimental 

pH results of a kinetic test, previously issued by Toubri et al. (2021b) were simulated. The 

simulated pH values are comparable to the pH experimental measurements (see supplementary 

material).  

After 15 days, 199 voxels display pH values lower than 3, the pH of 193 voxels is comprised 

between 3 and 4.5, 71 voxels exhibit pH ranging from 4.5 to 5.5 and 64 voxels indicate pH higher 

than 7. Voxels containing calcite; effective neutralizing mineral, promptly buffer the pH at 8 even 

before 15 elapsed days. Voxels encompassing albite and pyrite weight proportions ranging from 

10 to 12 wt.%  and 1 to 2  wt.%  respectively increase the pH to 5. The effectiveness of albite 

neutralization mainly depends on the elapsed time and its weight proportion as it is considered as 

a slow-reactive neutralizing mineral (Toubri et al., 2021b). Likewise, voxels with pH values 

ranging from 3 to 4.5 generally consist of pyrite proportions comprised between 2 and 4 along with 

albite proportions comprised between 8 and 12 wt.%. Values of pH lower than 3 reflect voxels 

embodying merely pyrite with no associated neutralizing minerals. After 60 days of reactive 

transport, 299 voxels display pH values oscillating between 3 and 4.5; these voxels either contain 

1 to 2 wt.% of pyrite with no associated neutralizing minerals or 3 to 6 wt.% of pyrite associated 

to albite not exceeding 12 wt.%. Besides, 111 voxels mostly consisting of 2 to 3 wt.% of pyrite and 

10 to 11 wt.% of albite generated pH fluctuating between 4.6 and 5.5. Likewise, 117 voxels display 

pH higher than 6; the neutralization potential of 45% of these voxels stems from relatively high 

albite proportions associated to 1 wt.% of pyrite. These results suggest that the albite weight 

proportion should be at least tenfold higher than the pyrite weight proportion to achieve a 

circumneutral pH after 60 days of kinetic reaction. The remnant voxels rely on the calcite 

neutralization potential to buffer the pH at 8 as pointed out earlier.  

The geochemical pseudo-steady state of the pH is approximately reached beyond 180 days. It is 

worth mentioning that the number of voxels with pH ranging from 4.6 to 5.5 increased to 210. On 

the other hand, the number of voxels with pH lower than 4.5 decreased to 200 voxels. As discussed 

by Toubri et al. (2021b), this result stresses the albite slow reactivity and the related neutralization 

lag time needed to increase the pH. This geochemical behaviour is further highlighted after 360 

days when the number of voxels buffering the pH above 6 increased to 171; 62% of them rely on 

the albite neutralization potential. 
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Figure 7.7 The resulting pH under oxidizing conditions, after 15 days, 60 days, 180 days and 

360 days, using reactive transport modeling for each voxel 
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It is noteworthy that the reaction conditions assumed throughout the reactive transport-modeling 

step were highly oxidizing conditions and the L/S ratio was similar to the weathering cell test; 

considered as one of the kinetic tests involving the most aggressive weathering conditions. 

Therefore, the results comply with conservative scenarios and could not be directly linked to exact 

waste rock piles effluent quality. As discussed by Plante et al. (2014), lab to field scale effects are 

frequently limiting direct linkage between laboratory and field scale results. Therefore, the present 

study suggests upstream spatial classification of the hosting rock mainly based on conservative 

reasoning.  

Hence, the aforementioned results (Figure.7.7) display a one case scenario. The mine managers 

could use the same approach to perform other optimistic or conservative scenarios, including 

alternative waste rock storage scenarios, merely by changing the reactive transport-modeling inputs 

The mine managers could use the same approach to perform other optimistic scenarios, including 

alternative waste rock storage scenarios, merely by changing the reactive transport-modeling 

inputs. For instance, the user could consider the encapsulated pyrite proportion, which is not 

available for reaction. Therefore, different pH outputs will be generated. The user also could 

consider simulation duration longer than 360 days. Consequently, the pH could be slightly 

increased throughout time. It is always worthwhile to produce several scenarios for the sake of 

comparison. In sum, the present study developed a new approach to identify geo-environmental 

domains based on a dynamic classification of the host rock before mining. This classification 

enables the identification of hazardous host rock that could generate AMD upon surface disposal. 

Subsequently, the mine manager could avoid their surface disposal and mitigate AMD risk. 

Alternative management approaches could involve the use of these hazardous geo-environmental 

domains in underground backfill or intermingling them with other geo-environmental domains to 

increase their neutralization potential. 

7.5 Conclusion 

This study focused on bridging the spatial capabilities of geological modeling and the time-related 

abilities of geochemical modeling for the sake of a better control over mine solid waste 

environmental risk. The approach described herein could be used to perform upstream mine waste 

classification based on the simulated pH under oxidizing conditions. For instance, the mine 
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managers could seamlessly select sectors recommended for surface disposal and sectors that should 

be used as backfill or intermingled with other sectors to level off the pH at circumneutral values. 

Nonetheless, continuous refinement of the spatiotemporal model is needed throughout the mine 

project phases as soon as the newly acquired information is incorporated in the database. This task 

compels a high sense of teamwork and collaboration between the geologist and the environmental 

geochemist to implement a cross-disciplinary flow of information and skills. In the present paper, 

only one mining plane was investigated. The same procedure could be performed along numerous 

vertical and horizontal plans spanning the entire extent of the orebody to establish the 3D 

spatiotemporal distribution of the pH. However, the overriding limitation of this procedure is the 

reactive transport computation time, since the number of voxels dictates the number of reactive 

transport simulations to be performed. In this study, 527 reactive transport simulations were carried 

out throughout one plane consisting of 40х40х40 meters voxels. This shortcoming underlines the 

need of a versatile software that simultaneously integrates both the capabilities of geological 

modeling and reactive transport modeling to alleviate the computation time and data manipulations. 

The approach presented in this research considers some environmental attributes of AMD in hard 

rock mines. However, in real-life mining, optimization of the mining operations is indispensable 

to ensure high net present value throughout the life of the mine. Consequently, to perform mine 

waste classification and segregation throughout mining to avoid AMD liabilities, the mining 

engineer should be involved in conducting the mine waste segregation based upon the best mining 

schedule. Therefore, the linkage between the geologist and the environmental geochemist should 

be completed through involving the mining engineer. 

Finally, it is worth mentioning that the geochemical setting simulated throughout this study 

considers only controlled weathering conditions performed in the lab. Therefore, several aspects 

of AMD generation were not considered including the role of biotic reactions.  Accordingly, the 

results could not be directly linked to the weathering field conditions and their interpretation should 

be limited to the lab scale and the development stage of the mine project. Hence, future 

improvements of this approach should upgrade the geochemical model conditions during the 

operation phase to simulate settings that are more complex such as the field experimental tests 

using highly specialized geochemical software. 
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Supplementary materials 

The supplementary materials of this chapter are in Appendix C. 

Acknowledgements 

The authors thank the GoldSim corporation for the reduced fees of the research license and 

Seequent corporation for the academic license of Leapfrog Geo. Funding for this study was 

provided by the NSERC TERRE-NET program, led by Dr. D. Blowes (University of Waterloo).   

References 

Aachib, M.,  Aubertin, M., And Chapuis, R. (1994). Column tests investigation of milling wastes 

properties used to build cover systems. Proceedings of the International Land Reclamation 

and Mine Drainage Conference and 3rd International Conference on the Abatement of Acidic 

Drainage, Pittsburgh.  

Abzalov, M. (2016). Introduction to Geostatistics. In Applied Mining Geology, 233-237 Springer.  

Aguilar, F.J., Agüera, F., Aguilar, M.A. and Carvajal, F. (2005). Effects of terrain morphology, 

sampling density, and interpolation methods on grid DEM accuracy. Photogrammetric 

Engineering & Remote Sensing, 71(7), 805-816.  

Akcil, A. and Koldas, S. (2006). Acid Mine Drainage (AMD): causes, treatment and case studies. 

Journal of cleaner production, 14(12-13), 1139-1145.  

Aubertin, M., Bussière, B., Pabst, T., James, M. and Mbonimpa, M. (2016). Review of the 

reclamation techniques for acid-generating mine wastes upon closure of disposal sites. Dans 

Geo-Chicago 2016 (p. 343-358).  

Benzaazoua, M., Bussière, B., Demers, I., Aubertin, M., Fried, É. and Blier, A. (2008). Integrated 

mine tailings management by combining environmental desulphurization and cemented paste 

backfill: Application to mine Doyon, Quebec, Canada. Minerals engineering, 21(4), 330-340.  

Benzaazoua, M., Perez, P., Belem, T and Fall M. (2004). A laboratory study of the behaviour of 

surface paste disposal. Proceedings of the 8th International Symposium on Mining with 

Backfill, The Nonferrous Metals Society of China, Beijing.  



156 

  

 

Blowes, D., Ptacek, C., Jambor, J. and Weisener, C. (2003). The geochemistry of acid mine 

drainage. Treatise on geochemistry, 9, 612.  

Bouzahzah, H., Benzaazoua, M., Bussiere, B. and Plante, B. (2014). Prediction of acid mine 

drainage: importance of mineralogy and the test protocols for static and kinetic tests. Mine 

Water and the Environment, 33(1), 54-65.  

Buhmann, M.D. (2000). Radial basis functions. Acta numerica, 9, 1-38.  

Bussière, B. (2007). Colloquium 2004: Hydrogeotechnical properties of hard rock tailings from 

metal mines and emerging geoenvironmental disposal approaches. Canadian Geotechnical 

Journal, 44(9), 1019-1052.  

Bussière, B., Aubertin, M., Mbonimpa, M., Molson, J.W. and Chapuis, R.P. (2007). Field 

experimental cells to evaluate the hydrogeological behaviour of oxygen barriers made of silty 

materials. Canadian Geotechnical Journal, 44(3), 245-265.  

Casey, W.H. and Ludwig, C. (1995). Silicate mineral dissolution as a ligand-exchange reaction. 

Chemical weathering rates of silicate minerals(In: A. F. White and S. L. Brantley (eds.) 

Chemical Weathering Rates of Silicate Minerals, Reviews in Mineralogy Vol. 31, Mineral. 

Soc. Am., Washington, D.C.), 87-118.  

Chou, L. and Wollast, R. (1985). Steady-state kinetics and dissolution mechanisms of albite. 

American Journal of Science, 285(10), 963-993.  

Cowan, E. J., Beatson, R. K., Fright, W. R., McLennan, T. J., and Mitchell, T. J. (2002). Rapid 

geological modeling. In Applied Structural Geology for Mineral Exploration and Mining, 

International Symposium, 23-25. 

Cuomo, S., Galletti, A., Giunta, G and Starace, A. (2013). Surface reconstruction from scattered 

point via RBF interpolation on GPU. In federated conference on computer science and 

information systems, 433-440.  

Demers, I., Bouda, M., Mbonimpa, M., Benzaazoua, M., Bois, D. and Gagnon, M. (2015). 

Valorization of acid mine drainage treatment sludge as remediation component to control 

acid generation from mine wastes, part 2: field experimentation. Minerals Engineering, 76, 

117-125.  



157 

  

 

Demers, I., Mbonimpa, M., Benzaazoua, M., Bouda, M., Awoh, S., Lortie, S. and Gagnon, M. 

(2017). Use of acid mine drainage treatment sludge by combination with a natural soil as an 

oxygen barrier cover for mine waste reclamation: Laboratory column tests and intermediate 

scale field tests. Minerals Engineering, 107, 43-52.  

Demers, I., Molson, J., Bussière, B. and Laflamme, D. (2013). Numerical modeling of 

contaminated neutral drainage from a waste-rock field test cell. Applied geochemistry, 33, 

346-356.  

Dold, B. (2008). Sustainability in metal mining: from exploration, over processing to mine waste 

management. Reviews in Environmental Science and bio/technology, 7(4), 275.  

Elghali, A., Benzaazoua, M., Bussière, B. and Bouzahzah, H. (2019). Determination of the 

available acid-generating potential of waste rock, part II: Waste management involvement. 

Applied geochemistry, 100, 316-325.  

Evangelou, V.P. and Zhang, Y. (1995). A review: pyrite oxidation mechanisms and acid mine 

drainage prevention. Critical Reviews in Environmental Science and Technology, 25(2), 

141-199.  

Floater, M.S. and Iske, A. (1996). Multistep scattered data interpolation using compactly supported 

radial basis functions. Journal of Computational and Applied Mathematics, 73(1-2), 65-78.  

Hillier, M.J., Schetselaar, E.M., de Kemp, E.A. and Perron, G. (2014). Three-dimensional 

modeling of geological surfaces using generalized interpolation with radial basis functions. 

Mathematical Geosciences, 46(8), 931-953.  

Hsieh, P.A., Wingle, W. and Healy, R.W. (2000). VS2DI-A graphical software package for 

simulating fluid flow and solute or energy transport in variably saturated porous media, 99-

4130. US Geological Survey.  

Iske, A. (2002). Scattered data modeling using radial basis functions. In Tutorials on 

Multiresolution in Geometric Modeling, 205-242. Springer, Berlin, Heidelberg.  

Jamieson, H.E. (2011). Geochemistry and mineralogy of solid mine waste: essential knowledge for 

predicting environmental impact. Elements, 7(6), 381-386.  



158 

  

 

Jerz, J.K. and Rimstidt, J.D. (2004). Pyrite oxidation in moist air. Geochimica et Cosmochimica 

Acta, 68(4), 701-714.  

Jouini, M., Benzaazoua, M., Neculita, C.M. and Genty, T. (2020). Performances of 

stabilization/solidification process of acid mine drainage passive treatment residues: 

Assessment of the environmental and mechanical behaviors. Journal of Environmental 

Management, 269, 110764.  

Kalonji-Kabambi, A., Demers, I. and Bussière, B. (2020). Reactive transport modeling of the 

geochemical behavior of highly reactive tailings in different environmental conditions. 

Applied Geochemistry, 122, 104761.  

Kossik. R. and Miller. I. (2004). A probabilistic total system approach to the simulation of complex 

environmental systems. In Proceedings of the 36th conference on Winter simulation, 1757-

1761. Winter Simulation Conference.  

Lawrence. R. and Wang. Y. (1997). Determination of neutralization potential in the prediction of 

acid rock drainage. In Proceedings 4th International Conference on Acid Rock Drainage, 

Vancouver, BC.  

Martin-Izard, A., Arias, D., Arias, M., Gumiel, P., Sanderson, D., Castañon, C., Lavandeira, A. and 

Sanchez, J. (2015). A new 3D geological model and interpretation of structural evolution of 

the world-class Rio Tinto VMS deposit, Iberian Pyrite Belt (Spain). Ore Geology Reviews, 

71, 457-476.  

Mbonimpa, M., Awoh, S., Beaud, V., Bussière, B. and Leclerc, J. (2008). Spatial water quality 

distribution in the water cover used to limit acid mine drainage generation at the Don Rouyn 

site (QC, Canada). In Proceedings of the 61th Canadian Geotechnical Conference and the 9th 

Joint CGS/IAH-CNC Groundwater Conference, 21-24. 

Molson, J., Aubertin, M., Bussière, B. and Benzaazoua, M. (2008). Geochemical transport 

modeling of drainage from experimental mine tailings cells covered by capillary barriers. 

Applied Geochemistry, 23(1), 1-24.  



159 

  

 

Molson, J., Fala, O., Aubertin, M. and Bussière, B. (2005). Numerical simulations of pyrite 

oxidation and acid mine drainage in unsaturated waste rock piles. Journal of Contaminant 

Hydrology, 78(4), 343-371.  

Natali, M., Lidal, E., Parulek, J., Viola, I. and Patel, D. (2013). Modeling Terrains and Subsurface 

Geology. In Interactive Data Processing and 3D Visualization of the Solid Earth, pp. 1-43.  

Neculita, C., Zagury, G. and Kulnieks, V. (2010). Short-term and long-term bioreactors for acid 

mine drainage treatment. Proceedings of the Annual International Conference on Soils, 

Sediments, Water and Energy, 12, 1-2.  

Nicholson, R.V. and Scharer, J.M. (1994). Laboratory studies of pyrrhotite oxidation kinetics. In 

C.N. Alpers, D.W. Blowes (Eds.), Environmental Geochemistry of Sulfide Oxidation, ACS 

Symposium Series, vol. 550 (1994), pp. 14-30 Washington, DC.  

Nordstrom, D., Alpers, C.N., Ptacek, C. and Blowes, D. (2000). Negative pH and extremely acidic 

mine waters from Iron Mountain, California. Environmental Science & Technology, 34(2), 

254-258.  

Nordstrom, D.K. and Alpers, C.N. (1999). Negative pH, efflorescent mineralogy, and 

consequences for environmental restoration at the Iron Mountain Superfund site, California. 

Proceedings of the National Academy of Sciences, 96(7), 3455-3462.  

Pabst, T., Molson, J., Aubertin, M. and Bussière, B. (2017). Reactive transport modeling of the 

hydro-geochemical behaviour of partially oxidized acid-generating mine tailings with a 

monolayer cover. Applied Geochemistry, 78, 219-233.  

Palandri, J.L. and Kharaka, Y.K. (2004). A compilation of rate parameters of water-mineral 

interaction kinetics for application to geochemical modeling. Geological Survey Menlo Park 

CA. US Geological Survey Open File Report. 

Parbhakar-Fox, A.K., Edraki, M., Walters, S. and Bradshaw, D. (2011). Development of a textural 

index for the prediction of acid rock drainage. Minerals Engineering, 24(12), 1277-1287.  

Parkhurst, D.L. and Appelo, C. (2013). Description of input and examples for PHREEQC version 

3: a computer program for speciation, batch-reaction, one-dimensional transport, and inverse 

geochemical calculations. US geological survey techniques and methods, 6(A43), 497.  



160 

  

 

Plante, B., Bussière, B. and Benzaazoua, M. (2014). Lab to field scale effects on contaminated 

neutral drainage prediction from the Tio mine waste rocks. Journal of Geochemical 

Exploration, 137, 37-47.  

Remy, N., Boucher, A. and Wu, J. (2009). Applied geostatistics with SGeMS: A user's guide. 

Cambridge University Press. 

Rizzo, D.M., Mouser, P.J., Whitney, D.H., Mark, C.D., Magarey, R.D. and Voinov, A.A. (2006). 

The comparison of four dynamic systems-based software packages: Translation and 

sensitivity analysis. Environmental Modeling & Software, 21(10), 1491-1502.  

Stoch, B., Anthonissen, C.J., McCall, M.J., Basson, I.J., Deacon, J., Cloete, E., Botha, J., Britz, J., 

Strydom, M., Nel, D. and Bester, M. (2018). 3D implicit modeling of the Sishen Mine: new 

resolution of the geometry and origin of Fe mineralization. Mineralium Deposita, 53(6), 835-

853.  

Toubri, Y., Demers, I., Poirier, A., Pépin, G., Gosselin, M. and Beier, N. (2021a). Merging 3D 

geological modeling and stochastic simulation to foster the waste rock upstream 

management. Journal of Geochemical Exploration, 224, 106739.  

Toubri, Y., Vermette, D., Demers, I., Beier, N. and Benzaazoua, M. (2021b). Incorporating Kinetic 

Modeling in the Development Stages of Hard Rock Mine Projects. Minerals, 11(12), 1306.  

Van Genuchten, M.T. (1980). A closed‐form equation for predicting the hydraulic conductivity of 

unsaturated soils. Soil science society of America journal, 44(5), 892-898.  

Wright, G.B. (2003). Radial basis function interpolation: numerical and analytical developments, 

Ph.D. thesis, University of Colorado, Boulder, 2003.  

Wu, Q. and Xu, H. (2014). Three-dimensional geological modeling and its application in Digital 

Mine. Science China Earth Sciences, 57(3), 491-502.  

Wunderly, M., Blowes, D., Frind, E. and Ptacek, C. (1996). Sulfide mineral oxidation and 

subsequent reactive transport of oxidation products in mine tailings impoundments: A 

numerical model. Water Resources Research, 32(10), 3173-3187.  

 



161 

  

 

 GENERAL DISCUSSION 

This work started from the concept of the upstream thinking, which is inspired from designing for 

closure principle, and the integration concept inspired from geometallurgy to develop cost-

effective modeling methods that enhance the mitigation capabilities regarding AMD and the 

associated environmental risks. Linkage between specialized geological modeling engines and 

environmental geochemistry modeling toolbox was established to bridge 3D spatial visualization 

to the time dimension. This linkage evolved through three main steps highlighting the research 

hypotheses announced in the chapter 1: 

• A 3D geological model portraying the spatial distribution of a contaminant could be 

established based upon the available data from the drilling surveys; 

• Geochemical models could be established since the development stage based upon the 

available mineralogical characterization;     

• Combining a geochemical model with a spatial model could result in a good risk 

identification and localization during the development stage. 

The first step involved stochastic simulation to accomplish the geological modeling requirements. 

Monte Carlo simulation, a straightforward stochastic process, was developed based upon the 

discrete and continuous variables of the geological logging. The process suggested in this study 

relates the independent continuous variable through the power law. The power law is subsequently 

used as an objective function throughout the iterative Monte Carlo simulation. The second step 

focused on simulating the pH generated due to surface-controlled reaction including direct 

oxidation and dissolution. Unlike the complex geochemical models established during the 

reclamation phase, the suggested geochemical model requires minimal characterization data to be 

applied during upstream stages. The author believes that geochemical modeling approaches should 

be staged approaches that evolve from the development stage until the closure stage as the 

information flow evolves rather than establishing complex geochemical models at one stage 

without progressing the geochemical model throughout the entire mine cycle. The third step 

resulted in a spatiotemporal model that enables upstream and dynamic classification of the host 

rock. This modeling approach is a holistic method requiring a multidisciplinary background and a 

high sense of communication among the geologist, the environmental geochemist and the mine 
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waste manager. In this study, the parameter displayed by the model is the pH, however, other 

parameters could be envisioned such as element concentrations. In this regard, the geochemical 

component of the model should be further enhanced through the case-specific oxidation rates, 

geochemical retention processes and trace-elements mineralogy. When the user reaches this stage 

of data acquirement, generally during downstream stages, MIN3P would be more efficient and 

adequate than the coupled PHREEQC and VS2DRTI.    

To perform the aforementioned integrated modeling method, the practical steps are summarized in 

this chapter to introduce an integrated geomodeling protocol to move beyond the case-specific 

description. Albeit various advantages of this integrated geomodeling approach were thoroughly 

described throughout the preceding chapters, several limitations should be considered and/or 

addressed depending on the case study. This chapter provides insights on the main advantages and 

limitations. Finally, horizons of improvements are presented herein to suggest future studies that 

further improve the integration level particularly within the systems dynamics framework. 

8.1 Integrated geomodeling protocol 

This section is intended to provide insights on the sequence of practices that should be performed 

to establish a spatiotemporal model. 

(1) The user should define her/his elements of concern for the static modeling and the 

dynamic modeling respectively;  

(2) The geological logging of the drill cores should be performed based upon standard scale 

used by all the geologists involved in the drill core description and sampling; 

(3) The user should collect and understand the geological logging information and visualize 

all the geological data (categorical and numerical) in the 3D space along with the ore 

model suggested by the geologists; 

(4) An emphasis should be carried on regarding the structural measurements performed by 

the geologists. This enables the user to grasp and define the plane of spatial anisotropy; 

if the element of interest is related to the mineralization, which is the common case, the 

spatial model should inherit its shape from the mineralization structural trend. If not, 
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the user would need to infer the structural trend from geological information and 

structural data analysis using stereonets;  

(5) Based upon the available mineralogical information, the user should focus on the 

elements of concern-bearing minerals and highlight their locations in each drill core; 

(6) If intensive drill core surveys are already performed, the user could perform the 

modeling along the entire ore depth. If not, the user should proceed by progressive depth 

portions as the drill core surveys evolved in the vertical dimension Z; 

(7) Likewise, the  plane defined by X and Y coordinates could be discretized depending on 

the drill core availability; 

(8) The user may need to perform the stochastic process described herein if insufficient 

numerical data of the element of concern are available. In this regard, the user should 

define two independents continuous variables (including the element of concern grade) 

and one categorical variable used to describe the elements of concern-bearing minerals;  

(9) When the aforementioned steps are accomplished the static model could be built using 

the variogram analysis and a multi-realization analysis could be undertaken to consider 

uncertainties; 

(10) Calibration of the stochastic parameters and benchmarking of the static model should 

be performed to determine its level of reliability. Margins of error should be computed 

as well; 

(11) To establish the dynamic model, the user should choose a 2D plane or multiple 2D plans 

that should be discretized in voxels. The dimension of the voxel reflects the level of 

detail, which is closely dependent on the drill cores spatial density; 

(12) Based upon the aim of the user, she/he should establish the conceptual geochemical 

model. The geochemical processes of interest included in the conceptual model will 

define the model complexity degree that will dictate the geochemical software to be 

used;   

(13) Calibration and benchmarking of the geochemical model should be carried out; 
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(14) For each voxel, the user should preform a geochemical simulation and assign the output 

to its respective voxel center; 

(15) The aforementioned step should be repeated for ascending time intervals that are 

specified by the user;  

(16) At this stage, the dynamic model is established and could be used for mitigation 

purposes. A multi-realization analysis could be undertaken through stochastically 

changing key-controlling inputs and/or inputs with high uncertainty.  

8.2 Advantages and Limitations 

The advantages of the integrated modeling approach include: 

• Fulfilling of the cross-disciplinary principle suggested by geometallurgy to overcome 

mining environmental risks using integrated modeling; 

• Merging spatial visualization and the time dimension allowing for a better risk 

identification and localization; 

• Fostering the upstream reasoning and the mine waste classification before mining; 

• Relying on cost-effective modelling approaches. 

As most modeling methods, the present methods presents several limitations including: 

• The availability of drill cores and their logging define if the modeling method could be 

performed or not as it is mainly contingent on the spatial density of the drill cores. 

Therefore, the integrated modeling could be performed as soon as the geologist is able to 

visualize the deposit or a portion of the deposit; 

• The spatial multi-realizations are time-consuming and require intricate manipulation of 

data. This limitation underlines the need for a software that incorporates the capabilities of 

geological modeling and geochemical modeling as well as the possibility to run Monte 

Carlo simulation yielding numerous spatial realizations;   
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• Although the high sense of integration constitutes an advantage of this method, it also 

presents an issue because of the versatile scientific background required to accomplish the 

building steps.   

8.3 Future integration horizons 

This section presents other aspects of integration that should be added to the present modeling 

approach to render its application feasible in real life hard rock mines. The following section 

provides an overview on the possible modeling efforts that could be carried out for future 

integration research studies. Therefore, this description is intended to provide a starting point for 

the upcoming research.     

8.3.1 System dynamics 

Almost all world systems behave according to their variables change, mathematical formulation of 

variables interaction is a common way to foster systems understanding. Nevertheless, mathematical 

formulation could be complex enough to not abide by analytical solutions or simply infeasible 

because of the system’s intricacy. To cope with these challenges, experimental investigations are 

pivotal to establish solutions; however, in several cases we would assess the entire system 

behaviour without real-life implementation. Some real-systems implementation is time-

consuming, prohibitively costly or simply impractical to do when the controlling factors are not 

accessible and/or controllable; these controlling factors are named disturbance inputs (Fritzson, 

2010). Likewise, some interesting outputs are not reachable for measurements, these are called 

internal states (Fritzson, 2010). The model is a key concept to overcome experimental approach 

shortcomings, Fritzson (2010) states that 

 “A model of a system is anything an experiment can be applied to in order to answer 

questions about that system”   

In other words, modeling constitutes a bridge from real system impractical and complex 

experimentation to simplified and easy-to-perform experiments. Building that bridge is known as 

simulation.  
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System dynamics (SD) modeling is one of the modeling approaches that build causality among 

variables system to enhance understanding (Kelly et al., 2013) based on nonlinear and feedback 

thinking (Forrester, 1996). Owing to tremendous growth in system modeling needs, SD was 

developed to stress that knowledge integration considering closed-loop concept is a promising way 

to tackle systems behaviour understanding (Peck, 1998). The growing application of SD includes 

economic fluctuations, dynamics of ecosystems, project management and many other domains. 

These extensive application case studies preclude mining fields, Zheng (2019) stated that SD 

integration in mining engineering is substantially curtailed, papers related to keyword “mining” 

amounted to less than 1% in the System Dynamics Review bibliography database (Zheng, 2019). 

Several software were used to perform SD modeling such as GoldSim.  GoldSim is a completely 

object-oriented and highly graphical program devoted to build probabilistic, dynamic simulations 

of complex models. Graphical objects called elements afford the basic building blocks to establish 

hierarchical, top-down models. These elements receive inputs and carry out calculations that solve 

equations embedded in the element to impart outputs. Elements could be regarded as a built-in 

functions represented by icons. The second building block in GoldSim is influence; automatically 

drawn arrows that link elements to explicitly display interdependencies. Therefore, GoldSim 

enables the establishment of SD models using flow diagrams. 

8.3.1.1 TMSim: an example of system dynamics application 

As mentioned before, the mining industry has not thoroughly used SD process as a modeling 

approach. Meanwhile, various fields have benefited from SD capabilities such as Li and Simonovic 

(2002) who selected SD modeling tools to predict floods  in prairie watersheds and Cassell et al. 

(1998) integrated SD process to understand phosphorous dynamics pertaining to agriculture. 

Nonetheless, few examples of SD models applied to mining industry have emerged recently. These 

case studies are mainly related to oil sand mining industry; Jutla (2006) who simulated unsaturated 

soil dynamics of reconstructed watersheds, Beier (2015) developed a dynamic simulation, named 

tailings management simulation (TMSim) to manage oil sand tailings and more recently Zheng 

(2019) set up the consolidation and unsaturated flow dynamic simulation for coarse sand tailings.  

The modeling purpose behind TMSim implementation is to track tailings physical properties 

throughout the mine life span. Miscellaneous outputs are deemed mandatory to reach this aim, such 
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as storage volume, construction materials quantity, water cap volume, freeboard volume, effective 

stress evolution, etc. Beier (2015) named these outputs as performance measures. Based on Beier 

(2015) findings, the conceptual model embeds mining operations from ore extraction to tailings 

deposition.  Each operation implies a sub-model within TMSim. Therefore, TMSim envisions a 

versatile modeling purpose that is in line with SD capabilities. The flowchart in figure 8.1 is a 

communicative model of TMSim conceptual model; a communicative model is an explicit 

depiction of the conceptual model whereas a conceptual model pertains to the mind imaging  

(Robinson, 2008). 

Mining extraction and ore valorization intertwine in the same sub-model within TMSim; called 

Mine/Extraction Sub-model.  Likewise, the impoundment sub-model includes the following sub-

models: containment, deposition, deposit strength, third dewatering stage and fluid storage. The 

first and the second dewatering stages constitute two separate sub-models respectively. Each sub-

model requires some user-defined inputs and yields several outputs that may be included as inputs 

in other sub-models. This kind of complex interrelated sub-models enhances system dynamic 

understanding and complies with SD aim. The model intricacy stems from the inputs number and 

the complex interrelated elements, making the entire package unreadable at first sight. Nonetheless, 

the top-down approach is both the modeling key method and the key practice to grasp the model 

structure. At the highest level of detail, one can recognize three main reservoirs; mine reservoir, 

plant reservoir and impoundment reservoir. Likewise, the main flow originates from mining. At 

the lowest level, these main components are subdivided into other reservoirs and flows according 

to mining cycle choices. TMSim conceptual model abides by conceptualization requirements and 

sets up the scope and the purpose of the simulation. It also represents the model framework as 

simple as possible using sub-models and a top-down approach. Validating conceptual model 

requirements leads us over model formulation. Details on model formulation can be found in the 

dissertation of Beier (2015).
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Figure 8.1 TMSim conceptual model updated from Beier (2015) 
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8.3.1.2 Visual Basic for application code of disposal 

Beier (2015) established a code using visual basic for application (VBA) to estimate the tailings 

heights at any point in space and after each disposal operation. The same concept could be added 

to the integrated geomodeling approach when the mine manager perform mine waste segregation. 

Beier (2015) validated his code using several deposition scenarios. The author reproduced the 

validation cases and used Surfer software for spatial representation (Figures 8.2 and 8.3). 

In conclusion, system dynamics and VBA could be used during mine waste classification and 

segregation to manage streams of hazardous and non-hazardous mine waste. Therefore, the 

approach suggested in this work could be further enhanced through relating the host rock 

classification to mine waste disposal dynamics based upon geo-environmental domains. The 

following section provides perspectives regarding SD modeling and mine waste management 

integration. 

Figure 8.2 A validation scenario of deposition of 30,000 m3 of tailings of medium 

density using multispigot discharge along with 100,000 m3 of water 
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Figure 8.3 Disposal validation scenario of tailings. a. deposition of 5,000 m3 of low-density tailings. b. Deposition of 30,000 

m3 of high-density tailings using central discharge. c. deposition of 30,000 m3 of tailings of medium density using multispigot 

discharge  along with 100,000 m3 of water 
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8.3.1.3 System dynamics and upstream thinking 

System dynamics modeling involves the holistic thinking that aims at the incorporation of the 

stocks and the flows of the system being considered along with the self-correcting and the self-

reinforcing feedback loop relationships linking the system components. Although the SD principle 

is simple, it can results in highly intricate models. Therefore, SD approach could be coupled to the 

upstream thinking to build staged models with increasing degree of complexity throughout the 

mine life.  

GoldSim is a software providing a specialized interface enabling SD modeling and uncertainty 

propagation. Furthermore, it can be linked to other external programs such as PHREEQC. Mine 

waste classification and segregation is a dynamic process that evolves depending on the mining 

operations. Practically, the mining operations schedule could be represented in GoldSim as a time 

series element. The geo-environmental domains could be represented by stock elements defining 

the tonnage, computed using geological modeling, of each geo-environmental domain. Mining 

operations abiding by the mining time series could be simulated using the flow elements.  

Environmental attributes of each geo-environmental domain, such as mineralogical associations, 

neutralization potential and acidic potential could be defined as stochastic elements to consider 

uncertainty. This uncertainty will be propagated to the outputs of PHREEQC previously linked to 

GoldSim. Subsequently, the generated stochastic outputs could be used to produce disposal 

segregation realizations. These realizations should define the time series of disposal as well as the 

tonnage of each segregated stream. To select the most promising disposal time series, the 

realizations should be assessed using mining optimization. 

8.3.2 Mining optimization 

The approach presented in this research considers some environmental attributes of AMD in hard 

rock mines. However, in real-life mining, optimization of the mining operations is indispensable 

to ensure high NPV. Consequently, to perform mine waste classification and segregation 

throughout mining to avoid AMD liabilities, the mining engineer should be involved in steering 

the mine waste segregation based upon the best mining schedule. Therefore, the linkage between 

the geologist and the environmental geochemist should be completed through involving the mining 

engineer. Several studies tackle the mining optimization problem using stochastic simulation and 
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spatial modeling (Abdel Sabour and Dimitrakopoulos, 2011; Dimitrakopoulos, 1997, 1998; 

Dimitrakopoulos, 2011; Dimitrakopoulos et al., 2002; Dimitrakopoulos and Sabour, 2007; Kumar 

and Dimitrakopoulos, 2021). The results of these studies often suggest the best mining schedule 

based upon the ore classification. This classification is established based upon several attributes 

including the grade, the depth, the tonnage, the market constraints, the plant requirements… etc. 

Hence, the ore classification for economic purposes should be merged and reconciled with the host 

rock classification for environmental purposes. Without this integration, the integrated 

geomodeling approach suggested herein will lack realistic applications in real-life mining. 
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 CONCLUSION AND RECOMMENDATIONS 

Nowadays, an integrated knowledge base is indispensable to overcome mining challenges mainly 

related to physical stability and geochemical spread of the contaminants. Regarding the 

geochemical aspect, the assessment and the control of AMD could prevent additional operating 

costs related to AMD reclamation and/or treatment. Nonetheless, to guarantee the assessment 

effectiveness, it should be launched as early as possible. Moreover, it should integrate all the 

available data related to the geological framework, which determines the nature of the upcoming 

mine waste. Therefore, an environmental geochemist should not merely rely on her/his knowledge; 

she/he should also grasp the deposit genesis and the geological model provided by the geologist to 

consolidate the acquired geological information in a spatial model allowing a first inference 

regarding the deposit typology and gitology. Accordingly, two main concepts are underlined herein 

to enhance AMD assessment; the integration and the earliness.      

Several studies incorporated these concepts in experimental approaches suggested to support AMD 

assessment and/or integrated mine waste management. However, the modeling aspect is lacking 

such a holistic reasoning. Models established throughout the mine life, including geological 

models, geochemical models, mining models and mine waste management models, are used as 

independent compartments of knowledge. Accordingly, the general objective of this research is to 

introduce the integration reasoning in the modeling approaches for a better control over AMD and 

solid waste in hard rock mines. The aim was bridging geological modeling and geochemical 

modeling. Besides, upstream mine waste classification was considered as an adequate target to link 

geological modeling to both mine waste management and AMD control. This study combines the 

capabilities of 3D implicit modeling, stochastic simulation and reactive transport modeling in one 

consolidated modeling method that enables mine waste classification based upon the contaminant 

grades in the host rock and the simulated pH. A multirealization process was used to overcome the 

effect of uncertainties on the final decision. The method mainly relies on the geological logging 

information that should be collected and visualized in the 3D space. Because the suggested 

integrated modeling approach inherits some of its features from the geological modeling, it could 

be performed as soon as the geologist is able to establish his model. Furthermore, as geological 

models, the suggested approach is a progressive and staged procedure that could be carried out as 

the information flow evolves throughout drilling surveys. 
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The main results and conclusions of this study are summarized as follows: 

• Monte Carlo simulation is efficient to repurpose the uncertainty propagation capability to 

infer larger and homoscedastic sample sizes;  

• The conformity parameters used for the objective function are reliable to generate 

homoscedastic samples sizes 

• The geological features underlined by the static geomodel comply with the deposit geology; 

• The static geomodel established for Éléonore mine revealed a wide geochemical halo of As 

that could reach up to 500 m away from the gold deposit, with up to 94% of As grades 

exceeding 50 ppm;  

• The effect of ergodic fluctuations is maintained at a fair level and no substantial differences 

were observed; 

• The static geomodel was overlaid to the underground stopes model to enable mine waste 

classification based upon As grades; 

• Rate laws previously issued could be used to simulate the leachate pH collected from the 

weathering cell tests;  

• Relatively simple kinetic modeling could be performed during the development stage to 

carry out preliminary parametric analyses; 

• Calibrated kinetic models are suggested to be used to simulate mineral assemblage that 

were not tested using the weathering cell test because of the lack of materials. These models 

should focus on the pH given their limitations;  

• Kinetic models established in PHREEQC could be coupled to unsaturated flow modeling 

using VS2DRTI to simulate larger scale experiments that are not diffusion-limited; 

• The geochemical aspects were coupled to the static geomodel to produce a dynamic 

geomodel that describes the temporal and the spatial evolution of the pH throughout the 

deposit;  
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• Highly oxidizing conditions were assumed to enable dynamic waste classification based 

upon the oxidation-neutralization process with a focus on the albite neutralization potential; 

• Results circumscribe hazardous geo-environmental domains; 

• The method generates several realizations that could be assessed simultaneously and other 

scenarios could be assessed before suggesting the final classification of the host rock; 

• Data analysis and manipulation are the main limitation regarding the approach application; 

• Finally, and more importantly, the present study progressed the knowledge of upstream 

mine waste classification and introduced promising methods to integrate multidisciplinary 

modeling approaches for the sake of a better control over solid waste in hard rock mines. 

To improve the modeling integration and overcome the approach limitations the following 

recommendations are suggested: 

• Models and simulations established by the mining engineer should be incorporated in the 

present approach to enable mine waste segregation and to determine the best mining 

schedule; 

• System dynamics using GoldSim could be an efficient tool to simulate segregated mine 

waste streams and produce time series of mine waste disposal;  

• A software incorporating the numerical capabilities of geological modeling and reactive 

transport modeling along with Monte Carlo simulation could be developed to overcome 

data manipulation issues; 

• Other mineralogical inputs could be added if available, such as the sulphides liberation; 

• Other geochemical aspects could be considered such as oxygen diffusion through the use 

of other unsaturated geochemical software such as MIN3P; 

• The approach should be progressive, therefore, when the site specific oxidation rates are 

available the geomodel should be updated accordingly. Likewise, the spatial discretization 

should be refined as drilling surveys progress.
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Figure. S1 Realization 2 of the arsenopyrite class 0.1. 

 

 

Figure. S2 The selected values of the auxiliary variable based on interval values of the class 0.1 

(realization 2). 
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Figure. S3 Realization 2 of the arsenopyrite class 0.5. 

 

 

 

Figure. S4 The selected values of the auxiliary variable based on interval values of the class 0.5 

(realization 2). 
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Figure. S5 Realization 2 of the arsenopyrite class 1. 

 

 

Figure. S6 The selected values of the auxiliary variable based on interval values of the class 1 

(realization 2). 
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Figure. S7 Realization 2 of the arsenopyrite class 2. 

 

 

Figure. S8 The selected values of the auxiliary variable based on interval values of the class 2 

(realization 2). 
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Figure. S9 Realization 2 of the arsenopyrite class 3. 

 

 

 

Figure. S10 The selected values of the auxiliary variable based on interval values of the class 3 

(realization 2). 
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Figure. S11 Realization 3 of the arsenopyrite class 0.1. 

 

Figure. S12 The selected values of the auxiliary variable based on interval values of the class 0.1 

(realization 3). 
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Figure. S13 Realization 3 of the arsenopyrite class 0.5 . 

 

 

Figure. S14 The selected values of the auxiliary variable based on interval values of the class 0.5 

(realization 3). 
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Figure. S15 Realization 3 of the arsenopyrite class 1. 

 

Figure. S16 The selected values of the auxiliary variable based on interval values of the class 1 

(realization 3). 

 



202 

 

Figure. S17 Realization 3 of the arsenopyrite class 2. 

 

Figure. S18 The selected values of the auxiliary variable based on interval values of the class 2 

(realization 3). 

 

 

 



203 

 

 

Figure. S19 Realization 3 of the arsenopyrite class 3. 

 

 

  

Figure. S20 The selected values of the auxiliary variable based on interval values of the class 3 

(realization 3). 
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Figure. S21 Realization 4 of the arsenopyrite class 0.1. 

 

 

Figure. S22 The selected values of the auxiliary variable based on interval values of the class 0.1 

(realization 4). 
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Figure. S23 Realization 4 of the arsenopyrite class 0.5. 

 

Figure. S24 The selected values of the auxiliary variable based on interval values of the class 0.5 

(realization 4). 
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Figure. S25 Realization 4 of the arsenopyrite class 1. 

 

 

Figure. S26 The selected values of the auxiliary variable based on interval values of the class 1 

(realization 4). 
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Figure. S27 Realization 4 of the arsenopyrite class 2. 

 

Figure. S28 The selected values of the auxiliary variable based on interval values of the class 2 

(realization 4). 
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Figure. S29 Realization 4 of the arsenopyrite class 3. 

 

 

Figure. S30 The selected values of the auxiliary variable based on interval values of the class 3 

(realization 4). 
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Figure. S31 Realization 5 of the arsenopyrite class 0.1. 

 

Figure. S32 The selected values of the auxiliary variable based on interval values of the class 0.1 

(realization 5). 
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Figure. S33 Realization 5 of the arsenopyrite class 0.5. 

 

Figure. S34 The selected values of the auxiliary variable based on interval values of the class 0.5 

(realization 5). 
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Figure. S35 Realization 5 of the arsenopyrite class 1. 

 

Figure. S36 The selected values of the auxiliary variable based on interval values of the class 1 

(realization 5). 
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Figure. S37 Realization 5 of the arsenopyrite class 2. 

 

Figure. S38 The selected values of the auxiliary variable based on interval values of the class 2 

(realization 5). 
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Figure. S39 Realization 5 of the arsenopyrite class 3. 

 

 

Figure. S40 The selected values of the auxiliary variable based on interval values of the class 3 

(realization 5). 
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Figure. S41 Realization 6 of the arsenopyrite class 0.1. 

 

Figure. S42 The selected values of the auxiliary variable based on interval values of the class 0.1 

(realization 6). 
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Figure. S43 Realization 6 of the arsenopyrite class 0.5. 

 

 

Figure. S44 The selected values of the auxiliary variable based on interval values of the class 0.5 

(realization 6). 
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Figure. S45 Realization 6 of the arsenopyrite class 1. 

 

 

Figure. S46 The selected values of the auxiliary variable based on interval values of the class 1 

(realization 6). 
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Figure. S47 Realization 6 of the arsenopyrite class 2. 

 

 

Figure. S48 The selected values of the auxiliary variable based on interval values of the class 2 

(realization 6). 
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Figure. S49 Realization 6 of the arsenopyrite class 3. 

 

 

Figure. S50 The selected values of the auxiliary variable based on interval values of the class 3 

(realization 6). 
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Figure. S51 Realization 7 of the arsenopyrite class 0.1. 

 

 

Figure. S52 The selected values of the auxiliary variable based on interval values of the class 0.1 

(realization 7). 
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Figure. S53 Realization 7 of the arsenopyrite class 0.5. 

 

 

Figure. S54 The selected values of the auxiliary variable based on interval values of the class 0.5 

(realization 7). 
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Figure. S55 Realization 7 of the arsenopyrite class 1. 

 

Figure. S56 The selected values of the auxiliary variable based on interval values of the class 1 

(realization 7). 
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Figure. S57 Realization 7 of the arsenopyrite class 2. 

 

Figure. S58 The selected values of the auxiliary variable based on interval values of the class 2 

(realization 7). 
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Figure. S59 Realization 7 of the arsenopyrite class 3. 

 

 

Figure. S60 The selected values of the auxiliary variable based on interval values of the class 3 

(realization 7). 
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Figure. S61 Realization 8 of the arsenopyrite class 0.1. 

 

Figure. S62 The selected values of the auxiliary variable based on interval values of the class 0.1 

(realization 8). 
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Figure. S63 Realization 8 of the arsenopyrite class 0.5. 

 

Figure. S64 The selected values of the auxiliary variable based on interval values of the class 0.5 

(realization 8). 
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Figure. S65 Realization 8 of the arsenopyrite class 1. 

 

 

Figure. S66 The selected values of the auxiliary variable based on interval values of the class 1 

(realization 8). 
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Figure. S67 Realization 8 of the arsenopyrite class 2. 

 

 

Figure. S68 The selected values of the auxiliary variable based on interval values of the class 2 

(realization 8). 
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Figure. S69 Realization 8 of the arsenopyrite class 3. 

 

 

Figure. S70 The selected values of the auxiliary variable based on interval values of the class 3 

(realization 8). 
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Figure. S71 Realization 9 of the arsenopyrite class 0.1. 

 

 

Figure. S72 The selected values of the auxiliary variable based on interval values of the class 0.1 

(realization 9). 
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Figure. S73 Realization 9 of the arsenopyrite class 0.5. 

 

 

Figure. S74 The selected values of the auxiliary variable based on interval values of the class 0.5 

(realization 9). 
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Figure. S75 Realization 9 of the arsenopyrite class 1. 

 

 

Figure. S76 The selected values of the auxiliary variable based on interval values of the class 1 

(realization 9). 
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Figure. S77 Realization 9 of the arsenopyrite class 2. 

 

 

Figure. S78 The selected values of the auxiliary variable based on interval values of the class 2 

(realization 9). 
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Figure. S79 Realization 9 of the arsenopyrite class 3. 

 

 

Figure. S80 The selected values of the auxiliary variable based on interval values of the class 3 

(realization 9). 
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Figure. S81 Realization 10 of the arsenopyrite class 0.1. 

 

 

Figure. S82 The selected values of the auxiliary variable based on interval values of the class 0.1 

(realization 10). 
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Figure. S83 Realization 10 of the arsenopyrite class 0.5. 

 

 

Figure. S84 The selected values of the auxiliary variable based on interval values of the class 0.5 

(realization 10). 
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Figure. S85 Realization 10 of the arsenopyrite class 1. 

 

Figure. S86 The selected values of the auxiliary variable based on interval values of the class 1 

(realization 10). 
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Figure. S87 Realization 10 of the arsenopyrite class 2. 

 

 

Figure. S88 The selected values of the auxiliary variable based on interval values of the class 2 

(realization 10). 
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Figure. S89 Realization 10 of the arsenopyrite class 3. 

 

Figure. S90 The selected values of the auxiliary variable based on interval values of the class 3 

(realization 10). 
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Figure. S91 The output of the iterative Monte Carlo simulation for each arsenopyrite class 

(realization 2). 

 

 

Figure. S93 The output of the iterative Monte Carlo simulation for each arsenopyrite class 

(realization 3). 
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Figure. S94 The output of the iterative Monte Carlo simulation for each arsenopyrite class 

(realization 4). 

 

 

Figure. S95 The output of the iterative Monte Carlo simulation for each arsenopyrite class 

(realization 5). 
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Figure. S96 The output of the iterative Monte Carlo simulation for each arsenopyrite class 

(realization 6). 

 

 

Figure. S97 The output of the iterative Monte Carlo simulation for each arsenopyrite class 

(realization 7). 
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Figure. S98 The output of the iterative Monte Carlo simulation for each arsenopyrite class 

(realization 8). 

Figure. S99 The output of the iterative Monte Carlo simulation for each arsenopyrite class 

(realization 9). 
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Figure. S100 The output of the iterative Monte Carlo simulation for each arsenopyrite 

class(realization 10). 
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Table S1 Hypothesis testing of the generated realizations. 

  Sample 
size Realizations Levene's 

test 
Student’s t 

test 
Welch’s t 

test 
Significance 

level 0.05 

As 
available 

grades 
1141 

1 0.367 0.412 0.217 Not 
significant 

2 0.807 0.45 0.414 Not 
significant 

3 0.627 0.792 0.151 Not 
significant 

4 0.476 0.813 0.633 Not 
significant 

5 0.013 0.136 0.043 Significant 

As 
simulated 

grades 
80977 

6 0.248 0.608 0.426 Not 
significant 

7 0.119 0.538 0.39 Not 
significant 

8 0.291 0.519 0.320 Not 
significant 

9 0.073 0.619 0.561 Not 
significant 

10 0.001 0.07 0.048 Significant 
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Figure. S101 The directional variograms of the generated realizations 
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Figure. S102 The omnidirectional variograms of the generated realizations. 
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Figure. S103 a) The spatial distribution of arsenic grades ranging from 500 ppm to 1100 ppm, b) 

The spatial distribution of arsenic grades ranging from 1100 ppm to 2300 ppm (realization 2). 

Figure. S104 a) The spatial distribution of arsenic grades ranging from 500 ppm to 1100 ppm, b) 

The spatial distribution of arsenic grades ranging from 1100 ppm to 2300 ppm (realization 3). 
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Figure. S105 a) The spatial distribution of arsenic grades ranging from 500 ppm to 1100 ppm, b) 

The spatial distribution of arsenic grades ranging from 1100 ppm to 2300 ppm (realization 4). 

Figure. S106 a) The spatial distribution of arsenic grades ranging from 500 ppm to 1100 ppm, b) 

The spatial distribution of arsenic grades ranging from 1100 ppm to 2300 ppm (realization 5). 
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Figure. S107 a) The spatial distribution of arsenic grades ranging from 500 ppm to 1100 ppm, b) 

The spatial distribution of arsenic grades ranging from 1100 ppm to 2300 ppm (realization 6). 

Figure. S108 a) The spatial distribution of arsenic grades ranging from 500 ppm to 1100 ppm, b) 

The spatial distribution of arsenic grades ranging from 1100 ppm to 2300 ppm (realization 7). 



250 

 

Figure. S109 a) The spatial distribution of arsenic grades ranging from 500 ppm to 1100 ppm, b) 

The spatial distribution of arsenic grades ranging from 1100 ppm to 2300 ppm (realization 8). 

Figure. S110 a) The spatial distribution of arsenic grades ranging from 500 ppm to 1100 ppm, b) 

The spatial distribution of arsenic grades ranging from 1100 ppm to 2300 ppm (realization 9). 
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Figure. S111 a) The spatial distribution of arsenic grades ranging from 500 ppm to 1100 ppm, b) 

The spatial distribution of arsenic grades ranging from 1100 ppm to 2300 ppm (realization 10). 

Figure. S112 Realization 2 of the block model of the arsenic grades along the footwall of the gold 

deposit. 
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Figure. S113 Realization 3 of the block model of the arsenic grades along the footwall of the gold 

deposit. 

Figure. S114 Realization 4 of the block model of the arsenic grades along the footwall of the gold 

deposit. 
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Figure. S115 Realization 5 of the block model of the arsenic grades along the footwall of the gold 

deposit. 

Figure. S116 Realization 6 of the block model of the arsenic grades along the footwall of the gold 

deposit. 
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Figure. S117 Realization 7 of the block model of the arsenic grades along the footwall of the gold 

deposit. 

Figure. S118 Realization 8 of the block model of the arsenic grades along the footwall of the gold 

deposit. 
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Figure. S119 Realization 9 of the block model of the arsenic grades along the footwall of the gold 

deposit. 

Figure. S120 Realization 10 of the block model of the arsenic grades along the footwall of the 

gold deposit. 
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Figure. S121 Spatial relationship between the gold deposit and the arsenic grades in the 

realization 5. 

Figure. S122 Spatial relationship between the gold deposit and the arsenic grades in the 

realization 9. 
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Figure. S123 The underground stopes assessed through the realization 2 of the spatial model. 
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Figure. S124 The underground stopes assessed through the realization 3 of the spatial model. 
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Figure. S125 The underground stopes assessed through the realization 4 of the spatial model.  
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Figure. S126 The underground stopes assessed through the realization 5 of the spatial model. 
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Figure. S127 The underground stopes assessed through the realization 6 of the spatial model. 
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Figure. S128 The underground stopes assessed through the realization 7 of the spatial model. 
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Figure. S129 The underground stopes assessed through the realization 8 of the spatial model. 
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Figure. S130 The underground stopes assessed through the realization 9 of the spatial model. 
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Figure. S131 The underground stopes assessed through the realization 10 of the spatial model. 
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Figure. S132 The spatial intersections of the 3D spatial model (realization 2) and the chemical 

analyses performed on drill core samples. 

Figure. S133 The spatial intersections of the 3D spatial model (realization 3) and the chemical 

analyses performed on drill core samples. 
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Figure. S134 The spatial intersections of the 3D spatial model (realization 4) and the chemical 

analyses performed on drill core samples. 

Figure. S135 The spatial intersections of the 3D spatial model (realization 5) and the chemical 

analyses performed on drill core samples. 
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Figure. S136 The spatial intersections of the 3D spatial model (realization 6) and the chemical 

analyses performed on drill core samples. 

Figure. S137 The spatial intersections of the 3D spatial model (realization 7) and the chemical 

analyses performed on drill core samples.  
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Figure. S138 The spatial intersections of the 3D spatial model (realization 8) and the chemical 

analyses performed on drill core samples. 

Figure. S139 The spatial intersections of the 3D spatial model (realization 9) and the chemical 

analyses performed on drill core samples.  
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Figure. S140 The spatial intersections of the 3D spatial model (realization 10) and the chemical 

analyses performed on drill core samples. 
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APPENDIX B   INCORPORATING KINETIC MODELING IN THE 

DEVELOPMENT STAGES OF HARD ROCK MINE PROJECTS  
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Figure S1. The geological framework of Akasaba West project (https://www.agnicoeagle.com) 
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Figure S2. The experimental setup of weathering cell test. 

Figure S3. Comparison of calculated and measured electrical conductivity. 
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1. Model parameters 
In order to perform 1D reactive transport in PHREEQC, the weathering cell height was discretized 

into 30 transport cells evenly distributed along a total height of 1 cm. A time step of 163296s with 

100 shifts was chosen to achieve a total simulation time of 189 days that corresponds to the kinetic 

test duration. Amounts of reacting minerals in PHREEQC should be specified in moles (Parkhurst 

and Appelo, 2013). Eary and Williamson (2006) set forth a normalization basis for water-rock 

systems to compute initial molar amounts available for reaction with a specified mass of 

water (m𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚):    

m𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �
mole
kg H2O

� =  Fmineral × �1−n
n
� × �ρsolids

ρH2O
� × �1000 g H2O

1 kg H2O
� × � 1

Mmineral
�     (1) 

where Fmineral is the fractional content of the mineral in bulk sample, n is the fluid-filled porosity 

of the bulk sample, ρsolids is the bulk solid density, ρH2O is water density, and Mmineral is the molar 

mass of the mineral. The above-mentioned formula considers a water-rock system that contains 1 

kg of water, as it is the default water mass used in PHREEQC. In the present study, the default 

water mass was changed to 50 g to match 50 ml of deionized water used as flushing solution 

throughout the kinetic test (ρH2O = 1 g/cm3). Accordingly, the available molar amounts for 

reaction with 50 g H2O were calculated and used within the KINETIC keyword block of 

PHREEQC.  

Water-rock interaction involves the surface area of solids available per volume of water (SA/V) as 

a key parameter. It is computed as a function of the initial molar amounts (m𝑚𝑚𝑖𝑖𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚) and the 

estimated geometric specific surface area (SGeo) or BET measurement of specific surface area (Ss) 

(Embile Jr et al., 2019): 

Surface area � m2

dm3� = SGeo × Mmineral × mmineral × Xmineral                  (2) 

Surface area � m2

dm3� = Ss × Mmineral × mmineral × Xmineral                    (3) 

where Xmineral is the volumetric fraction of the mineral. SGeo was estimated using the procedure 

described by Chapuis and Aubertin (2003). Samples were loosely placed in a Buchner funnel at an 

estimated porosity of 0.6. The average volumetric flow rate in the four weathering cells was set at 

2х10-6 L/s, resulting in a residence time of 7h. The residence time was slightly increased in the 
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simulation from 4h±0.5 to 7h, as a portion of the recovered filtrates was retained even after 

applying suction. The effect of residence time on the kinetic reactions will be covered later. 

2. Equilibrium reactions  
PHREEQC was designed to cope with a large range of geochemical calculations in saturated 

medium (Parkhurst and Appelo, 2013). The conceptual model was intended to circumvent 

PHREEQC limitations with respect to unsaturated systems. Setting an unlimited supply of O2 and 

CO2 in mobile and immobile cells is suitable for kinetically controlled unsaturated systems. This 

alternative was previously employed by Embile Jr et al. (2019) to simulate column tests; also 

Nicholson et al. (2003)Nicholson et al. (2003)Nicholson et al. (2003)Nicholson et al. 

(2003)Nicholson et al. (2003)Nicholson et al. (2003)Nicholson, et al. [5] utilized an open system 

approach to assess the environmental footprint of a rock stockpile. Thus, equilibrium reactions with 

the atmosphere (log [p(O2)] = −0.7 and log [p(CO2)] = −3.5) were embedded at ambient 

temperature. The Minteq.v4 database supplied with PHREEQC package was used to carry out mass 

balance and mass-action calculations.  

3. Abiotic kinetic rates 
The general rate expression (Rk) for kinetic modeling in PHREEQC is as follows: 

             Rk = rk
A0
V
� m
m0
�
n
                                            (4) 

where rk is the specific rate (mol/m2/s), A0 is the initial surface area of the solid (m2), V is the 

volume of the solution (kgw), m0 is the initial moles of solid, m is the moles of solid after a certain 

time of kinetic reaction, n is the shape factor equal to 0.67 for uniformly dissolving cubes and 

spheres, and � m
m0
�
n
 considers the surface area shrinkage throughout the mineral dissolution 

(Parkhurst and Appelo, 2013). As the Akasaba West project is still in the development stage, no 

site-specific rates were available. Therefore, monomineral specific rate expressions from literature 

were used to simulate the weathering cells. Opting for specific rates from literature aimed to: i) 

assess their reliability for a mixture of minerals and their relevance for the upstream geochemical 

assessment, and ii) provide prompt scoping surveys during data-limited situations.  

Chalcopyrite was present as thin disseminations and could result in Cu lixiviation. However, 

throughout previous kinetic testing Cu concentrations remained below or slightly above the 

detection limit (Vermette, 2018). There are no published chalcopyrite rate laws that describe its 
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oxidation by O2 alone. However, Kimball et al. (2010) defined a nonoxidative dissolution rate law 

in the presence and absence of O2: 

         rk = 101.88e
−48100
RT [H+]0.8[Fe3+]0.42                                  (5) 

where R is the gas constant (J/mol/K) and T is temperature (K). This rate law is applicable for pH 

values less than 3. As Cu concentrations from kinetic tests were expected to remain below or 

slightly above the detection limit, the chalcopyrite rate law was not included in the simulation. 

Despite the shortcomings related to the nonoxidative dissolution rate law of chalcopyrite, it was 

used only during the parametric analysis to approach Cu lixiviation scenarios. 

The generic form of the specific rate is as follows: 

      rk =

⎝

⎜
⎛

kH+e
−EH+
R �1T−

1
298.15�[H+]n1(1 − Ωp1)q1 +

ke
−E
R �

1
T−

1
298.15�(1 − Ωp2)q2 +

kOH−e
−EOH−

R �1T−
1

298.15�[H+]n2(1 − Ωp3)q3 +⎠

⎟
⎞

                       (6) 

where kH+, kOH−, and k are rate constants for acidic, alkaline, and neutral conditions, respectively, 

EH+, E, and EOH− are the activation energies in acidic, alkaline, and neutral conditions, 

respectively, ni denotes reaction order (n2 is negative and could be positive when alkaline 

mechanism equation is expressed in function of OH-), Ω is the mineral saturation index, and pi and 

qi are dimensionless empirical parameters to take into account chemical affinity that slows down 

the dissolution rate at near-equilibrium conditions. Palandri and Kharaka (2004) compiled a large 

set of rate expressions by fitting a wide range of experimental data to the generic equation. Their 

experimental database covers oxic and anoxic conditions, as O2 could have a slight indirect effect 

on dissolution rates when iron is present in gangue minerals. 
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APPENDIX C   INTEGRATING 3D GEOLOGICAL MODELING AND 

KINETIC MODELING TO ALLEVIATE ACID MINE DRAINAGE 

THROUGH UPSTREAM MINE WASTE CLASSIFICATION  
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Table S1. The model flow parameters based on VS2DRTI database. 
 

D90 (mm): 90% of particles are finer than the specified diameter. 

Ɵs: the saturated volumetric water content. 

Ɵr: the residual volumetric water content. 

αVG and nVG: Van Genuchten (1980) parameters.  
ksat: the saturated hydraulic conductivity. 

Table S2. Reaction rate parameters of albite and calcite used in PHREEQC code (E in kJ/mol). 

Mineral 
Acidic mechanism Neutral mechanism Alkaline mechanism 

log k E n log k E log k E n 

Calcite* -0.3 14.4 1 -5.81 23.5 -3.48 35.4 1a 

Albite** -10.07 58 0.34 -19.29 57 -9.85 56 0.32b 
*Palandri and Kharaka (2004), **Marty et al. (2015). 
a Reaction order with respect to CO2 partial pressure, it is a carbonate mechanism. 
 b Reaction order with respect to OH- activity. 

Table S3. Variogram parameters produced for each mineral dataset along various direction 
settings. 

The mineral variogram Variogram direction Nugget 
effect Sill Range 

(m) 

Albite 

Omni-directional 13 20 30 

0° N, 90° 13 21 21 

90° N, 90° 14 20 19 

270° N, 70° E 12 19 30 

Calcite 

Omni-directional 0.19 0.24 29 

0° N, 90° 0.18 0.25 25 

90° N, 90° 0.17 0.24 20 

270° N, 70° E 0.17 0.23 31 

Pyrite 

Omni-directional 5.8 7.4 24 

0° N, 90° 5.5 7.5 20 

90° N, 90° 5.5 7.55 18 

270° N, 70° E 5.75 7.45 32 

D90 (mm) Ɵs Ɵr αVG (m-1) nVG ksat (m/s) 

0.2 0.37 0.07 1.04 6.9 2.4х10-5 
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Figure S1. The conceptual model of the reactive transport simulation carried out using 

PHREEQC and VS2DRTI for geochemical simulation that are not O2 diffusion-limited. 
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Figure S2. The Monte Carlo simulation outcome depicted for albite and calcite classes. a. The 

simulated and measured datasets of the class 3 of albite. b. The simulated and measured datasets 

of the class 4 of albite. c. The simulated and measured datasets of the class 0.1 of calcite 

 

 

 

 

a b 

c 
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Figure S3. Measured points projected on the 3D numerical model of the pyrite. Yellow points: 

measured weight proportions of pyrite higher than 4.5%, red casing: the internal core of the pyrite 

numerical model including simulated values higher than 4.5%. 

Figure S4. Measured points projected on the 3D numerical model of the albite. Purple points: 

measured weight proportions of albite higher than 10%, red casing: the internal core of the albite 

numerical model including simulated values higher than 10%. 
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Figure S5. Measured points projected on the 3D numerical model of the calcite. Purple points: 

measured weight proportions of calcite higher than 1.5%, red casing: the internal core of the 

albite numerical model including simulated values higher than 1%. 

Figure S6. Measured and simulated pH values of a kinetic test containing 8.1 wt.%, 1.9 wt.% and 

31.9 wt.% of pyrite, calcite and albite respectively 
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Figure S7. Measured and simulated pH values of a kinetic test containing 4.5 wt.% pyrite, 0.4 
wt.% calcite and 18 wt.% albite.  

Figure S8. Drill cores described throughout the geological logging.  
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Description of the steps of the integrated modeling approach: 

Step 1 Define the reactive minerals (the scope): 

This step defines the target minerals that could be considered to perform the dynamic classification 

of the host rock. For instance, the present study considers pyrite, albite and calcite because they are 

the main minerals that will control the extent of the oxidation-neutralization process.  

Step 2 Data compilation: 

During this step, the user should compile the available quantitative and qualitative datasets for each 

mineral. For illustration purposes, the subsequent steps refer to a reactive mineral named X. The 

user should collect all available measurements of the X mineral weight proportions that were 

measured using an analytical method. Subsequently, the qualitative dataset of the mineral X should 

be collected from the geological logging. The geological logging should report the interval of 

occurrences (length of occurrences) of the mineral X in all drill cores as well as a qualitative 

description of each interval of occurrence. An example of the qualitative description of the intervals 

of occurrence could be as follows: 

• 0.1 indicates thin crystals of the mineral X (less than 1 mm) and the number of the crystals 

is less than 10; 

• 0.5 indicates thin crystals of the mineral X (less than 1 mm) and the number of the crystals 

is less than 30; 

• 1 indicates medium crystals of the mineral X (between 1 and 2 mm) and the number of the 

crystals is less than 10; 

• 2 indicates crystals larger than 2 mm and the number of the crystals is more than 10; 

Note: All the geologists involved in geological logging should use the same qualitative description 

numbers (which is frequently the case in the most mining companies). 

Step 3 Data classification: 

The user should classify the quantitative data (measured mineral weight proportions of the mineral 

X) according to their corresponding class. In other words, this step consists of identifying the 

analyzed sample size for each qualitative class. For instance, in the present study 4187 intervals of 

occurrence of pyrite were attributed to the 0.1 class. From these intervals, 62 intervals were 
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analyzed for their pyrite content (table 1 in the main file). Therefore, for each class the analyzed 

sample size should be identified. 

Is the available quantitative dataset sufficient to preform 3D numerical modeling? 

Frequently, the measured mineral weight proportions of the mineral X are insufficient to undertake 

the 3D numerical modeling. Please notice from the example in the previous step that only 62 

intervals were analyzed for their pyrite content while the intervals population consists of 4187 

interval assigned to the 0.1 class. Therefore, with the available quantitative dataset the spatial 

continuity analysis needed for 3D numerical modeling could not be performed. 

Step 4 Monte Carlo simulation: 

This step consists of generating sufficient dataset to enable the spatial continuity analysis. The 

generated data of X mineral weight proportions should have the same variability as the measured 

data of X mineral weight proportions (i.e. ensure homoscedasticity). According to the data 

compilation step the user should have the following variables before carrying out Monte Carlo 

simulation: 

• Intervals (denoted here as variable B): a continuous variable with complete sample size 

because all the intervals were measured (as pointed out earlier, an interval is the length of 

an occurrence of the mineral X within a given location of a drill core). Choose meter as unit 

of the intervals variable; 

• X mineral weight proportions (denoted here as variable A): is a continuous variable 

with incomplete sample size; not all the intervals were selected to undergo analytical 

quantification of the X mineral weight proportions.  

• The classes of the mineral X: is a discrete variable with complete sample size; all intervals 

were qualitatively classified based upon the classification agreement set by the geologists 

involved in the geological logging; 

The objective of the Monte Carlo simulation is to estimate the probability density function (PDF) 

of the variable A based upon the well-defined PDF of the variable B. First, the values of the variable 

A should be normalized by their respective values of the variable B. For instance, if the measured 

mineral weight proportion of the mineral X is 20 % wt occurring in an interval of 0.1 m, the 



287 

 

corresponding normalized value is 20% wt divided by 0.1 m which equals to  200 (%wt/m). This 

normalization should be performed for each value of the variable A. 

Second, the user should plot on the logarithmic scale the values of the normalized variable A/B 

(named the auxiliary variable) against the interval values used in normalization. A/B in the y-axis 

and the B variable in the x-axis. Once performed, the user will notice that a power law (y=a.xb) 

linking the auxiliary variable and the B variable is set. A power law in the logarithmic scale exhibits 

a significant correlation coefficient (please make sure that both axis are in the logarithmic scale 

otherwise the correlation could not be exhibited).   

At this stage, the user should perform an iterative Monte Carlo simulation that generates a large 

scatter (high number of data points), which has the same trend as the initial scatter. Therefore, the 

parameters of the generated power law (y=c.xd) should be as close as possible to the parameters of 

the initial power law (y=a.xb) (i.e. a≈c and b≈d). To perform this Monte Carlo simulation, GoldSim 

software could be used as it provides the possibility to run a correlation-based Monte Carlo 

simulation. Three stochastic elements are set in GoldSim as indicated in the figure below (Figure 

S9): 

Figure S9. The stochastic elements used in GoldSim to perform a correlation-based Monte Carlo 

simulation. 
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The PDF of the intervals variable is well-defined because all the intervals were measured. In the 

present study, the intervals PDF is log-normal, the mean and the standard deviation used as inputs 

in the stochastic element of the intervals PDF. The correlation was set as a normal PDF with the 

mean equals to the correlation coefficient computed from the initial power law (y=a.xb) and the 

standard deviation was at 0.5. In a previous study (Toubri et al 2021), several values of the 

correlation standard deviation were assessed, the results indicated that 0.5 yielded the best outcome 

regarding the extent of the ergodic fluctuations (ergodic fluctuations are simply the differences 

among different realizations generated using the same Monte Carlo simulation). The mean and the 

standard deviation of the PDF of the normalized variable (the auxiliary variable) could be set at 

any values because they will be iteratively updated until obtaining a generated power law (y=c.xd) 

as close as possible to the initial power law (y=a.xb) (i.e. a≈c and b≈d). For instance, the user 

launches the first iteration, he compares the generated scatter power law to the initial scatter power 

law, if the two power laws are different, the user should modify the parameters of the normalized 

variable PDF and launch the Monte Carlo simulation again. The same operation should be 

undertaken until obtaining a generated power law as close as possible to the initial power law.  

Once the iterative Monte Carlo is achieved, the generated scatter could be used to obtain a large 

dataset of the variable A through canceling the normalization by a simple multiplication of 

normalized values by their respective interval.  

Step 5 Hypothesis testing: 

In Toubri et al (2021), it was demonstrated using the hypothesis testing that the generated values 

by Monte Carlo simulation and the available measurements have the same variability features. The 

user could perform hypothesis testing to ensure that he generated homoscedastic populations.  

Step 6 Spatial continuity analysis: 

The iterative Monte Carlo simulation enabled the generation of a large dataset of the X weight 

mineral proportions. The dataset generated by simulation should undergo the spatial continuity 

analysis to assess the spatial anisotropy and to demonstrate that the spatial anisotropy of the 

generated dataset complies with the geological information regarding the plane with the highest 

spatial continuity that frequently corresponds to the major structural trend of the deposit.   
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SGeMS was used to compute the variogram parameters for the simulated X mineral weight 

proportions. As indicated in the figure below (Figure S10), SGeMS enables the calculation of 

omnidirectional and many other directional variograms.  

Figure S10. SGeMS and variogram calculations along various directions. 

The user should compute the variograms of many directions including the direction considered by 

the geologists as the major structural trend. The variogram of the highest range value should 

correspond to the direction of the major structural trend. This agreement should be demonstrated 

before 3D numerical modeling because it reflects that the generated dataset complies with the 

geological features. In this study and in Toubri et al (2021) this requirement was fulfilled since the 

first generated dataset and no other attempts were needed to abide by the aforementioned 

requirement. This highlighted the effectiveness of the iterative Monte Carlo simulation.  

Step 7 Three dimension numerical modeling: 

The variogram parameters obtained for the direction with the highest spatial continuity should be 

used as inputs in Radial Basis Functions (RBF) interpolant of Leapfrog Geo as indicated in the 

figure below (Figure S11): 
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Figure S11. Variogram parameters computed using SGeMS used as inputs in the RBF interpolant 

of Leapfrog Geo.  

Besides, the structural trends provided by the geologists during geological logging should be used 

as inputs in the RBF interpolant of Leapfrog Geo in the trend section as indicated in the figure below 

(Figure S12). Therefore, a 3D numerical model of the mineral X weight proportions could be 

generated. 
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Figure S12. Structural trend used as inputs in the RBF interpolant of Leapfrog Geo. 

Step 8 Benchmarking of the numerical modeling: 

This step consists of importing the measured mineral weight proportions of the mineral X in 

Leapfrog and highlighting the agreement between the measurements of the mineral weight 

proportion and the 3D numerical model as indicated in Figures S2-S4 and in Toubri et al (2021). 

Step 9 Block models: 

From the 3D numerical model, a block model could be created using Leapfrog through choosing 

the dimension of the voxel of the block model. Various dimensions could be selected until 

obtaining the relevant dimension of voxel that needs less computation time and displays sufficient 

spatial detail (Figure S13). 
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Figure S13. Specifying the dimensions of the voxel of the block model in Leapfrog Geo.  

Step 10 Repeat the process: 

The aforementioned steps should be performed for each reactive mineral that will be considered in 

the reactive transport modeling. 

Step 11 The plane of the overlapping: 

The user should choose a plane along which he would preform a dynamic classification based upon 

the pH. Once chosen, the user should overlap the 3D numerical models of the considered minerals 

along the aforementioned plane.  

Step 12 Reactive transport modeling: 

A reactive transport simulation previously calibrated and benchmarked could be used to simulate 

the pH that could be generated in the presence of given mineral proportions of the reactive minerals. 

For each voxel, a reactive transport simulation is performed assuming the same setting, only the 

mineral proportions that change based upon the 3D numerical model of each reactive mineral. 

Therefore, the established 3D numerical models are used as inputs for the reactive transport 

simulation. 
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