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RÉSUMÉ 

Ce projet se concentre sur le contrôle autonome de suivi de trajectoire des robots 
mobiles à roues, avec une emphase particulière sur les robots omnidirectionnels 
capables de se déplacer instantanément dans n'importe quelle direction sans 
réorientation. L'objectif principal du projet est le développement de stratégies de 
contrôle non linéaires basées sur les principes de contrôle prédictif. Ces stratégies 
sont conçues pour assurer des performances de suivi fiables pour les systèmes de 
robots mobiles présentant des non-linéarités et des contraintes opérationnelles. 

Le projet commence par développer la représentation cinématique du robot 
omnidirectionnel, qui sert de base à la conception ultérieure des commandes. 
Ensuite, deux approches de contrôle distinctes sont formulées pour la tâche de suivi 
de trajectoire des robots mobiles omnidirectionnels, en particulier dans des 
scénarios caractérisés par des non-linéarités et des contraintes opérationnelles. La 
première approche est une méthode prédictive optimale qui utilise des techniques de 
linéarisation non itératives pour gérer efficacement les non-linéarités du système. 
Elle intègre également les fonctions de Laguerre pour améliorer l'efficacité de calcul, 
réduisant ainsi le temps de calcul du contrôle. La deuxième approche exploite la 
nature non linéaire inhérente à la dynamique du robot et emploie des méthodes 
d'optimisation résilientes pour répondre à la complexité de calcul associée à cette 
méthode. L'analyse de stabilité est réalisée pour déterminer les conditions 
nécessaires pour assurer la stabilité nominale de système non linéaire 

Les deux méthodes de contrôle sont rigoureusement vérifiées dans un 
environnement de simulation. De plus, les performances de ces méthodes sont 
comparées à des méthodes de référence de la littérature existante, démontrant leur 
efficacité et leurs capacités. Pour valider davantage l’aspect pratique et la pertinence 
des stratégies de contrôle proposées, des expériences en temps réel sont menées. 
Ces expériences confirment le développement théorique et montrent l’efficacité des 
méthodes pour des missions et des applications réelles. 

 

Mots-clés: Robot mobile à roues, Robot mobile omnidirectionnel, Commande 
prédictive basée sur le modèle, Estimation stochastique, Fonctions de Laguerre, 
Propagation résiliente, Stabilité. 
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ABSTRACT 

This project focuses on the autonomous tracking control of wheeled mobile robots, 
with a specific emphasis on omnidirectional robots capable of instantaneous 
movement in any direction without reorientation. The project's primary focus is the 
development of nonlinear control strategies based on predictive control principles. 
These strategies are designed to deliver reliable tracking performance for mobile 
robot systems that exhibit nonlinearities and operational constraints. 

The project begins by developing the kinematic representation of the omnidirectional 
robot, which serves as the foundation for subsequent control design. Next, two 
distinct control approaches are formulated for the task of trajectory tracking for 
omnidirectional mobile robots, particularly in scenarios characterized by 
nonlinearities and operational constraints. The first method is an optimal predictive 
method utilizes non-iterative linearization techniques to effectively handle 
nonlinearities in the system. It also incorporates Laguerre functions to enhance 
computational efficiency, reducing the computational cost of control. The second 
approach leverages the inherent nonlinear nature of the robot's dynamics and 
employs resilient optimization methods to address the computational complexity 
associated with this approach. Stability analyses is conducted to determine the 
necessary conditions to achieve nominal stability for the nonlinear controller. 

Both control methods are rigorously verified in a simulated environment. Additionally, 
the performance of these methods is compared against benchmark methods from 
existing literature, demonstrating their effectiveness and capabilities. To further 
validate the practicality and suitability of the proposed control strategies, real-time 
experiments are conducted. These experiments confirm the theoretical development 
and demonstrate the effectiveness of the methods for real-world missions and 
applications. 

 

Keywords: Wheeled mobile robot, Omnidirectional mobile robot, Model predictive 
control, Stability, Stochastic estimation, Laguerre functions, Resilient propagation 

 



1 

1. INTRODUCTION 

1.1 Overview 

The past two decades have witnessed a huge evolution in the hardware and 

software technologies, which subsequently led to the presence of a wide range of 

automated machines in everyday activities, including mobile robots. With a quick 

look around, one can notice the increasing endorsement of mobile robots in different 

sectors of society, which nowadays are adopted for transportation, heavy-duty 

works, and repeatable tasks in warehouses and industries [1], for monitoring 

hazardous and contaminated environments [2], and for leading exploration missions 

in outer space [3], in underground mines [4], and even in the deep oceans [5]. Mobile 

robots have also entered the household environment as personal assistances [6] or 

for entertainment [7], they’ve joined rescue missions [8] and military operations [9] 

and became a powerful tool in educational systems [10]. 

The roles of mobile robots vary from one utilization to another, based on the needs 

of the field of application, and the type of solutions required. For instance, in the 

health sector, due to the recent COVID-19 pandemic, the closeness of a human has 

been considered dangerous for patients, hence, the urge to free some positions of 

the human operators increased [11]. Although the presence of the human staff 

remains mandatory, some basic operations, like patients monitoring, temperature 

measurements, and delivering products and documents can be performed with the 

assistance of well automated mobile robots. Another promising domain of application 

for mobile robots is in the mine industries. Underground mines are considered 

particularly unsafe environments, due to several sources of danger, including falling 

rocks, lack of light, confinement and the occurrence of toxic gases [12, 13]. In such 

an environment, mobile robots can be enrolled to perform a wide variety of tasks, 

including automatic inspections, exploration of unsafe areas, measurement of 

environmental conditions and participating in rescue missions [14]. By involving 

mobile robots in the mining operations, many dangers can be avoided when sending 

machines instead of humans in hazardous areas. These robots can also work 

alongside humans, which improve the efficiency and accuracy factors. Some mining 
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operations, such as transportation, have started the transition into automation [15]; 

however, a full automated mine is far from being complete.  

Presently, mobile robots are increasingly being trusted to execute tasks in well-

known constructed environments, on flat and compact floors, and they are widely 

commercialized [16]. Furthermore, with the advancements in sensor and camera 

technologies, mobile robots are now also used in unknown environments for 

exploration missions. However, their application in these unbuilt environments, such 

as agricultural fields and underground mines, is still constrained. In this kind of 

unknown terrains, roads conditions and environmental conditions are expected to be 

severe, and mobile robots require a higher degree of autonomy, adaptation and 

robustness, with good knowledge of their surroundings. One of the key operating 

conditions for mobile robots is trajectory tracking which aims to converge the robot to 

the desired trajectory which can be uploaded or generated using path-planning 

methods [17].  

1.2 Mobile robots 

Mobile robots are systems with moving platforms, remotely controlled, or free to 

move autonomously from one place to another in their predefined surrounding 

workspace without any human intervention. With a large variety of applications 

where mobile robots can be used, different types of robots have been developed, to 

cover this range of usability, and therefore, today’s robots can fly, jump, run, walk, 

skid, swim and roll [18]. Based on their locomotion, mobile robots can be classified 

into three major categories: unmanned aerial vehicles, autonomous underwater 

vehicles and land-based robots [19]. 

Land-based robots, also known as Unmanned Ground Vehicles (UGVs), are the 

most common among the robotic society, which can be justified by their design’s 

simplicity and the exposure to greater knowledge [20]. UGVs can be further divided, 

based on the locomotion’s mechanism, into few sub-categories where the best-

known ones are as follows:  
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• Wheeled mobile robots (WMRs) 

• Legged (or walking) mobile robots 

• Tracked mobile robots (slip/skid locomotion) 

• Hybrid ground’s robots 

The majority of these robots are inspired from their biological analogous organisms, 

due to the success of these biological systems in moving smoothly through the 

harshest non-built environments. However, copying these systems can be extremely 

complicated for several reasons including the mechanical complexity, the high 

degree of balancing needed and the high cost.  

The wheel’s invention is considered one of the most important developments in 

human history, that allowed more efficient transportation and for longer distances. 

The wheel also had deep impact on the development of technologies including 

mobile robots. WMRs are commonly used in a wide range of applications, due to 

their advantages over other types of robots which includes the simpler and more 

cost-effective design, the ability to move faster and more efficiently on smooth 

surfaces and the higher carrying capacity [18].  

Figure 1 
Non-holonomic (on the left) and holonomic (on the right) locomotion  
Source: [19] 
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Depending on the type of wheels used, their number and their positions, we can 

distinguish many types of WMRs where most of them can be placed into two 

categories: Holonomic and non-holonomic mobile robots where the main difference 

between them lies in their ability to move and turn in different directions. Holonomic 

systems can move in any direction instantaneously, whereas the instant movement 

of non-holonomic systems is restricted as illustrated in Figure 1.  

1.2.1 Non-Holonomic WMRs 
This type of WMRs has more degrees of freedom than control inputs which means 

they don’t have full control of all their degrees of freedom and therefore they must 

turn in order to change direction, and that limits their mobility. This type of robots 

uses conventional wheel types (Figure 2). There exist many types of non-holonomic 

WMRs, we mention two of them as follows: 

Figure 2  
Conventional wheels  
Source : [19] 

• Differential wheeled robots 

These are non-holonomic robots that have two separately driven wheels and at least 

one castor wheel for balance purpose. The change of direction is done by changing 

the rate of rotation of each driven wheel, and thus, there is no need of any steering 

motion (Figure 3). 
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Figure 3 
Differential wheeled robot: Pioneer 3-DX
Source: [21]

• Car-like robots

These robots have two fixed wheels placed on the same axis and two steerable 

wheels on another axis. The movement of this type of robots is determined by the 

speed of the fixed wheels and the orientation of the steering wheels (Figure 4). 

Non-holonomic WMRs are often characterized by their simple mechanism along with 

the generally low price, however, their movement’s constraint prevents them from 

being used in certain applications. 

Figure 4 
Car-like robot: MuSHR
Source: [22]
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1.2.2 Holonomic WMRs 
A robot is said to have holonomic movement when it’s capable of moving in any 

direction without reorientation. This type of movement is achieved using special 

wheel types known as omnidirectional wheels which include Omni-wheels, Mecanum 

wheels and Ball wheels (Figure 5). The Omni-wheels have rollers attached 

tangentially around the girth of the wheel, which give the wheel three degrees of 

freedom: around the wheel axle, around the roller axle and around the contact point 

[19]. These wheels are mostly configured in three wheels format at 120 degrees from 

one another or using four wheels where adjacent wheels are perpendicular. 

Mecanum wheels have similar design to omni-wheels except that the rollers are 

placed at 45 degrees of the main wheel which allows the use of larger roller axis and 

hence increase the payload capacity.  

Figure 5 
Omnidirectional wheels 
Source: [19] 

The Holonomic robots have the capacity to perform complex path following which 

gives it significant potential in different kinds of activities. On the other hand, the 

rollers mechanism adds mechanical complexity, and increases the skidding effects, 



7 

hence the need for advanced control methods that can achieve autonomy, stability, 

and robustness.  

1.3 Control methods 

As stated in the above sections, WMRs are intended for applications in different 

kinds of environments, which most likely to have severe operation conditions and to 

pose constraints on the robots’ movement. Hence, a sufficient degree of autonomy is 

required to allow the WMRs to operate in such environments, which can be done by 

using advanced control methods. The nonlinearities in the WMRs systems and the 

complex operation conditions have motivated researchers to develop and apply a 

wide range of control architectures. 

1.3.1  Trajectory tracking  
Trajectory tracking is one of the most addressed problems in controller design which 

aims to bring the robot closer to the desired trajectory. Tracking accuracy and 

constraints handling are two main criteria in developing the control algorithms along 

with the ability to deal with nonlinear and multivariable characteristics of the systems 

and the applicability in real-time applications. In recent years, many control 

strategies have been proposed to solve the trajectory-tracking problem of the WMR 

[23, 24]. In [25], a PI controller tuned by an adaptive fuzzy logic was used as a high-

level controller for an WMR. The fuzzy-PI, which corrects the kinematic errors, was 

paired with a linear quadratic regulator (LQR) as a low-level control of the velocities 

and accelerations. This combination showed significant improvement over a PI 

control alone; however, the use of an LQR for low-level control caused a deviation 

between the desired and the actual paths which greatly increased in the real-time 

application and led to unsatisfactory results. A control scheme taking into 

consideration the kinematic and dynamic uncertainties of the WMR was proposed in 

[26]. A sliding-mode-based observer was used to estimate these uncertainties, then 

a feedback linearization controller was used to handle such uncertainties. The 

controller showed a good trajectory-tracking performance. Nonetheless, since these 

methods cannot handle constraints directly, saturation was used to limit the control 

signals, which is not acceptable in practice. Another controller for the WMR was 
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presented in [27], which uses a linearizing adaptative algorithm for the kinematic 

control. This causes some singularities in the control signals. Such singularities are 

dealt with by switching to a sliding mode controller around them. Indeed, the 

resulting approach helps to reduce the control effort and eliminate the singularities; 

however, the risk of chattering appears which may harm the actuators. In [28], a 

bioinspired backstepping controller was proposed. It performs the tracking task while 

reducing the large velocity jumps that occur in the traditional backstepping control. A 

super-twisting sliding mode controller was also developed in [29] to overcome the 

chattering effect encountered in the traditional method. Both sliding mode and 

backstepping are efficient when controlling nonlinear systems. Nonetheless, they are 

limited to unconstrained problems as they cannot handle constraints explicitly. A 

combination of such methods with the barrier functions was proposed to deal with 

constrained problems [30, 31]. However, this often leads to an undesired design 

complication especially in the presence of complex nonlinear constraints. Model-free 

control schemes were used in [32, 33]. Using a visual serving strategy in [33] 

provides a unified algorithm for tracking and regulation. However, these model-free 

methods ignore useful information from the system model, and they are less 

adequate compared to systematic methods. 

To overcome the above-mentioned problems, one can consider the model-based 

predictive control (MPC). It is one of the advanced techniques that now has a huge 

impact on the development of control systems and on research in feedback control 

areas and has achieved remarkable success in the practical field [34, 35]. This 

success of the MPC is attributed to many reasons. First, due to the finite control 

horizon, nonlinear systems dynamics, and process inputs, state and output constraints 

can be handled directly by the MPC algorithms. Moreover, the prediction aspect of this 

method over a future time horizon makes it possible to anticipate and remove the 

effect of disturbances, which leads to better tracking of the future trajectory. Finally, 

MPC principles and algorithms are relatively easy to understand and to extend to 

multi-input multi-output systems [36, 37]. The general idea of MPC is to solve an 

online open-loop optimization problem at each sampling time, and to find a trajectory 
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of future manipulated variables that optimize the future behavior of the system outputs 

within a limited time window. Traditionally, MPC was only applied to sufficiently slow 

systems due to the high computational cost required to perform the online 

optimization, but thanks to increased hardware efficiency, MPC is now applicable to 

systems with faster dynamics. 

1.3.2  Linearization-based MPC 
Since most systems are inherently nonlinear, linear MPC algorithm cannot be applied 

directly. Therefore, linearization mechanisms are needed to approximate the nonlinear 

behavior. In [38], the nonlinear system was modeled in the Weiner model structure, 

which divides the system into two parts, a linear time invariant system followed by a 

static nonlinear element. Then, linear MPC was used for the linear part and polynomial 

representation for the nonlinear part; however, for the Weiner model to properly 

describe the nonlinear aspects of the system, prior knowledge of these nonlinearities 

should be available, which is not the case for most systems, and a simple polynomial 

representation does not give an accurate description of these nonlinearities. Similarly, 

in [39], a NARMA-Volterra model was selected to represent the brain and used to 

predict neural activity. In addition, Laguerre functions were introduced to reduce the 

number of estimation parameters in the Volterra model, and then linear MPC was 

applied to solve the optimization problem. Nonetheless, Volterra models exhibit high 

level of complexity, which makes it impractical in modeling strong nonlinearities, and in 

order to reduce it, prior knowledge of the nonlinear aspect is required. Another popular 

way to deal with nonlinearities is to linearize the system at each time instant, along the 

desired trajectory using the Lyapunov method, and to use this linear approximation to 

compute the predicted future trajectory and then apply the well-known linear MPC [40]; 

however, when using an approximation at the current time instant to predict the whole 

future trajectory, the error of the linearization will accumulate, which leads to a poor 

prediction process. In [41], a duality-based control algorithm has been developed to 

control a two-wheeled differential robot. The approach uses the duality between 

optimal control and stochastic filtering to approximate the manipulated variables, and 

to linearize the nonlinear systems. The linearization and prediction processes were 

based on the duality without dependence on the future control signals. The algorithm 
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led to better approximation of the nonlinear plants compared to other linearization-

based methods; however, the algorithm consists of two passes, forward for 

linearization and prediction, and backward for smoothing and control signals 

approximation, which double the computation time. 

Although linear MPC does not usually require a high computational capacity, some 

multi-input multi outputs systems may have a large number of optimization variables, 

especially if a long control horizon is needed. This may increase the computational 

demand. One solution for this issue is to use Laguerre functions to parametrize the 

control variables. This allows the realization of a longer control horizon with fewer 

optimization parameters, which consequently reduces the computational time [42, 

43]. In [44], Laguerre functions were used to parametrize linear MPC. The resulting 

algorithms were compared to other approaches and showed significant improvement 

regarding the computational cost and the number of optimization variables; however, 

only simulation results were given without real-time implementation.  

In [45], the effect of the parametrization using Laguerre functions on the feasibility 

and performance of the MPC was analyzed, and it showed great improvement on the 

feasibility while maintaining a good performance; however, only dual mode MPC, 

which uses an infinite horizon for prediction, was considered. Recently in [46], an 

MPC controller parametrized by Laguerre functions was used to control a fast-

switching electronic DC-DC converter allowing the use of a significantly short 

sampling time. Laguerre functions were first used with MPC in [47], which later has 

been expanded in [48] where a comprehensive study on the use of Laguerre 

functions with MPC is given, and which all the above-mentioned studies refer to; 

however, only linear systems that are supposed to remain constant during the entire 

prediction process are considered. 

1.3.3  NMPC 
MPC can explicitly handle nonlinearities, and since most systems are inherently 

nonlinear, many nonlinear model predictive control (NMPC) algorithms have been 

developed using iterative solutions to solve the optimization problem [49]. In [50], a 
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basic NMPC algorithm that uses the gradient descent method was applied to solve an 

WMR trajectory tracking with obstacle avoidance. The algorithm gave effective results 

in both simulation and real-time experiments; however, in the experiments, due to the 

high computational load, the movement direction and speed were fixed and only the 

orientation was controlled by NMPC. Using nonlinear systems directly in the NMPC 

algorithm often leads to undesired complexity and high computational demand. 

Therefore, studies have been conducted to overcome these problems [51-53]. 

Selection of NMPC parameters such as prediction and control horizons correctly 

could be a key factor to minimizing the computational burden [54]. In [55], the length 

of the prediction horizon was determined at each control step separately using a 

multilayer neural network based on the error magnitude. Moreover, hardware 

equipment was chosen effectively to optimize the speed of the performing actuators 

and increase the computational capability. This combination resulted in 40% faster 

computation compared to the conventional NMPC. Unfortunately, these adaptations 

are problem specific and cannot be applied to all systems. 

The optimization algorithm is the most addressed component of NMPC to improve 

computational efficiency. To this end, numerous approaches were developed to deal 

with the Nonlinear Optimization Problem (NOP). In [56] and [57], the continuation 

method was combined with the Generalized Minimal Residual method (GMRES) to 

solve the NOP. The former method transforms the nonlinear problem to a linear one 

which is then solved by the latter one. This approach requires that the system and 

the objective function to have specific characteristics, hence it is not suitable for all 

problems. In addition, when dealing with complex systems and performance indices, 

programing this method is very challenging. Neural optimizations are commonly 

used when solving the NOP [58, 59]. In [58], a one-layer projection neural network 

was presented for the quadratic optimization. A faster convergence was achieved 

while maintaining computational efficiency. In [60] Neural-dynamic optimization was 

considered where the MPC was iteratively transformed to a quadratic programing 

problem, which is solved using primal-dual neural network. The proposed algorithm 

was applied to solve the trajectory tracking of a mobile robot and significantly 
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reduced the computation complexity. However, neural-based methods require a 

substantial amount of data for training which might be unavailable. Their 

generalization to different problems may also be difficult without retraining. Another 

type of optimization algorithm is the metaheuristic strategies. They are general-

purpose techniques employed successfully in a vast range of NOP. The suitability of 

these methods to the NMPC was studied in [61] where three of them, the particle 

swarm optimization, the ant colony optimization, and the gravitational search 

algorithm, were compared. Results showed a good tracking performance with 

sufficiently low computational burden. However, these methods only provide an 

approximate solution, therefore, neither convergence nor optimality can be 

guaranteed. 

Conventional exact methods remain the most reliable when it comes to guaranteeing 

convergence and optimality, which led to the development of a wide variety of these 

approaches, including Interior Point algorithm (IP) [62, 63], Active-Set algorithm (AS) 

[64, 65], sequential programing (SQ) and many others. Despite the great 

computational advantages achieved by these methods, their application to fast 

dynamic systems such as WMR is still restricted to specific cases, such as linear 

optimization and problems with limited number of optimization variables [66]. A 

gradient-based method was introduced in [67] to optimize the neural networks’ 

parameters. This approach is called resilient propagation (RPROP), and it aims to 

achieve faster convergence by using only the sign of the partial derivative of the 

error function, and replacing its value with an adaptive step size which evolves 

during the optimization process. It is widely used to optimize neural networks, 

whereas its application outside of this domain remains limited [68, 69]. In [70], NMPC 

using the classical RPROP algorithm was presented for trajectory tracking of a 

quadrotor. Results showed important reduction in computational demand while 

maintaining tracking accuracy. However, the original RPROP does not ensure 

convergence as shown in [71, 72]. In [71], A Robust Convergent variant of RPROP 

(ARCPROP) was presented which ensures convergence. In addition to RPROP 

mechanism, the new variant considers the overall error function and backtracks 
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along all dimensions if the previous step did not achieve sufficient reduction. To the 

best of our knowledge, none of the existing approaches considered constrained 

NMPC using RPROP. 

Overall, the control of WMRs remains an ongoing challenge within the research 

community. New methods are emerging daily, each with their advantages and 

disadvantages, to achieve full autonomy of WMR. 

1.4 Motivation 

Numerous control methodologies have been proposed with the aim of achieving 

effective autonomous control for WMR. The primary emphasis in many of these 

approaches has been on enhancing tracking performance, a critical component in 

progressing toward full autonomy. Ensuring stability and feasibility has also received 

attention to ensure good performance and real-time applicability. 

However, a common limitation among these methods is the predominant focus on 

the primary control objective, often overlooking the constraints inherent in nearly all 

real-world systems. Moreover, some of these methods completely disregard the 

system model, which can contain valuable information essential for controller design 

in many cases. Additionally, a notable drawback in several proposed methods is 

their limited suitability for on-board implementation due to the high computational 

complexity involved. 

Motivated by the promising advantages offered by MPC and NMPC in attaining 

autonomous control for mobile robots, this research aims to leverage these two 

approaches in the development of a novel controller for WMR. 

1.5 Objectives 

The overarching aim of this project is to develop a more practical tracking algorithm 

for WMR that adeptly handles nonlinearities, maintains high performance, and 

demands minimal computational resources, enabling real-time applicability. To 

achieve this objective, two distinct approaches are explored in this research: A 

linearization-based method and an approach that directly utilizes the nonlinear 
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characteristics of the system. Incorporating constraints on control and state variables 

is a key aspect to ensure that the proposed solutions lie within the feasible operating 

space of the robot. Comprehensive testing has been conducted using the new 

Robotino Festo Omnidirectional Mobile Robot (OMR) at UQAT's indoor laboratory to 

validate and assess these approaches. 

The specific objectives of this research are as follows:  

• Formulate the kinematic representations for the newly introduced OMR.  

• Design model-based controllers adapted for the task of trajectory tracking, with a 

focus on accommodating both state and control constraints. 

• Conduct a comparative analysis of the controllers’ performance against other 

existing methods documented in the literature. 

• Implement the designed controllers in practical, real-time applications to assess 

their effectiveness under real-world conditions. 

1.6 Methodology 

The objectives outlined above are realized through the following methodology: 

• Develop kinematic representations of the newly introduced Robotino-Festo OMR. 

This involves the creation of MATLAB/Simulink® toolboxes to facilitate simulation 

and practical implementation. 

• Establish the theoretical foundations for the novel controllers, including the 

formulation of associated optimization problems. These approaches are 

specifically designed to address the system's nonlinearities, constraints, and 

computational complexity. 

• Conduct a stability analysis to determine the necessary conditions for achieving 

nominal stability of the nonlinear system. 

• Perform a comparative evaluation of the proposed methods in a 

MATLAB/Simulink® environment against benchmark methods documented in the 

literature. The assessment encompasses tracking accuracy and computational 

efficiency. 
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• Validate the designed controllers through real-time trajectory tracking 

applications using the Robotino Festo mobile robot. These practical tests provide 

valuable insights into the controllers' real-world performance. 

1.7  Project contributions 

Despite the extensive efforts invested in investigating the tracking challenges faced 

by WMR, it remains a challenging subject in motion control. This work contributes to 

this domain in the following ways:  

• Enhanced linearization-based tracking algorithm: Leveraging the duality principle 

linking stochastic filtering and optimal control, an advanced controller is 

introduced. This controller offers an improved approximation of the nonlinear 

system behavior by non-iteratively linearizing the system along the prediction 

horizon. This enhancement significantly boosts tracking performance. 

Furthermore, the integration of Laguerre functions helps offset the additional 

computational load. The novel contribution here is the fusion of stochastic 

estimation with the MPC setup, eliminating the iterative nature typically 

associated with these methods. 

• NMPC with resilient propagation-based algorithm for optimization: This work 

investigates the utilization of an RPROP-based optimization algorithm within the 

framework of NMPC. The research explores properties related to convergence, 

the handling of constraints, and the real-time feasibility of this approach. 

Additionally, the stability properties of the controlled system are analysed and 

necessary conditions for nominal stability are presented. 

1.8 Thesis outline 

The outline of this thesis is as follows:  

The first chapter provides an introduction to WMRs including a background on 

mobile robot technology and various control methods. It also explains the motivation 

behind this thesis and its objectives. The second chapter presents the kinematic 

properties of the OMR and their different representations. It also highlights the 

traditional setup for the two control methods MPC and NMPC. 
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In the third chapter, the duality between the stochastic filtering and optimal control is 

presented and incorporated into the MPC setup along with the Laguerre functions. 

Simulation and practical testing are conducted and reported to validate the new 

method. 

The fourth chapter presents the second approach utilizing the resilient propagation 

method and the external penalty method to solve the constrained nonlinear 

optimization problem of the NMPC algorithm. 

In the fifth chapter, a stability analyse for the NMPC controller is conducted and the 

necessary terminal components are constructed to achieve nominal stability. Finally, 

the conclusion and recommendations of the thesis are given. 

1.9 Conclusion 

This chapter highlights the expanding role of mobile robots across various domains, 

driven by technological progress. It discusses the different challenges that WMRs 

encounter, particularly in complex and unpredictable environments, and underscores 

the critical need for efficient trajectory tracking controllers. This chapter also outlines 

the motivation behind the research, defines the objectives, and describes the 

methodologies used. These elements collectively pave the way for the development 

of advanced model-based predictive control strategies tailored for WMRs. 
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2. PRELIMINARY SETUP 

2.1 Introduction 

This chapter presents an introduction to the various techniques applied in this 

project, including their essential configurations. We start by introducing the robot 

employed in this study, outlining its characteristics, constraints, and presenting its 

diverse kinematics representations. Following this, we introduce the Model Predictive 

Control (MPC) method, covering its application to both linear and nonlinear systems. 

Lastly, a concise overview of Laguerre functions and their relevance is provided. 

2.2 Modeling the Omnidirectional Mobile Robot (OMR) 

For this study, the Robotino-Festo three-wheeled OMR is considered. Robotino® 

(Figure 6) is a mobile robotic system created by Festo Didactic [73]. Its main purpose 

is to facilitate practical learning and skill development in various fields, including 

robotics, mechatronics, measurements, wireless control, signal processing, and 

programming, among others. Some of its notable features include autonomous 

movement in all directions, with the ability to identify and avoid obstacles.  

Figure 6 
Robotino-Festo OMR and its Omni-drive 
Source: [73] 

It is equipped with embedded sensors and actuators, enabling wireless 

communication with other devices. Additionally, Robotino® supports the integration 

of new components through a mounting tower, supports an open-source concept, 

and provides software interfaces compatible with various programming languages. 

The whole system is controlled by an embedded PC to COM Express specifications 
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with Intel i5, 2.4 GHz dual core, 8 GB RAM and 23 GB SSD. For the motors control, 

a 32-bit microcontroller is used. It generates the PWM signals for actuating the DC 

motors using a PID controller. The microcontroller is also used to correct the sensors 

data. A planetary gear unit with transition ratio 32:1 is used between the drive shafts 

and omni-wheels [74, 75]. The robot has a maximum translational and rotational 

speeds of 2m/s and 2rad/s respectively, and it accepts translational and rotational 

velocities as inputs, which are expected to be updated every 70ms. 

Robotino® has three degrees of freedom and can achieve any translational and 

rotational movements regardless of its initial orientation. The three omni-wheels, 

placed at 120o from each other, allow the robot to turn on the spot and to move in 

any direction.  

2.2.1 Kinematics modeling 
To derive the kinematics representation of the OMR, we define a global frame 

( ), ,O X Y  and a locale (moving) frame ( ), ,r r rO X Y  connected to the robot ( Figure 

7). Let ( ), ,x y θ  denote the position and orientation of the OMR in the global frame, 

and ( ), ,r r rx y θ denote the position and orientation in the local frame. The local 

coordinates can be transposed into the global coordinates by: 

 .
r

T r

r

x x
y R y
θ θ

   
   =   
   
   

 (2.1) 

where TR is the transformation matrix which maps the locale frame into the global 

frame and is given as: 
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 Figure 7 
Locale and global frames 

 
cos sin 0
sin cos 0

0 0 1
TR

θ θ
θ θ

− 
 =  
 
 

 (2.2) 

In the body frame, let ( ),x yv v  and ( ) ω be the translational and rotational velocities 

of the OMR respectively. Additionally, define ( ),x ya a  the translational accelerations 

and ( )aθ the rotational acceleration of the robot in the local frame. Then the state 

vector is chosen as: 

 ( )Tx yq x y θ ν ν ω=  (2.3) 

and the vector of manipulated variables as: 

 ( )Tx yu a a aθ=  (2.4) 

 By using the following relation: 
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   
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

  (2.5) 

the kinematic equations of the OMR can be written as follows: 
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 (2.6) 

which can be written in compact form as follows: 

 ( )

sin
sin cos

,

cosx y

x y

x

y
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a
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θ
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 = =
 
 
 
 
 

−

+

  (2.7) 

Considering that the OMR requires translational and rotational velocities as inputs, 

the model from equation (2.7) is adequate for the development of various controllers 

and will be employed throughout the remaining chapters of this dissertation. 

• Discretization 

For many control methods, including MPC, a discrete model of the system is needed 

to design the controller. To obtain the discrete kinematic representation of the OMR, 

we apply the Euler method to equation (2.7) as follows: 

 1 . ( , )k k k kq q T f q u+ = +  (2.8) 
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which yields the following discrete model: 
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where T  is the sampling time. 

• Jacobian matrices 

If a linearization-based method is to be used, computing the Jacobian matrices 

becomes mandatory, which can be done as follows: 

1 0 sin cos cos sin 0
0 1 cos sin sin cos 0
0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

xk k yk k k k
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 
 
 
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 (2.10) 

and  
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 (2.11) 

which can be used to compute the linear approximation of the system. 
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• OMR geometry 

In certain applications, it is necessary to include the OMR's wheels velocities and 

accelerations in the kinematic model. To accomplish this, the OMR's geometry must 

be taken into consideration. The transformation matrix that converts the local speeds 

of the robot into the wheel speeds can be expressed as follows: 

 
1 1

2 2

3 3

sin cos
1 sin cos

sin cos

r

r

r

L
S L

r
L

α α
α α
α α

− 
 = − 
 − 

 (2.12) 

where iα  is the orientation of the axel of the ith wheel with respect to the local frame, 

r and rL are the wheel’s radius and the robot’s radius respectively. Define the vector 

of the wheels’ rotational velocities as: 

 ( )1 2 3
T

r ω ω ωΩ =  (2.13) 

where iω  is the rotational speeds of the ith wheel. Putting (2.4), (2.12) and (2.13) 

together, we obtain the relation between the robot accelerations and the wheels 

accelerations as: 

 1
ru S −= Ω  (2.14) 

Equation (2.7) can be written in matrix format as follows:  

 ( )
3 3 3 3

3 3 3 3 3 3

0 0
,

0 0
TR

q f q u q u
I

× ×

× × ×

   
= = +   

   
  (2.15) 

where 0  and I  represent the Zero matrix and the identity matrix respectively. 

Replacing (2.14) in (2.15), we obtain the following kinematic representation: 
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 
Ω 

 


   (2.16) 

2.2.2  Error Kinematics 
When addressing a tracking problem, a frequently used method involves converting 

the problem into a regulation problem with the objective of minimizing the error to 

zero. To achieve this, a virtual reference robot is considered, and a model that 

describes the error kinematics between the actual robot and the reference robot is 

formulated. Define the global frame ( ), ,O X Y , the moving frame ( ), ,r r rO X Y  

associated with the real robot, and a second moving frame ( ), ,d d dO X Y  linked to the 

virtual robot that follows the desired trajectory (Figure 8). 

Figure 8 
Real and virtual robots 

 The state vector of the reference robot defined in ( ), ,O X Y  is given as: 

 ( )T
d d d d d d dq yx y xθ ω=    (2.17) 
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and the state vector of the real robot in ( ), ,O X Y  is: 

 ( )Tq x y x yθ ω=    (2.18) 

Let eq  be the tracking error defined in the local frame and given as: 

 ( )Tx ye e e e ee eq x y v vθ ω=  (2.19) 

Then we can write: 

 ( )33

330
0

T
T
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e
R

q q q
R

×

×

 
= − 
 

 (2.20) 

Here the inverse of TR is equal to its transpose because it is an orthonormal matrix. 
Equation (2.20) can be further elaborated and lead to the following equations: 
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To obtain the kinematic equations, we differentiate (2.21) with respect to time as 

shown below: 
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Finally, we obtain the tracking error kinematics as follows: 
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• Discretization 

To obtain the discrete model of the error kinematics, we apply the Euler method as in 

(2.8) which leads to the following representation. 
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where T is the sampling time. Define: 
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By substituting (2.24) in (2.23), we obtain: 
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• Linearization around the reference trajectory  

When needed, a linearization around the reference trajectory can be done by 

computing the Jacobian matrices. In such a case, kq would be equal to dkq , which 

leads to 6 10ekq ×= . The Jacobian matrices can be found as follows: 
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These matrices can be used to approximate the nonlinear behavior around any 

reference point.  
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2.3 Model predictive control 

Model Predictive Control (MPC) emerged in the late seventies and has undergone 

significant development since its inception. The term "Model Predictive Control" 

encompasses a wide spectrum of control methods that explicitly rely on a process 

model to generate the control signals. The fundamental ideas in predictive control 

methods involve explicit use of a model to predict the process output at future time 

instances. This includes minimizing an objective function taking into account the 

predicted behavior to compute the control signals, and applying the first control 

signal from the calculated sequence at each step to control the system [76]. The 

different MPC algorithms primarily distinguish themselves based on the model used 

to describe the system, and the objective functions to be minimized. 

MPC offers several advantages over other control methods, making it a compelling 

choice for various applications. These advantages include: 

• Intuitive Concepts: MPC concepts are easy to understand making them 

accessible to individuals with limited knowledge of control systems. 

• Constraint Handling: MPC can easily incorporate constraints into the control 

design. 

• Multivariable Control: MPC handles multivariable systems effectively, making it 

applicable to processes of large scale. 

• Future References: MPC is valuable when future references are known, such as 

in robotics, as it can optimize control based on anticipated changes. 

While MPC offers numerous advantages, it's not without drawbacks. One of them is 

the requirement for an appropriate model of the controlled process to be available. 

The design algorithm relies on prior knowledge of the process model and operates 

independently of the real system. However, discrepancies between the actual, real-

world process and the model used in the control algorithm may yield suboptimal 

performance. Another drawback of MPC is its computational complexity, especially 

in the nonlinear case and in the presence of constraints. While the computational 

power available today can handle the demands of MPC algorithms, it's essential to 
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recognize that many industrial process-control computers may not have abundant 

computing resources. That why the balance between control algorithm execution and 

other essential tasks is a crucial aspect of practical MPC implementation in industrial 

settings. 

2.3.1  Linear model predictive control 
In the context of linear time-invariant systems, MPC has reached a high level of 

development and acceptance. This maturity is attributed to the inherent linearity of 

these systems which simplifies the prediction process, allowing for a straightforward 

formulation. Even when the control objective involves nonlinear terms, MPC remains 

capable of handling it without resorting to complex iterative optimization methods. In 

this section, the setup for the traditional linear MPC of the OMR is presented. The 

main elements of the optimal predictive controller are the cost function that describes 

the control objectives, and the system model used for prediction. 

• Prediction process 

After linearization around an operating point, the nonlinear discrete state space 

representation (2.9) becomes: 

 1k k k

k k

q Aq Bu
z Cq
+ = +
=

 (2.28) 

where A  and B  are given in equations (2.10) and (2.11) respectively, ( )16kz ×  is 

the output vector which contains the position, orientation, and velocities of the OMR, 

and ( )66C × is the output matrix.  

At an ith random iteration, the future inputs variables are: 

 1 1, , ,
i pi ik k k Nu u u+ + −…  (2.29) 
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with pN  is the prediction horizon representing the length of the optimization window. 

For a given 
ikq , the future state variables are predicted using the state space 

representation as follows:  
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Using the predicted state variable, we can find the predicted output as: 
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By defining the future control variables vector U and the predicted outputs vectors Z 

as follows: 
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k k k Nu uU u + −+= …  (2.32) 
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Equation (2.31) can be written in matrix form as follows: 

 Φ
ikZ Fq U= +  (2.34) 
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• Cost function 

The cost function, often referred to as the objective function, is a mathematical 

function that depends on both the control inputs and the output variables. This 

function encapsulates the control objectives and aims to quantify the performance of 

the control system. In the scope of this study, the cost function is selected to be a 

quadratic function. It serves the purpose of penalizing the output error and the 

magnitude of the control inputs. The quadratic cost function, used in this context, is 

defined as follows: 

 ( ) ( )
1 0

p p
T T

k dk k dk k k k

N N

k k
J q z Q q z u Ru

= =

= − − +∑ ∑  (2.36) 

where dkq  are the desired set points, and 6(6 )Q ×  and 3(3 )R ×  are known 

symmetric positive definite matrices also called penalization matrices. This cost 

function, through its quadratic form, makes it possible to evaluate the performance of 

the controller by assessing the output error and control effort. It plays a fundamental 

role in the MPC framework by guiding the controller's decisions to optimize control 

performance based on the specified control objectives. Using (2.32) and (2.33), the 

cost function (2.36) can be written in compact form as:  

 ( ) ( )dk
T T

dJ Q Z Q Q Z U RU= − − +  (2.37) 
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where )1(d pQ N ×  is a vector containing the future desired trajectory supposed to be 

known, and (6 )6p PQ NN ×  and (3 )3p pR NN ×  are block diagonal matrices of Q and 

R , respectively. Substituting (2.34) in (2.37) we obtain: 

( ) ( ) ( ) ( )2
i i i

T T T T T
k d k d k d kJ Q Fq Q Q Fq U Q Q Fq U Q URΦ= − Φ− − Φ +− +  (2.38) 

and differentiating (2.38) with respect to U: 

 2 ( ) 2( )
i

T T Tk
d k

J Q Q Fq Q U
U

R∂
−Φ Φ Φ= +− +

∂
 (2.39) 

The necessary condition to minimize kJ  is: 

 0kJ
U
∂

=
∂

 (2.40) 

which leads the optimal controls as follows: 

 ( ) ( )1
Φ Φ   Φ

i

T T
d kU Q R Q Q Fq

−
= + −  (2.41) 

from which we apply the first three (3) elements to the system and proceed to the 

next iteration. 

2.3.2  Nonlinear model predictive control 
While linear MPC is a powerful and versatile control strategy, it encounters 

limitations when applied to real-world systems characterized by inherent nonlinearity. 

Attempting to linearize such systems often leads to inadequate control performance. 

To address this challenge, a wide array of Nonlinear Model Predictive Control 

(NMPC) algorithms has been developed. NMPC has emerged as a valuable 

approach, capable of effectively managing inherently nonlinear systems, and 

accommodating nonlinear constraints. In this section, we provide the preliminary 
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setup of NMPC algorithm for OMR. In this context, we utilize the nonlinear kinematic 

model of the OMR from (2.9): 

 1 ( , )k k kq f q u+ =  (2.42) 

Define the tracking error dk kke q q= − . The objective function used in this section is 

slightly modified compared to the one used in the previous section. It now includes 

the terminal cost which can be used later for stability analyses, and it’s given as 

follows: 
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where 0
1( )
2

T
N N Ne Q eeφ =  is the terminal cost, and ( )0 66Q ×  is the penalization matrix 

of the terminal cost. The unconstrained NMPC control problem of the robot motion is 

written as: 
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Solving (2.44) determines the control inputs ensuring that the state errors are 

decreasing along the control horizon. To incorporate the system’s equations into the 

objective function Lagrange multipliers vectors 1 (6 )kλ ×  with ( 1, , )k N= K  are 

introduced in (2.44) and the NMPC control problem is transformed to: 
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where ( , )k k kf f q u≡ . Define the Hamiltonian function of problem (2.45) as: 
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 1
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Substituting (2.46) into the cost function (2.45) yields: 
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To minimize J, we differentiate (2.47) as: 
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In equation (2.45), the Lagrange multipliers vectors are multiplying zeros, therefore 

they can be chosen arbitrarily. To simplify (2.48), we chose: 
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With these choices, (2.48) becomes: 
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Here we relied on the fact that 0q , the state vector at the current sample instant of 

the controller, remains constant during the optimization process, which means that 

0 0dq = . Equation (2.50) illustrates that the minimization of the Hamiltonian 

automatically results in the minimization of the objective function. To solve equations 

(2.42), (2.49) and (2.51), an iterative approach is necessary. However, this iterative 

nature of the solution process can result in a significant computational burden. 

Therefore, the selection of an appropriate iterative approach becomes critical to 

minimize computational complexity, rendering NMPC more practical and feasible for 

real-world applications. 

2.4 Conclusion 

This chapter lays the foundational framework for the thesis. It explores the kinematic 

modeling for OMRs, a crucial step for controlling their movement. Various kinematic 

representations of OMRs were discussed, including their discretization and linear 

approximations. The development of tracking error kinematics is also covered. 

Furthermore, the chapter introduces the conventional frameworks for both linear and 

nonlinear MPC approaches. These foundational models and frameworks set the 

stage for the subsequent design and implementation of advanced MPC strategies. 
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3. ENHANCED MPC FOR OMNIDIRECTIONAL ROBOT MOTION TRACKING 
USING LAGUERRE FUNCTIONS AND NON-ITERATIVE LINEARIZATION 

3.1 Introduction 

This chapter proposes an enhanced MPC algorithm, based on Laguerre functions 

(LMPC), for trajectory tracking of OMR. To ensure a good tracking performance and 

reduce the linearization’s errors, this controller deals with nonlinearities by 

noniteratively linearizing the system along the predicted trajectory, which, to the best 

of our knowledge, has never been done before. The duality between optimal control 

and stochastic filtering is used to compute the linearization points, which allows the 

linearization of the system without dependence on the to be computed control 

variables. Contrary to existing approaches, the duality is used only for the prediction, 

then it is combined with an optimizer to compute the optimal solution. This will 

enhance the prediction process, but also increase the computation cost. To 

compensate for this increase, Laguerre functions will be used to parametrize the 

control variables, which will reduce the number of optimization variables and 

consequently the computational burden. This makes it suitable for real-time 

implementation allowing the robot to make fast decisions and swiftly adapt to sudden 

changes in complex environments. The existing Laguerre parametrization method is 

further developed to consider the change of the linear system at each prediction 

instant. The performance of the proposed algorithm is evaluated by simulation and 

by experiment on the Robotino-Festo OMR and a comparative study of accuracy and 

computational efficiency is carried out with the traditional MPC and NMPC. In the 

following, first the kinematic model of the OMR is derived in Section 2.2, next the 

classical MPC setup is presented in Section 2.3, then in Section 2.4 the duality 

principal is described. The Laguerre functions are introduced in the MPC setup in 

Section 2.5, and finally a comparative study with MPC and NMPC is given in Section 

2.6. The content of this chapter has been published in the IEEE Access journal [77]. 
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3.2 Model of the omnidirectional mobile robot 

For this study, the three-wheels OMR is considered., and the model to be used in the 

discrete model derived in (2.9) written in the following form: 
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 (3.1) 

which in compact form becomes: 

 1 ( )k k k

k k

q f q Bu
z Cq
+ = +
=

 (3.2) 

with T  is the simulation step, ( )kf q  is a nonlinear function of the state, B is the 

input matrix, kz is the output vector which contains the position, orientation, and 

velocities of the OMR, and C  is the output matrix. The proposed controller is based 

on linearization, thus the transition matrix to the linearized system, i.e. the Jacobian 

matrix, is needed and can be computed using (2.10). 

3.3 Constraints 

The key advantage of MPC is the capability to handle inequality constraints explicitly, 

and the OMR exhibits numerous physical and operational constraints that need to be 

satisfied by the control algorithm. First, there are limits on the acceleration of the 

OMR, which in this case represent the control variables and can be expressed as 

follows: 

 min maxku u u≤ ≤  (3.3) 
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where minu and maxu  are vectors of the same size as ku  that contain the lower and 

upper acceleration limits, respectively. Furthermore, when tracking a reference 

trajectory, the robot velocities must not exceed the velocity constraints. In this study, 

xv  and yv  have the same maximum value denoted maxv  and the maximum rotational 

speed is denoted maxω  , then the speeds constraints can be written as: 
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Finally, using (3.2), the operational constraints of the OMR can be written together 

as follows: 
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 (3.5) 

3.4 Duality principal and non-iterative linearization 

Since nonlinear optimal control problems are hard to solve and computationally 

demanding, linearization is often used. Choosing the linearization points is the main 

problem of linearization approaches. Using the optimal trajectory as linearization 

points would be the best solution but since they depend on the control to be 

computed and the control depends on them, iterative methods are required such as 

NMPC and iterative linear quadratic regulator (iLQR) [78]. To avoid applying iterative 

algorithms, we are going to use the duality between stochastic filtering and optimal 
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control to achieve non-iterative linearization by approximating the future optimal 

trajectory. This duality principle was first presented by Kalman [79], where it showed that 

the optimal control and the Kalman filtering are dual to each other, and therefore the 

solution for the estimation problem can be used to solve the optimal problem and vice 

versa.  

To use such duality, we first consider the stochastic dynamics for the control problem as: 

 1k k k k k

k k k

q A q Bu w
z Cq
+ = + +
= +σ

 (3.6) 

where kw and kσ are fictitious Gaussian noise with covariances kV and kW , respectively. 

The cost function to be minimized at each simulation step is considered quadratic 

similar to (2.36) of the form: 
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1 0

p p
T T

k dk k dk k k k

N N

k k
J q z Q q z u Ru

= =

= − − +∑ ∑  (3.7) 

The dual estimation problem is defined as estimation of 1kq +  knowing kq and the whole 

observation sequence which is considered to be the reference trajectory dkq  [41], 

therefore the stochastic dynamics for the dual estimation problem is considered as: 

 1

 
ˆ ˆ( )

ˆ
k k k

dk k k

q f q w
q C q σ
+ = +
= +

 (3.8) 

where the “hat” represents estimated values. 

The duality between the optimal control problem (3.6) and (3.7), and the estimation 

dynamic (3.8) is established by choosing 11
kV BR B− −=  and 1

kW Q−=  [80]. The 

computation of the optimal linearization points can be done using the following 

Kalman filter equations: 
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with kK is the Kalman gain matrix, kP is the estimation error covariance matrix [41, 

80]. 

3.5 MPC with Laguerre functions 

Although linearizing the system at each prediction step will give more accurate 

approximation, it is more demanding computationally. Therefore, we introduce the 

Laguerre functions in the problem formulation to solve the open-loop optimization 

which will help reducing the computational burden. 

3.5.1  Introduction to Laguerre functions 
To reduce the computational complexity of the standard MPC, we approximate the 

future control trajectory by combining a set of orthonormal functions (Laguerre 

Functions) linearly with few coefficients, which helps to cover the entire control 

horizon without the need for massive optimization parameters [42]. The Laguerre 

orthonormal sequence is described by the following z-transforms: 
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1 -1

2 -1

-1 -1
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Γ
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Γ

Γ
 
 
 



 (3.10) 

where a is the scaling factor of the Laguerre sequence, and 0 1a≤ <  for the stability 

of the sequence [47]. Let ( )il k  be the inverse z-transform of ( , ),i z aΓ then the set of 

discrete-time Laguerre functions can be written in vector form as:  
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 [ ]1 2( ) ( ) ( ) ( ) T
NL k l k l k l k=   (3.11) 

Taking advantage of the sequence realization 
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We can describe the sequence by the following state space representation: 

 ( 1) ( )lL k A L k+ =  (3.13) 

with lA ( N N× ) and the initial condition (0)L  given by: 
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  (3.14) 

 2 3 1 1(0) 1 ( 1)
TN NL a a a aβ − − = − − −   (3.15) 

where 21 aβ = − . The orthonormality of Laguerre functions can be expressed in the 

time domain by: 

 0
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l k l k for i j

l k l k for i j

∞

=

∞
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= ≠

= =

∑

∑
 (3.16) 

Finally, this set of Laguerre functions can be used to capture the response ( )H k of an 

arbitrary system by: 
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 1 1 2 2( ) ( ) ( ) ( )N NH k c l k c l k c l k= + + +K  (3.17) 

where 1 2, , , Nc c c  are the coefficients to be determined using the system data, and 

N is the number of terms used to capture the response [48]. 

3.5.2  Laguerre-based MPC  

Since the OMR has three motors, i.e., three control inputs, let the matrix B  be 

partitioned into: 

 [ ]1 2 3B B B B=  (3.18) 

and define: 

 ,

1

m i
m

k
i

A A
=

=∏  (3.19) 

where ,k iA  is the transition matrix computed at the ith  future instant, and m  is the 

current prediction instant. Here, the linearization at every prediction sample is 

considered, and ,k iA  is computed using the duality principle. Using (2.34), each 

control variable can be approximated at an arbitrary future instant with: 

 
1

( ) ( ) ( ) ( )
i

T i
N

i
ji i i j

j
u k m L m c k l mη

=

=+ = ∑  (3.20) 

where k  is the initial time of the moving horizon, m  is the future instant where 

1pk m k N≤ ≤ + − , 1,2,3i =  implies the ith  control variable, i
jc  are the coefficients, 

which are functions of the initial time of the moving horizon, iN  is the number of 

parameters used to capture the ith  control variable, iη  is a vector containing the 

coefficients, 1 ,i i
N

T

i c cη  =    and pN  is length of the prediction horizon. By 
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using the system (2.7) and (2.37), the prediction of the future state variables can be 

written as: 
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with 
1 2 3

TT T Tη η η η =    and 
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Here we have taken into consideration that the matrix kA  is not constant during the 

prediction process, it is changing at each future instant. With a sufficiently large 

prediction horizon, the orthonormal property (2.33) becomes: 
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 (3.23) 

And using (2.37) and (2.40), the sum of the future control inputs can be computed 

by: 

 ( )
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where LR  is a block-diagonal matrix where each block contains one of the elements 

of R on its diagonal. Define  ,T
LQ C QC=  putting (2.38) and (2.41) in the cost 

function (2.15) will lead to the following form: 
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where 
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By setting the partial derivative (relative to η) of the cost function (2.42) to zero, the 

optimal solution can be found as: 

 ( )1 ( )q kη ξ−= Ω −Ψ  (3.27) 

and the first control action can be computed using: 
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Here (0)iL  is the initial condition for the Laguerre functions of the ith  input, and 0i  

is a zero vector with the same dimension as (0)iL . 

The scaling factor a  and the number of terms needed to approximate ku  are closely 

related. If we set 0a =  and the number of terms cN N=  the control horizon, we 

obtain the traditional MPC approach, and by choosing 0 1a< < , we can achieve 

similar performance with N  far less than cN  and reduce the computational cost 

[48]. 

3.5.3  Constrained solution using Laguerre functions 
The Laguerre functions can also be introduced in the constraints’ description, which 

gives more flexibility for the designer to force the constraints at any specified future 

instant. The constraints on the control variables at an arbitrary future time m are: 

 min max( )U u k m U≤ + ≤  (3.29) 

with 0,1, , 1pm N= − , and minU , maxU are the control bounds from (2.23). This can 

be written in terms of η  as: 
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 (3.30) 

The constrained optimal solution is obtained by solving a dual-quadratic problem 

using the Hildreth method [46, 48]. First the active set of the inequalities constraints 
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is selected in matrix actM , then the Lagrange multipliers actλ  are found using the 

Hildreth’ algorithm, and finally the optimal constrained solution is computed by: 

 ( )1 ( ) T
act actq k Mη ξ λ−= Ω −Ψ −  (3.31) 

3.5.4  The LMPC algorithm 
Algorithm 1 is the resulting algorithm named LMPC. It shows the two steps, the 

linearization, and the control computing. Unlike existing algorithms, which use the 

duality to linearize the system and approximate the control inputs, the LMPC uses 

the duality only for linearization. The control inputs are computed by introducing the 

Laguerre functions and performing online optimization. 

Algorithm 1: LMPC 
1: Initialization 
2: 0ˆ ;k k kq q P= =  
3: Prediction 
4: for pm k 1, , k N= + … +  
5:  Linearization 
6:  ( )m 1q f q̂ −=  
7:  

m 1 m 1

m 1
m 1 q q̂

fA
q

− −

−
− =

∂
=
∂

 

8:  ( ) 1T T 1
m m 1 m 1 kk P C CP C Q

−−
− −= +  

9:  ( ) T 1 T
m m 1 m m 1 m 1P A I K C P A BR Bk

−
− − −= − +  

10:  ( )m m dm mq̂ q qk Cq= + −  
11:  Compute Convolution Sums 
12:  Ω;   Ψ;  ξ;     (Eq.2.43) 
13: end for 
14: Set The Constraints 
15: 

actM     actand λ  using Hildreth Algorithm 
16: Compute Optimal Coefficients Vector 
17: ( )1 T

k k act actη Ω ξ Ψq M λ−= − −  

18: Compute First Optimal control action 
19: 

k zero ku L η=  
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Contrary to existing methods, the parameterization using Laguerre functions takes 

into consideration the linearization at each future instant. In the case of constrained 

control, the LMPC uses the Hildreth algorithm to identify the active constraints and 

compute the Lagrange multipliers. All the state variables are considered available for 

measurement. Therefore, the LMPC is a deterministic state feedback controller. 

3.6 Comparative studies and analyzes 

In this section, the performance of the proposed LMPC algorithm will be analyzed. 

To show the outstanding performance, the traditional linear MPC and NMPC 

approaches are introduced for comparisons. 

3.6.1  Simulations results 
The simulations are carried out using the MATLAB/Simulink software. The aim is to 

drive the OMR to track a given trajectory by minimizing the cost function (2.15). All 

the strategies compared will minimize the same cost function. The following 

approaches will be compared: 

1) LMPC: this algorithm linearizes the system at each future prediction step using 

the duality principle, and then solves the optimality using Laguerre functions. 

The number of terms and the scaling factor will be the same for all input 

variables. 

2) MPC: this method solves the optimization problem using a linearized model 

and standard optimization algorithm. Implementation is based on [48]. 

3) NMPC: this algorithm solves the open-loop optimization using the nonlinear 

model. Implementation is based on the optimized algorithm in [37], where the 

active-set method is used for the minimization. The convergence threshold is 

set to 810−  and the maximum number of iterations is 310 . 

To ensure a fair comparison, some unifying conditions need to be set: 
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1) The prediction horizon pN is the same for the three strategies and it is set to 

20,pN = which ensure the convergence and practical feasibility. 

2) For both MPC and NMPC, control horizon cN is the same; however, the term 

cN does not appear in the LMPC algorithm, since it has been replaced by the 

number of parameters N and scaling factor .a In [47], it has been shown that 

for a small ,N  cN  and a  are related by 5/ cNa e−≈ . 

3) The weighting matrices for the strategies compared are set to: 

(0.01,0.01,0.01)kR diag=  

(25,25,25,0.1,0.1,0.1)kQ diag=  

These tuning parameters were chosen through trial and error; therefore, their 

optimality cannot be guaranteed. Nonetheless, they have demonstrated good 

performance in this study. 

To thoroughly evaluate the tracking performance, we use a desired trajectory given 

by reference speed components 10.5msxdv −=  and 10.5msydv −= , reference 

positions  ;  d xd d ydx v t y v t= =  m, orientation 0dθ = rad, and angular velocity 0dω =  

rads-1. The trajectory is supposed to be known along the prediction horizon, and all 

the state variables are considered available for measurement. 

 We consider a set of 5H = simulations, and a random uniformly distributed initial 

state: 

 0 ,([ 1,1],[ 1,1 0] 0, ,[ / 6 / 6], 0 ), Thq Rand π π= − − −  (3.32) 
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For each simulation ,h  and iteration ,k  the cost achieved for each approach is 

denoted ( , ),     1, ,3.rJ h k r =   The initial reference minimum of the cost function is 

chosen to be 5. On each iteration, the method with the best cost, lower than 5, is 

taken as reference ( , )bestJ h k  to be  compared to the other methods [41],  i.e, 

1 3min ( ( , ),5).best r rJ J h k< <= The average cost ratio (ACR) over all simulations is 

computed by: 
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Furthermore, to compare the tracking performance of different strategies, an 

additional index is used, which quantifies the tracking quadratic error, and it is given 

by: 
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with 0.07t∆ = s. In this experiment, the control horizon for MPC and NMPC is set to  

5cN = , and for the parameters of LMPC are chosen 0.5,a = and 3.N =  

Figure 9 shows the ACR of each method for the first 10 iterations in the logarithmic 

scale. It can be clearly seen that after the first iteration, the initial cost realized by the 

LMPC is significantly lower than the ones realized by MPC and NMPC, and after 10 

iterations, LMPC yields the best performance. Both the LMPC and NMPC converge 

after the third iteration with LMPC achieving a lower final cost, while MPC took much 

longer to converge. 
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Figure 9 
Average cost ratio (ACR) per iteration 
Source: [77] 

The numeric values of Table 1 represent the number of variables involved in the 

optimization process of each strategy, along with the average time for the first ten 

iterations. For MPC and NMPC, the number optimization variables are computed by 

multiplying the number of control inputs by the length of the control horizon cN , 

whereas for LMPC, it is equal to the number of parameters used to parametrize the 

manipulated variables. Only 9 variables are involved in the optimization process of 

the LMPC, while 15 parameters are involved in both MPC and NMPC. This gives the 

LMPC a great computational advantage (100 times faster) over the NMPC while 

maintaining good performance. Even with linearization performed at each prediction 

instant, LMPC still managed to keep up with the MPC with only 1ms difference. 

Table 1 
Number of control parameters and time per iteration 
 LMPC MPC NMPC 

Number of optimization variables 9 15 15 

Time per iteration (s) 0.002 0.001 0.266 
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Table 2 shows the mean-quadratic tracking errors for the three methods. It can be 

appreciated that LMPC significantly reduces the tracking error compared to MPC 

with almost the same computational demand, and it is not that far behind NMPC. In 

fact, in the orientation tracking, LMPC showed better performance than the other two 

methods. NMPC showed slightly lower xM and yM compared to LMPC, at the cost 

of higher computation time. This is due to the NMPC iterative aspect. As a result, 

LMPC can be considered a computationally effective method to obtain optimal 

performance in practice. 

Table 2 
Mean quadratic tracking errors for different strategies 
 LMPC MPC NMPC 

xM  0.0083 0.0663 0.0058 

yM  0.0113 0.0631 0.0012 

Mφ  0.0035 0.0065 0.0217 

3.6.2  Experimental results 
In this section, the three algorithms are tested on the Robotino-Festo omnidirectional 

robot. The whole system is controlled by an embedded PC to COM Express 

specifications with Intel i5, 2.4 GHz dual core, 8 GB RAM and 23 GB SSD. For the 

motor control, a 32-bit microcontroller is used. It generates the PWM signals for 

actuating the DC motors using a PID controller. The microcontroller is also used to 

correct the sensors data. A planetary gear unit with transition ratio 32:1 is used 

between the drive shafts and omni-wheels. The robot has a maximum translational 

and rotational speeds of 2m/s and 2rad/s respectively. The algorithms are 

implemented using the Robotino MATLAB-Simulink toolbox. The robot accepts 

translational and rotational velocities as inputs, which are expected to be updated 

every 70ms. Since the compared approaches have accelerations as manipulated 

variables, integrators are included in the algorithms. The aim is to drive Robotino to 

follow the eight-shaped trajectory described by the following equations: 
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where 25pT = s is the trajectory period, 0dθ = and 0.dω = The control horizon is 

chosen 10 for MPC and 5 for NMPC, as for the LMPC, 3N = and 0.8.a = The 

weighting matrices are chosen as:

(15,15,15)
(80,80,80,0.1,0.1,0.1)

R diag
Q diag
=
=

and initial position is given as:

0 [ 0.5,  0,  ]./ 6,  0,0,0q π= −

Figure 10 shows the performance of each method when tracking the eight-shaped 

trajectory. In Figure 10(a) the advantage of the LMPC performance over MPC is well 

illustrated.

Figure 10
Tracking the eight shaped trajectory in real-time: (a) using LMPC and MPC, 
and (b) using NMPC.
Source: [77]
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The NMPC needs longer than the update time of the microcontroller (70ms) to 

compute the next inputs values, which makes it unsuitable for practice, as shown in 

Figure 10(b). 

Figure 11 shows the state variables of the system over time when using the LMPC: 

x  and y  positions, orientation  θ , translational velocities xv and ,yv  and angular 

velocity ω . The computed input accelerations before integration (black lines) and 

the real robot acceleration (red lines) estimated by differentiating and filtering the 

odometry data are shown in Figure 12. 

Figure 11 
Reference States (black solid line) and real positions (red solid line) using 
LMPC 
Source: [77] 
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Figure 12 
Applied control inputs (black solid line) and estimated accelerations (red solid 
line) using LMPC 
Source: [77] 

3.7 Conclusion 

In this chapter, an enhanced MPC algorithm based on Laguerre functions, LMPC, for 

trajectory tracking of an OMR has been presented. Non-iterative linearization was 

performed using the duality between optimal control and stochastic filtering to 

approximate the nonlinear system, and the Laguerre functions were used to describe 

the control variables and reduce the number of optimization variables. The method 

presented provides a way to ameliorate the prediction process, prevent the 

accumulation of the linearization’s error and improve the tracking performance. The 

computational time was also reduced significantly allowing the algorithm to make fast 

accurate decisions. The performance of the proposed algorithm was validated on the 

trajectory tracking problem of the OMR and compared to the traditional linear MPC 

algorithm and the NMPC. Experiments show that LMPC can achieve high tracking 

accuracy, outperforming both MPC and NMPC. Feasibility and suitability for real-time 

applications were also demonstrated by experiment on Robotino Festo mobile robot. 
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4.  NMPC FOR TRAJECTORY TRACKING OF OMNIDIRECTIONAL ROBOT 
USING RESILIENT PROPAGATION 

4.1 Introduction 

While linearization-based methods have demonstrated good performance, they 

inherently rely on approximating the true nonlinear behavior of systems. 

Consequently, they exhibit limitations, particularly in terms of stability analyses and 

the provision of convergence proofs. These limitations arise from the necessity to 

linearize the system at each time step. Furthermore, linearization-based methods 

often disregard valuable system information that could be beneficial for control 

system design and understanding. 

To overcome these limitations, NMPC offers the advantage of directly utilizing 

nonlinear system models in the prediction and optimization processes. This 

approach enables the possibility of conducting stability analyses and utilizing the full 

extent of system information, ultimately leading to improved tracking performance. 

However, employing nonlinear system models comes with its challenges, particularly 

in terms of computational complexity. The resulting nonlinear optimization problem is 

often demanding in terms of computational resources. To address this issue, 

extensive research has been carried out in this field. Much of this research has 

focused on enhancing the optimization algorithms used within NMPC to reduce 

computational costs. Several nonlinear optimization algorithms have been explored 

to streamline the computational burden, including active-set methods, interior-point 

techniques, trust-region methods, and algorithms based on neural networks. While 

these algorithms offer precision, they can still be time-intensive, limiting their 

application to slower systems or specific cases where computational time is not a 

critical constraint. 

Another promising algorithm from the literature is the resilient propagation algorithm 

(RPROP) first introduced in [67]. It’s a gradient descent-based algorithm widely used 

in the optimization of neural networks. Differently to existing gradient-based 

approaches, the RPROP uses only the sign of the gradient to decide the search’s 
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direction and to update the step length which is independent of the gradient value. 

Compared to existing methods, the RPROP shows great computational advantages 

without compromising the accuracy [72, 81]. Despite its great advantages, the 

application of RPROP remains very limited in the robotic field. The advantages of 

RPROP are the following: 

1. RPROP is a fast method with high accuracy, which does not rely on the system’s 

properties.   

2. RPROP is a first-order method, which makes it easy to comprehend and 

implement without mathematical or numerical complexities.  

3. RPROP depends only on the gradients’ signs, and that makes it suitable for 

applications where the derivatives are estimated or noisy.   

In this chapter, and motivated by the potential of RPROP, we introduce an improved 

NMPC approach that utilizes A Robust Convergent Resilient Propagation 

(ARCPROP) algorithm to address and solve the trajectory tracking challenge of an 

OMR. The method is applied to both unconstrained and constrained scenarios. In 

the latter case, we utilize the external penalty method to effectively manage the 

constraints. The superiority of our proposed method is demonstrated through a 

comparative study against the well-known Interior Point (IP) and Active Set (AS) 

methods. The content of this chapter has been submitted for publication in the IEEE 

Access journal [82]. 

4.2 Constrained NMPC setup 

4.2.1 Prediction model 
For the prediction process of the nonlinear predictive controller, the discrete 

kinematic model of the OMR form equation (2.9) is used which is given as follows: 

 1 ( , )k k kq f q u+ =  (4.1) 

with  
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with ( )k xk yk kk k kq x y v vθ ω=  is the state vector, and ( )x ya a aθ  is the 

inputs vector. 

4.2.2 Optimization problem 
The objective function used in this chapter is similar to (2.43) and given as follows: 
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where 0
1( )
2p p p

T
N N Ne e Q eφ =  is the terminal cost. Q , 0Q (both 6 6× ) and R (3 )3×  are 

diagonal weight matrices and dk kke q q= −  is the tracking error. In real-time 

applications, there are always limitations and restrictions that need to be taken into 

consideration when designing the control algorithm. One of the main advantages of 

NMPC is the capability to handle control constraints explicitly. When constraints are 

imposed, the NMPC control problem becomes as follows: 
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where ( , )k kh q u are the inequality constraints set as: 
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Here maxv and maxω  are the maximum allowable translational and rotational velocities 

respectively, and max max and t na a are the maximum translational and rotational 

accelerations respectively. These inequality constraints can be handled using 

different approaches such as the auxiliary variable method or the external penalty 

method. In [56], the auxiliary variable method was used to transform the inequality 

constraints to equality ones by adding a dummy variable which was later considered 

an additional variable in the optimization problem. However, using a dummy variable 

for each inequality constraint will increase the dimension of the optimization problem 

and consequently increase the computational burden. The external penalty method 

aims to transform the constrained problem to an unconstrained one by adding a 

penalty term to the objective function which penalizes the violation of constraints. It is 

a straightforward method proven to be effective [83], and it will be adopted in this 

work. The additional penalty term is chosen as: 
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where ( , )i k kq uΜ and iµ are the penalty cost and the weight factor of the thi

inequality constraint ( , )i k kq uh . In this work, ( , )i k kq uh is: 
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The obtained unconstrained optimization problem can be written as follows: 
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which is subject to the dynamic of the plant. We introduce the Lagrange multipliers 

1 (6 )kλ ×  with ( 1, , )pk N=  , which are used to incorporate the system’s equations 

in the cost function as follows:  
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Since 1 0k kf q +− = , the Lagrange multipliers can be chosen arbitrarily to simplify the 

development. Define the Hamiltonian function of problem (4.9) as:  
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and substituting (4.10) in the cost function (4.9), we obtain: 
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 The differential of (4.11) is computed as: 
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To simplify the expression of (4.12), we choose the Lagrange multipliers as follows: 
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which leads to:  
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Here we took into consideration that the initial state remains constant during the 

optimization process, which means that 0 0dq = . The differential of the cost function 

is proportional to the partial derivative of the Hamiltonian relative to u, which means 

that minimizing H  will lead to minimization the cost function. We can compute:  
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where kA  is the transition matrix from(2.10).  

4.3 Optimization algorithm 

The second component of a predictive controller is the optimization process. In this 

project, given that NMPC entails online optimization at each sampling instance, the 

selected optimization algorithm must satisfy two primary criteria: computational 

efficiency and convergence. 

4.3.1 RPROP 
Gradient-based methods remain the most widely used in optimization problems, 

especially back-propagation algorithms, which minimize the objective function and 

update the optimization’s variables using steepest descent as follows:  

 1 ( )k k ku u H uη+ ∇= −  (4.16) 

where H is the function to be minimized, ku is a vector containing the optimization 

variables, and η  is called the learning rates. Choosing the leaning rates that ensure 

convergence and avoid oscillation is well known to be a difficult task. 

To overcome this problem, RPROP uses an adaptative individual step-size for each 

optimization variable, which helps minimize oscillations and maximize the length of 

the step-size. Each iteration of the algorithm is composed of two phases: first, the 

step-sizes are updated to accelerate convergence and improve performance. Each 

optimization variable iu has its own step-size i∆ . If the sign of the gradients remains 

unchanged for two consecutive iterations, the step-size is increased. Whereas if it 
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flips sign, the step-size is shortened. These rules are illustrated in the following 

equations: 
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where 0 1η η+−< < <  are the update rates, and min max,  ∆ ∆ are the boundary limits of 

the step-sizes. 

Thus, whenever the partial derivative flips sign, which implies that the last update 

was large, the RPROP assumes that a local minimum has been jumped over, so it 

does not update the correspondent optimization variable; instead, it decreases the 

step-size to enforce returning to the local minimum’s region.  If the derivative retains 

its sign, then step-size is increased to accelerate convergence in shallow regions. 

After adjusting the step-sizes, the second part of the RPROP algorithm is to update 

the value of the optimization variables, which is done following the rules below:  
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and 

 , 1 , ,i k i k i ku u u+ + ∆=  (4.19) 
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Algorithm 2: ARCPROP 

1: while maxiter I≤  

2: if max k

k

H
u

δ
 ∂

≤ ∂ 
 then return ku  

3: update the step sizes 

4: if 1 , 1min( )k k i kH H δ− −∆> − then 

5:  if , 1 minmax( )i k− ≤∆ ∆ then return 1ku −  

6:  For each ,i ku do 

7:   backtracking 

8: 
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13: update the optimization variables  

14: for each ,i ku do 

15: 
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This approach proved to be very powerful with high accuracy and less dependence 

on the system characteristics, especially in cases where the derivatives are 

estimated and noisy. 

4.3.2  ARCPROP 
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Despite its advantages, it has been proven that the traditional RPROP algorithm 

does not guarantee convergence as shown in [71], [72]. In [71], it is shown that 

adjusting the step size for each optimization variable individually does not 

necessarily result in a decrease in the overall objective function. Inadvertently, it may 

cause an increase. To address this limitation, a new robust convergent variant 

ARCPROP was proposed. This new algorithm adds another layer of verification 

which considers the impact of the updated step sizes on the overall objective 

function. This approach is illustrated in Algorithm 2. 

In this algorithm, the original RPROP approach is combined with an additional step 

size updating phase that forces each individual update to decrease the objective 

function by a factor of , 1min( )i kδ −∆  where δ  is the threshold of the optimization. This 

will ensure the convergence of the algorithm to a local minimum in a finite time. For 

further details and proof of convergence, refer to [71]. 

4.4 Simulation Results 

In this section, the performance of the proposed method is evaluated. Comparison 

with other benchmark approaches is done to demonstrate the capabilities of the 

ARCPROP optimization algorithm to perform online optimization, handle constraints 

and reduce the computational burden. 

4.4.1 Simulation setup 
Three methods will be compared: 

1) NMPC-PROP: This approach solves the NMPC problem using ARCPROP 

algorithm.  

2) NMPCIP: This method uses the Interior Point (IP) algorithm to solve the 

optimization problem of NMPC. Its implementation is based on [37].  

3) NMPCAS: This algorithm uses the AS methods for the optimization problem. It 

is implemented using MATLAB “fmincon” function. 

The goal is to drive the OMR to follow a given trajectory by minimizing an objective 

function. Constrained and unconstrained cases will be considered. All methods 



65 

minimize the same objective function (4.3). The NMPC parameters are: the length of 

the prediction horizon 6,PN = the length of the control horizon 3cN = , the 

penalization matrices (0.01,0.01,0.01)R diag=  and 0 (75,75,75,5,5,5)Q Q diag== . 

These penalization matrices are chosen by trial and error so we cannot guarantee 

their optimality, nonetheless, they showed satisfactory performance in this study. We 

note that the term control horizon cN does not appear in the objective functions. It is 

the number of variables optimized at each iteration which is less or equal to pN . 

For the optimization algorithms, the parameters are chosen as follows: the 

convergence’s threshold 610δ −= and maximum number of iterations max 20I = . In 

addition, for the ARCPROP, we have: 1.6,η+ = 0.5,η− = max 15∆ = and 10
min 10 .−=∆

The robot is set to track an eight-shaped trajectory described by the following 

equations: 
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where 24P =  is the trajectory period. The desired orientation and rotational speed 

are selected to be zero and the initial position is set to 0 [ 0.35,  -0.2,  0 ].,  0,0,0q = −  

In the constrained case, the maximum speeds are set to 

max max2 m/s and 3 rad/sv ω= = , and the maximum accelerations to 

2 2
max max1 m/s  and 4 rad/s ,t na a= =  which reflect the limitations on the real robot. The 

tracking performance of the compared strategies is evaluated using a performance 

index which qualifies the quadratic error as follows: 
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where simT  is the simulation time, refy  is the reference value and sysy  is the 

measured value of the position variables. 

4.4.2 Tracking analysis and computational resources 
The simulation results of the tracking problem are illustrated in the figures and tables 

below. 

Figure 13 shows the performance of the three methods when tracking the eight-

shaped trajectory without constraints. It is evident that NMPC-PROP achieved faster 

convergence compared to the other two methods. 

Figure 13 
Tracking the eight shaped trajectory: Unconstrained case 
Source:[82]  
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The optimized control signals are shown in Figure 14. It can be appreciated that the 

initial control effort resulted using NMPC-PROP is notably lower compared to the 

initial efforts of NMPCIP and NMPCAS.  

Figure 14 
Optimized control signals: Unconstrained case  
Source: [82] 

Table 3 conveys the average and maximum time necessary to complete one 

iteration by each of the compared strategies along with the tracking performance 

measure from (4.21) for the unconstrained case. It is notable that NMPC-PROP has 

a greater advantage regarding computational cost. It is 12 to 17 times faster than 

NMPCIP and 7 to 8 times faster than NMPCAS algorithm. This renders it more 

suitable for real-time applications. Some of NMPCIP and NMPCAS iterations take 

more than 70ms to be completed which may affect their performance when applied 

to the real robot that requires updates every 70ms. Despite this substantial reduction 

in computational burden, NMPC-PROP is attaining a tracking performance 

remarkably similar to NMPCIP and NMPCAS. The tracking error of NMPC-PROP is 

only slightly higher by an order of 10-3 compared to the other two methods. This 

discrepancy is justified by the attained computational efficiency. 
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Table 3 
Maximum time per iteration, average time per iteration, time ratios and mean 
quadratic tracking errors for different strategies: Unconstrained case  
 NMPC-PROP NMPCIP NMPCAS 
Max time/iteration (s) 0.0278 0.3352 0.1992 

Max time ratio 1 12 7 

Average time/iteration (s) 0.0014 0.0244 0.0121 

Average time ratio 1 17 8 

xM (m) 0.0365 0.0349 0.0349 

yM (m) 0.0314 0.0251 0.0251 

Mθ (rad) 0.0013 0.0006 0.0006 

Figure 15 shows the tracking performance of the compared methods when following 

the eight-shaped trajectory in the presence of constraints. 

Figure 15 
Tracking the eight-shaped trajectory: Constrained case. 
Source: [82] 
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We can clearly see that NMPC-PROP maintains faster convergence than the other 

two methods in the constrained case. 

Table 4 shows that even in the presence of constraints, NMPC-PROP kept a low 

computational cost which was 6 to 11 times faster than NMPCIP and 2 to 4 times 

faster than NMPCAS. The maximum time per iteration for NMPC-PROP remained 

under 70ms which kept it suitable for real-time applications. NMPC-PROP has also 

achieved better tracking performance than the other two methods for the x and y 

positions. 

Figure 16 visualises the tracking errors for the constrained case, where the faster 

convergence of NMPC-PROP can be seen. The capability of NMPC-PROP to handle 

constraints is illustrated in Figure 17 which compares the resulted optimal control 

variables in the constrained and unconstrained case. It manages to bring the control 

amplitudes under the maximum allowed values after they were violated in the 

unconstrained case. 

Table 4 
Maximum time per iteration, average time per iteration, time ratios and mean 
quadratic tracking errors for different strategies: Constrained case  
 NMPC-PROP NMPCIP NMPCAS 
Max time/iteration (s) 0.0492 0.5452 0.2023 

Max time ratio 1 11 4 

Average time/iteration (s) 0.0047 0.0311 0.0122 

Average time ratio 1 6 2 

 (m)xM  0.0361 0.0373 0.0373 

 (m)yM  0.0609 0.0636 0.0636 

 (rad)Mθ  0.0018 0.0013 0.0013 
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Figure 16 
Position tracking errors: Constrained case 

Figure 17 
Comparison of control signals in constrained and unconstrained cases 
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4.5 Experimental results 

This section provides the experimental results of testing the three methods on the 

Robotino-Festo robot (Figure 18). 

Figure 18 
Overview of the trajectory tracking experiment. 
Source: [82] 

A MATLAB-Simulink toolbox, that was developed to communicate with Robotino, is 

used to implement the algorithms. The robot expects the translational and rotational 

speeds as inputs; therefore, the controls generated by the control algorithms were 

integrated prior to their application to the actual robot. The aim is to drive the robot to 

follow the eight-shaped trajectory given in (4.20) where 50P = . The initial position is 

chosen to be 0 [ 0.15,  0.1,  0 ],  0,0,0q = − , and the penalization matrices are set as 

follows: 

 
0

(7,7,7)
(750,750,750,10,10,10)

R diag
Q Q diag

=
= =

 (4.22) 

Figure 19 illustrates the real-time tracking performance of the compared strategies. It 

is evident that NMPC-PROP exhibits quicker convergence in comparison to the other 

methods, which take more time to converge. This delay in convergence can be 

attributed to the extended computational time required during the transitory phase. 

Position tracking and velocity tracking are given in Figure 20 and Figure 21 

respectively. While the position tracking performance of three methods was similar, 

the superiority of the NMPC-PROP is clear in speed tracking thanks to its 

computational advantage over the other two methods. 
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Figure 19 
Real-time tracking of the eight shaped trajectory  

Figure 20 
Real-time position tracking. 
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Figure 21 
Real-time velocities tracking. 

 Figure 22 
Real-time position tracking errors. 
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The position tracking errors are displayed in Figure 22 where the faster convergence 

of NMPC-PROP can be seen. The numeric values of the tracking errors are given in 

Table 5. It is shown that NMPC-PROP resulted in about a two-time reduction in 

tracking errors compared NMPCIP and NMPCAS. 

Table 5 
Quadratic tracking errors for different strategies: Real-time experiment  
 NMPC-PROP NMPCIP NMPCAS 

 (m)xM  0.0169 0.0372 0.0307 

 (m)yM  0.0140 0.0347 0.0275 

 (rad)Mθ  0.0034 0.0049 0.0052 

 

4.6 Conclusion 

In this chapter, a NMPC controller for the trajectory tracking problem of OMR was 

presented. The proposed controller used ARCPROP algorithm to solve the 

optimization problem leading to rapid convergence, precise tracking, and low 

computational burden. The capability of this algorithm to solve constraint problems 

during online optimization was successfully demonstrated. To validate the 

performance of the proposed controller, comparison studies were conducted against 

benchmark methods, namely Interior Point and Active Set. Simulation and 

experimental results proved that NMPC-PROP outperformed both NMPCIP and 

NMPCAS in terms of computational efficiency, convergence speed and in real-time 

tracking performance. The results of this study highlighted the superiority of NMPC-

PROP in practical applications.  
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5. STABITITY ANALYSES 

5.1 Introduction 

When designing a control algorithm, it is crucial to conduct a stability analysis to 

provide insights on the long-term behavior of the system, and to ensure that the 

control strategy does not lead to any divergence or instability. A key advantage of 

NMPC is the use of the nonlinear model in the controller’s design, which allows the 

stability analyses to be conducted. 

Over the past three decades, wide investigation has been made by the academic 

community to establish nominal stability of NMPC schemes [84-87]. Motivated by the 

established stability of infinite-time optimization, such as LQR, an NMPC scheme 

with an infinite prediction horizon was initially introduced, ensuring nominal stability. 

Initially applicable to unconstrained problems, the method was subsequently 

extended to constrained scenarios. However, the trade-off for this stability lies in 

elevated computational complexity due to the infinite horizon, posing challenges for 

real-time implementation [87, 88]. 

The finite-horizon criterion of NMPC is not inherently designed to ensure asymptotic 

properties such as stability. Therefore, achieving closed-loop stability necessitates 

fine tuning of design parameters, including the prediction horizon, control horizon, 

and weighting matrices [87]. Another way to ensure nominal stability of NMPC is to 

force the state to be zero at the end of the prediction process by adding a terminal 

equality constraint to the optimization problem [89]. However, in the nonlinear case, 

satisfaction of the terminal equality constraint may require an infinite number of 

iterations which is computationally expensive. To ease the terminal equality 

constraint, an alternative approach involves introducing a terminal region. This 

region is defined so that, at the end of the prediction, the system's state lies within it. 

Subsequently, a dual-mode control strategy was implemented. Outside the terminal 

region, the control operates in a receding horizon mode. However, upon entering the 

terminal region, the control mode transitions to a local feedback controller, guiding 

the states toward the origin [90]. To eliminate the need for transitioning to an 
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alternative controller within the terminal region, a terminal cost term was introduced 

into the objective function in [87]. This terminal cost bounds an infinite horizon cost 

controlled by a virtual (non-implemented) local controller. This approach is commonly 

referred to as Quasi-Infinite Horizon (QIH) NMPC. By appropriately choosing the 

terminal cost and terminal region, the nominal stability of NMPC can be ensured. 

5.2 NMPC setup using the error dynamics 

To analyze the stability characteristics of the NMPC schemes, a common approach 

involves converting the problem into a stabilization problem, where the origin serves 

as an equilibrium point. This transformation is achieved by incorporating the error 

kinematics into the NMPC algorithm. From (2.25), the error model is given as 

follows: 
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Using (5.1) and (5.2), the cost function to be minimized is chosen as: 
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Based on the discrete QIH method [84], the finite-horizon optimal control problem to 

be solved online is formulated as follows: 
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where eΧ and eU  are the state and control constraints which can be derived from 

(4.7), and Ω  is the terminal region in the neighborhood of the origin. The terminal 

cost is chosen to bound the infinite horizon cost function as follows: 
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where lku is a fictitious linear controller in the terminal region. The local linear 

controller will solely be employed to define the characteristics of the terminal cost 

and terminal region and will never be implemented. 

5.3 Feasibility of NMPC 

Feasibility in the context of NMPC refers to the ability of the algorithm to find a 

solution that satisfies both the system dynamics and any imposed constraints within 

a given prediction horizon. Specifically, feasibility is concerned with whether it is 

possible to find a sequence of control inputs and state trajectories that respect the 

system dynamics and adhere to all the specified constraints. Assuming the existing 

of an optimal solution for the finite optimal problem at a given time instant 1k , we can 

write the sequence of optimal control inputs and the sequence of optimal state 

trajectory as follows: 
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When the next instant arrives, 2 1 1k k= + , and assuming a nominal case without 

disturbances, the control inputs and state sequences can be expressed as follows: 
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From the definition of the terminal region and terminal cost, we know that 

1 1
*( ) ( )p le eu k N u k+ =  and *

1( 1)e pq k N+ +  will remain invariant in the terminal region, 

therefore, (5.7) is a feasible (not necessarily optimal) solution for the optimization 

problem at time 2k . In a recursive manner, we can deduce that if a solution exists for 

the finite optimal problem at the initial time instant, then the problem remains feasible 

for all subsequent instants. 

5.4 Stability of NMPC 

In this section, the stability proof of the NMPC with terminal components selected 

using the Quasi-Infinite Horizon (QIH) method is outlined. Define a Lyapunov 

candidate function ( ),ek ekV q u as the value function of the objective function (5.5): 
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We can easily see that (0,0) 0V = and 0V >  if 0ekq ≠  and 0eku ≠ . Moreover, V  is 

positive definite with holding inequality: ( ) * *1
2

, T
ek ek ek ekV qu qq Q≥ . 

It is demonstrated in [84] that when choosing the terminal terms according to the QIH 

principle, the following inequality holds:  

 ( ) 0 a1  
2

,      for ll T
ek ek ee ek k kJ qq Q qq u Ω≤ ∈  (5.9) 

which leads to: 

( ) ( )* *
0, ,      for1  all 1

2 2
T

ek ek ek ek ek ekk
T
ek ek ekq Qq q QuV q u qV q q Ω≤≤ ≤ ∈  (5.10) 

From (5.6) and (5.7) the cost ( ), 1 , 1,e k e kJ q u+ +  (not necessary optimal) can be 

computed as: 
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Since Ω  is an invariant set of the nominal system, we can write:  
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Combining inequality (5.12) with (5.11) we obtain: 
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Given the optimal solution at the instant 1k + , we can write:  

 ( ) ( ), 1 , 1 , 1 , 1, ,e k e k e k e kV q u J q u+ + + +≤  (5.14) 

Combining inequalities (5.13) and (5.14) we get: 
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Given that Q and R are both positive, we conclude that the value function V is strictly 

decreasing. From equations (5.8) to (5.15), we conclude the properties of V  as 

follows: (0,0) 0V =  and 0V >  when 0ekq ≠ , V  is bounded and strictly decreasing 

along a trajectory started form an admissible initial set. Thus, V  is a Lyapunov 

function for the system (5.1) controlled by NMPC with terminal components chosen 

using the QIH method in the absence of disturbances ensuring nominal stability. 

5.5 Characterizing the terminal components using QIH method 

To ensure the nominal stability of NMPC, it is essential to determine a local linear 

controller for the terminal region. Given the optimality aspect of the problem, an LQR 

controller is selected. The linearized equations of (5.1) are of the form: 

 , 1e k ek ek ek ekq A q B u+ = +  (5.16) 

where ekA  and ekB  are given from (2.26) and (2.27) respectively as follows: 
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The cost function to be minimized by the LQR is as follows: 
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The associated discrete-time Algebraic Riccati Equation (DARE) is [91, 92]: 

( )( ) ( )1T T T T
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and the control gain matrix is: 
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 Then the control input lku  is computed as: 

 lq LQ eku L q= −  (5.20) 

The terminal region Ω  is then determined by finding the largest constant ( )0,α ∈ ∞

such that: 

 { }6: ,   ,   T
eek ek LQ eek k lkq q q P q u UΩ α≡ ∈ ≤ ∈  (5.21) 

According to the QIH method [84, 87], the solution of the DARE (5.18) LQP  and the 

region Ω  can serve as terminal penalty matrix and terminal region to achieve the 

nominal stability of the NMPC controller. 
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5.6 Experimental results 

In this section, we proceed to assess the performance of the proposed NMPC 

controller through real-time experiments. Unlike the previous tests, we extend our 

evaluation to include orientation tracking. This expansion allows us to check the 

method's efficacy across various application scenarios, providing a more 

comprehensive understanding of its capabilities. 

Three NMPC approaches will be compared, each employing different online 

optimizers: ARCPROP, IP, and AS. The prediction horizon is set to 7,pN = and the 

control horizon is set to 3.cN =  Regarding the optimization algorithms, the 

convergence threshold is 610 ,δ −= and the maximum number of iterations is 

max 40.I = The experiments are conducted using the Robotino Festo OMR as shown 

in Figure 18. The penalization matrices for NMPC-PROP are (4, 4, 4),R diag=  and 

(100,100,100,5,5,8)Q diag= , while for NMPCIP and NMPCAS, they are 

(1,1,1),nR diag=  and (750,750,750,5,5,8)nQ diag= . These matrices are selected 

through a trial-and-error process to achieve a balance between rapid convergence 

and overall performance; thus, their optimality cannot be ensured. Nevertheless, 

they exhibit good performance in this experiment. 

5.6.1 Eight-shaped trajectory with time-variant orientation 
In the first scenario, the robot will track an eight-shaped path given in as follows: 
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where 50P =  is the trajectory period. The initial states are set to:  

 0 [0.2,  0,  ]/ 2,  0,0,0q π=  
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Figure 23 illustrates the performance of the three methods when tracking the eight-

shaped trajectory. NMPC-PROP demonstrated faster convergence compared to 

NMPCIP and NMPCAS. Furthermore, Figure 24 and Figure 25 depict the positions 

and speeds tracking, respectively. The superior performance of NMPC-PROP is 

evident, particularly in the velocities, where it exhibits more stable tracking compared 

to the other two methods. 

The computed control inputs are shown in Figure 26. It is notable that the initial 

control effort of NMPC-PROP is significantly lower than that of the other two 

methods. 

Figure 23 
Tracking the eight-shaped trajectory with time variant orientation 
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Figure 24 
Position Tracking of the eight-shaped trajectory with time-variant orientation 

Figure 25 
Velocities Tracking of the eight-shaped trajectory with time-variant orientation 
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Figure 26 
Control inputs computed while tracking the eight-shaped trajectory with time-
variant orientation 
 

The root mean square errors calculated from equation (4.21) are utilized for further 

comparison of the data, as presented in Table 6. It is evident that NMPC-PROP not 

only attained faster convergence but also maintained comparable position errors with 

the other two methods. These tracking errors are given in Figure 27. 

Table 6  
Root mean square errors for different strategies: Real-time experiment  
 NMPC-PROP NMPCIP NMPCAS 

 (m)xM  0.0207 0.0230 0.0212 

 (m)yM  0.0173 0.0197 0.0156 

 (rad)Mθ  0.0802 0.0766 0.0716 
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Figure 27 
Tracking errors when tracking the eight-shaped trajectory with time-variant 
orientation 
 

5.6.2 Square trajectory 
In this experiment, the robot is instructed to follow a square path defined by the 

points ( ) ( ) ( ) ( ){ }0,  0 ,  2,  0 ,  2,  2 ,  0,  2 ,  with a reference speed v   0.4 /xd m s= , 

moving forward. This enables us to evaluate the abilities of the compared methods in 

handling abrupt changes in the trajectory. The initial states are set to:  

 0 [0,  0,  ]0,  0,0,0q =  

Figure 28 illustrates the tracking performance in the 2-D plane. Following the first 

change in the desired path, NMPC-PROP adeptly resumed alignment with the path. 

In contrast, NMPCIP and NMPCAS exhibited oscillations around the desired 

trajectory without convergence. 
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Position tracking over time is depicted in Figure 29, while the tracking error is shown 

in Figure 30. It is noteworthy that NMPC-PROP exhibits lower overshooting after 

each trajectory change compared to the other two methods, facilitating smoother 

convergence. 

Figure 28 
Tracking the square trajectory 
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Figure 29 
Tracking the square trajectory 

Figure 30 
Tracking the square trajectory 
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5.7 Conclusion 

This chapter provides a thorough analysis of the stability of the NMPC-PROP 

strategy developed in the previous chapter. Using error dynamics and the Quasi 

Infinite Horizon (QIH) method, the chapter establishes conditions for ensuring 

nominal stability of the control system through the application of Lyapunov theory. 

Experimental results, including complex trajectory tracking scenarios, validate the 

theoretical stability claims and demonstrate the practical applicability of the NMPC 

strategies. 
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6. CONCLUSION 

This thesis represents a step forward in the field of control systems for OMRs. The 

research was driven by the need to address the challenge of trajectory tracking in 

these robots, especially within environments that demand high precision and 

adaptability. The study developed and validated advanced control algorithms 

designed to enhance the performance and feasibility of OMRs in real-world 

applications.  

The first phase of the research involved developing a detailed kinematic model of the 

OMR. This model was crucial for predicting the robot's behavior and validating the 

effectiveness of the control strategies. The constructed model captured the essential 

kinematics of the OMR, incorporating its nonlinearities and the operational 

constraints, providing a reliable foundation for developing control algorithms. This 

detailed representation ensured that the control strategies could reliably manage the 

complexities of the OMR's kinematics. 

Building on the model, the research proceeded to develop a theoretical framework 

for the proposed controllers. This framework took into account the inherited 

nonlinearities on OMR systems. State and control constraints were also integrated 

into the framework, ensuring that the developed strategies could manage the robot's 

physical limitations and operational boundaries effectively. 

The research introduced two enhanced control algorithms, each designed to offer 

unique advantages in the trajectory tracking for OMRs: 

• Laguerre-Based MPC approach: An innovative linearization-based MPC 

approach was introduced and implemented for the OMR. Traditional 

linearization-based methods suffer accumulation of linearization errors over the 

prediction horizon. To address this issue, without using typical iterative 

solutions, this method incorporated a non-iterative linearization process, 

leveraging the duality between optimal control and stochastic filtering. The 

duality was employed to estimate the optimal linearization points that are used 
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to linearize the system at each prediction instant, which enhances the prediction 

process. To manage the added computational load from the estimation and 

linearization steps required, Laguerre functions were introduced to characterize 

the control inputs and reduce the number of optimization variables which 

consequently reduces the time required for online optimization. The newly 

designed controller demonstrated superior performance compared to traditional 

MPC and NMPC and proved suitable for real-time implementation. 

• Resilient nonlinear predictive controller: This controller was designed to operate 

directly on the nonlinear system model without resorting to any form of 

linearization. NMPC often requires iterative methods to solve the nonlinear 

optimization problem, most of which result high computational complexity 

particularly when performed online. To cope this computational complexity, our 

approach integrates a convergent variant of the Resilient Backpropagation 

(RPROP) algorithm for efficient online optimization. RPROP optimizes by 

adapting individual step-sizes and utilizing only the sign of the gradient, making 

it less dependent on system characteristics and thus significantly reducing 

computational demands. To handle state and control constraints, we employed 

the external penalties method, incorporating these constraints into the NMPC 

framework. Stability analyses were conducted, using Quasi Infinite Horizon 

(QIH) method to construct the terminal cost and terminal region ensuring the 

feasibility and nominal stability of the controlled nonlinear system. Simulation 

and experimental results demonstrated superiority of the proposed algorithm 

over other benchmark methods from the literature regarding both computational 

cost and tracking performance. 

This research represents a significant advancement in the development of 

controllers for Omnidirectional Mobile Robots, offering the potential for enhanced 

real-world performance and future improvements. 
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Recommendation for future work 

The present work acknowledges a reliance on trial-and-error parameter tuning in the 

design and implementation of the control algorithms. Both MPC parameters 

(horizons lengths and penalization matrices), and the optimization algorithms 

parameters (initial step size and increment ratio) are chosen by iteratively adjusting 

parameters through experimentation. Despite being a common practice, the trial-

and-error process can be time-consuming and lack precision. Recognizing the 

potential for improvement, future research directions may explore the implementation 

of automated tuning algorithms. Automated algorithms provide more efficiency, 

consistency, and a more systematic optimization of parameters. 
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ANNEXE A – IMPLEMENTATION SETUP 

The research presented in this thesis utilizes the Robotino Festo 3, an advanced 

omnidirectional mobile robot known for its versatility in both educational and 

industrial applications. This section provides a detailed overview of the 

implementation methodologies, hardware specifications, and software integration 

used to control the Robotino during the experiments. 

• Hardware specifications 

The Robotino-Festo is an omnidirectional mobile robot equipped with robust 

hardware to support advanced control and navigation tasks. It operates on an 

embedded PC that adheres to COM Express specifications and is powered by an 

Intel i5 dual-core processor clocked at 2.4 GHz. This setup includes 8 GB of RAM 

and a 23 GB SSD, ensuring adequate storage and processing capacity for real-time 

applications. 

For motor control, Robotino utilizes a 32-bit microcontroller that generates Pulse 

Width Modulation (PWM) signals to actuate the DC motors. This microcontroller is 

integral not only in driving the motors through a PID controller but also in correcting 

sensor data, thereby enhancing the robot's responsiveness and precision. The 

system features a planetary gear unit with a 32:1 gear ratio, connecting the drive 

shafts to the omni-wheels. Robotino-Festo is capable of reaching a maximum 

translational speed of 2 meters per second and a rotational speed of 2 radians per 

second. 

• Interaction methods with Robotino 

Robotino-Festo offers two primary methods for interaction and control: 

1- On board computer: The onboard computer allows direct interaction with the 

robot's embedded system, enabling users to deploy and run algorithm locally. 

This method leverages the processing power and internal resources of Robotino 

to execute control algorithms and process sensor data. 
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2- REST API Method: In this work, we utilized the REST API method, which 

provides a flexible and efficient way to control and monitor the robot. Robotino-

Festo has its own integrated router that hosts the robot's odometry and sensor 

data on a specific IP address. This IP address is also used to send control 

commands to the robot. Robotino network parameters are given in Table 7.  

Table 7 
Robotino network parameters  
Name Robotino  

Password RobotinoV4 

IPv4 address 192.168.0.5 

Mask  255.255.255.0 

Gateway 192.168.0.1 

 

• MATLAB-SIMILINK integration 

In practice, the control algorithms were designed and implemented in MATLAB, 

which communicated with Robotino through the REST API using the Robotino 

MATLAB toolbox. MATLAB reads the real-time data (position, speed, sensor 

readings) from Robotino’s IP address. Using this data, it computes the necessary 

control inputs and sends them back to Robotino to adjust its movement. Specific 

Simulink blocks were developed using S-functions to facilitate communication with 

Robotino from Simulink:  

 Odometry block: Takes the IP address as inputs and returns the robot’s 

current position and velocities. 

 Omnidrive block: Takes the IP address and desired speeds as inputs and 

sends these commands to Robotino. 

 Bumper block: Inputs the IP address and reads the data from the bumper 

sensors to detect obstacles or collisions. 
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• Implementation workflow

The workflow involved reading the real-time odometry and sensor data from 

Robotino, processing this information in MATLAB-Simulink to compute the 

necessary control inputs, and then sending these inputs back to the robot as 

illustrated in Figure 31. This loop of data retrieval, processing, and command 

transmission was crucial for effective trajectory tracking and control.

Figure 31
Communication between control unit and Robotino
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