

Mise en garde
La bibliothèque du Cégep de l’Abitibi-Témiscamingue et de l’Université du Québec en

Abitibi-Témiscamingue (UQAT) a obtenu l’autorisation de l’auteur de ce document afin de

diffuser, dans un but non lucratif, une copie de son œuvre dans Depositum, site d’archives

numériques, gratuit et accessible à tous. L’auteur conserve néanmoins ses droits de

propriété intellectuelle, dont son droit d’auteur, sur cette œuvre.

Warning
The library of the Cégep de l’Abitibi-Témiscamingue and the Université du Québec en

Abitibi-Témiscamingue (UQAT) obtained the permission of the author to use a copy of this

document for nonprofit purposes in order to put it in the open archives Depositum, which is

free and accessible to all. The author retains ownership of the copyright on this document.

https://depositum.uqat.ca/
https://depositum.uqat.ca/

Université du Québec en Abitibi-Témiscamingue

CONCEPTION DES COMMANDES PRÉDICTIVES BASÉES SUR UN MODÈLE

POUR LE SUIVI DE TRAJECTOIRE DES ROBOTS MOBILES À ROUES

Thèse présentée à l’Université du Québec en Abitibi-Témiscamingue comme

exigence partielle du grade de Docteur en Philosophie en Ingénierie offert en

extension en vertu d’un protocole d’entente avec l’Université du Québec à

Chicoutimi

Par

Mahmoud El-Sayyah

07/2024

Université du Québec en Abitibi-Témiscamingue

DESIGN OF A MODEL-BASED PREDICTIVE CONTROLLERS FOR

TRAJECTORY-TRACKING OF WHEELED MOBILE ROBOTS

Thesis presented to Université du Québec en Abitibi-Témiscamingue in partial

fulfillment for the degree of Doctor of Philosophy (Ph.D.) in Engineering offered as an

extension under an agreement with Université du Québec à Chicoutimi

By

Mahmoud El-Sayyah

07/2024

iii

BOARD OF EXAMINERS

Prof. Mohamad Saad, Thesis Supervisor
École de génie, UQAT

Prof. Maarouf Saad, Co- supervisor
Département de génie électrique, ETS

Prof. Nahi Kandil, President of the Board of Examiners
École de génie, UQAT

Prof. Yassine Kali, Member of the jury
École de génie, UQAT

Prof. Azeddine Kaddouri, External Independent Examiner
Faculté d'ingénierie, UMoncton

iv

DEDICATION

To my parents, whose unwavering support and encouragement have been my
constant source of strength and inspiration.

To my family, for their love, understanding, and belief in my endeavors, which have
driven me to achieve my goals.

To my wife Malaak, whose patience, love, and unwavering faith in me have been the
cornerstone of my journey.

This modest work is dedicated to you all. Your presence and support have been
invaluable, and I am deeply grateful.

v

ACKNOWLEGEMENT

Above all, I would like to thank Almighty ALLAH for giving me health, strength, and

willingness to begin and complete this project.

First, this work would not have been possible without the invaluable help and

guidance of Dr. Mohamad Saad and Dr. Maarouf Saad. I am deeply grateful to them

for their exceptional supervision, patience, and valuable advice, as well as their

availability throughout the preparation of this project.

I extend my sincere appreciation to the members of the jury, Dr. Nahi Kandil, Dr.

Yassine Kali, and Dr. Azeddine Kaddouri. Thank you for your valuable time,

insightful comments, and constructive feedback.

I would also like to acknowledge the financial support provided by the “Natural

Sciences and Engineering Research Council of Canada (NSERC)”, “Fondation J.A.

DeSève”, and “Fondation de l’UQAT”. Your generous contributions have enabled me

to pursue and complete this research.

Lastly, I would like to thank the University for providing a stimulating environment

and the resources necessary to complete this research.

vi

TABLE OF CONTENTS

BOARD OF EXAMINERS .. III

DEDICATION... IV
ACKNOWLEGEMENT .. V

TABLE OF CONTENTS ... VI

LIST OF FIGURES .. IX
LIST OF TABLES .. XI

LIST OF ACRONYMS AND ABBREVIATIONS ... XII
RÉSUMÉ ... XIII

ABSTRACT .. XIV
1. INTRODUCTION ... 1

1.1 Overview ... 1
1.2 Mobile robots ... 2

1.2.1 Non-Holonomic WMRs .. 4

1.2.2 Holonomic WMRs .. 6
1.3 Control methods .. 7

1.3.1 Trajectory tracking ... 7
1.3.2 Linearization-based MPC .. 9
1.3.3 NMPC .. 10

1.4 Motivation .. 13

1.5 Objectives ... 13
1.6 Methodology .. 14

1.7 Project contributions .. 15

1.8 Thesis outline .. 15
1.9 Conclusion .. 16

2. PRELIMINARY SETUP ... 17
2.1 Introduction ... 17

2.2 Modeling the Omnidirectional Mobile Robot (OMR) 17

2.2.1 Kinematics modeling ... 18
2.2.2 Error Kinematics .. 23

vii

2.3 Model predictive control ... 28

2.3.1 Linear model predictive control .. 29

2.3.2 Nonlinear model predictive control ... 32
2.4 Conclusion .. 35

3. ENHANCED MPC FOR OMNIDIRECTIONAL ROBOT MOTION TRACKING

USING LAGUERRE FUNCTIONS AND NON-ITERATIVE LINEARIZATION 36
3.1 Introduction ... 36

3.2 Model of the omnidirectional mobile robot ... 37

3.3 Constraints .. 37
3.4 Duality principal and non-iterative linearization .. 38
3.5 MPC with Laguerre functions... 40

3.5.1 Introduction to Laguerre functions ... 40
3.5.2 Laguerre-based MPC .. 42

3.5.3 Constrained solution using Laguerre functions 45

3.5.4 The LMPC algorithm .. 46
3.6 Comparative studies and analyzes .. 47

3.6.1 Simulations results .. 47
3.6.2 Experimental results .. 51

3.7 Conclusion .. 54

4. NMPC FOR TRAJECTORY TRACKING OF OMNIDIRECTIONAL ROBOT

USING RESILIENT PROPAGATION .. 55
4.1 Introduction ... 55

4.2 Constrained NMPC setup .. 56

4.2.1 Prediction model .. 56
4.2.2 Optimization problem ... 57

4.3 Optimization algorithm ... 61
4.3.1 RPROP ... 61

4.3.2 ARCPROP.. 63

4.4 Simulation Results ... 64
4.4.1 Simulation setup .. 64

4.4.2 Tracking analysis and computational resources 66

viii

4.5 Experimental results .. 71

4.6 Conclusion .. 74

5. STABITITY ANALYSES .. 75
5.1 Introduction ... 75

5.2 NMPC setup using the error dynamics .. 76

5.3 Feasibility of NMPC ... 77
5.4 Stability of NMPC .. 78

5.5 Characterizing the terminal components using QIH method 80

5.6 Experimental results .. 82
5.6.1 Eight-shaped trajectory with time-variant orientation 82
5.6.2 Square trajectory ... 86

5.7 Conclusion .. 89
6. CONCLUSION .. 90

ANNEXE A – IMPLEMENTATION SETUP .. 93

REFERENCES ... 96

ix

LIST OF FIGURES

FIGURE 1 NON-HOLONOMIC (ON THE LEFT) AND HOLONOMIC (ON THE

RIGHT) LOCOMOTION .. 3

FIGURE 2 CONVENTIONAL WHEELS ... 4

FIGURE 3 DIFFERENTIAL WHEELED ROBOT: PIONEER 3-DX 5

FIGURE 4 CAR-LIKE ROBOT: MUSHR ... 5

FIGURE 5 OMNIDIRECTIONAL WHEELS ... 6

FIGURE 6 ROBOTINO-FESTO OMR AND ITS OMNI-DRIVE 17

 FIGURE 7 LOCALE AND GLOBAL FRAMES .. 19

FIGURE 8 REAL AND VIRTUAL ROBOTS ... 23

FIGURE 9 AVERAGE COST RATIO (ACR) PER ITERATION 50

FIGURE 10 TRACKING THE EIGHT SHAPED TRAJECTORY IN REAL-TIME: (A)

USING LMPC AND MPC, AND (B) USING NMPC. ... 52

FIGURE 11 REFERENCE STATES (BLACK SOLID LINE) AND REAL POSITIONS

(RED SOLID LINE) USING LMPC .. 53

FIGURE 12 APPLIED CONTROL INPUTS (BLACK SOLID LINE) AND ESTIMATED

ACCELERATIONS (RED SOLID LINE) USING LMPC 54

FIGURE 13 TRACKING THE EIGHT SHAPED TRAJECTORY: UNCONSTRAINED

CASE .. 66

FIGURE 14 OPTIMIZED CONTROL SIGNALS: UNCONSTRAINED CASE 67

FIGURE 15 TRACKING THE EIGHT-SHAPED TRAJECTORY: CONSTRAINED

CASE. ... 68

FIGURE 16 POSITION TRACKING ERRORS: CONSTRAINED CASE 70

FIGURE 17 COMPARISON OF CONTROL SIGNALS IN CONSTRAINED AND

UNCONSTRAINED CASES .. 70

x

FIGURE 18 OVERVIEW OF THE TRAJECTORY TRACKING EXPERIMENT. 71

FIGURE 19 REAL-TIME TRACKING OF THE EIGHT SHAPED TRAJECTORY 72

FIGURE 20 REAL-TIME POSITION TRACKING. ... 72

FIGURE 21 REAL-TIME VELOCITIES TRACKING. ... 73

FIGURE 22 REAL-TIME POSITION TRACKING ERRORS. 73

FIGURE 23 TRACKING THE EIGHT-SHAPED TRAJECTORY WITH TIME

VARIANT ORIENTATION ... 83

FIGURE 24 POSITION TRACKING OF THE EIGHT-SHAPED TRAJECTORY WITH

TIME-VARIANT ORIENTATION .. 84

FIGURE 25 VELOCITIES TRACKING OF THE EIGHT-SHAPED TRAJECTORY

WITH TIME-VARIANT ORIENTATION .. 84

FIGURE 26 CONTROL INPUTS COMPUTED WHILE TRACKING THE EIGHT-

SHAPED TRAJECTORY WITH TIME-VARIANT ORIENTATION 85

FIGURE 27 TRACKING ERRORS WHEN TRACKING THE EIGHT-SHAPED

TRAJECTORY WITH TIME-VARIANT ORIENTATION 86

FIGURE 28 TRACKING THE SQUARE TRAJECTORY ... 87

FIGURE 29 TRACKING THE SQUARE TRAJECTORY ... 88

FIGURE 30 TRACKING THE SQUARE TRAJECTORY ... 88

FIGURE 31 COMMUNICATION BETWEEN CONTROL UNIT AND ROBOTINO ... 95

xi

LIST OF TABLES

TABLE 1 NUMBER OF CONTROL PARAMETERS AND TIME PER ITERATION .. 50

TABLE 2 MEAN QUADRATIC TRACKING ERRORS FOR DIFFERENT

STRATEGIES ... 51

TABLE 3 MAXIMUM TIME PER ITERATION, AVERAGE TIME PER ITERATION,

TIME RATIOS AND MEAN QUADRATIC TRACKING ERRORS FOR

DIFFERENT STRATEGIES: UNCONSTRAINED CASE 68

TABLE 4 MAXIMUM TIME PER ITERATION, AVERAGE TIME PER ITERATION,

TIME RATIOS AND MEAN QUADRATIC TRACKING ERRORS FOR

DIFFERENT STRATEGIES: CONSTRAINED CASE 69

TABLE 5 QUADRATIC TRACKING ERRORS FOR DIFFERENT STRATEGIES:

REAL-TIME EXPERIMENT ... 74

TABLE 6 ROOT MEAN SQUARE ERRORS FOR DIFFERENT STRATEGIES:

REAL-TIME EXPERIMENT ... 85

TABLE 7 ROBOTINO NETWORK PARAMETERS ... 94

xii

LIST OF ACRONYMS AND ABBREVIATIONS

AS Active-Set

ARCPROP A Robust Convergent Propagation

DARE Discrete-time Algebraic Riccati Equation

IP Interior-Point

iLQR iterative Linear Quadratic Regulator

LQR Linear Quadratic Regulator

LMPC Laguerre-based Model Predictive Control

MPC Model Predictive Control

NMPC Nonlinear Model Predictive Control

NMPCAS Nonlinear Model Predictive Control using Active-Set

NMPCIP Nonlinear Model Predictive Control using Interior-Point

NMPC-PROP Nonlinear Model Predictive Control using Resilient Propagation

NOP Nonlinear Optimization Problem

OMR Omnidirectional Mobile Robot

PID Proportional Integral Derivative

PWM Pulse Width Modulation

QIH Quasi Infinite Horizon

RPROP Resilient Propagation

UGV Unmanned Ground Vehicle

WMR Wheeled Mobile Robot

xiii

RÉSUMÉ

Ce projet se concentre sur le contrôle autonome de suivi de trajectoire des robots
mobiles à roues, avec une emphase particulière sur les robots omnidirectionnels
capables de se déplacer instantanément dans n'importe quelle direction sans
réorientation. L'objectif principal du projet est le développement de stratégies de
contrôle non linéaires basées sur les principes de contrôle prédictif. Ces stratégies
sont conçues pour assurer des performances de suivi fiables pour les systèmes de
robots mobiles présentant des non-linéarités et des contraintes opérationnelles.

Le projet commence par développer la représentation cinématique du robot
omnidirectionnel, qui sert de base à la conception ultérieure des commandes.
Ensuite, deux approches de contrôle distinctes sont formulées pour la tâche de suivi
de trajectoire des robots mobiles omnidirectionnels, en particulier dans des
scénarios caractérisés par des non-linéarités et des contraintes opérationnelles. La
première approche est une méthode prédictive optimale qui utilise des techniques de
linéarisation non itératives pour gérer efficacement les non-linéarités du système.
Elle intègre également les fonctions de Laguerre pour améliorer l'efficacité de calcul,
réduisant ainsi le temps de calcul du contrôle. La deuxième approche exploite la
nature non linéaire inhérente à la dynamique du robot et emploie des méthodes
d'optimisation résilientes pour répondre à la complexité de calcul associée à cette
méthode. L'analyse de stabilité est réalisée pour déterminer les conditions
nécessaires pour assurer la stabilité nominale de système non linéaire

Les deux méthodes de contrôle sont rigoureusement vérifiées dans un
environnement de simulation. De plus, les performances de ces méthodes sont
comparées à des méthodes de référence de la littérature existante, démontrant leur
efficacité et leurs capacités. Pour valider davantage l’aspect pratique et la pertinence
des stratégies de contrôle proposées, des expériences en temps réel sont menées.
Ces expériences confirment le développement théorique et montrent l’efficacité des
méthodes pour des missions et des applications réelles.

Mots-clés: Robot mobile à roues, Robot mobile omnidirectionnel, Commande
prédictive basée sur le modèle, Estimation stochastique, Fonctions de Laguerre,
Propagation résiliente, Stabilité.

xiv

ABSTRACT

This project focuses on the autonomous tracking control of wheeled mobile robots,
with a specific emphasis on omnidirectional robots capable of instantaneous
movement in any direction without reorientation. The project's primary focus is the
development of nonlinear control strategies based on predictive control principles.
These strategies are designed to deliver reliable tracking performance for mobile
robot systems that exhibit nonlinearities and operational constraints.

The project begins by developing the kinematic representation of the omnidirectional
robot, which serves as the foundation for subsequent control design. Next, two
distinct control approaches are formulated for the task of trajectory tracking for
omnidirectional mobile robots, particularly in scenarios characterized by
nonlinearities and operational constraints. The first method is an optimal predictive
method utilizes non-iterative linearization techniques to effectively handle
nonlinearities in the system. It also incorporates Laguerre functions to enhance
computational efficiency, reducing the computational cost of control. The second
approach leverages the inherent nonlinear nature of the robot's dynamics and
employs resilient optimization methods to address the computational complexity
associated with this approach. Stability analyses is conducted to determine the
necessary conditions to achieve nominal stability for the nonlinear controller.

Both control methods are rigorously verified in a simulated environment. Additionally,
the performance of these methods is compared against benchmark methods from
existing literature, demonstrating their effectiveness and capabilities. To further
validate the practicality and suitability of the proposed control strategies, real-time
experiments are conducted. These experiments confirm the theoretical development
and demonstrate the effectiveness of the methods for real-world missions and
applications.

Keywords: Wheeled mobile robot, Omnidirectional mobile robot, Model predictive
control, Stability, Stochastic estimation, Laguerre functions, Resilient propagation

1

1. INTRODUCTION

1.1 Overview

The past two decades have witnessed a huge evolution in the hardware and

software technologies, which subsequently led to the presence of a wide range of

automated machines in everyday activities, including mobile robots. With a quick

look around, one can notice the increasing endorsement of mobile robots in different

sectors of society, which nowadays are adopted for transportation, heavy-duty

works, and repeatable tasks in warehouses and industries [1], for monitoring

hazardous and contaminated environments [2], and for leading exploration missions

in outer space [3], in underground mines [4], and even in the deep oceans [5]. Mobile

robots have also entered the household environment as personal assistances [6] or

for entertainment [7], they’ve joined rescue missions [8] and military operations [9]

and became a powerful tool in educational systems [10].

The roles of mobile robots vary from one utilization to another, based on the needs

of the field of application, and the type of solutions required. For instance, in the

health sector, due to the recent COVID-19 pandemic, the closeness of a human has

been considered dangerous for patients, hence, the urge to free some positions of

the human operators increased [11]. Although the presence of the human staff

remains mandatory, some basic operations, like patients monitoring, temperature

measurements, and delivering products and documents can be performed with the

assistance of well automated mobile robots. Another promising domain of application

for mobile robots is in the mine industries. Underground mines are considered

particularly unsafe environments, due to several sources of danger, including falling

rocks, lack of light, confinement and the occurrence of toxic gases [12, 13]. In such

an environment, mobile robots can be enrolled to perform a wide variety of tasks,

including automatic inspections, exploration of unsafe areas, measurement of

environmental conditions and participating in rescue missions [14]. By involving

mobile robots in the mining operations, many dangers can be avoided when sending

machines instead of humans in hazardous areas. These robots can also work

alongside humans, which improve the efficiency and accuracy factors. Some mining

2

operations, such as transportation, have started the transition into automation [15];

however, a full automated mine is far from being complete.

Presently, mobile robots are increasingly being trusted to execute tasks in well-

known constructed environments, on flat and compact floors, and they are widely

commercialized [16]. Furthermore, with the advancements in sensor and camera

technologies, mobile robots are now also used in unknown environments for

exploration missions. However, their application in these unbuilt environments, such

as agricultural fields and underground mines, is still constrained. In this kind of

unknown terrains, roads conditions and environmental conditions are expected to be

severe, and mobile robots require a higher degree of autonomy, adaptation and

robustness, with good knowledge of their surroundings. One of the key operating

conditions for mobile robots is trajectory tracking which aims to converge the robot to

the desired trajectory which can be uploaded or generated using path-planning

methods [17].

1.2 Mobile robots

Mobile robots are systems with moving platforms, remotely controlled, or free to

move autonomously from one place to another in their predefined surrounding

workspace without any human intervention. With a large variety of applications

where mobile robots can be used, different types of robots have been developed, to

cover this range of usability, and therefore, today’s robots can fly, jump, run, walk,

skid, swim and roll [18]. Based on their locomotion, mobile robots can be classified

into three major categories: unmanned aerial vehicles, autonomous underwater

vehicles and land-based robots [19].

Land-based robots, also known as Unmanned Ground Vehicles (UGVs), are the

most common among the robotic society, which can be justified by their design’s

simplicity and the exposure to greater knowledge [20]. UGVs can be further divided,

based on the locomotion’s mechanism, into few sub-categories where the best-

known ones are as follows:

3

• Wheeled mobile robots (WMRs)

• Legged (or walking) mobile robots

• Tracked mobile robots (slip/skid locomotion)

• Hybrid ground’s robots

The majority of these robots are inspired from their biological analogous organisms,

due to the success of these biological systems in moving smoothly through the

harshest non-built environments. However, copying these systems can be extremely

complicated for several reasons including the mechanical complexity, the high

degree of balancing needed and the high cost.

The wheel’s invention is considered one of the most important developments in

human history, that allowed more efficient transportation and for longer distances.

The wheel also had deep impact on the development of technologies including

mobile robots. WMRs are commonly used in a wide range of applications, due to

their advantages over other types of robots which includes the simpler and more

cost-effective design, the ability to move faster and more efficiently on smooth

surfaces and the higher carrying capacity [18].

Figure 1
Non-holonomic (on the left) and holonomic (on the right) locomotion
Source: [19]

4

Depending on the type of wheels used, their number and their positions, we can

distinguish many types of WMRs where most of them can be placed into two

categories: Holonomic and non-holonomic mobile robots where the main difference

between them lies in their ability to move and turn in different directions. Holonomic

systems can move in any direction instantaneously, whereas the instant movement

of non-holonomic systems is restricted as illustrated in Figure 1.

1.2.1 Non-Holonomic WMRs
This type of WMRs has more degrees of freedom than control inputs which means

they don’t have full control of all their degrees of freedom and therefore they must

turn in order to change direction, and that limits their mobility. This type of robots

uses conventional wheel types (Figure 2). There exist many types of non-holonomic

WMRs, we mention two of them as follows:

Figure 2
Conventional wheels
Source : [19]

• Differential wheeled robots

These are non-holonomic robots that have two separately driven wheels and at least

one castor wheel for balance purpose. The change of direction is done by changing

the rate of rotation of each driven wheel, and thus, there is no need of any steering

motion (Figure 3).

5

Figure 3
Differential wheeled robot: Pioneer 3-DX
Source: [21]

• Car-like robots

These robots have two fixed wheels placed on the same axis and two steerable

wheels on another axis. The movement of this type of robots is determined by the

speed of the fixed wheels and the orientation of the steering wheels (Figure 4).

Non-holonomic WMRs are often characterized by their simple mechanism along with

the generally low price, however, their movement’s constraint prevents them from

being used in certain applications.

Figure 4
Car-like robot: MuSHR
Source: [22]

6

1.2.2 Holonomic WMRs
A robot is said to have holonomic movement when it’s capable of moving in any

direction without reorientation. This type of movement is achieved using special

wheel types known as omnidirectional wheels which include Omni-wheels, Mecanum

wheels and Ball wheels (Figure 5). The Omni-wheels have rollers attached

tangentially around the girth of the wheel, which give the wheel three degrees of

freedom: around the wheel axle, around the roller axle and around the contact point

[19]. These wheels are mostly configured in three wheels format at 120 degrees from

one another or using four wheels where adjacent wheels are perpendicular.

Mecanum wheels have similar design to omni-wheels except that the rollers are

placed at 45 degrees of the main wheel which allows the use of larger roller axis and

hence increase the payload capacity.

Figure 5
Omnidirectional wheels
Source: [19]

The Holonomic robots have the capacity to perform complex path following which

gives it significant potential in different kinds of activities. On the other hand, the

rollers mechanism adds mechanical complexity, and increases the skidding effects,

7

hence the need for advanced control methods that can achieve autonomy, stability,

and robustness.

1.3 Control methods

As stated in the above sections, WMRs are intended for applications in different

kinds of environments, which most likely to have severe operation conditions and to

pose constraints on the robots’ movement. Hence, a sufficient degree of autonomy is

required to allow the WMRs to operate in such environments, which can be done by

using advanced control methods. The nonlinearities in the WMRs systems and the

complex operation conditions have motivated researchers to develop and apply a

wide range of control architectures.

1.3.1 Trajectory tracking
Trajectory tracking is one of the most addressed problems in controller design which

aims to bring the robot closer to the desired trajectory. Tracking accuracy and

constraints handling are two main criteria in developing the control algorithms along

with the ability to deal with nonlinear and multivariable characteristics of the systems

and the applicability in real-time applications. In recent years, many control

strategies have been proposed to solve the trajectory-tracking problem of the WMR

[23, 24]. In [25], a PI controller tuned by an adaptive fuzzy logic was used as a high-

level controller for an WMR. The fuzzy-PI, which corrects the kinematic errors, was

paired with a linear quadratic regulator (LQR) as a low-level control of the velocities

and accelerations. This combination showed significant improvement over a PI

control alone; however, the use of an LQR for low-level control caused a deviation

between the desired and the actual paths which greatly increased in the real-time

application and led to unsatisfactory results. A control scheme taking into

consideration the kinematic and dynamic uncertainties of the WMR was proposed in

[26]. A sliding-mode-based observer was used to estimate these uncertainties, then

a feedback linearization controller was used to handle such uncertainties. The

controller showed a good trajectory-tracking performance. Nonetheless, since these

methods cannot handle constraints directly, saturation was used to limit the control

signals, which is not acceptable in practice. Another controller for the WMR was

8

presented in [27], which uses a linearizing adaptative algorithm for the kinematic

control. This causes some singularities in the control signals. Such singularities are

dealt with by switching to a sliding mode controller around them. Indeed, the

resulting approach helps to reduce the control effort and eliminate the singularities;

however, the risk of chattering appears which may harm the actuators. In [28], a

bioinspired backstepping controller was proposed. It performs the tracking task while

reducing the large velocity jumps that occur in the traditional backstepping control. A

super-twisting sliding mode controller was also developed in [29] to overcome the

chattering effect encountered in the traditional method. Both sliding mode and

backstepping are efficient when controlling nonlinear systems. Nonetheless, they are

limited to unconstrained problems as they cannot handle constraints explicitly. A

combination of such methods with the barrier functions was proposed to deal with

constrained problems [30, 31]. However, this often leads to an undesired design

complication especially in the presence of complex nonlinear constraints. Model-free

control schemes were used in [32, 33]. Using a visual serving strategy in [33]

provides a unified algorithm for tracking and regulation. However, these model-free

methods ignore useful information from the system model, and they are less

adequate compared to systematic methods.

To overcome the above-mentioned problems, one can consider the model-based

predictive control (MPC). It is one of the advanced techniques that now has a huge

impact on the development of control systems and on research in feedback control

areas and has achieved remarkable success in the practical field [34, 35]. This

success of the MPC is attributed to many reasons. First, due to the finite control

horizon, nonlinear systems dynamics, and process inputs, state and output constraints

can be handled directly by the MPC algorithms. Moreover, the prediction aspect of this

method over a future time horizon makes it possible to anticipate and remove the

effect of disturbances, which leads to better tracking of the future trajectory. Finally,

MPC principles and algorithms are relatively easy to understand and to extend to

multi-input multi-output systems [36, 37]. The general idea of MPC is to solve an

online open-loop optimization problem at each sampling time, and to find a trajectory

9

of future manipulated variables that optimize the future behavior of the system outputs

within a limited time window. Traditionally, MPC was only applied to sufficiently slow

systems due to the high computational cost required to perform the online

optimization, but thanks to increased hardware efficiency, MPC is now applicable to

systems with faster dynamics.

1.3.2 Linearization-based MPC
Since most systems are inherently nonlinear, linear MPC algorithm cannot be applied

directly. Therefore, linearization mechanisms are needed to approximate the nonlinear

behavior. In [38], the nonlinear system was modeled in the Weiner model structure,

which divides the system into two parts, a linear time invariant system followed by a

static nonlinear element. Then, linear MPC was used for the linear part and polynomial

representation for the nonlinear part; however, for the Weiner model to properly

describe the nonlinear aspects of the system, prior knowledge of these nonlinearities

should be available, which is not the case for most systems, and a simple polynomial

representation does not give an accurate description of these nonlinearities. Similarly,

in [39], a NARMA-Volterra model was selected to represent the brain and used to

predict neural activity. In addition, Laguerre functions were introduced to reduce the

number of estimation parameters in the Volterra model, and then linear MPC was

applied to solve the optimization problem. Nonetheless, Volterra models exhibit high

level of complexity, which makes it impractical in modeling strong nonlinearities, and in

order to reduce it, prior knowledge of the nonlinear aspect is required. Another popular

way to deal with nonlinearities is to linearize the system at each time instant, along the

desired trajectory using the Lyapunov method, and to use this linear approximation to

compute the predicted future trajectory and then apply the well-known linear MPC [40];

however, when using an approximation at the current time instant to predict the whole

future trajectory, the error of the linearization will accumulate, which leads to a poor

prediction process. In [41], a duality-based control algorithm has been developed to

control a two-wheeled differential robot. The approach uses the duality between

optimal control and stochastic filtering to approximate the manipulated variables, and

to linearize the nonlinear systems. The linearization and prediction processes were

based on the duality without dependence on the future control signals. The algorithm

10

led to better approximation of the nonlinear plants compared to other linearization-

based methods; however, the algorithm consists of two passes, forward for

linearization and prediction, and backward for smoothing and control signals

approximation, which double the computation time.

Although linear MPC does not usually require a high computational capacity, some

multi-input multi outputs systems may have a large number of optimization variables,

especially if a long control horizon is needed. This may increase the computational

demand. One solution for this issue is to use Laguerre functions to parametrize the

control variables. This allows the realization of a longer control horizon with fewer

optimization parameters, which consequently reduces the computational time [42,

43]. In [44], Laguerre functions were used to parametrize linear MPC. The resulting

algorithms were compared to other approaches and showed significant improvement

regarding the computational cost and the number of optimization variables; however,

only simulation results were given without real-time implementation.

In [45], the effect of the parametrization using Laguerre functions on the feasibility

and performance of the MPC was analyzed, and it showed great improvement on the

feasibility while maintaining a good performance; however, only dual mode MPC,

which uses an infinite horizon for prediction, was considered. Recently in [46], an

MPC controller parametrized by Laguerre functions was used to control a fast-

switching electronic DC-DC converter allowing the use of a significantly short

sampling time. Laguerre functions were first used with MPC in [47], which later has

been expanded in [48] where a comprehensive study on the use of Laguerre

functions with MPC is given, and which all the above-mentioned studies refer to;

however, only linear systems that are supposed to remain constant during the entire

prediction process are considered.

1.3.3 NMPC
MPC can explicitly handle nonlinearities, and since most systems are inherently

nonlinear, many nonlinear model predictive control (NMPC) algorithms have been

developed using iterative solutions to solve the optimization problem [49]. In [50], a

11

basic NMPC algorithm that uses the gradient descent method was applied to solve an

WMR trajectory tracking with obstacle avoidance. The algorithm gave effective results

in both simulation and real-time experiments; however, in the experiments, due to the

high computational load, the movement direction and speed were fixed and only the

orientation was controlled by NMPC. Using nonlinear systems directly in the NMPC

algorithm often leads to undesired complexity and high computational demand.

Therefore, studies have been conducted to overcome these problems [51-53].

Selection of NMPC parameters such as prediction and control horizons correctly

could be a key factor to minimizing the computational burden [54]. In [55], the length

of the prediction horizon was determined at each control step separately using a

multilayer neural network based on the error magnitude. Moreover, hardware

equipment was chosen effectively to optimize the speed of the performing actuators

and increase the computational capability. This combination resulted in 40% faster

computation compared to the conventional NMPC. Unfortunately, these adaptations

are problem specific and cannot be applied to all systems.

The optimization algorithm is the most addressed component of NMPC to improve

computational efficiency. To this end, numerous approaches were developed to deal

with the Nonlinear Optimization Problem (NOP). In [56] and [57], the continuation

method was combined with the Generalized Minimal Residual method (GMRES) to

solve the NOP. The former method transforms the nonlinear problem to a linear one

which is then solved by the latter one. This approach requires that the system and

the objective function to have specific characteristics, hence it is not suitable for all

problems. In addition, when dealing with complex systems and performance indices,

programing this method is very challenging. Neural optimizations are commonly

used when solving the NOP [58, 59]. In [58], a one-layer projection neural network

was presented for the quadratic optimization. A faster convergence was achieved

while maintaining computational efficiency. In [60] Neural-dynamic optimization was

considered where the MPC was iteratively transformed to a quadratic programing

problem, which is solved using primal-dual neural network. The proposed algorithm

was applied to solve the trajectory tracking of a mobile robot and significantly

12

reduced the computation complexity. However, neural-based methods require a

substantial amount of data for training which might be unavailable. Their

generalization to different problems may also be difficult without retraining. Another

type of optimization algorithm is the metaheuristic strategies. They are general-

purpose techniques employed successfully in a vast range of NOP. The suitability of

these methods to the NMPC was studied in [61] where three of them, the particle

swarm optimization, the ant colony optimization, and the gravitational search

algorithm, were compared. Results showed a good tracking performance with

sufficiently low computational burden. However, these methods only provide an

approximate solution, therefore, neither convergence nor optimality can be

guaranteed.

Conventional exact methods remain the most reliable when it comes to guaranteeing

convergence and optimality, which led to the development of a wide variety of these

approaches, including Interior Point algorithm (IP) [62, 63], Active-Set algorithm (AS)

[64, 65], sequential programing (SQ) and many others. Despite the great

computational advantages achieved by these methods, their application to fast

dynamic systems such as WMR is still restricted to specific cases, such as linear

optimization and problems with limited number of optimization variables [66]. A

gradient-based method was introduced in [67] to optimize the neural networks’

parameters. This approach is called resilient propagation (RPROP), and it aims to

achieve faster convergence by using only the sign of the partial derivative of the

error function, and replacing its value with an adaptive step size which evolves

during the optimization process. It is widely used to optimize neural networks,

whereas its application outside of this domain remains limited [68, 69]. In [70], NMPC

using the classical RPROP algorithm was presented for trajectory tracking of a

quadrotor. Results showed important reduction in computational demand while

maintaining tracking accuracy. However, the original RPROP does not ensure

convergence as shown in [71, 72]. In [71], A Robust Convergent variant of RPROP

(ARCPROP) was presented which ensures convergence. In addition to RPROP

mechanism, the new variant considers the overall error function and backtracks

13

along all dimensions if the previous step did not achieve sufficient reduction. To the

best of our knowledge, none of the existing approaches considered constrained

NMPC using RPROP.

Overall, the control of WMRs remains an ongoing challenge within the research

community. New methods are emerging daily, each with their advantages and

disadvantages, to achieve full autonomy of WMR.

1.4 Motivation

Numerous control methodologies have been proposed with the aim of achieving

effective autonomous control for WMR. The primary emphasis in many of these

approaches has been on enhancing tracking performance, a critical component in

progressing toward full autonomy. Ensuring stability and feasibility has also received

attention to ensure good performance and real-time applicability.

However, a common limitation among these methods is the predominant focus on

the primary control objective, often overlooking the constraints inherent in nearly all

real-world systems. Moreover, some of these methods completely disregard the

system model, which can contain valuable information essential for controller design

in many cases. Additionally, a notable drawback in several proposed methods is

their limited suitability for on-board implementation due to the high computational

complexity involved.

Motivated by the promising advantages offered by MPC and NMPC in attaining

autonomous control for mobile robots, this research aims to leverage these two

approaches in the development of a novel controller for WMR.

1.5 Objectives

The overarching aim of this project is to develop a more practical tracking algorithm

for WMR that adeptly handles nonlinearities, maintains high performance, and

demands minimal computational resources, enabling real-time applicability. To

achieve this objective, two distinct approaches are explored in this research: A

linearization-based method and an approach that directly utilizes the nonlinear

14

characteristics of the system. Incorporating constraints on control and state variables

is a key aspect to ensure that the proposed solutions lie within the feasible operating

space of the robot. Comprehensive testing has been conducted using the new

Robotino Festo Omnidirectional Mobile Robot (OMR) at UQAT's indoor laboratory to

validate and assess these approaches.

The specific objectives of this research are as follows:

• Formulate the kinematic representations for the newly introduced OMR.

• Design model-based controllers adapted for the task of trajectory tracking, with a

focus on accommodating both state and control constraints.

• Conduct a comparative analysis of the controllers’ performance against other

existing methods documented in the literature.

• Implement the designed controllers in practical, real-time applications to assess

their effectiveness under real-world conditions.

1.6 Methodology

The objectives outlined above are realized through the following methodology:

• Develop kinematic representations of the newly introduced Robotino-Festo OMR.

This involves the creation of MATLAB/Simulink® toolboxes to facilitate simulation

and practical implementation.

• Establish the theoretical foundations for the novel controllers, including the

formulation of associated optimization problems. These approaches are

specifically designed to address the system's nonlinearities, constraints, and

computational complexity.

• Conduct a stability analysis to determine the necessary conditions for achieving

nominal stability of the nonlinear system.

• Perform a comparative evaluation of the proposed methods in a

MATLAB/Simulink® environment against benchmark methods documented in the

literature. The assessment encompasses tracking accuracy and computational

efficiency.

15

• Validate the designed controllers through real-time trajectory tracking

applications using the Robotino Festo mobile robot. These practical tests provide

valuable insights into the controllers' real-world performance.

1.7 Project contributions

Despite the extensive efforts invested in investigating the tracking challenges faced

by WMR, it remains a challenging subject in motion control. This work contributes to

this domain in the following ways:

• Enhanced linearization-based tracking algorithm: Leveraging the duality principle

linking stochastic filtering and optimal control, an advanced controller is

introduced. This controller offers an improved approximation of the nonlinear

system behavior by non-iteratively linearizing the system along the prediction

horizon. This enhancement significantly boosts tracking performance.

Furthermore, the integration of Laguerre functions helps offset the additional

computational load. The novel contribution here is the fusion of stochastic

estimation with the MPC setup, eliminating the iterative nature typically

associated with these methods.

• NMPC with resilient propagation-based algorithm for optimization: This work

investigates the utilization of an RPROP-based optimization algorithm within the

framework of NMPC. The research explores properties related to convergence,

the handling of constraints, and the real-time feasibility of this approach.

Additionally, the stability properties of the controlled system are analysed and

necessary conditions for nominal stability are presented.

1.8 Thesis outline

The outline of this thesis is as follows:

The first chapter provides an introduction to WMRs including a background on

mobile robot technology and various control methods. It also explains the motivation

behind this thesis and its objectives. The second chapter presents the kinematic

properties of the OMR and their different representations. It also highlights the

traditional setup for the two control methods MPC and NMPC.

16

In the third chapter, the duality between the stochastic filtering and optimal control is

presented and incorporated into the MPC setup along with the Laguerre functions.

Simulation and practical testing are conducted and reported to validate the new

method.

The fourth chapter presents the second approach utilizing the resilient propagation

method and the external penalty method to solve the constrained nonlinear

optimization problem of the NMPC algorithm.

In the fifth chapter, a stability analyse for the NMPC controller is conducted and the

necessary terminal components are constructed to achieve nominal stability. Finally,

the conclusion and recommendations of the thesis are given.

1.9 Conclusion

This chapter highlights the expanding role of mobile robots across various domains,

driven by technological progress. It discusses the different challenges that WMRs

encounter, particularly in complex and unpredictable environments, and underscores

the critical need for efficient trajectory tracking controllers. This chapter also outlines

the motivation behind the research, defines the objectives, and describes the

methodologies used. These elements collectively pave the way for the development

of advanced model-based predictive control strategies tailored for WMRs.

17

2. PRELIMINARY SETUP

2.1 Introduction

This chapter presents an introduction to the various techniques applied in this

project, including their essential configurations. We start by introducing the robot

employed in this study, outlining its characteristics, constraints, and presenting its

diverse kinematics representations. Following this, we introduce the Model Predictive

Control (MPC) method, covering its application to both linear and nonlinear systems.

Lastly, a concise overview of Laguerre functions and their relevance is provided.

2.2 Modeling the Omnidirectional Mobile Robot (OMR)

For this study, the Robotino-Festo three-wheeled OMR is considered. Robotino®

(Figure 6) is a mobile robotic system created by Festo Didactic [73]. Its main purpose

is to facilitate practical learning and skill development in various fields, including

robotics, mechatronics, measurements, wireless control, signal processing, and

programming, among others. Some of its notable features include autonomous

movement in all directions, with the ability to identify and avoid obstacles.

Figure 6
Robotino-Festo OMR and its Omni-drive
Source: [73]

It is equipped with embedded sensors and actuators, enabling wireless

communication with other devices. Additionally, Robotino® supports the integration

of new components through a mounting tower, supports an open-source concept,

and provides software interfaces compatible with various programming languages.

The whole system is controlled by an embedded PC to COM Express specifications

18

with Intel i5, 2.4 GHz dual core, 8 GB RAM and 23 GB SSD. For the motors control,

a 32-bit microcontroller is used. It generates the PWM signals for actuating the DC

motors using a PID controller. The microcontroller is also used to correct the sensors

data. A planetary gear unit with transition ratio 32:1 is used between the drive shafts

and omni-wheels [74, 75]. The robot has a maximum translational and rotational

speeds of 2m/s and 2rad/s respectively, and it accepts translational and rotational

velocities as inputs, which are expected to be updated every 70ms.

Robotino® has three degrees of freedom and can achieve any translational and

rotational movements regardless of its initial orientation. The three omni-wheels,

placed at 120o from each other, allow the robot to turn on the spot and to move in

any direction.

2.2.1 Kinematics modeling
To derive the kinematics representation of the OMR, we define a global frame

(), ,O X Y and a locale (moving) frame (), ,r r rO X Y connected to the robot (Figure

7). Let (), ,x y θ denote the position and orientation of the OMR in the global frame,

and (), ,r r rx y θ denote the position and orientation in the local frame. The local

coordinates can be transposed into the global coordinates by:

 .
r

T r

r

x x
y R y
θ θ

   
   =   
   
   

 (2.1)

where TR is the transformation matrix which maps the locale frame into the global

frame and is given as:

19

 Figure 7
Locale and global frames

cos sin 0
sin cos 0

0 0 1
TR

θ θ
θ θ

− 
 =  
 
 

 (2.2)

In the body frame, let (),x yv v and () ω be the translational and rotational velocities

of the OMR respectively. Additionally, define (),x ya a the translational accelerations

and ()aθ the rotational acceleration of the robot in the local frame. Then the state

vector is chosen as:

 ()Tx yq x y θ ν ν ω= (2.3)

and the vector of manipulated variables as:

 ()Tx yu a a aθ= (2.4)

 By using the following relation:

20

 .
x

T yR
x v
y v
θ ω

   
   =   
   
   



 (2.5)

the kinematic equations of the OMR can be written as follows:

sin
sin cos
cosx y

x y

x x

y y

x
y

a
a
aθ

ν θ ν θ

ν θ ν θ

θ ω
ν
ν

ω

= −

= +

=
=
=

=













 (2.6)

which can be written in compact form as follows:

 ()

sin
sin cos

,

cosx y

x y

x

y

a
a
a

q f q u

θ

ν θ ν θ

ν θ ν θ

ω

 
 
 
 
 = =
 
 
 
 
 

−

+

 (2.7)

Considering that the OMR requires translational and rotational velocities as inputs,

the model from equation (2.7) is adequate for the development of various controllers

and will be employed throughout the remaining chapters of this dissertation.

• Discretization

For many control methods, including MPC, a discrete model of the system is needed

to design the controller. To obtain the discrete kinematic representation of the OMR,

we apply the Euler method to equation (2.7) as follows:

 1 . (,)k k k kq q T f q u+ = + (2.8)

21

which yields the following discrete model:

 1

cos sin
sin cos

(,)

y

y

k xk k k k

k xk k k k

k k
k k k k k

xk x

yk y

k

T
T T

T
q

x

f q u f
a T
a T
a T

T
y

ν θ ν θ
ν θ ν θ

θ ω
ν
ν
ω

+

θ

+ 
 + 
 +
 
 
 
  

−
+

= ≡ =
+
+
+ 

 (2.9)

where T is the sampling time.

• Jacobian matrices

If a linearization-based method is to be used, computing the Jacobian matrices

becomes mandatory, which can be done as follows:

1 0 sin cos cos sin 0
0 1 cos sin sin cos 0
0 0 1 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

xk k yk k k k

xk k yk k k k

k
k

k

T T
T T

TfA

T T
T T

q

θν θ ν θ θ
ν θ ν θ θ θ
− − − 

 − 
 
 
 
 
  
 

∂
= =
∂

 (2.10)

and

0 0 0
0 0 0
0 0 0

0 0
00

0 0

k

k

fB
Tu

T
T

 
 
 
 
 




∂



= =
∂ 


 
 

 (2.11)

which can be used to compute the linear approximation of the system.

22

• OMR geometry

In certain applications, it is necessary to include the OMR's wheels velocities and

accelerations in the kinematic model. To accomplish this, the OMR's geometry must

be taken into consideration. The transformation matrix that converts the local speeds

of the robot into the wheel speeds can be expressed as follows:

1 1

2 2

3 3

sin cos
1 sin cos

sin cos

r

r

r

L
S L

r
L

α α
α α
α α

− 
 = − 
 − 

 (2.12)

where iα is the orientation of the axel of the ith wheel with respect to the local frame,

r and rL are the wheel’s radius and the robot’s radius respectively. Define the vector

of the wheels’ rotational velocities as:

 ()1 2 3
T

r ω ω ωΩ = (2.13)

where iω is the rotational speeds of the ith wheel. Putting (2.4), (2.12) and (2.13)

together, we obtain the relation between the robot accelerations and the wheels

accelerations as:

 1
ru S −= Ω (2.14)

Equation (2.7) can be written in matrix format as follows:

 ()
3 3 3 3

3 3 3 3 3 3

0 0
,

0 0
TR

q f q u q u
I

× ×

× × ×

   
= = +   

   
 (2.15)

where 0 and I represent the Zero matrix and the identity matrix respectively.

Replacing (2.14) in (2.15), we obtain the following kinematic representation:

23

 ()
3 3 3 3

3 3 3 3 1

0 0
,

0 0
T

r r
R

q f q q
S

× ×

× × −

   
= = +  Ω

 
Ω 

 


  (2.16)

2.2.2 Error Kinematics
When addressing a tracking problem, a frequently used method involves converting

the problem into a regulation problem with the objective of minimizing the error to

zero. To achieve this, a virtual reference robot is considered, and a model that

describes the error kinematics between the actual robot and the reference robot is

formulated. Define the global frame (), ,O X Y , the moving frame (), ,r r rO X Y

associated with the real robot, and a second moving frame (), ,d d dO X Y linked to the

virtual robot that follows the desired trajectory (Figure 8).

Figure 8
Real and virtual robots

 The state vector of the reference robot defined in (), ,O X Y is given as:

 ()T
d d d d d d dq yx y xθ ω=   (2.17)

24

and the state vector of the real robot in (), ,O X Y is:

 ()Tq x y x yθ ω=   (2.18)

Let eq be the tracking error defined in the local frame and given as:

 ()Tx ye e e e ee eq x y v vθ ω= (2.19)

Then we can write:

 ()33

330
0

T
T

dT
T

e
R

q q q
R

×

×

 
= − 
 

 (2.20)

Here the inverse of TR is equal to its transpose because it is an orthonormal matrix.
Equation (2.20) can be further elaborated and lead to the following equations:

() ()
() ()

() ()
() ()

cos sin

 sin cos

cos sin

sin cos

e d d

e d d

e d

d d

ye

e

x

d

d

e

d

x x x y y

y x x y y

v x x y y

x x y yv

θ θ

θ θ
θ θ θ

θ θ

θ θ

ω ω ω

= −

=

= − + −

=− − +

=

−

− + −

− − + −

= −

   

   

 (2.21)

To obtain the kinematic equations, we differentiate (2.21) with respect to time as

shown below:

() () () ()
() ()() ()

cos sin sin cos

sin cos cos sin cos sin

cos sin

e d d d d

d d d d

e x d d

e xe

x x x y y x x y y

x x y y x y x y

y v x y
y v

θ θ θ θ θ θ

ω θ θ θ θ θ θ

ω θ θ
ω

= − + − − − + −

= − − + − − + +

−
+

+

= + +
=





 





 

  

 

25

() () () ()
() ()() ()

sin cos cos sin

cos sin sin cos sin cos

sin cos

e d d d d

d d d d

e d d

e ye

y

y x x y y x x y y

x x y y x y x y

x v x y
x v

θ θ θ θ θ θ

ω θ θ θ θ θ θ

ω θ θ

ω

= − − + − − − − −

= − − + − − − + − +

= − − − +

= − +

 

    

   

 

 e dθ ω ω= −

() () () ()
() ()() ()

() ()

cos sin sin cos

sin cos cos sin cos sin

cos sin

cos sin

cos cos

xe d d d d

d d d d

ye x d d

ye x d d e d d e

ye x d d e

v x x y y x x y y

x x y y x y x y

v a x y

v a x y

v a x

θ θ θ θ θ θ

ω θ θ θ θ θ θ

ω θ θ

ω θ θ θ θ

ω θ θ

= − + − − − + −

= − − + − − + + +

= − + +

= − + +

= − + +

− −

 

        

       

 

 

 () ()
() ()

sin sin cos sin sin cos

cos sin cos sin cos sin
 cos sin

d e d d e d e

ye x d d d d e d d d e

ye x xd e yd

d

e

y

v a x y x y
v a a a

θ θ θ θ θ θ

ω θ θ θ θ θ θ

ω θ θ

+ − +

= − + + − − +

= − + −



   

() () () ()
() ()() ()

() ()

sin cos cos sin

cos sin sin cos sin cos

sin cos

sin cos

sin c

ye d d d d

d d d d

xe d d

xe d d e d d

d

y

y

xe dy

e

x x y y x x y y

x x y y x y x y

v a x y

v a x

a

v

y

v x

θ θ θ θ θ θ

ω θ θ θ θ θ θ

ω θ θ

ω θ θ θ θ

ω θ

= − − + − − − − −

= − − + − − − + − +

= − − − +

= − − − +

= − −

− −

−

 

       

      





 

 

 () ()
() ()

os cos sin cos cos sin sin

sin cos cos cos sin sin
 cos sin

dy d

y

e d e d d e d e

xe d d d e d d d e

xe yd e xd e

y

v a x y x y
v a a a

θ θ θ θ θ θ θ

ω θ θ θ θ θ θ

ω θ θ

− + +

= − − + − + + +

=− − + +



   

 e da aθ θω = −

26

Finally, we obtain the tracking error kinematics as follows:

 cos sin

 cos sin

e xe

e ye

d
e

ye x xd e yd e

xe yd ey xd e

d

y v
x v

v a a a
v a

q

a
a a

a

θ θ

ω
ω

ω ω
ω θ θ

ω θ θ

+ 
 + 
 
 =
 
 + 
 

−

−

+



−

−
−

− − +

 (2.22)

• Discretization

To obtain the discrete model of the error kinematics, we apply the Euler method as in

(2.8) which leads to the following representation.

()
()

()
()

()

, 1

 cos sin

 cos sin

ek k ek xek

ek k ek yek

ek ek

e k
xek k yek xk xdk ek ydk ek

yek k xek ydk ek xdk ek

ek

y

dk

k

k

T

T

T
q

x y v

y x v

v v a a a

v

T

T a

T a a

v a a

θ θ

ω

ω

θ ω

ω θ θ

ω θ θ

ω

+

 + 
 

+ + 
 

+ 
=  + 
 + + 
 +

+

−

− + −

−

− +



−



 (2.23)

where T is the sampling time. Define:

1

2

3

cos
cos

e k xdk ek xk

ek e k ydk ek k

e k dk k

y

u
u

a a
a au

u a aθ θ

θ
θ





−  
   = = −  
   −   

 (2.24)

27

By substituting (2.24) in (2.23), we obtain:

()
()

()
()

1

2

3

, 1

 sin

 sin

(,)

ek k ek xek

ek k ek yek

ek ek
e k e ek ek

xek k yek ydk ek

yek k xek xd e

e k

e kk k

ek e k

T

T

T
q

y

T Tu

T a Tu
Tu

x y v

x v

v v a

v v

f q u

ω

ω

θ ω

ω θ

ω θ

ω

+

+ 
 

+ + 
 

+ =  + + 
 + + + 
 



−

+

−

=

+

−



 (2.25)

• Linearization around the reference trajectory

When needed, a linearization around the reference trajectory can be done by

computing the Jacobian matrices. In such a case, kq would be equal to dkq , which

leads to 6 10ekq ×= . The Jacobian matrices can be found as follows:

1 0 0 0
1 0 0

0 0 1 0 0(,)
0 0 1 0
0 0 1 0
0 0 0 0

0

0 1

k dk

dk

dk

e ek ek
ek

ydk dkek q

xdk dk

q

T T
T T

Tf q uA
T Tq
a
a

T T

ω
ω

ω
ω

=

 
 − 
 ∂

= =  
−∂  

 −
  
 

 (2.26)

0 0 0
0 0 0
0 0 0(,)

0 0
0 0
0 0

e ek ek
ek

ek

f q uB
Tu

T
T

 
 
 
 ∂

= =  
∂  

 
  
 

 (2.27)

These matrices can be used to approximate the nonlinear behavior around any

reference point.

28

2.3 Model predictive control

Model Predictive Control (MPC) emerged in the late seventies and has undergone

significant development since its inception. The term "Model Predictive Control"

encompasses a wide spectrum of control methods that explicitly rely on a process

model to generate the control signals. The fundamental ideas in predictive control

methods involve explicit use of a model to predict the process output at future time

instances. This includes minimizing an objective function taking into account the

predicted behavior to compute the control signals, and applying the first control

signal from the calculated sequence at each step to control the system [76]. The

different MPC algorithms primarily distinguish themselves based on the model used

to describe the system, and the objective functions to be minimized.

MPC offers several advantages over other control methods, making it a compelling

choice for various applications. These advantages include:

• Intuitive Concepts: MPC concepts are easy to understand making them

accessible to individuals with limited knowledge of control systems.

• Constraint Handling: MPC can easily incorporate constraints into the control

design.

• Multivariable Control: MPC handles multivariable systems effectively, making it

applicable to processes of large scale.

• Future References: MPC is valuable when future references are known, such as

in robotics, as it can optimize control based on anticipated changes.

While MPC offers numerous advantages, it's not without drawbacks. One of them is

the requirement for an appropriate model of the controlled process to be available.

The design algorithm relies on prior knowledge of the process model and operates

independently of the real system. However, discrepancies between the actual, real-

world process and the model used in the control algorithm may yield suboptimal

performance. Another drawback of MPC is its computational complexity, especially

in the nonlinear case and in the presence of constraints. While the computational

power available today can handle the demands of MPC algorithms, it's essential to

29

recognize that many industrial process-control computers may not have abundant

computing resources. That why the balance between control algorithm execution and

other essential tasks is a crucial aspect of practical MPC implementation in industrial

settings.

2.3.1 Linear model predictive control
In the context of linear time-invariant systems, MPC has reached a high level of

development and acceptance. This maturity is attributed to the inherent linearity of

these systems which simplifies the prediction process, allowing for a straightforward

formulation. Even when the control objective involves nonlinear terms, MPC remains

capable of handling it without resorting to complex iterative optimization methods. In

this section, the setup for the traditional linear MPC of the OMR is presented. The

main elements of the optimal predictive controller are the cost function that describes

the control objectives, and the system model used for prediction.

• Prediction process

After linearization around an operating point, the nonlinear discrete state space

representation (2.9) becomes:

 1k k k

k k

q Aq Bu
z Cq
+ = +
=

 (2.28)

where A and B are given in equations (2.10) and (2.11) respectively, ()16kz × is

the output vector which contains the position, orientation, and velocities of the OMR,

and ()66C × is the output matrix.

At an ith random iteration, the future inputs variables are:

 1 1, , ,
i pi ik k k Nu u u+ + −… (2.29)

30

with pN is the prediction horizon representing the length of the optimization window.

For a given
ikq , the future state variables are predicted using the state space

representation as follows:

1

2
2

1 2
| | 1

1

1

i i i

i i i i

p p p

i p i i i i i i p

k k k

k k k k

N N N
k N k k k k k k N

q Aq Bu

q A q ABu Bu

q A q A Bu A Bu Bu

+

+

− −
+

+

+ + −

= +

= +

= + + +…+

+

M
 (2.30)

Using the predicted state variable, we can find the predicted output as:

1|

2
2| 1

1 2
| 1 1

i i i i

i i i i i

p p p

i p i i i i pi

k k k k

k k k k k

N N N
k N k k k k k N

z CAq CBu

z CA q CABu CBu

z CA q CA Bu CA Bu CBu

+

+ +

− −
+ + + −

= +

= + +

= + + +…+

M
 (2.31)

By defining the future control variables vector U and the predicted outputs vectors Z

as follows:

 ()1 1i i i p

T
T T T
k k k Nu uU u + −+= … (2.32)

 ()1| 2| |
i i i i i p i

T

N
T T

k
T

k k k k kZ z z z+ + +…= (2.33)

Equation (2.31) can be written in matrix form as follows:

 Φ
ikZ Fq U= + (2.34)

31

where

2

3 2

1 2 3

0 0 0
0 0

0
. . and Φ
. .
. .

p p p pN N N N

CA CB
CA CAB CB
CA CA B CAB CB

F

CA CA B CA B CA B CB− − −

…   
   …   
   …
   

= =   
   …
   
   
   …   

M M M
 (2.35)

• Cost function

The cost function, often referred to as the objective function, is a mathematical

function that depends on both the control inputs and the output variables. This

function encapsulates the control objectives and aims to quantify the performance of

the control system. In the scope of this study, the cost function is selected to be a

quadratic function. It serves the purpose of penalizing the output error and the

magnitude of the control inputs. The quadratic cost function, used in this context, is

defined as follows:

 () ()
1 0

p p
T T

k dk k dk k k k

N N

k k
J q z Q q z u Ru

= =

= − − +∑ ∑ (2.36)

where dkq are the desired set points, and 6(6)Q × and 3(3)R × are known

symmetric positive definite matrices also called penalization matrices. This cost

function, through its quadratic form, makes it possible to evaluate the performance of

the controller by assessing the output error and control effort. It plays a fundamental

role in the MPC framework by guiding the controller's decisions to optimize control

performance based on the specified control objectives. Using (2.32) and (2.33), the

cost function (2.36) can be written in compact form as:

 () ()dk
T T

dJ Q Z Q Q Z U RU= − − + (2.37)

32

where)1(d pQ N × is a vector containing the future desired trajectory supposed to be

known, and (6)6p PQ NN × and (3)3p pR NN × are block diagonal matrices of Q and

R , respectively. Substituting (2.34) in (2.37) we obtain:

() () () ()2
i i i

T T T T T
k d k d k d kJ Q Fq Q Q Fq U Q Q Fq U Q URΦ= − Φ− − Φ +− + (2.38)

and differentiating (2.38) with respect to U:

 2 () 2()
i

T T Tk
d k

J Q Q Fq Q U
U

R∂
−Φ Φ Φ= +− +

∂
 (2.39)

The necessary condition to minimize kJ is:

 0kJ
U
∂

=
∂

 (2.40)

which leads the optimal controls as follows:

 () ()1
Φ Φ Φ

i

T T
d kU Q R Q Q Fq

−
= + − (2.41)

from which we apply the first three (3) elements to the system and proceed to the

next iteration.

2.3.2 Nonlinear model predictive control
While linear MPC is a powerful and versatile control strategy, it encounters

limitations when applied to real-world systems characterized by inherent nonlinearity.

Attempting to linearize such systems often leads to inadequate control performance.

To address this challenge, a wide array of Nonlinear Model Predictive Control

(NMPC) algorithms has been developed. NMPC has emerged as a valuable

approach, capable of effectively managing inherently nonlinear systems, and

accommodating nonlinear constraints. In this section, we provide the preliminary

33

setup of NMPC algorithm for OMR. In this context, we utilize the nonlinear kinematic

model of the OMR from (2.9):

 1 (,)k k kq f q u+ = (2.42)

Define the tracking error dk kke q q= − . The objective function used in this section is

slightly modified compared to the one used in the previous section. It now includes

the terminal cost which can be used later for stability analyses, and it’s given as

follows:

1

0

1 (
2

())
p

p

T T
k N k k k k

N

k
J e Qe u Rueφ

−

=

+= +∑ (2.43)

where 0
1()
2

T
N N Ne Q eeφ = is the terminal cost, and ()0 66Q × is the penalization matrix

of the terminal cost. The unconstrained NMPC control problem of the robot motion is

written as:

1

0

1

1min ()
2

s.t. (,)

()
p

p

T T
k N k k k k

N

k

k k k

J e Qe u Ru

q f q u

eφ
−

=

+

= ++

=

∑ (2.44)

Solving (2.44) determines the control inputs ensuring that the state errors are

decreasing along the control horizon. To incorporate the system’s equations into the

objective function Lagrange multipliers vectors 1 (6)kλ × with (1, ,)k N= K are

introduced in (2.44) and the NMPC control problem is transformed to:

0

1 1

1 1min () (())
2p

p
T T T

k

N

k
N k k k k k kJ e Qe u Ru f qeφ λ

−

+ +
=

 = + + − 
 

+ ∑ (2.45)

where (,)k k kf f q u≡ . Define the Hamiltonian function of problem (2.45) as:

34

 1
1 ()
2

T T T
k k k k k k kH e Qe u Ru fλ += + + (2.46)

Substituting (2.46) into the cost function (2.45) yields:

 ()
1

0

1

()
p

p p p

T T
N N k

N

N k k
k

J q H qe Hφ λ λ
−

=

+= − + −∑ (2.47)

To minimize J, we differentiate (2.47) as:

0
0

0

0

1
0

0

1

()
p

p p

p

p

T
N

N

N
k

k k k
k k k

N
N

Tk

Hd

u

e

q
J dq dq

q

H H Hdu dq d
u q u

φ
λ

λ
−

=

 ∂ ∂
 = +
  ∂ 

 ∂ ∂ ∂
+ + + −

∂

∂∂ ∂

−


∑

 (2.48)

In equation (2.45), the Lagrange multipliers vectors are multiplying zeros, therefore

they can be chosen arbitrarily. To simplify (2.48), we chose:

0

1

()
p p

p p

p p

k k
k k k

k k k

N NT T
N N

N N

T T Tk
k

e e
e Q

q q

H fe Q
q q

e
q

φ
λ

λ λ +

∂ ∂
= =

∂ ∂

∂ ∂ ∂
= = +
∂ ∂ ∂

 (2.49)

With these choices, (2.48) becomes:

1

0

p
k

k
k

N

k
k

HdJ du
u

−

=

∂
=

∂∑ (2.50)

with

 1
T Tk k
k k

k k

H fu R
u u

λ +

∂ ∂
= +

∂ ∂
 (2.51)

35

Here we relied on the fact that 0q , the state vector at the current sample instant of

the controller, remains constant during the optimization process, which means that

0 0dq = . Equation (2.50) illustrates that the minimization of the Hamiltonian

automatically results in the minimization of the objective function. To solve equations

(2.42), (2.49) and (2.51), an iterative approach is necessary. However, this iterative

nature of the solution process can result in a significant computational burden.

Therefore, the selection of an appropriate iterative approach becomes critical to

minimize computational complexity, rendering NMPC more practical and feasible for

real-world applications.

2.4 Conclusion

This chapter lays the foundational framework for the thesis. It explores the kinematic

modeling for OMRs, a crucial step for controlling their movement. Various kinematic

representations of OMRs were discussed, including their discretization and linear

approximations. The development of tracking error kinematics is also covered.

Furthermore, the chapter introduces the conventional frameworks for both linear and

nonlinear MPC approaches. These foundational models and frameworks set the

stage for the subsequent design and implementation of advanced MPC strategies.

36

3. ENHANCED MPC FOR OMNIDIRECTIONAL ROBOT MOTION TRACKING
USING LAGUERRE FUNCTIONS AND NON-ITERATIVE LINEARIZATION

3.1 Introduction

This chapter proposes an enhanced MPC algorithm, based on Laguerre functions

(LMPC), for trajectory tracking of OMR. To ensure a good tracking performance and

reduce the linearization’s errors, this controller deals with nonlinearities by

noniteratively linearizing the system along the predicted trajectory, which, to the best

of our knowledge, has never been done before. The duality between optimal control

and stochastic filtering is used to compute the linearization points, which allows the

linearization of the system without dependence on the to be computed control

variables. Contrary to existing approaches, the duality is used only for the prediction,

then it is combined with an optimizer to compute the optimal solution. This will

enhance the prediction process, but also increase the computation cost. To

compensate for this increase, Laguerre functions will be used to parametrize the

control variables, which will reduce the number of optimization variables and

consequently the computational burden. This makes it suitable for real-time

implementation allowing the robot to make fast decisions and swiftly adapt to sudden

changes in complex environments. The existing Laguerre parametrization method is

further developed to consider the change of the linear system at each prediction

instant. The performance of the proposed algorithm is evaluated by simulation and

by experiment on the Robotino-Festo OMR and a comparative study of accuracy and

computational efficiency is carried out with the traditional MPC and NMPC. In the

following, first the kinematic model of the OMR is derived in Section 2.2, next the

classical MPC setup is presented in Section 2.3, then in Section 2.4 the duality

principal is described. The Laguerre functions are introduced in the MPC setup in

Section 2.5, and finally a comparative study with MPC and NMPC is given in Section

2.6. The content of this chapter has been published in the IEEE Access journal [77].

37

3.2 Model of the omnidirectional mobile robot

For this study, the three-wheels OMR is considered., and the model to be used in the

discrete model derived in (2.9) written in the following form:

1

1

1

, 1

, 1

1

cos sin 0 0 0
sin cos 0

0

0 0
0 0 0

0 0
0

0 0

k k xk k k k

k k xk k k k
k

k k k
k

x k xk
k

y k y

y

y

y

k

k

x

k

x

T

Tx T
y y T T

a
T

a
T

a
T θ

ν θ ν θ
ν θ ν θ

θ θ ω
ν ν
ν ν
ω ω

+

+

+

+

+

+

+     
     +           +  = +      
      

      
           

+



−

 

 (3.1)

which in compact form becomes:

 1 ()k k k

k k

q f q Bu
z Cq
+ = +
=

 (3.2)

with T is the simulation step, ()kf q is a nonlinear function of the state, B is the

input matrix, kz is the output vector which contains the position, orientation, and

velocities of the OMR, and C is the output matrix. The proposed controller is based

on linearization, thus the transition matrix to the linearized system, i.e. the Jacobian

matrix, is needed and can be computed using (2.10).

3.3 Constraints

The key advantage of MPC is the capability to handle inequality constraints explicitly,

and the OMR exhibits numerous physical and operational constraints that need to be

satisfied by the control algorithm. First, there are limits on the acceleration of the

OMR, which in this case represent the control variables and can be expressed as

follows:

 min maxku u u≤ ≤ (3.3)

38

where minu and maxu are vectors of the same size as ku that contain the lower and

upper acceleration limits, respectively. Furthermore, when tracking a reference

trajectory, the robot velocities must not exceed the velocity constraints. In this study,

xv and yv have the same maximum value denoted maxv and the maximum rotational

speed is denoted maxω , then the speeds constraints can be written as:

max max

max max

max max

xk

yk

k

v v v
v v v
ω ωω

 −   
    − ≤ ≤    
    −    

 (3.4)

Finally, using (3.2), the operational constraints of the OMR can be written together

as follows:

min

max

max

max

max

max

max

max

1

1

yk

k

yk

k

xk

k

xk

k

k

k

u u

v v
u v v

v v
u v v

u

T

T

u

ω ω

ω ω

− ≤ −

   
   − ≤ +   
       
   
   ≤ −   
       

≤

 (3.5)

3.4 Duality principal and non-iterative linearization

Since nonlinear optimal control problems are hard to solve and computationally

demanding, linearization is often used. Choosing the linearization points is the main

problem of linearization approaches. Using the optimal trajectory as linearization

points would be the best solution but since they depend on the control to be

computed and the control depends on them, iterative methods are required such as

NMPC and iterative linear quadratic regulator (iLQR) [78]. To avoid applying iterative

algorithms, we are going to use the duality between stochastic filtering and optimal

39

control to achieve non-iterative linearization by approximating the future optimal

trajectory. This duality principle was first presented by Kalman [79], where it showed that

the optimal control and the Kalman filtering are dual to each other, and therefore the

solution for the estimation problem can be used to solve the optimal problem and vice

versa.

To use such duality, we first consider the stochastic dynamics for the control problem as:

 1k k k k k

k k k

q A q Bu w
z Cq
+ = + +
= +σ

 (3.6)

where kw and kσ are fictitious Gaussian noise with covariances kV and kW , respectively.

The cost function to be minimized at each simulation step is considered quadratic

similar to (2.36) of the form:

 () ()
1 0

p p
T T

k dk k dk k k k

N N

k k
J q z Q q z u Ru

= =

= − − +∑ ∑ (3.7)

The dual estimation problem is defined as estimation of 1kq + knowing kq and the whole

observation sequence which is considered to be the reference trajectory dkq [41],

therefore the stochastic dynamics for the dual estimation problem is considered as:

 1

ˆ ˆ()

ˆ
k k k

dk k k

q f q w
q C q σ
+ = +
= +

 (3.8)

where the “hat” represents estimated values.

The duality between the optimal control problem (3.6) and (3.7), and the estimation

dynamic (3.8) is established by choosing 11
kV BR B− −= and 1

kW Q−= [80]. The

computation of the optimal linearization points can be done using the following

Kalman filter equations:

40

1 1

1
1

1

()
()

ˆ ˆ ˆ()

T T
k k k

T T
k k k k k

k k k dk k

K P C CP C Q
P A I K C P A BR B
q q K q Cq

− −

−
+

+

= +

= − +
= + −

 (3.9)

with kK is the Kalman gain matrix, kP is the estimation error covariance matrix [41,

80].

3.5 MPC with Laguerre functions

Although linearizing the system at each prediction step will give more accurate

approximation, it is more demanding computationally. Therefore, we introduce the

Laguerre functions in the problem formulation to solve the open-loop optimization

which will help reducing the computational burden.

3.5.1 Introduction to Laguerre functions
To reduce the computational complexity of the standard MPC, we approximate the

future control trajectory by combining a set of orthonormal functions (Laguerre

Functions) linearly with few coefficients, which helps to cover the entire control

horizon without the need for massive optimization parameters [42]. The Laguerre

orthonormal sequence is described by the following z-transforms:

2

2

N -1

2

1 -1

2 -1

-1 -1

-1

-1 -1N

1- a(z)=
1- az

1- a z - a(z)=
1- az 1- az

Γ

1- a z - a(z)=
1- az 1- az

Γ

Γ
 
 
 



 (3.10)

where a is the scaling factor of the Laguerre sequence, and 0 1a≤ < for the stability

of the sequence [47]. Let ()il k be the inverse z-transform of (,),i z aΓ then the set of

discrete-time Laguerre functions can be written in vector form as:

41

 []1 2() () () () T
NL k l k l k l k=  (3.11)

Taking advantage of the sequence realization

() ()

1

1 1

/

() () 2,3,
1

2 -1
1

k k

(z)= 1- a 1- az

z az z k N
az

−

− −

Γ

−
= =

−
Γ Γ 

 (3.12)

We can describe the sequence by the following state space representation:

 (1) ()lL k A L k+ = (3.13)

with lA (N N×) and the initial condition (0)L given by:

2 2

0 0 0
0 0

0

(1)

l

N N

a
a

A a a

a a

β
β β

β β− −

 
 
 
 = −
 
 
 − 







    

 

 (3.14)

 2 3 1 1(0) 1 (1)
TN NL a a a aβ − − = − − −  (3.15)

where 21 aβ = − . The orthonormality of Laguerre functions can be expressed in the

time domain by:

 0

0

() () 0

() () 1 j
k

i
k

j

i

l k l k for i j

l k l k for i j

∞

=

∞

=

= ≠

= =

∑

∑
 (3.16)

Finally, this set of Laguerre functions can be used to capture the response ()H k of an

arbitrary system by:

42

 1 1 2 2() () () ()N NH k c l k c l k c l k= + + +K (3.17)

where 1 2, , , Nc c c are the coefficients to be determined using the system data, and

N is the number of terms used to capture the response [48].

3.5.2 Laguerre-based MPC

Since the OMR has three motors, i.e., three control inputs, let the matrix B be

partitioned into:

 []1 2 3B B B B= (3.18)

and define:

 ,

1

m i
m

k
i

A A
=

=∏ (3.19)

where ,k iA is the transition matrix computed at the ith future instant, and m is the

current prediction instant. Here, the linearization at every prediction sample is

considered, and ,k iA is computed using the duality principle. Using (2.34), each

control variable can be approximated at an arbitrary future instant with:

1

() () () ()
i

T i
N

i
ji i i j

j
u k m L m c k l mη

=

=+ = ∑ (3.20)

where k is the initial time of the moving horizon, m is the future instant where

1pk m k N≤ ≤ + − , 1,2,3i = implies the ith control variable, i
jc are the coefficients,

which are functions of the initial time of the moving horizon, iN is the number of

parameters used to capture the ith control variable, iη is a vector containing the

coefficients, 1 ,i i
N

T

i c cη  =   and pN is length of the prediction horizon. By

43

using the system (2.7) and (2.37), the prediction of the future state variables can be

written as:

2 2 3 3

2

1 2 2 3 3

1 1

1 1
0

() ()

(1) (1) (1)

() () ()

()()

m

m j
j

m

T T T

T T T

T
m

q k m A q k

B L m B L m B L m

A B L j B L j B L j

A q k m

η

η

φ η

−

− −
=

+ =

 − − −



+  



= +

+ ∑
 (3.21)

with
1 2 3

TT T Tη η η η =   and

2 2 3 3

2

1 2 2

1 1

31
0

1 3

(1) (1) (1)

() () ()

()
m

m j
j

T T T T

T T T

B L m B L m B L m

A B L j B L j B L j

mφ
−

− −
=

 = − − − 

 +  ∑
 (3.22)

Here we have taken into consideration that the matrix kA is not constant during the

prediction process, it is changing at each future instant. With a sufficiently large

prediction horizon, the orthonormal property (2.33) becomes:

 0

0

() () 0

() () 1

p

p

N

k
N

i

j
k

j

i

l k l k for i j

l k l k for i j

=

=

= ≠

= =

∑

∑
 (3.23)

And using (2.37) and (2.40), the sum of the future control inputs can be computed

by:

 ()
0

()
pN

T T
k L

m
u k m R u k m Rη η

=

+ + =∑ (3.24)

44

where LR is a block-diagonal matrix where each block contains one of the elements

of R on its diagonal. Define ,T
LQ C QC= putting (2.38) and (2.41) in the cost

function (2.15) will lead to the following form:

() ()

() ()

1

1 1

1

1

2 () 2 ()

() () () ()

(

()

() ()

() ()

2 ())

() () ()

p

p p

p

p

T T

T T T
L m d

T
d m d m

T T

T
d m d

N

L L
m

N N

m m

m

N

m
m

N

J Q R

Q A q k Qq k m

q k m CA q k Q q k m CA q k

q k m CA q k Q q k q

m

m

m

m m C

q k

CA k

η φ φ η

η φ η φ

η η η ξ

=

= =

=

=

 
= +  

 
   

+ − +      
   

+ + − + −

=

+ −

Ω + Ψ −

+ + −

∑

∑ ∑

∑

∑

 (3.25)

where

1

1

1

() ()

()

() ()

p

p

p

T
L l

L m

N

m
N

m
N

m

T
d

Q R

A

Qq k

m m

m

C m

Q

m

φ φ

φ

ξ φ

=

=

=

Ω

Ψ

+

+

=

=

=

∑

∑

∑

 (3.26)

By setting the partial derivative (relative to η) of the cost function (2.42) to zero, the

optimal solution can be found as:

 ()1 ()q kη ξ−= Ω −Ψ (3.27)

and the first control action can be computed using:

45

1

1

1

2 3

2 3

2 3

(0) 0 0
0 (0) 0
0 0 (0)

T T T

T T T
k

T T T

L
u L

L
η

 
 =  
  

 (3.28)

Here (0)iL is the initial condition for the Laguerre functions of the ith input, and 0i

is a zero vector with the same dimension as (0)iL .

The scaling factor a and the number of terms needed to approximate ku are closely

related. If we set 0a = and the number of terms cN N= the control horizon, we

obtain the traditional MPC approach, and by choosing 0 1a< < , we can achieve

similar performance with N far less than cN and reduce the computational cost

[48].

3.5.3 Constrained solution using Laguerre functions
The Laguerre functions can also be introduced in the constraints’ description, which

gives more flexibility for the designer to force the constraints at any specified future

instant. The constraints on the control variables at an arbitrary future time m are:

 min max()U u k m U≤ + ≤ (3.29)

with 0,1, , 1pm N= − , and minU , maxU are the control bounds from (2.23). This can

be written in terms of η as:

21

1 max

3

min 2 3

2 31

() 0 0
0 () 0
0 0 ()

T T T

T T T

T T T

L m
U L m

L m
Uη

 
 




≤≤ 


 (3.30)

The constrained optimal solution is obtained by solving a dual-quadratic problem

using the Hildreth method [46, 48]. First the active set of the inequalities constraints

46

is selected in matrix actM , then the Lagrange multipliers actλ are found using the

Hildreth’ algorithm, and finally the optimal constrained solution is computed by:

 ()1 () T
act actq k Mη ξ λ−= Ω −Ψ − (3.31)

3.5.4 The LMPC algorithm
Algorithm 1 is the resulting algorithm named LMPC. It shows the two steps, the

linearization, and the control computing. Unlike existing algorithms, which use the

duality to linearize the system and approximate the control inputs, the LMPC uses

the duality only for linearization. The control inputs are computed by introducing the

Laguerre functions and performing online optimization.

Algorithm 1: LMPC
1: Initialization
2: 0ˆ ;k k kq q P= =
3: Prediction
4: for pm k 1, , k N= + … +
5: Linearization
6: ()m 1q f q̂ −=
7:

m 1 m 1

m 1
m 1 q q̂

fA
q

− −

−
− =

∂
=
∂

8: () 1T T 1
m m 1 m 1 kk P C CP C Q

−−
− −= +

9: () T 1 T
m m 1 m m 1 m 1P A I K C P A BR Bk

−
− − −= − +

10: ()m m dm mq̂ q qk Cq= + −
11: Compute Convolution Sums
12: Ω; Ψ; ξ; (Eq.2.43)
13: end for
14: Set The Constraints
15:

actM actand λ using Hildreth Algorithm
16: Compute Optimal Coefficients Vector
17: ()1 T

k k act actη Ω ξ Ψq M λ−= − −

18: Compute First Optimal control action
19:

k zero ku L η=

47

Contrary to existing methods, the parameterization using Laguerre functions takes

into consideration the linearization at each future instant. In the case of constrained

control, the LMPC uses the Hildreth algorithm to identify the active constraints and

compute the Lagrange multipliers. All the state variables are considered available for

measurement. Therefore, the LMPC is a deterministic state feedback controller.

3.6 Comparative studies and analyzes

In this section, the performance of the proposed LMPC algorithm will be analyzed.

To show the outstanding performance, the traditional linear MPC and NMPC

approaches are introduced for comparisons.

3.6.1 Simulations results
The simulations are carried out using the MATLAB/Simulink software. The aim is to

drive the OMR to track a given trajectory by minimizing the cost function (2.15). All

the strategies compared will minimize the same cost function. The following

approaches will be compared:

1) LMPC: this algorithm linearizes the system at each future prediction step using

the duality principle, and then solves the optimality using Laguerre functions.

The number of terms and the scaling factor will be the same for all input

variables.

2) MPC: this method solves the optimization problem using a linearized model

and standard optimization algorithm. Implementation is based on [48].

3) NMPC: this algorithm solves the open-loop optimization using the nonlinear

model. Implementation is based on the optimized algorithm in [37], where the

active-set method is used for the minimization. The convergence threshold is

set to 810− and the maximum number of iterations is 310 .

To ensure a fair comparison, some unifying conditions need to be set:

48

1) The prediction horizon pN is the same for the three strategies and it is set to

20,pN = which ensure the convergence and practical feasibility.

2) For both MPC and NMPC, control horizon cN is the same; however, the term

cN does not appear in the LMPC algorithm, since it has been replaced by the

number of parameters N and scaling factor .a In [47], it has been shown that

for a small ,N cN and a are related by 5/ cNa e−≈ .

3) The weighting matrices for the strategies compared are set to:

(0.01,0.01,0.01)kR diag=

(25,25,25,0.1,0.1,0.1)kQ diag=

These tuning parameters were chosen through trial and error; therefore, their

optimality cannot be guaranteed. Nonetheless, they have demonstrated good

performance in this study.

To thoroughly evaluate the tracking performance, we use a desired trajectory given

by reference speed components 10.5msxdv −= and 10.5msydv −= , reference

positions ; d xd d ydx v t y v t= = m, orientation 0dθ = rad, and angular velocity 0dω =

rads-1. The trajectory is supposed to be known along the prediction horizon, and all

the state variables are considered available for measurement.

 We consider a set of 5H = simulations, and a random uniformly distributed initial

state:

 0 ,([1,1],[1,1 0] 0, ,[/ 6 / 6], 0), Thq Rand π π= − − − (3.32)

49

For each simulation ,h and iteration ,k the cost achieved for each approach is

denoted (,), 1, ,3.rJ h k r =  The initial reference minimum of the cost function is

chosen to be 5. On each iteration, the method with the best cost, lower than 5, is

taken as reference (,)bestJ h k to be compared to the other methods [41], i.e,

1 3min ((,),5).best r rJ J h k< <= The average cost ratio (ACR) over all simulations is

computed by:

1

(,)(1/) , 1, ,3.
(,)

r
r

best

H

h

J h kACR H r
J h k=

×= =∑ 

 (3.33)

Furthermore, to compare the tracking performance of different strategies, an

additional index is used, which quantifies the tracking quadratic error, and it is given

by:

()2/

1

1

() ()
1/ ; { , , }

/

sim

H

T

r
j

ef sys

i
s

T

imh

y j y j
M H i x y

T T
θ=

=

−
= ∈

∑
∑ (3.34)

with 0.07t∆ = s. In this experiment, the control horizon for MPC and NMPC is set to

5cN = , and for the parameters of LMPC are chosen 0.5,a = and 3.N =

Figure 9 shows the ACR of each method for the first 10 iterations in the logarithmic

scale. It can be clearly seen that after the first iteration, the initial cost realized by the

LMPC is significantly lower than the ones realized by MPC and NMPC, and after 10

iterations, LMPC yields the best performance. Both the LMPC and NMPC converge

after the third iteration with LMPC achieving a lower final cost, while MPC took much

longer to converge.

50

Figure 9
Average cost ratio (ACR) per iteration
Source: [77]

The numeric values of Table 1 represent the number of variables involved in the

optimization process of each strategy, along with the average time for the first ten

iterations. For MPC and NMPC, the number optimization variables are computed by

multiplying the number of control inputs by the length of the control horizon cN ,

whereas for LMPC, it is equal to the number of parameters used to parametrize the

manipulated variables. Only 9 variables are involved in the optimization process of

the LMPC, while 15 parameters are involved in both MPC and NMPC. This gives the

LMPC a great computational advantage (100 times faster) over the NMPC while

maintaining good performance. Even with linearization performed at each prediction

instant, LMPC still managed to keep up with the MPC with only 1ms difference.

Table 1
Number of control parameters and time per iteration
 LMPC MPC NMPC

Number of optimization variables 9 15 15

Time per iteration (s) 0.002 0.001 0.266

51

Table 2 shows the mean-quadratic tracking errors for the three methods. It can be

appreciated that LMPC significantly reduces the tracking error compared to MPC

with almost the same computational demand, and it is not that far behind NMPC. In

fact, in the orientation tracking, LMPC showed better performance than the other two

methods. NMPC showed slightly lower xM and yM compared to LMPC, at the cost

of higher computation time. This is due to the NMPC iterative aspect. As a result,

LMPC can be considered a computationally effective method to obtain optimal

performance in practice.

Table 2
Mean quadratic tracking errors for different strategies
 LMPC MPC NMPC

xM 0.0083 0.0663 0.0058

yM 0.0113 0.0631 0.0012

Mφ 0.0035 0.0065 0.0217

3.6.2 Experimental results
In this section, the three algorithms are tested on the Robotino-Festo omnidirectional

robot. The whole system is controlled by an embedded PC to COM Express

specifications with Intel i5, 2.4 GHz dual core, 8 GB RAM and 23 GB SSD. For the

motor control, a 32-bit microcontroller is used. It generates the PWM signals for

actuating the DC motors using a PID controller. The microcontroller is also used to

correct the sensors data. A planetary gear unit with transition ratio 32:1 is used

between the drive shafts and omni-wheels. The robot has a maximum translational

and rotational speeds of 2m/s and 2rad/s respectively. The algorithms are

implemented using the Robotino MATLAB-Simulink toolbox. The robot accepts

translational and rotational velocities as inputs, which are expected to be updated

every 70ms. Since the compared approaches have accelerations as manipulated

variables, integrators are included in the algorithms. The aim is to drive Robotino to

follow the eight-shaped trajectory described by the following equations:

52

sin((2)
0.5sin(2(2

/)
/

;
))

d p

d p

xd d yd d

x T t
y
v x v y

T t
π

π

= −

=

= = 

(3.35)

where 25pT = s is the trajectory period, 0dθ = and 0.dω = The control horizon is

chosen 10 for MPC and 5 for NMPC, as for the LMPC, 3N = and 0.8.a = The

weighting matrices are chosen as:

(15,15,15)
(80,80,80,0.1,0.1,0.1)

R diag
Q diag
=
=

and initial position is given as:

0 [0.5, 0,]./ 6, 0,0,0q π= −

Figure 10 shows the performance of each method when tracking the eight-shaped

trajectory. In Figure 10(a) the advantage of the LMPC performance over MPC is well

illustrated.

Figure 10
Tracking the eight shaped trajectory in real-time: (a) using LMPC and MPC,
and (b) using NMPC.
Source: [77]

53

The NMPC needs longer than the update time of the microcontroller (70ms) to

compute the next inputs values, which makes it unsuitable for practice, as shown in

Figure 10(b).

Figure 11 shows the state variables of the system over time when using the LMPC:

x and y positions, orientation θ , translational velocities xv and ,yv and angular

velocity ω . The computed input accelerations before integration (black lines) and

the real robot acceleration (red lines) estimated by differentiating and filtering the

odometry data are shown in Figure 12.

Figure 11
Reference States (black solid line) and real positions (red solid line) using
LMPC
Source: [77]

54

Figure 12
Applied control inputs (black solid line) and estimated accelerations (red solid
line) using LMPC
Source: [77]

3.7 Conclusion

In this chapter, an enhanced MPC algorithm based on Laguerre functions, LMPC, for

trajectory tracking of an OMR has been presented. Non-iterative linearization was

performed using the duality between optimal control and stochastic filtering to

approximate the nonlinear system, and the Laguerre functions were used to describe

the control variables and reduce the number of optimization variables. The method

presented provides a way to ameliorate the prediction process, prevent the

accumulation of the linearization’s error and improve the tracking performance. The

computational time was also reduced significantly allowing the algorithm to make fast

accurate decisions. The performance of the proposed algorithm was validated on the

trajectory tracking problem of the OMR and compared to the traditional linear MPC

algorithm and the NMPC. Experiments show that LMPC can achieve high tracking

accuracy, outperforming both MPC and NMPC. Feasibility and suitability for real-time

applications were also demonstrated by experiment on Robotino Festo mobile robot.

55

4. NMPC FOR TRAJECTORY TRACKING OF OMNIDIRECTIONAL ROBOT
USING RESILIENT PROPAGATION

4.1 Introduction

While linearization-based methods have demonstrated good performance, they

inherently rely on approximating the true nonlinear behavior of systems.

Consequently, they exhibit limitations, particularly in terms of stability analyses and

the provision of convergence proofs. These limitations arise from the necessity to

linearize the system at each time step. Furthermore, linearization-based methods

often disregard valuable system information that could be beneficial for control

system design and understanding.

To overcome these limitations, NMPC offers the advantage of directly utilizing

nonlinear system models in the prediction and optimization processes. This

approach enables the possibility of conducting stability analyses and utilizing the full

extent of system information, ultimately leading to improved tracking performance.

However, employing nonlinear system models comes with its challenges, particularly

in terms of computational complexity. The resulting nonlinear optimization problem is

often demanding in terms of computational resources. To address this issue,

extensive research has been carried out in this field. Much of this research has

focused on enhancing the optimization algorithms used within NMPC to reduce

computational costs. Several nonlinear optimization algorithms have been explored

to streamline the computational burden, including active-set methods, interior-point

techniques, trust-region methods, and algorithms based on neural networks. While

these algorithms offer precision, they can still be time-intensive, limiting their

application to slower systems or specific cases where computational time is not a

critical constraint.

Another promising algorithm from the literature is the resilient propagation algorithm

(RPROP) first introduced in [67]. It’s a gradient descent-based algorithm widely used

in the optimization of neural networks. Differently to existing gradient-based

approaches, the RPROP uses only the sign of the gradient to decide the search’s

56

direction and to update the step length which is independent of the gradient value.

Compared to existing methods, the RPROP shows great computational advantages

without compromising the accuracy [72, 81]. Despite its great advantages, the

application of RPROP remains very limited in the robotic field. The advantages of

RPROP are the following:

1. RPROP is a fast method with high accuracy, which does not rely on the system’s

properties.

2. RPROP is a first-order method, which makes it easy to comprehend and

implement without mathematical or numerical complexities.

3. RPROP depends only on the gradients’ signs, and that makes it suitable for

applications where the derivatives are estimated or noisy.

In this chapter, and motivated by the potential of RPROP, we introduce an improved

NMPC approach that utilizes A Robust Convergent Resilient Propagation

(ARCPROP) algorithm to address and solve the trajectory tracking challenge of an

OMR. The method is applied to both unconstrained and constrained scenarios. In

the latter case, we utilize the external penalty method to effectively manage the

constraints. The superiority of our proposed method is demonstrated through a

comparative study against the well-known Interior Point (IP) and Active Set (AS)

methods. The content of this chapter has been submitted for publication in the IEEE

Access journal [82].

4.2 Constrained NMPC setup

4.2.1 Prediction model
For the prediction process of the nonlinear predictive controller, the discrete

kinematic model of the OMR form equation (2.9) is used which is given as follows:

 1 (,)k k kq f q u+ = (4.1)

with

57

cos sin
sin co

(,

s

)

k xk k k k

k xk k k k

k k
k k k

xk x

yk

k

y

y

y T
T T

T
f q u

a T

x T

f

a

y

T
a T

ν θ ν θ
ν θ ν θ

θ ω
ν
ν
ω θ

+ 
 + 
 +
 
 
 
  

−
+

≡ =
+
+
+ 

 (4.2)

with ()k xk yk kk k kq x y v vθ ω= is the state vector, and ()x ya a aθ is the

inputs vector.

4.2.2 Optimization problem
The objective function used in this chapter is similar to (2.43) and given as follows:

1

0

1 (
2

())
p

p

T T
k N k k k k

N

k
J e Qe u Rueφ

−

=

+= +∑ (4.3)

where 0
1()
2p p p

T
N N Ne e Q eφ = is the terminal cost. Q , 0Q (both 6 6×) and R (3)3× are

diagonal weight matrices and dk kke q q= − is the tracking error. In real-time

applications, there are always limitations and restrictions that need to be taken into

consideration when designing the control algorithm. One of the main advantages of

NMPC is the capability to handle control constraints explicitly. When constraints are

imposed, the NMPC control problem becomes as follows:

1

0

1

0
1min ()
2

s.t. (,)
 (,) 0

1
2

p

p p

T T T
N N k k k k

k

k

N

k k

k

k
J Q e e Qe u Ru

q f q u
q

e

h u

−

=

+

+= +

=
≤

∑
 (4.4)

58

where (,)k kh q u are the inequality constraints set as:

max max

max max

max max

max max

;

;

xk yk

k

t xk yk t

n k n

v v v v

a a a a
a a aθ

ω ω ω

− ≤ ≤
 ≤ ≤
− ≤ ≤

− ≤ ≤

−




 (4.5)

Here maxv and maxω are the maximum allowable translational and rotational velocities

respectively, and max max and t na a are the maximum translational and rotational

accelerations respectively. These inequality constraints can be handled using

different approaches such as the auxiliary variable method or the external penalty

method. In [56], the auxiliary variable method was used to transform the inequality

constraints to equality ones by adding a dummy variable which was later considered

an additional variable in the optimization problem. However, using a dummy variable

for each inequality constraint will increase the dimension of the optimization problem

and consequently increase the computational burden. The external penalty method

aims to transform the constrained problem to an unconstrained one by adding a

penalty term to the objective function which penalizes the violation of constraints. It is

a straightforward method proven to be effective [83], and it will be adopted in this

work. The additional penalty term is chosen as:

 2

 0 , (,) 0
(,)

(,) , (,) 0
i k k

i k k
i i k k i k k

q u
q u

q u q
h
h uhµ

≤= 
> ×

Μ (4.6)

where (,)i k kq uΜ and iµ are the penalty cost and the weight factor of the thi

inequality constraint (,)i k kq uh . In this work, (,)i k kq uh is:

59

2
1 max

2
2 max

2
3 max

2
4 max

2

2

5

2

max

2
6 ma

2

2

2

2
x

(,)
(,)

(,)
(,)
(,)

(,)

t

t

k

k n

k k xk

k k yk

k k k

k xk

k k yk

k k

h u v
h v

h

h

q v
q u v

q
h q

h

q u
u a a
u a a

q u a aθ

ω ω












= −

=

−



−

= −

= −

=

= −

 (4.7)

The obtained unconstrained optimization problem can be written as follows:

0

1 6

0 1

1

min

1 () (,)
2

s.t. (,)

1
2 p p

p

T
c N N

T T
k k k k i k

N

k
k i

kk k

J Q e

e Qe u

e

Ru q u

q f q u

−

= =

+

+

=

 + +
=

Μ 
∑ ∑ (4.8)

which is subject to the dynamic of the plant. We introduce the Lagrange multipliers

1 (6)kλ × with (1, ,)pk N=  , which are used to incorporate the system’s equations

in the cost function as follows:

0

0
1

6

1
1

1

min

1 ()

2

() (,)
2

1
p p

p

T
c N N

T T T
k k k k k k k k

N

k i
i k

J Q e

e u

e

Qe Ru f q q uλ
−

= =
+ +


+ Μ

=

 + + − + 
∑ ∑

 (4.9)

Since 1 0k kf q +− = , the Lagrange multipliers can be chosen arbitrarily to simplify the

development. Define the Hamiltonian function of problem (4.9) as:

 1

6

1

1 () (,)
2

T T T
k k k k k k k

i
k i kH e Qe u Ru f q uλ +

=

Μ= + + +∑ (4.10)

and substituting (4.10) in the cost function (4.9), we obtain:

60

1 1 1

0

1

0
1

1

()

()

1 ()
2

p

p

p

p p

N

k
N

k

T T T T
ck N k k k k k k k k

T T
N k N k k k

J e Qe u Ru f q

q H q

e

e H

φ λ λ

φ λ λ

+ + +

−

=

−

=

= + + −

= − + −

+

+

∑

∑
 (4.11)

 The differential of (4.11) is computed as:

0 0
0 0

0

1

1

0

()
p

p p

p

p

N
ck

N
k

k

T

N

k
k

N N

Tk
k

k k

H Hd

H

e
J dq dq du

q u

H d du
q

q
u

q

φ
λ

λ
−

=

 ∂ ∂ ∂
 = + +
  ∂ ∂ 

 ∂ ∂
+ +  ∂

−
∂

−
∂ 

∑
 (4.12)

To simplify the expression of (4.12), we choose the Lagrange multipliers as follows:

0

6

1
1

()

(,)

p p

p p

p p

N NT T
N N

N N

T T Tk i k kk k
k k k

ik k k k

e Q
q q

H f q ue Q
q q

e

q

e

e
q

φ
λ

λ λ +
=

∂ ∂
= =

∂ ∂

∂ ∂ ∂
= =

∂
∂Μ

+ +
∂ ∂ ∂∑

 (4.13)

which leads to:

1

0

p
k

k
k

N

k
k

HdJ du
u

−

=

∂
=

∂∑ (4.14)

Here we took into consideration that the initial state remains constant during the

optimization process, which means that 0 0dq = . The differential of the cost function

is proportional to the partial derivative of the Hamiltonian relative to u, which means

that minimizing H will lead to minimization the cost function. We can compute:

61

1

6

0

1

1

6

1

()

(,)(

)

()

)

(,

p

p p

P

p

p

NT T
N N d

T T Tk i k k
k d k k

k

T Tk k i k

N
N

k N
i k

i
k

k k

k
k

k

q q Q
q

H q uq q Q A
q q

H f q uu
u q

e

R
u

φ
λ

λ λ

λ +

=
+

=

∂
= = −

∂

∂
= = − + +

∂

∂Μ

∂Μ

∂ ∂

∂ ∂
= + +

∂ ∂

∑

∑

 (4.15)

where kA is the transition matrix from(2.10).

4.3 Optimization algorithm

The second component of a predictive controller is the optimization process. In this

project, given that NMPC entails online optimization at each sampling instance, the

selected optimization algorithm must satisfy two primary criteria: computational

efficiency and convergence.

4.3.1 RPROP
Gradient-based methods remain the most widely used in optimization problems,

especially back-propagation algorithms, which minimize the objective function and

update the optimization’s variables using steepest descent as follows:

 1 ()k k ku u H uη+ ∇= − (4.16)

where H is the function to be minimized, ku is a vector containing the optimization

variables, and η is called the learning rates. Choosing the leaning rates that ensure

convergence and avoid oscillation is well known to be a difficult task.

To overcome this problem, RPROP uses an adaptative individual step-size for each

optimization variable, which helps minimize oscillations and maximize the length of

the step-size. Each iteration of the algorithm is composed of two phases: first, the

step-sizes are updated to accelerate convergence and improve performance. Each

optimization variable iu has its own step-size i∆ . If the sign of the gradients remains

unchanged for two consecutive iterations, the step-size is increased. Whereas if it

62

flips sign, the step-size is shortened. These rules are illustrated in the following

equations:

()

()

(1) 1
max

, ,

(1) 1
min

, ,
(1)

() (), if 0

()x (), if

min

m 0

otherwise

a

k k k
i

i k i k

k k k k
i i

i k i k
k

i

H u H u
u u

H u H u
u u

η

η

+ − −

− −

−

−

∂ ∂ > ∂ ∂ 
 ∂ ∂

= < ∂ ∂ 
 
 


∆ ∆

∆



∆ ∆

∆ (4.17)

where 0 1η η+−< < < are the update rates, and min max, ∆ ∆ are the boundary limits of

the step-sizes.

Thus, whenever the partial derivative flips sign, which implies that the last update

was large, the RPROP assumes that a local minimum has been jumped over, so it

does not update the correspondent optimization variable; instead, it decreases the

step-size to enforce returning to the local minimum’s region. If the derivative retains

its sign, then step-size is increased to accelerate convergence in shallow regions.

After adjusting the step-sizes, the second part of the RPROP algorithm is to update

the value of the optimization variables, which is done following the rules below:

1
,

, , ,

1
, , 1

, , ,

() () ()if 0 sign

() () ()if

then

then 0 ; 0

kk k k
i k i

i k i k i k

k k k
i k i k

i k i k i k

H u H u H u
u u u

H u H uu H u
u u u

u

u

−

−
−


∆ ∆



 ∆ ∆

 ∂ ∂ ∂
≥ = −   ∂ ∂ ∂ 

∂ ∂ ∂
< = − =

∂ ∂ ∂

 (4.18)

and

 , 1 , ,i k i k i ku u u+ + ∆= (4.19)

63

Algorithm 2: ARCPROP

1: while maxiter I≤

2: if max k

k

H
u

δ
 ∂

≤ ∂ 
 then return ku

3: update the step sizes

4: if 1 , 1min()k k i kH H δ− −∆> − then

5: if , 1 minmax()i k− ≤∆ ∆ then return 1ku −

6: For each ,i ku do

7: backtracking

8:
 1

, , 1 ; k k
i k i k

i i

H H
u u

u u
−

−

∂ ∂
= =

∂ ∂

9: (), , 1 minax ,mi k i kη −
−∆ ∆= ∆

10: else

11: for each ,i ku do

12:

 ()

()

1
, 1 max

1
, , 1 min

, 1

, if 0

, ix f 0

o

n

the

m

rwi

i

a

s

m

e

k k
i k

i i

k k
i k i k

i i

i k

H H
u u

H H
u u

η

η −
−

−

−

+ −
−

∂ ∂ > ∂ ∂ 
 ∂ ∂

= < 
∂ ∂ 

 
 


∆ ∆

∆



∆ ∆

∆

13: update the optimization variables

14: for each ,i ku do

15:

, 1 , ,sign .k
i k i k i k

i

H
u u

u+

 ∂
= −  ∂

∆
 

This approach proved to be very powerful with high accuracy and less dependence

on the system characteristics, especially in cases where the derivatives are

estimated and noisy.

4.3.2 ARCPROP

64

Despite its advantages, it has been proven that the traditional RPROP algorithm

does not guarantee convergence as shown in [71], [72]. In [71], it is shown that

adjusting the step size for each optimization variable individually does not

necessarily result in a decrease in the overall objective function. Inadvertently, it may

cause an increase. To address this limitation, a new robust convergent variant

ARCPROP was proposed. This new algorithm adds another layer of verification

which considers the impact of the updated step sizes on the overall objective

function. This approach is illustrated in Algorithm 2.

In this algorithm, the original RPROP approach is combined with an additional step

size updating phase that forces each individual update to decrease the objective

function by a factor of , 1min()i kδ −∆ where δ is the threshold of the optimization. This

will ensure the convergence of the algorithm to a local minimum in a finite time. For

further details and proof of convergence, refer to [71].

4.4 Simulation Results

In this section, the performance of the proposed method is evaluated. Comparison

with other benchmark approaches is done to demonstrate the capabilities of the

ARCPROP optimization algorithm to perform online optimization, handle constraints

and reduce the computational burden.

4.4.1 Simulation setup
Three methods will be compared:

1) NMPC-PROP: This approach solves the NMPC problem using ARCPROP

algorithm.

2) NMPCIP: This method uses the Interior Point (IP) algorithm to solve the

optimization problem of NMPC. Its implementation is based on [37].

3) NMPCAS: This algorithm uses the AS methods for the optimization problem. It

is implemented using MATLAB “fmincon” function.

The goal is to drive the OMR to follow a given trajectory by minimizing an objective

function. Constrained and unconstrained cases will be considered. All methods

65

minimize the same objective function (4.3). The NMPC parameters are: the length of

the prediction horizon 6,PN = the length of the control horizon 3cN = , the

penalization matrices (0.01,0.01,0.01)R diag= and 0 (75,75,75,5,5,5)Q Q diag== .

These penalization matrices are chosen by trial and error so we cannot guarantee

their optimality, nonetheless, they showed satisfactory performance in this study. We

note that the term control horizon cN does not appear in the objective functions. It is

the number of variables optimized at each iteration which is less or equal to pN .

For the optimization algorithms, the parameters are chosen as follows: the

convergence’s threshold 610δ −= and maximum number of iterations max 20I = . In

addition, for the ARCPROP, we have: 1.6,η+ = 0.5,η− = max 15∆ = and 10
min 10 .−=∆

The robot is set to track an eight-shaped trajectory described by the following

equations:

2sin((2)

/1sin(2(2
 ;

/

))

)d

d

xd d yd d

x P t
y
v x v y

P t
π
π

= −
=
= = 

 (4.20)

where 24P = is the trajectory period. The desired orientation and rotational speed

are selected to be zero and the initial position is set to 0 [0.35, -0.2, 0]., 0,0,0q = −

In the constrained case, the maximum speeds are set to

max max2 m/s and 3 rad/sv ω= = , and the maximum accelerations to

2 2
max max1 m/s and 4 rad/s ,t na a= = which reflect the limitations on the real robot. The

tracking performance of the compared strategies is evaluated using a performance

index which qualifies the quadratic error as follows:

()

/
2

1
() ()

; { , , }
/

sim

f

T T

re sys

m

j
i

si

y j y j
M i x y

T T
θ=

−

= ∈
∑

 (4.21)

66

where simT is the simulation time, refy is the reference value and sysy is the

measured value of the position variables.

4.4.2 Tracking analysis and computational resources
The simulation results of the tracking problem are illustrated in the figures and tables

below.

Figure 13 shows the performance of the three methods when tracking the eight-

shaped trajectory without constraints. It is evident that NMPC-PROP achieved faster

convergence compared to the other two methods.

Figure 13
Tracking the eight shaped trajectory: Unconstrained case
Source:[82]

67

The optimized control signals are shown in Figure 14. It can be appreciated that the

initial control effort resulted using NMPC-PROP is notably lower compared to the

initial efforts of NMPCIP and NMPCAS.

Figure 14
Optimized control signals: Unconstrained case
Source: [82]

Table 3 conveys the average and maximum time necessary to complete one

iteration by each of the compared strategies along with the tracking performance

measure from (4.21) for the unconstrained case. It is notable that NMPC-PROP has

a greater advantage regarding computational cost. It is 12 to 17 times faster than

NMPCIP and 7 to 8 times faster than NMPCAS algorithm. This renders it more

suitable for real-time applications. Some of NMPCIP and NMPCAS iterations take

more than 70ms to be completed which may affect their performance when applied

to the real robot that requires updates every 70ms. Despite this substantial reduction

in computational burden, NMPC-PROP is attaining a tracking performance

remarkably similar to NMPCIP and NMPCAS. The tracking error of NMPC-PROP is

only slightly higher by an order of 10-3 compared to the other two methods. This

discrepancy is justified by the attained computational efficiency.

68

Table 3
Maximum time per iteration, average time per iteration, time ratios and mean
quadratic tracking errors for different strategies: Unconstrained case
 NMPC-PROP NMPCIP NMPCAS
Max time/iteration (s) 0.0278 0.3352 0.1992

Max time ratio 1 12 7

Average time/iteration (s) 0.0014 0.0244 0.0121

Average time ratio 1 17 8

xM (m) 0.0365 0.0349 0.0349

yM (m) 0.0314 0.0251 0.0251

Mθ (rad) 0.0013 0.0006 0.0006

Figure 15 shows the tracking performance of the compared methods when following

the eight-shaped trajectory in the presence of constraints.

Figure 15
Tracking the eight-shaped trajectory: Constrained case.
Source: [82]

69

We can clearly see that NMPC-PROP maintains faster convergence than the other

two methods in the constrained case.

Table 4 shows that even in the presence of constraints, NMPC-PROP kept a low

computational cost which was 6 to 11 times faster than NMPCIP and 2 to 4 times

faster than NMPCAS. The maximum time per iteration for NMPC-PROP remained

under 70ms which kept it suitable for real-time applications. NMPC-PROP has also

achieved better tracking performance than the other two methods for the x and y

positions.

Figure 16 visualises the tracking errors for the constrained case, where the faster

convergence of NMPC-PROP can be seen. The capability of NMPC-PROP to handle

constraints is illustrated in Figure 17 which compares the resulted optimal control

variables in the constrained and unconstrained case. It manages to bring the control

amplitudes under the maximum allowed values after they were violated in the

unconstrained case.

Table 4
Maximum time per iteration, average time per iteration, time ratios and mean
quadratic tracking errors for different strategies: Constrained case
 NMPC-PROP NMPCIP NMPCAS
Max time/iteration (s) 0.0492 0.5452 0.2023

Max time ratio 1 11 4

Average time/iteration (s) 0.0047 0.0311 0.0122

Average time ratio 1 6 2

 (m)xM 0.0361 0.0373 0.0373

 (m)yM 0.0609 0.0636 0.0636

 (rad)Mθ 0.0018 0.0013 0.0013

70

Figure 16
Position tracking errors: Constrained case

Figure 17
Comparison of control signals in constrained and unconstrained cases

71

4.5 Experimental results

This section provides the experimental results of testing the three methods on the

Robotino-Festo robot (Figure 18).

Figure 18
Overview of the trajectory tracking experiment.
Source: [82]

A MATLAB-Simulink toolbox, that was developed to communicate with Robotino, is

used to implement the algorithms. The robot expects the translational and rotational

speeds as inputs; therefore, the controls generated by the control algorithms were

integrated prior to their application to the actual robot. The aim is to drive the robot to

follow the eight-shaped trajectory given in (4.20) where 50P = . The initial position is

chosen to be 0 [0.15, 0.1, 0], 0,0,0q = − , and the penalization matrices are set as

follows:

0

(7,7,7)
(750,750,750,10,10,10)

R diag
Q Q diag

=
= =

 (4.22)

Figure 19 illustrates the real-time tracking performance of the compared strategies. It

is evident that NMPC-PROP exhibits quicker convergence in comparison to the other

methods, which take more time to converge. This delay in convergence can be

attributed to the extended computational time required during the transitory phase.

Position tracking and velocity tracking are given in Figure 20 and Figure 21

respectively. While the position tracking performance of three methods was similar,

the superiority of the NMPC-PROP is clear in speed tracking thanks to its

computational advantage over the other two methods.

72

Figure 19
Real-time tracking of the eight shaped trajectory

Figure 20
Real-time position tracking.

73

Figure 21
Real-time velocities tracking.

 Figure 22
Real-time position tracking errors.

74

The position tracking errors are displayed in Figure 22 where the faster convergence

of NMPC-PROP can be seen. The numeric values of the tracking errors are given in

Table 5. It is shown that NMPC-PROP resulted in about a two-time reduction in

tracking errors compared NMPCIP and NMPCAS.

Table 5
Quadratic tracking errors for different strategies: Real-time experiment
 NMPC-PROP NMPCIP NMPCAS

 (m)xM 0.0169 0.0372 0.0307

 (m)yM 0.0140 0.0347 0.0275

 (rad)Mθ 0.0034 0.0049 0.0052

4.6 Conclusion

In this chapter, a NMPC controller for the trajectory tracking problem of OMR was

presented. The proposed controller used ARCPROP algorithm to solve the

optimization problem leading to rapid convergence, precise tracking, and low

computational burden. The capability of this algorithm to solve constraint problems

during online optimization was successfully demonstrated. To validate the

performance of the proposed controller, comparison studies were conducted against

benchmark methods, namely Interior Point and Active Set. Simulation and

experimental results proved that NMPC-PROP outperformed both NMPCIP and

NMPCAS in terms of computational efficiency, convergence speed and in real-time

tracking performance. The results of this study highlighted the superiority of NMPC-

PROP in practical applications.

75

5. STABITITY ANALYSES

5.1 Introduction

When designing a control algorithm, it is crucial to conduct a stability analysis to

provide insights on the long-term behavior of the system, and to ensure that the

control strategy does not lead to any divergence or instability. A key advantage of

NMPC is the use of the nonlinear model in the controller’s design, which allows the

stability analyses to be conducted.

Over the past three decades, wide investigation has been made by the academic

community to establish nominal stability of NMPC schemes [84-87]. Motivated by the

established stability of infinite-time optimization, such as LQR, an NMPC scheme

with an infinite prediction horizon was initially introduced, ensuring nominal stability.

Initially applicable to unconstrained problems, the method was subsequently

extended to constrained scenarios. However, the trade-off for this stability lies in

elevated computational complexity due to the infinite horizon, posing challenges for

real-time implementation [87, 88].

The finite-horizon criterion of NMPC is not inherently designed to ensure asymptotic

properties such as stability. Therefore, achieving closed-loop stability necessitates

fine tuning of design parameters, including the prediction horizon, control horizon,

and weighting matrices [87]. Another way to ensure nominal stability of NMPC is to

force the state to be zero at the end of the prediction process by adding a terminal

equality constraint to the optimization problem [89]. However, in the nonlinear case,

satisfaction of the terminal equality constraint may require an infinite number of

iterations which is computationally expensive. To ease the terminal equality

constraint, an alternative approach involves introducing a terminal region. This

region is defined so that, at the end of the prediction, the system's state lies within it.

Subsequently, a dual-mode control strategy was implemented. Outside the terminal

region, the control operates in a receding horizon mode. However, upon entering the

terminal region, the control mode transitions to a local feedback controller, guiding

the states toward the origin [90]. To eliminate the need for transitioning to an

76

alternative controller within the terminal region, a terminal cost term was introduced

into the objective function in [87]. This terminal cost bounds an infinite horizon cost

controlled by a virtual (non-implemented) local controller. This approach is commonly

referred to as Quasi-Infinite Horizon (QIH) NMPC. By appropriately choosing the

terminal cost and terminal region, the nominal stability of NMPC can be ensured.

5.2 NMPC setup using the error dynamics

To analyze the stability characteristics of the NMPC schemes, a common approach

involves converting the problem into a stabilization problem, where the origin serves

as an equilibrium point. This transformation is achieved by incorporating the error

kinematics into the NMPC algorithm. From (2.25), the error model is given as

follows:

()
()

()
()

1
1

,

2

3

 si

s

(,)
n

 in

ek k ek xek

ek k ek yek

ek ek
e k e ek ek

xek k yek ydk ek

yek k xek xdk e

k

k

e kk

k

T

T

T
q

x y v

y x v

v v aT Tu

T a T

q

u
T

f

u
v v

u

ω

ω

θ ω

ω θ

ω θ

ω

+

+ 
 

+ + 
 

+ =  + + 
 + + +



+



−

+

=




−

− 


 (5.1)

where

1

2

3

cos
cos

k xdk ek xk

ek k ydk ek

k dk k

yk

u
u

a
u
u a a

a
a a

θ θ

θ
θ

   
   = =   
   −  

−



−
 (5.2)

Using (5.1) and (5.2), the cost function to be minimized is chosen as:

 () 0

1

0

1 1 ()
2 2

,
p

p p

T T
ek ek ek ek ek ekN e

T
N

N

e
k

J qq Q Qq u uq q Ru
−

=

= ++ ∑ (5.3)

77

Based on the discrete QIH method [84], the finite-horizon optimal control problem to

be solved online is formulated as follows:

()

(), 1

arg min ,

subject to:
,

ek

p

u

k

ek ek

e e ek ek

ek e

ke e

eN

J q u

q f q u
q
u

q

Χ

Ω

+ =

∈
∈
∈

U

 (5.4)

where eΧ and eU are the state and control constraints which can be derived from

(4.7), and Ω is the terminal region in the neighborhood of the origin. The terminal

cost is chosen to bound the infinite horizon cost function as follows:

 0
1 1 ()
2 2p p

p

T
leN e

T
eN lk

k N

T
ek k kq Q q Qq u Ruq

∞

=

+≥ ∑ (5.5)

where lku is a fictitious linear controller in the terminal region. The local linear

controller will solely be employed to define the characteristics of the terminal cost

and terminal region and will never be implemented.

5.3 Feasibility of NMPC

Feasibility in the context of NMPC refers to the ability of the algorithm to find a

solution that satisfies both the system dynamics and any imposed constraints within

a given prediction horizon. Specifically, feasibility is concerned with whether it is

possible to find a sequence of control inputs and state trajectories that respect the

system dynamics and adhere to all the specified constraints. Assuming the existing

of an optimal solution for the finite optimal problem at a given time instant 1k , we can

write the sequence of optimal control inputs and the sequence of optimal state

trajectory as follows:

78

()
()

1

1

1

1

*

*

1 1

1 1

* * *

* * *

(), (1), , (1)

(), (1), , ()

T

p

T

k e e e

k e pe e

U u k u k u k N

Q q k q k q k N

= + + −

= + +





 (5.6)

When the next instant arrives, 2 1 1k k= + , and assuming a nominal case without

disturbances, the control inputs and state sequences can be expressed as follows:

()
()
()
()

2 2 2

* * *

2

2

1 1 1

2 2

* * *

2

1 1 1

(), (1), , (1)

(1), (2), , ()

(), (1), , ()

(1), (2), , (1)

T

k e e e p

T

p

T

k e e e p

T

p

e e e

e e e

U u k u k u k N

u k u k u k N

Q q k q k q k N

q k q k q k N

= + + −

= + + +

= + +

= + + + +









 (5.7)

From the definition of the terminal region and terminal cost, we know that

1 1
*() ()p le eu k N u k+ = and *

1(1)e pq k N+ + will remain invariant in the terminal region,

therefore, (5.7) is a feasible (not necessarily optimal) solution for the optimization

problem at time 2k . In a recursive manner, we can deduce that if a solution exists for

the finite optimal problem at the initial time instant, then the problem remains feasible

for all subsequent instants.

5.4 Stability of NMPC

In this section, the stability proof of the NMPC with terminal components selected

using the Quasi-Infinite Horizon (QIH) method is outlined. Define a Lyapunov

candidate function (),ek ekV q u as the value function of the objective function (5.5):

 () * * * * *
0

**
1

0

1 1 (,)
2 2

p

p p

T T
ek ek ek ek e e

N
T

keN keN
k

V q Q q q Qq uJ Ruq u
−

=

+= = +∑ (5.8)

79

We can easily see that (0,0) 0V = and 0V > if 0ekq ≠ and 0eku ≠ . Moreover, V is

positive definite with holding inequality: () * *1
2

, T
ek ek ek ekV qu qq Q≥ .

It is demonstrated in [84] that when choosing the terminal terms according to the QIH

principle, the following inequality holds:

 () 0 a1
2

, for ll T
ek ek ee ek k kJ qq Q qq u Ω≤ ∈ (5.9)

which leads to:

() ()* *
0, , for1 all 1

2 2
T

ek ek ek ek ek ekk
T
ek ek ekq Qq q QuV q u qV q q Ω≤≤ ≤ ∈ (5.10)

From (5.6) and (5.7) the cost (), 1 , 1,e k e kJ q u+ + (not necessary optimal) can be

computed as:

() () *

1

* * *
, 1 , 1 , 1 , 1

0
* *

, ,

*

0 1

*

1 1
2 2

1 1
2 2
1 1
2 2

, ,

p p p p

p p p p

T T
e

T T
e k e k e k e k ek ek ek

N eN e N e N

T
eN e

k

N

e

T
eN eN

q QJ q u Ru

q Q q q Q q

q

q Qq u

q u

u

u V

R

+ + + +

+ +− +

+

−

+

= −

 (5.11)

Since Ω is an invariant set of the nominal system, we can write:

 *
1

*
1, , 0

*
0

*1 1 1 1
2 2 2 2p p p p p p p p

T T T
e N e N eN e

T
eN eN eN N eNq Q q q Q q q Qq u Ru+ + ≤ − − (5.12)

Combining inequality (5.12) with (5.11) we obtain:

 () () * * * *
, 1 , 1

1, 1
2 2

, T T
e k e k ek ek ek ek ek ekJ q u V q u q Qq u Ru+ + ≤ − − (5.13)

80

Given the optimal solution at the instant 1k + , we can write:

 () (), 1 , 1 , 1 , 1, ,e k e k e k e kV q u J q u+ + + +≤ (5.14)

Combining inequalities (5.13) and (5.14) we get:

 () () * * * *
, 1 , 1

1 1
2

, ,
2

T T
e k e k ek ek ek ek ek ekV Rq u V q u q Qq u u+ +

 − ≤ − +
 

 (5.15)

Given that Q and R are both positive, we conclude that the value function V is strictly

decreasing. From equations (5.8) to (5.15), we conclude the properties of V as

follows: (0,0) 0V = and 0V > when 0ekq ≠ , V is bounded and strictly decreasing

along a trajectory started form an admissible initial set. Thus, V is a Lyapunov

function for the system (5.1) controlled by NMPC with terminal components chosen

using the QIH method in the absence of disturbances ensuring nominal stability.

5.5 Characterizing the terminal components using QIH method

To ensure the nominal stability of NMPC, it is essential to determine a local linear

controller for the terminal region. Given the optimality aspect of the problem, an LQR

controller is selected. The linearized equations of (5.1) are of the form:

 , 1e k ek ek ek ekq A q B u+ = + (5.16)

where ekA and ekB are given from (2.26) and (2.27) respectively as follows:

1 0 0 0
1 0 0

0 0 1 0 0(,)
0 0 1 0
0 0 1 0
0 0 0 0

0

0 1

k dk

dk

dk

e ek ek
ek

ydk dkek q

xdk dk

q

T T
T T

Tf q uA
T Tq
a
a

T T

ω
ω

ω
ω

=

 
 − 
 ∂

= =  
−∂  

 −
  
 

81

0 0 0
0 0 0
0 0 0(,)

0 0
0 0
0 0

e ek ek
ek

ek

f q uB
Tu

T
T

 
 
 
 ∂

= =  
∂  

 
  
 

The cost function to be minimized by the LQR is as follows:

1

1 ()
2

p

lk
k N

T T
ek ek kLQ lJ q Qq u Ru

∞

= +

+= ∑ (5.17)

The associated discrete-time Algebraic Riccati Equation (DARE) is [91, 92]:

()() ()1T T T T
eLQ ek LQ k Lek ek ekQ ek LQ ek LQ ekP A P A A P B R B P B B P A Q

−
= − + + (5.18)

and the control gain matrix is:

 () ()1

ek ek
T T

LQ ek LQ ek LQL R B P B B P A
−

= + (5.19)

 Then the control input lku is computed as:

 lq LQ eku L q= − (5.20)

The terminal region Ω is then determined by finding the largest constant ()0,α ∈ ∞

such that:

 { }6: , , T
eek ek LQ eek k lkq q q P q u UΩ α≡ ∈ ≤ ∈ (5.21)

According to the QIH method [84, 87], the solution of the DARE (5.18) LQP and the

region Ω can serve as terminal penalty matrix and terminal region to achieve the

nominal stability of the NMPC controller.

82

5.6 Experimental results

In this section, we proceed to assess the performance of the proposed NMPC

controller through real-time experiments. Unlike the previous tests, we extend our

evaluation to include orientation tracking. This expansion allows us to check the

method's efficacy across various application scenarios, providing a more

comprehensive understanding of its capabilities.

Three NMPC approaches will be compared, each employing different online

optimizers: ARCPROP, IP, and AS. The prediction horizon is set to 7,pN = and the

control horizon is set to 3.cN = Regarding the optimization algorithms, the

convergence threshold is 610 ,δ −= and the maximum number of iterations is

max 40.I = The experiments are conducted using the Robotino Festo OMR as shown

in Figure 18. The penalization matrices for NMPC-PROP are (4, 4, 4),R diag= and

(100,100,100,5,5,8)Q diag= , while for NMPCIP and NMPCAS, they are

(1,1,1),nR diag= and (750,750,750,5,5,8)nQ diag= . These matrices are selected

through a trial-and-error process to achieve a balance between rapid convergence

and overall performance; thus, their optimality cannot be ensured. Nevertheless,

they exhibit good performance in this experiment.

5.6.1 Eight-shaped trajectory with time-variant orientation
In the first scenario, the robot will track an eight-shaped path given in as follows:

 ()
2 2

0.5sin((4)
1

0
.5sin((2

0

at

;

a

n

/)
/))

,

 ,1/

d

d

d d d

xd yd d d

x
ty

v x y

y k

P t
P

kx

v

π
π

θ π ==

=
=

+ =

+

=

 

 

 (5.22)

where 50P = is the trajectory period. The initial states are set to:

 0 [0.2, 0,]/ 2, 0,0,0q π=

83

Figure 23 illustrates the performance of the three methods when tracking the eight-

shaped trajectory. NMPC-PROP demonstrated faster convergence compared to

NMPCIP and NMPCAS. Furthermore, Figure 24 and Figure 25 depict the positions

and speeds tracking, respectively. The superior performance of NMPC-PROP is

evident, particularly in the velocities, where it exhibits more stable tracking compared

to the other two methods.

The computed control inputs are shown in Figure 26. It is notable that the initial

control effort of NMPC-PROP is significantly lower than that of the other two

methods.

Figure 23
Tracking the eight-shaped trajectory with time variant orientation

84

Figure 24
Position Tracking of the eight-shaped trajectory with time-variant orientation

Figure 25
Velocities Tracking of the eight-shaped trajectory with time-variant orientation

85

Figure 26
Control inputs computed while tracking the eight-shaped trajectory with time-
variant orientation

The root mean square errors calculated from equation (4.21) are utilized for further

comparison of the data, as presented in Table 6. It is evident that NMPC-PROP not

only attained faster convergence but also maintained comparable position errors with

the other two methods. These tracking errors are given in Figure 27.

Table 6
Root mean square errors for different strategies: Real-time experiment
 NMPC-PROP NMPCIP NMPCAS

 (m)xM 0.0207 0.0230 0.0212

 (m)yM 0.0173 0.0197 0.0156

 (rad)Mθ 0.0802 0.0766 0.0716

86

Figure 27
Tracking errors when tracking the eight-shaped trajectory with time-variant
orientation

5.6.2 Square trajectory
In this experiment, the robot is instructed to follow a square path defined by the

points () () () (){ }0, 0 , 2, 0 , 2, 2 , 0, 2 , with a reference speed v 0.4 /xd m s= ,

moving forward. This enables us to evaluate the abilities of the compared methods in

handling abrupt changes in the trajectory. The initial states are set to:

 0 [0, 0,]0, 0,0,0q =

Figure 28 illustrates the tracking performance in the 2-D plane. Following the first

change in the desired path, NMPC-PROP adeptly resumed alignment with the path.

In contrast, NMPCIP and NMPCAS exhibited oscillations around the desired

trajectory without convergence.

87

Position tracking over time is depicted in Figure 29, while the tracking error is shown

in Figure 30. It is noteworthy that NMPC-PROP exhibits lower overshooting after

each trajectory change compared to the other two methods, facilitating smoother

convergence.

Figure 28
Tracking the square trajectory

88

Figure 29
Tracking the square trajectory

Figure 30
Tracking the square trajectory

89

5.7 Conclusion

This chapter provides a thorough analysis of the stability of the NMPC-PROP

strategy developed in the previous chapter. Using error dynamics and the Quasi

Infinite Horizon (QIH) method, the chapter establishes conditions for ensuring

nominal stability of the control system through the application of Lyapunov theory.

Experimental results, including complex trajectory tracking scenarios, validate the

theoretical stability claims and demonstrate the practical applicability of the NMPC

strategies.

90

6. CONCLUSION

This thesis represents a step forward in the field of control systems for OMRs. The

research was driven by the need to address the challenge of trajectory tracking in

these robots, especially within environments that demand high precision and

adaptability. The study developed and validated advanced control algorithms

designed to enhance the performance and feasibility of OMRs in real-world

applications.

The first phase of the research involved developing a detailed kinematic model of the

OMR. This model was crucial for predicting the robot's behavior and validating the

effectiveness of the control strategies. The constructed model captured the essential

kinematics of the OMR, incorporating its nonlinearities and the operational

constraints, providing a reliable foundation for developing control algorithms. This

detailed representation ensured that the control strategies could reliably manage the

complexities of the OMR's kinematics.

Building on the model, the research proceeded to develop a theoretical framework

for the proposed controllers. This framework took into account the inherited

nonlinearities on OMR systems. State and control constraints were also integrated

into the framework, ensuring that the developed strategies could manage the robot's

physical limitations and operational boundaries effectively.

The research introduced two enhanced control algorithms, each designed to offer

unique advantages in the trajectory tracking for OMRs:

• Laguerre-Based MPC approach: An innovative linearization-based MPC

approach was introduced and implemented for the OMR. Traditional

linearization-based methods suffer accumulation of linearization errors over the

prediction horizon. To address this issue, without using typical iterative

solutions, this method incorporated a non-iterative linearization process,

leveraging the duality between optimal control and stochastic filtering. The

duality was employed to estimate the optimal linearization points that are used

91

to linearize the system at each prediction instant, which enhances the prediction

process. To manage the added computational load from the estimation and

linearization steps required, Laguerre functions were introduced to characterize

the control inputs and reduce the number of optimization variables which

consequently reduces the time required for online optimization. The newly

designed controller demonstrated superior performance compared to traditional

MPC and NMPC and proved suitable for real-time implementation.

• Resilient nonlinear predictive controller: This controller was designed to operate

directly on the nonlinear system model without resorting to any form of

linearization. NMPC often requires iterative methods to solve the nonlinear

optimization problem, most of which result high computational complexity

particularly when performed online. To cope this computational complexity, our

approach integrates a convergent variant of the Resilient Backpropagation

(RPROP) algorithm for efficient online optimization. RPROP optimizes by

adapting individual step-sizes and utilizing only the sign of the gradient, making

it less dependent on system characteristics and thus significantly reducing

computational demands. To handle state and control constraints, we employed

the external penalties method, incorporating these constraints into the NMPC

framework. Stability analyses were conducted, using Quasi Infinite Horizon

(QIH) method to construct the terminal cost and terminal region ensuring the

feasibility and nominal stability of the controlled nonlinear system. Simulation

and experimental results demonstrated superiority of the proposed algorithm

over other benchmark methods from the literature regarding both computational

cost and tracking performance.

This research represents a significant advancement in the development of

controllers for Omnidirectional Mobile Robots, offering the potential for enhanced

real-world performance and future improvements.

92

Recommendation for future work

The present work acknowledges a reliance on trial-and-error parameter tuning in the

design and implementation of the control algorithms. Both MPC parameters

(horizons lengths and penalization matrices), and the optimization algorithms

parameters (initial step size and increment ratio) are chosen by iteratively adjusting

parameters through experimentation. Despite being a common practice, the trial-

and-error process can be time-consuming and lack precision. Recognizing the

potential for improvement, future research directions may explore the implementation

of automated tuning algorithms. Automated algorithms provide more efficiency,

consistency, and a more systematic optimization of parameters.

93

ANNEXE A – IMPLEMENTATION SETUP

The research presented in this thesis utilizes the Robotino Festo 3, an advanced

omnidirectional mobile robot known for its versatility in both educational and

industrial applications. This section provides a detailed overview of the

implementation methodologies, hardware specifications, and software integration

used to control the Robotino during the experiments.

• Hardware specifications

The Robotino-Festo is an omnidirectional mobile robot equipped with robust

hardware to support advanced control and navigation tasks. It operates on an

embedded PC that adheres to COM Express specifications and is powered by an

Intel i5 dual-core processor clocked at 2.4 GHz. This setup includes 8 GB of RAM

and a 23 GB SSD, ensuring adequate storage and processing capacity for real-time

applications.

For motor control, Robotino utilizes a 32-bit microcontroller that generates Pulse

Width Modulation (PWM) signals to actuate the DC motors. This microcontroller is

integral not only in driving the motors through a PID controller but also in correcting

sensor data, thereby enhancing the robot's responsiveness and precision. The

system features a planetary gear unit with a 32:1 gear ratio, connecting the drive

shafts to the omni-wheels. Robotino-Festo is capable of reaching a maximum

translational speed of 2 meters per second and a rotational speed of 2 radians per

second.

• Interaction methods with Robotino

Robotino-Festo offers two primary methods for interaction and control:

1- On board computer: The onboard computer allows direct interaction with the

robot's embedded system, enabling users to deploy and run algorithm locally.

This method leverages the processing power and internal resources of Robotino

to execute control algorithms and process sensor data.

94

2- REST API Method: In this work, we utilized the REST API method, which

provides a flexible and efficient way to control and monitor the robot. Robotino-

Festo has its own integrated router that hosts the robot's odometry and sensor

data on a specific IP address. This IP address is also used to send control

commands to the robot. Robotino network parameters are given in Table 7.

Table 7
Robotino network parameters
Name Robotino

Password RobotinoV4

IPv4 address 192.168.0.5

Mask 255.255.255.0

Gateway 192.168.0.1

• MATLAB-SIMILINK integration

In practice, the control algorithms were designed and implemented in MATLAB,

which communicated with Robotino through the REST API using the Robotino

MATLAB toolbox. MATLAB reads the real-time data (position, speed, sensor

readings) from Robotino’s IP address. Using this data, it computes the necessary

control inputs and sends them back to Robotino to adjust its movement. Specific

Simulink blocks were developed using S-functions to facilitate communication with

Robotino from Simulink:

 Odometry block: Takes the IP address as inputs and returns the robot’s

current position and velocities.

 Omnidrive block: Takes the IP address and desired speeds as inputs and

sends these commands to Robotino.

 Bumper block: Inputs the IP address and reads the data from the bumper

sensors to detect obstacles or collisions.

95

• Implementation workflow

The workflow involved reading the real-time odometry and sensor data from

Robotino, processing this information in MATLAB-Simulink to compute the

necessary control inputs, and then sending these inputs back to the robot as

illustrated in Figure 31. This loop of data retrieval, processing, and command

transmission was crucial for effective trajectory tracking and control.

Figure 31
Communication between control unit and Robotino

96

REFERENCES

[1] E. E. Turhanlar, B. Y. Ekren, and T. Lerher, "Autonomous mobile robot travel
under deadlock and collision prevention algorithms by agent-based modelling
in warehouses," International Journal of Logistics Research and Applications,
pp. 1-20, 2022.

[2] A. J. Sathyamoorthy, U. Patel, M. Paul, Y. Savle, and D. Manocha, "COVID
surveillance robot: Monitoring social distancing constraints in indoor
scenarios," Plos one, vol. 16, no. 12, p. e0259713, 2021.

[3] H. Hewawasam, M. Y. Ibrahim, and G. K. Appuhamillage, "Past, Present and
Future of Path-Planning Algorithms for Mobile Robot Navigation in Dynamic
Environments," IEEE Open Journal of the Industrial Electronics Society, vol.
3, pp. 353-365, 2022.

[4] F. Tian et al., "Trajectory planning for autonomous mining trucks considering
terrain constraints," IEEE Transactions on Intelligent Vehicles, vol. 6, no. 4,
pp. 772-786, 2021.

[5] A. Saad et al., "Advancing ocean observation with an ai-driven mobile robotic
explorer," Oceanography, vol. 33, no. 3, pp. 50-59, 2020.

[6] M. Luperto et al., "Towards long-term deployment of a mobile robot for at-
home ambient assisted living of the elderly," in 2019 European Conference
on Mobile Robots (ECMR), 2019: IEEE, pp. 1-6.

[7] W. Houtman, C. L. Martinez, S. Wang, A. Ketels, H. P. Bruyninckx, and M.
van de Molengraft, "Dynamic control of steerable wheeled mobile platforms
applied to an eight-wheeled RoboCup Middle Size League soccer robot,"
Mechatronics, vol. 80, p. 102693, 2021.

[8] D. Chatziparaschis, M. G. Lagoudakis, and P. Partsinevelos, "Aerial and
ground robot collaboration for autonomous mapping in search and rescue
missions," Drones, vol. 4, no. 4, p. 79, 2020.

[9] R. Raj and A. Kos, "A Comprehensive Study of Mobile Robot: History,
Developments, Applications, and Future Research Perspectives," Applied
Sciences, vol. 12, no. 14, p. 6951, 2022.

97

[10] F. Arvin, J. Espinosa, B. Bird, A. West, S. Watson, and B. Lennox, "Mona: an
affordable open-source mobile robot for education and research," Journal of
Intelligent & Robotic Systems, vol. 94, pp. 761-775, 2019.

[11] L. Tagliavini, G. Colucci, A. Botta, P. Cavallone, L. Baglieri, and G. Quaglia,
"Wheeled Mobile Robots: State of the Art Overview and Kinematic
Comparison Among Three Omnidirectional Locomotion Strategies," Journal
of Intelligent & Robotic Systems, vol. 106, no. 3, p. 57, 2022.

[12] D. Topolsky et al., "Development of a Mobile Robot for Mine Exploration,"
Processes, vol. 10, no. 5, p. 865, 2022.

[13] H. Kim and Y. Choi, "Autonomous driving robot that drives and returns along
a planned route in underground mines by recognizing road signs," Applied
Sciences, vol. 11, no. 21, p. 10235, 2021.

[14] F. Günther, H. Mischo, R. Lösch, S. Grehl, and F. Güth, "Increased safety in
deep mining with iot and autonomous robots," in Mining Goes Digital: CRC
Press, 2019, pp. 603-611.

[15] J. Szrek, J. Jakubiak, and R. Zimroz, "A Mobile Robot-Based System for
Automatic Inspection of Belt Conveyors in Mining Industry," Energies, vol. 15,
no. 1, p. 327, 2022.

[16] A. Bonci, P. D. Cen Cheng, M. Indri, G. Nabissi, and F. Sibona, "Human-
robot perception in industrial environments: A survey," Sensors, vol. 21, no.
5, p. 1571, 2021.

[17] M. N. Ab Wahab, S. Nefti-Meziani, and A. Atyabi, "A comparative review on
mobile robot path planning: Classical or meta-heuristic methods?," Annual
Reviews in Control, vol. 50, pp. 233-252, 2020.

[18] R. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to
autonomous mobile robots. MIT press, 2011.

[19] W. A. Blyth, "Robotic pipe inspection: system design, locomotion and
control," 2017.

[20] S. G. Tzafestas, Introduction to mobile robot control. Elsevier, 2013.

98

[21] Cyberbotics. "Pioneer Documentation."
https://www.cyberbotics.com/doc/guide/pioneer-3dx?version=R2021a
(accessed.

[22] K. Osborne. "Allen School releases MuSHR robotic race car platform to drive
advances in AI research and education."
https://news.cs.washington.edu/2019/08/21/allen-school-releases-mushr-
robotic-race-car-platform-to-drive-advances-in-ai-research-and-education/
(accessed.

[23] H. Taheri and C. X. Zhao, "Omnidirectional mobile robots, mechanisms and
navigation approaches," Mechanism and Machine Theory, vol. 153, p.
103958, 2020.

[24] S. G. Tzafestas, "Mobile robot control and navigation: A global overview,"
Journal of Intelligent & Robotic Systems, vol. 91, no. 1, pp. 35-58, 2018.

[25] M. A. Al Mamun, M. T. Nasir, and A. Khayyat, "Embedded system for motion
control of an omnidirectional mobile robot," IEEE Access, vol. 6, pp. 6722-
6739, 2018.

[26] S. Jeong and D. Chwa, "Sliding-mode-disturbance-observer-based robust
tracking control for omnidirectional mobile robots with kinematic and dynamic
uncertainties," IEEE/ASME Transactions on Mechatronics, vol. 26, no. 2, pp.
741-752, 2020.

[27] J.-T. Huang, T. Van Hung, and M.-L. Tseng, "Smooth switching robust
adaptive control for omnidirectional mobile robots," IEEE Transactions on
Control Systems Technology, vol. 23, no. 5, pp. 1986-1993, 2015.

[28] Z. Xu, S. X. Yang, and S. A. Gadsden, "Enhanced bioinspired backstepping
control for a mobile robot with unscented Kalman filter," IEEE Access, vol. 8,
pp. 125899-125908, 2020.

[29] Z. Li and J. Zhai, "Super‐twisting sliding mode trajectory tracking adaptive
control of wheeled mobile robots with disturbance observer," International
Journal of Robust and Nonlinear Control, vol. 32, no. 18, pp. 9869-9881,
2022.

[30] A. Khadhraoui, A. Zouaoui, and M. Saad, "Barrier Lyapunov function and
adaptive backstepping-based control of a quadrotor UAV," Robotica, pp. 1-
23, 2023.

https://www.cyberbotics.com/doc/guide/pioneer-3dx?version=R2021a
https://news.cs.washington.edu/2019/08/21/allen-school-releases-mushr-robotic-race-car-platform-to-drive-advances-in-ai-research-and-education/
https://news.cs.washington.edu/2019/08/21/allen-school-releases-mushr-robotic-race-car-platform-to-drive-advances-in-ai-research-and-education/

99

[31] K. Shao, J. Zheng, R. Tang, X. Li, Z. Man, and B. Liang, "Barrier function
based adaptive sliding mode control for uncertain systems with input
saturation," IEEE/ASME Transactions on Mechatronics, vol. 27, no. 6, pp.
4258-4268, 2022.

[32] R. H. Abiyev, N. Akkaya, and I. Gunsel, "Control of omnidirectional robot
using Z-number-based fuzzy system," IEEE Transactions on Systems, Man,
and Cybernetics: Systems, vol. 49, no. 1, pp. 238-252, 2018.

[33] B. Li, Y. Fang, G. Hu, and X. Zhang, "Model-free unified tracking and
regulation visual servoing of wheeled mobile robots," IEEE Transactions on
Control Systems Technology, vol. 24, no. 4, pp. 1328-1339, 2015.

[34] T. P. Nascimento, C. E. Dórea, and L. M. G. Gonçalves, "Nonholonomic
mobile robots' trajectory tracking model predictive control: a survey,"
Robotica, vol. 36, no. 5, pp. 676-696, 2018.

[35] P. Harasim and M. Trojnacki, "State of the art in predictive control of wheeled
mobile robots," Journal of Automation, Mobile Robotics and Intelligent
Systems, pp. 34-42, 2016.

[36] M. T. Watson, D. T. Gladwin, T. J. Prescott, and S. O. Conran, "Dual-mode
model predictive control of an omnidirectional wheeled inverted pendulum,"
IEEE/ASME Transactions on Mechatronics, vol. 24, no. 6, pp. 2964-2975,
2019.

[37] L. Grüne and J. Pannek, "Nonlinear model predictive control," in Nonlinear
model predictive control: Springer, 2017, pp. 45-69.

[38] I. Aliskan, "Optimized inverse nonlinear function-based wiener model
predictive control for nonlinear systems," Arabian Journal for Science and
Engineering, vol. 46, no. 10, pp. 10217-10230, 2021.

[39] S. Chang et al., "Model predictive control for seizure suppression based on
nonlinear auto-regressive moving-average volterra model," IEEE
Transactions on Neural Systems and Rehabilitation Engineering, vol. 28, no.
10, pp. 2173-2183, 2020.

[40] Z. Zeng, H. Lu, and Z. Zheng, "High-speed trajectory tracking based on
model predictive control for omni-directional mobile robots," in 2013 25th
Chinese Control and Decision Conference (CCDC), 2013: IEEE, pp. 3179-
3184.

100

[41] L. Armesto, V. Girbés, A. Sala, M. Zima, and V. Šmídl, "Duality-based
nonlinear quadratic control: Application to mobile robot trajectory-following,"
IEEE Transactions on Control Systems Technology, vol. 23, no. 4, pp. 1494-
1504, 2015.

[42] B. Zhang, C. Zong, G. Chen, and B. Zhang, "Electrical vehicle path tracking
based model predictive control with a Laguerre function and exponential
weight," IEEE Access, vol. 7, pp. 17082-17097, 2019.

[43] J. A. Rossiter and L. Wang, "Exploiting Laguerre functions to improve the
feasibility/performance compromise in MPC," in 2008 47th ieee conference
on decision and control, 2008: IEEE, pp. 4737-4742.

[44] M. Ławryńczuk, "Nonlinear model predictive control for processes with
complex dynamics: a parameterisation approach using Laguerre functions,"
International Journal of Applied Mathematics and Computer Science, vol. 30,
no. 1, 2020.

[45] J. A. Rossiter, L. Wang, and G. Valencia-Palomo, "Efficient algorithms for
trading off feasibility and performance in predictive control," International
Journal of Control, vol. 83, no. 4, pp. 789-797, 2010.

[46] J. Saeed, L. Wang, and N. Fernando, "Model Predictive Control of Phase
Shift Full-Bridge DC-DC Converter Using Laguerre Functions," IEEE
Transactions on Control Systems Technology, 2021.

[47] L. Wang, "Discrete model predictive controller design using Laguerre
functions," Journal of process control, vol. 14, no. 2, pp. 131-142, 2004.

[48] L. Wang, Model predictive control system design and implementation using
MATLAB®. Springer Science & Business Media, 2009.

[49] G. Bai, Y. Meng, L. Liu, W. Luo, Q. Gu, and L. Liu, "Review and comparison
of path tracking based on model predictive control," Electronics, vol. 8, no.
10, p. 1077, 2019.

[50] T. A. Teatro, J. M. Eklund, and R. Milman, "Nonlinear model predictive
control for omnidirectional robot motion planning and tracking with avoidance
of moving obstacles," Canadian Journal of Electrical and Computer
Engineering, vol. 37, no. 3, pp. 151-156, 2014.

101

[51] Q. Hu, M. R. Amini, I. Kolmanovsky, J. Sun, A. Wiese, and J. B. Seeds,
"Multihorizon Model Predictive Control: An Application to Integrated Power
and Thermal Management of Connected Hybrid Electric Vehicles," IEEE
Transactions on Control Systems Technology, 2021.

[52] M. Elsisi, "Optimal design of nonlinear model predictive controller based on
new modified multitracker optimization algorithm," International Journal of
Intelligent Systems, vol. 35, no. 11, pp. 1857-1878, 2020.

[53] S. Gros and M. Zanon, "Data-driven economic nmpc using reinforcement
learning," IEEE Transactions on Automatic Control, vol. 65, no. 2, pp. 636-
648, 2019.

[54] C. Muller, D. E. Quevedo, and G. C. Goodwin, "How good is quantized model
predictive control with horizon one?," IEEE transactions on automatic control,
vol. 56, no. 11, pp. 2623-2638, 2011.

[55] M. H. Korayem, H. R. Adriani, and N. Y. Lademakhi, "Intelligent time-delay
reduction of nonlinear model predictive control (NMPC) for wheeled mobile
robots in the presence of obstacles," ISA Transactions, 2023.

[56] Y. Hamada, T. Tsukamoto, and S. Ishimoto, "Receding horizon guidance of a
small unmanned aerial vehicle for planar reference path following,"
Aerospace Science and Technology, vol. 77, pp. 129-137, 2018.

[57] T. Ohtsuka, "A tutorial on C/GMRES and automatic code generation for
nonlinear model predictive control," in 2015 European Control Conference
(ECC), 2015: IEEE, pp. 73-86.

[58] Y. Hu et al., "Nonlinear model predictive control for mobile medical robot
using neural optimization," IEEE Transactions on Industrial Electronics, vol.
68, no. 12, pp. 12636-12645, 2020.

[59] Z. Li, C. Yang, C.-Y. Su, J. Deng, and W. Zhang, "Vision-based model
predictive control for steering of a nonholonomic mobile robot," IEEE
Transactions on Control Systems Technology, vol. 24, no. 2, pp. 553-564,
2015.

[60] Z. Li, J. Deng, R. Lu, Y. Xu, J. Bai, and C.-Y. Su, "Trajectory-tracking control
of mobile robot systems incorporating neural-dynamic optimized model
predictive approach," IEEE Transactions on Systems, Man, and Cybernetics:
Systems, vol. 46, no. 6, pp. 740-749, 2015.

102

[61] H. Merabti, K. Belarbi, and B. Bouchemal, "Nonlinear predictive control of a
mobile robot: a solution using metaheuristcs," Journal of the Chinese institute
of engineers, vol. 39, no. 3, pp. 282-290, 2016.

[62] N. Ito, H. Okuda, and T. Suzuki, "Model predictive driving for tractor-trailer
mobile robot with an omni-directional tractor," in 2020 59th Annual
Conference of the Society of Instrument and Control Engineers of Japan
(SICE), 2020: IEEE, pp. 1530-1533.

[63] R. G. Patel and J. J. Trivedi, "Nonlinear model predictive control of steam-
assisted-gravity-drainage well operations for real-time production
optimization," SPE Production & Operations, vol. 35, no. 03, pp. 564-578,
2020.

[64] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, "CasADi: a
software framework for nonlinear optimization and optimal control,"
Mathematical Programming Computation, vol. 11, pp. 1-36, 2019.

[65] R. Quirynen and S. Di Cairano, "PRESAS: Block‐structured preconditioning
of iterative solvers within a primal active‐set method for fast model predictive
control," Optimal Control Applications and Methods, vol. 41, no. 6, pp. 2282-
2307, 2020.

[66] A. G. S. Conceição, C. E. Dórea, L. Martinez, and E. R. de Pieri, "Design and
implementation of model-predictive control with friction compensation on an
omnidirectional mobile robot," IEEE/ASME Transactions On Mechatronics,
vol. 19, no. 2, pp. 467-476, 2013.

[67] M. Riedmiller and H. Braun, "A direct adaptive method for faster
backpropagation learning: The RPROP algorithm," in IEEE international
conference on neural networks, 1993: IEEE, pp. 586-591.

[68] T. P. Nascimento, A. P. Moreira, and A. G. S. Conceição, "Multi-robot
nonlinear model predictive formation control: Moving target and target
absence," Robotics and Autonomous Systems, vol. 61, no. 12, pp. 1502-
1515, 2013.

[69] T. P. Nascimento, C. E. T. Dórea, and L. M. G. Gonçalves, "Nonlinear model
predictive control for trajectory tracking of nonholonomic mobile robots: A
modified approach," International Journal of Advanced Robotic Systems, vol.
15, no. 1, p. 1729881418760461, 2018.

103

[70] T. Nascimento and M. Saska, "Embedded Fast Nonlinear Model Predictive
Control for Micro Aerial Vehicles," Journal of Intelligent & Robotic Systems,
vol. 103, no. 4, pp. 1-11, 2021.

[71] T. M. Bailey, "Convergence of Rprop and variants," Neurocomputing, vol.
159, pp. 90-95, 2015.

[72] A. D. Anastasiadis, G. D. Magoulas, and M. N. Vrahatis, "New globally
convergent training scheme based on the resilient propagation algorithm,"
Neurocomputing, vol. 64, pp. 253-270, 2005.

[73] F. Corporation. "Festo." https://www.festo.com/us/en/ (accessed.

[74] D. Pršić, V. Stojanović, and V. Đorđević, "A Constructive Approach to
Teaching with Robotino," in 7th International Scientific Conference Technics
and Informatics in Education, Serbia, 2018.

[75] F. Corporation. "Robotino Wiki."
https://wiki.openrobotino.org/index.php?title=Robotino3#Hardware
(accessed.

[76] E. F. Camacho and C. Bordons, Model predictive controllers. Springer, 2007.

[77] M. El-Sayyah, M. R. Saad, and M. Saad, "Enhanced MPC for omnidirectional
robot motion tracking using laguerre functions and non-iterative linearization,"
IEEE Access, vol. 10, pp. 118290-118301, 2022.

[78] J. Chen, W. Zhan, and M. Tomizuka, "Autonomous driving motion planning
with constrained iterative LQR," IEEE Transactions on Intelligent Vehicles,
vol. 4, no. 2, pp. 244-254, 2019.

[79] R. E. Kalman, "A new approach to linear filtering and prediction problems,"
1960.

[80] E. Todorov, "General duality between optimal control and estimation," in
2008 47th IEEE Conference on Decision and Control, 2008: IEEE, pp. 4286-
4292.

[81] C. Igel and M. Hüsken, "Empirical evaluation of the improved Rprop learning
algorithms," Neurocomputing, vol. 50, pp. 105-123, 2003.

https://www.festo.com/us/en/
https://wiki.openrobotino.org/index.php?title=Robotino3#Hardware

104

[82] M. El-Sayyah, M. R. Saad, and M. Saad, "NMPC for Trajectory Tracking of
Omnidirectional Robot using Resilient Propagation," 2024.

[83] N. Guo, B. Lenzo, X. Zhang, Y. Zou, R. Zhai, and T. Zhang, "A real-time
nonlinear model predictive controller for yaw motion optimization of
distributed drive electric vehicles," IEEE Transactions on Vehicular
Technology, vol. 69, no. 5, pp. 4935-4946, 2020.

[84] C. Rajhans, D. W. Griffith, S. C. Patwardhan, L. T. Biegler, and H. K. Pillai,
"Terminal region characterization and stability analysis of discrete time quasi-
infinite horizon nonlinear model predictive control," Journal of Process
Control, vol. 83, pp. 30-52, 2019.

[85] D. Q. Mayne and P. Falugi, "Stabilizing conditions for model predictive
control," International Journal of Robust and Nonlinear Control, vol. 29, no. 4,
pp. 894-903, 2019.

[86] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. Scokaert, "Constrained
model predictive control: Stability and optimality," Automatica, vol. 36, no. 6,
pp. 789-814, 2000.

[87] H. Chen and F. Allgöwer, "A quasi-infinite horizon nonlinear model predictive
control scheme with guaranteed stability," Automatica, vol. 34, no. 10, pp.
1205-1217, 1998.

[88] R. R. Bitmead, M. Gevers, and V. Wertz, "Adaptive optimal control the
thinking man's GPC," 1990.

[89] D. Q. Mayne and H. Michalska, "Receding horizon control of nonlinear
systems," in Proceedings of the 27th IEEE Conference on Decision and
Control, 1988: IEEE, pp. 464-465.

[90] H. Michalska and D. Q. Mayne, "Robust receding horizon control of
constrained nonlinear systems," IEEE transactions on automatic control, vol.
38, no. 11, pp. 1623-1633, 1993.

[91] L. F. Lupián and J. R. Rabadán-Martin, "LQR control methods for trajectory
execution in omnidirectional mobile robots," Recent Advances in Mobile
Robotics, pp. 385-400, 2011.

[92] D.-H. Lee and J. Hu, "A study of the duality between kalman filters and lqr
problems," 2016.

105

	BOARD OF EXAMINERS
	Dedication
	Acknowlegement
	Table of Contents
	List of figures
	List of tables
	List of acronyms and abbreviations
	Résumé
	Abstract
	1. INTRODUCTION
	1.1 Overview
	1.2 Mobile robots
	1.2.1 Non-Holonomic WMRs
	1.2.2 Holonomic WMRs

	1.3 Control methods
	1.3.1 Trajectory tracking
	1.3.2 Linearization-based MPC
	1.3.3 NMPC

	1.4 Motivation
	1.5 Objectives
	1.6 Methodology
	1.7 Project contributions
	1.8 Thesis outline
	1.9 Conclusion

	2. Preliminary setup
	2.1 Introduction
	2.2 Modeling the Omnidirectional Mobile Robot (OMR)
	2.2.1 Kinematics modeling
	2.2.2 Error Kinematics

	2.3 Model predictive control
	2.3.1 Linear model predictive control
	2.3.2 Nonlinear model predictive control

	2.4 Conclusion

	3. Enhanced MPC for Omnidirectional Robot Motion Tracking Using Laguerre Functions and Non-Iterative Linearization
	3.1 Introduction
	3.2 Model of the omnidirectional mobile robot
	3.3 Constraints
	3.4 Duality principal and non-iterative linearization
	3.5 MPC with Laguerre functions
	3.5.1 Introduction to Laguerre functions
	3.5.2 Laguerre-based MPC
	3.5.3 Constrained solution using Laguerre functions
	3.5.4 The LMPC algorithm

	3.6 Comparative studies and analyzes
	3.6.1 Simulations results
	3.6.2 Experimental results

	3.7 Conclusion

	4. Nmpc for trajectory tracking of omnidirectional robot using resilient propagation
	4.1 Introduction
	4.2 Constrained NMPC setup
	4.2.1 Prediction model
	4.2.2 Optimization problem

	4.3 Optimization algorithm
	4.3.1 RPROP
	4.3.2 ARCPROP

	4.4 Simulation Results
	4.4.1 Simulation setup
	4.4.2 Tracking analysis and computational resources

	4.5 Experimental results
	4.6 Conclusion

	5. Stabitity analyses
	5.1 Introduction
	5.2 NMPC setup using the error dynamics
	5.3 Feasibility of NMPC
	5.4 Stability of NMPC
	5.5 Characterizing the terminal components using QIH method
	5.6 Experimental results
	5.6.1 Eight-shaped trajectory with time-variant orientation
	5.6.2 Square trajectory

	5.7 Conclusion

	6. Conclusion
	Recommendation for future work

	Annexe A – Implementation setup
	References

