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2. Zhang, Y., Drobyshev, I., Gao, L.S., Zhao, X.H., Wang, X.M., Bergeron, Y. Climate effects on 

growth dynamics and regeneration of tree species at their altitudinal distribution limits in Changbai 

Mountain, Northeast China. (revised to ECOSCIENCE) (IF 201 2: 1.354) 
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RÉSUMÉ 

Afin d'évaluer la réponse de la croissance des arbres au changement climatique à leur limite de 

répartition et d'identifier les changements potentiels de leur aire de répartition, nous avons utilisé des 

méthodes dendrochronologiques en laboratoire et sur le terrain. Les zones d'étude se situaient dans 

des zones de transition forestière dans le nord de la Chine et dans l'ouest du Québec . Toutes deux 

présentaient une structure forestière similaire (forêt mixte) avec de nombreuses espèces situées à leur 

limite de répartition. De part et d'autre de celle-ci, les forêts étaient influencées par le climat et les 

perturbations, nous permettant ainsi de détecter les facteurs contrôlant les écotones forestiers. Dans le 

nord de la Chine, nous nous sommes concentrés sur trois conifères dominants le long d'un gradient 

altitudinal (750-1800 rn) dans le Massif Changbai. Les forêts étudiées étaient composées du pin de 

Corée (Pinus koraiensis Siebold et Zuccarini), de l'épinette Jezo (Piceajezoensis Carr. var. komarovii 

(VVassil.) Cheng et L.K.Fu) et du sapin de Mandchourie (Abies nephrolepis (Trautv.) Maxim.). Nous 

avons également discuté d'un éventuel changement de la position altitudinale des écotones dans le 

contexte de réchauffement climatique. Dans l'ouest du Québec, nous avons analysé les modèles de 

croissance et de sensibilité de la croissance au climat de l'érable rouge (Acer rubrum L.) le long du 

gradient latitudinal ( 47-49° N). A la limite nordique de l'aire de répartition, nous avons examiné les 

effets directs et indirects des changements climatiques futurs sur la croissance et la position de la 

limite nordique. 

Comme les chablis sont les principales perturbations affectant la crmssance des espèces et la 

dynamique forestière dans le Massif Changbai, nous avons d'abord (chapitre I) reconstitué l'historique 

des perturbations dans la zone d'étude au cours de la période 1770-2000, sur la base de l 'analyse des 

reprises de croissance et du patron de recrutement. Les pourcentages de reprises de croissance dans la 

canopée étaient inférieurs à 6 % dans la plupart des décennies, suggérant que les perturbations initiant 

ces reprises étaient de faible intensité. Les vents forts étaient la cause la plus probable de ces 

perturbations modérées. Deux épisodes avec des taux élevés de perturbations (19% et 13%) 

correspondaient aux décennies 1920 et 1980. Le recrutement du mélèze de la Baie d'Olga (Larix 

olgensis Henry), espèce intolérante à l'ombre, a eu lieu principalement avant les années 1860. Le 

recrutement du pin de Corée, espèce mi-tolérante à l'ombre, s'est produit via plusieurs vagues de 

régénération d'intensité modérée (décennies 1820, 1850, 1870, 1880, 1930 et 1990 et 2000). La 

régénération de l'épinette Jezo et du sapin de Mandchourie, espèces tolérantes à l'ombre, était 

continue au cours des dernières 220 et 130 années respectivement. Un meilleur recrutement du pin de 

Corée, de l'épinette Jezo et du sapin de Mandchourie a été observé au cours des décennies 1930 et 

1990, coïncidant avec une augmentation de la fréquence des reprises de croissance lors des décennies 

1920 et 1980. Cela suggère des perturbations d'intensité modérée. 
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Nous avons étudié la densité de régénération, l'accumulation de la biomasse et la sensibilité de la 

croissance au climat du pin de Corée, de l'épinette Jezo et du sapin de J\1andchourie à leurs limites 

respectives de répartition altitudinale dans le Massif Changbai (Chapitre II). Les densités de la 

régénération ne différaient pas significativement entre les élévations, sauf pour l'épinette de Jezo qui 

a montré une densité de régénération nettement plus faible à sa limite inférieure par rapport à sa limite 

supérieure. Les trois espèces avaient une surface terrière significativement plus élevée au milieu du 

gradient altitudinal de répartition par rapport aux limites inférieure et supérieure du gradient. Elles ont 

également montré une plus grande sensibilité aux températures qu'aux précipitations à leurs limites 

supérieures de répartition et la tendance inverse a été observée à leurs limites inférieures. Aux limites 

supérieures respectives, les températures estivales (pour le pin de Corée et l'épinette de Jezo) et 

printanières (pour le sapin de Mandchourie) de l'année en cours affectaient positivement la croissance 

des arbres. Aux limites inférieures respectives, les précipitations automnales de l'année précédente 

avaient un effet positif sur la croissance. Notre étude suggère que les limites altitudinales de la 

végétation forestière ont été entravées par des facteurs climatiques affectant la croissance des espèces 

dominantes plutôt que par des facteurs contrôlant la densité de la régénération. Les changements 

climatiques auraient probablement modifié les limites altitudinales de l' optimum climatique pour la 

croissance des espèces dominantes se traduisant par des changements dans les compositions 

spécifiques et la localisation des écotones. 

Dans le chapitre III, nous avons examiné les taux de croissance et la sensibilité de la croissance de 

l'érable rouge face aux conditions climatiques, en analysant les données dendrochronologiques de 

neuf sites situés le long d'un transect latitudinal de 300 km (47-49 °N) couvrant trois domaines 

bioclimatiques dans l'ouest du Québec. Les trois variables de croissance étudiées étaient les taux de 

croissance au cours des 30 premières années de la vie de l'érable, la croissance cumulative de la 

surface terrière au cours de la dernière décennie (2000-2009) et le taux de croissance annuelle pendant 

toute la durée de vie de l'érable. Toutes trois étaient positivement corrélées à la latitude. Sur 

l'ensemble du transect, la variation annuelle de la croissance de l'érable était positivement affectée par 

les températures de septembre de l'année précédente. Les températures de juillet de l'année en cours et 

les précipitations de décembre de l'année précédente ont eu un effet positif sur la croissance dans la 

partie nord du transe ct ( 48-49 °N). La croissance était limitée au milieu de l'été (juillet) par la 

sécheresse à l'extrémité sud du transect ( 47-48 °N). La contradiction apparente entre les résultats de la 

croissance absolue et ceux de la fonction de réponse a été interprétée par l'effet de l'histoire du 

peuplement sur le modèle de croissance de l'érable rouge. Plus précisément, les érables recrutés après 

de fortes perturbations, comme à la suite d'un feu, dans le nord, pourraient profiter des niveaux de 

luminosité plus élevés, nécessaires à la croissance, par rapport au peuplement plus au sud qui se sont 

probablement développés dans des trouées. Les changements climatiques prévus pourraient favoriser 

la croissance de l'érable rouge dans la sapinière à bouleau à papier, résultant en une migration de 

l'érable dans la forêt boréale mixte. Cependant, les régimes de perturbations naturelles et anthropiques 
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qui affectent les conditions de croissance à l'échelle du site semblent contrôlés la productivité de la 

biomasse de l'érable rouge au sein de son aire de répartition actuel. 

Notre étude suggère que les limites de répartition des espèces étudiées étaient contrôlées par les effets 

directs du climat et des perturbations sur leur recrutement et leur croissance. Les effets directs des 

changements climatiques futurs pourraient influencer positivement la croissance des arbres et le 

recrutement aux limites altitudinales (Massif Chang bai) et latitudinales (ouest du Québec). Alors que 

les effets des changements des régimes de perturbations sur le maintien des espèces forestières étaient 

différents entre les deux zones d'étude, les réponses à ces changements dépendent principalement de 

la stratégie de vie et des caractéristiques écologiques des espèces. Dans le Massif Changbai, 

l'augmentation des températures et des tempêtes pourraient faciliter la migration des arbres vers de 

plus hautes altitudes, conduisant à un déplacement de la position actuelle de l'écotone feuillus-pin 

coréen 1 épinette-sapin. Dans l'ouest du Québec, un effet cumulée d'un climat plus chaud et d'une 

activité des feux pourrait favoriser une meilleure croissance de l'érable. De meilleures projections de 

la dynamique des précipitations, qui contrôlent directement les niveaux d'activité des feux dans le 

contexte du réchauffement climatique, pourraient améliorer notre capacité à prévoir les changements 

futurs à la limite de distribution septentrionale de l'érable rouge. 



ABSTRACT 

To understand how tree growth responds to climate change at tree distribution limits and what are the 

potential changes in tree distribution ranges under the future climate, we used dendrochronological 

and field survey methods to investigate tree responses to climate var iability at the transitional zones in 

northeastern China and western Quebec. The selected study areas are dominated by mixed forests 

with many tree species growing at their distribution limits. In northeastern China, we focused on three 

dominant conifers of an elevational gradient (750-1800 rn) in Changbai Mountain. The trees studied 

included Korean pine (Pinus koraiensis Siebold et Zuccarini), Jezo spruce (Piceajezoensis Carr. var. 

komarovii (V.Vassil.) Cheng et L.K.Fu), and Manchurian fir (Abies nephrolepis (Trautv.) Maxim.) . We 

observed climatic controls of growth of the dominant species and potential shifts in altitudinal 

position of vegetational ecotones as a result of climate change. In eastern Canada, we analyzed 

climate-growth relationships of red maple (Acer rubrum L.) along a latitudinal gradient ( 47-49° N) at 

its northern distribution limit, and discussed direct and indirect climatic effects on its future 

distribution. 

Since windthrows are main disturbances affecting tree growth and forest dynamics in Changbai 

Mountain, we first reconstructed disturbance history in the study area over the period 1770-2000 

(Chapter I), based on the analyses of growth release and recruitment patterns. Percentages of growth 

releases in subcanopy trees were below 6% in most decades, suggesting that disturbances initiating 

these releases were of low severity. Strong winds possible cause of modera te disturbance events. Two 

episodes with increased disturbance rates (19% and 13%) were dated to the 1920s and 1980s. 

Shade-intolerant Olga bay larch (Larix olgensis Henry) recruited mainly before the 1860s. 

Recruitment of mid-tolerant Korean pine occurred as several regeneration waves (1820s, 1850s, 

1870-1880s, 1930s, and 1990-2000s) of moderate intensity. Shade-tolerant Jezo spruce and 

Manchurian fir regenerated continuously over the last 220 and 130 years, respectively. An enhanced 

recruitment of Korean pine, Jezo spruce, and Manchurian fir was observed during the 1930s and 

1990s, which were coincided with an increased growth release frequency in the 1920s and 1980s, 

suggesting disturbance events of moderate intensity. 

We studied regeneration density, biomass accumulation, and growth sensitivity of Korean pine, Jezo 

spruce, and Manchurian fir at their respective distribution limits in Changbai Mountain (Chapter II). 

Regeneration densities did not differ significantly among the elevations except for the Jezo spruce, 

which showed a significantly lower regeneration at its lower limit than at upper limit. All three 

species showed a significantly higher basal area increment (BAI) at the middle part of their 

distribution ranges than at their limits. They also showed higher growth sensitivity to temperature 

than to precipitation at their upper limits and the inverse pattern was observed at their lower limits. At 

respective upper limits, summer temperatures of the current year (for Korean pine and Jezo spruce) 
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and spring temperature of the current year (for Manchurian fir) positively affected tree growth. At 

respective lower limits, precipitation in autumn of the previous year had a positive effect on growth. 

The study suggested that elevational limits of forest vegetation were constrained by climate factors 

affecting growth of dominant species rather than those controlling regeneration density. We concluded 

that climate change would likely shift the elevational positions of the climate optima for the growth of 

canopy dominants, leading to changes in the species and ecotone ranges. 

In Chapter III, we examined growth rate and growth sensitivity to climate of red maple by analyzing 

dendrochronological data from nine sites located along a 300 km transe ct ( 47-49 °N) covering three 

bioclimatic domains in western Quebec. All three growth variables, i.e., growth rates during the first 

30 years of maple lifespan, cumulative basal area increment over the most recent decade (2000-2009), 

and annual growth rate over the whole tree lifespan, were positively related to latitude. Annual 

variability of maple growth was positively affected by the previous year September temperature 

across the whole transect. July temperature of the current year and December precipitation of the 

previous year had a positive influence on the growth in the northern part of transect ( 48-49 °N). 

Mid-summer (July) drought limited the growth in the southern part of transect ( 47-48 °N). We 

interpreted an apparent discrepancy between the results of absolute growth analyses and response 

function analyses by the overriding effect of stand history on the growth pattern of red maple. 

Specifically, maples recruited after large disturbance events such as stand replacing fire in the north 

could take advantages of primarily higher light levels for the growth, compared to those in the south 

which likely occurred in canopy gaps. Expected climate change would likely favor red maple growth 

in the northem balsam fir - paper birch domain, resulting in an extension of maple distribution to the 

northem boreal mixedwoods. However, the natural and human disturbance regimes affecting the 

growth conditions at the site lev el appear to be dominant controls of the actual biomass productivity 

of red maple at its present distribution range. 

Our study suggested that distribution limits of studied species were controlled through a combination 

of direct climatic and disturbance-mediated effects on their recruitment and growth. The direct effects 

of future climate change may positively affect tree growth and recruitment at higher elevational 

(Changbai Mountain) or latitudinal limits (western Quebec). While the effects of changes in 

disturbance regimes on trees maintenance in the forest were differed in two study area, responses to 

these changes were mainly dependent on species life strategy and ecological traits. In Changbai 

Mountain, increases in temperatures and wind disturbances may facilitate trees migration towards 

higher elevation, leading to an upward shift of altitudinal position of broadleaf-Korean pine/spruce-fir 

ecotone. While in western Quebec, negative influences of increases in fire activity and severity may 

override positive effects of direct climate on maple growth. We believe that better projections in 

precipitation dynamics, which will directly control levels of fire activity in the context of climate 

warming, may enhance our ability to project future changes in northem distribution limit of red maple. 



GENERAL INTRODUCTION 

0.1 CONTEXT 

Global climate change have had profound effects on tree growth and forest structure (Hansen et al., 

2001; Walther, 2003), by affecting tree physiology and growth rates (Prentice et al. , 1992; Reinhardt 

et al., 2011) and also modifying site conditions (Drobyshev et al., 2010), and regional disturbance 

regimes (Bergeron et al. , 2010), as well as biotic interactions (Gavin and Hu 2006). Temperature, 

precipitation, solar radiation, and wind have been often considered as the main climatic factors which 

affect tree growth and vegetation dynamics (Huntley and Webb, 1989; Hofgaard et al., 1991; Liu, 

1997; Frank and Esper, 2005; Gworek et al., 2007). However, recent studies have demonstrated that 

disturbance events play an important role in affecting species possibilities for recruitment and 

migration (see review in Dale et al., 2001). 

The influences of climate change on forest may be more apparent at the transitional zones (Allen and 

Breshears, 1998; Pefiuelas and Boada, 2003), since the geographical distribution of vegetation zones 

has long been thought to be mainly limited by climate and only moderately modified by natural 

disturbances like forest fires (Walter, 1973; Stephenson, 1990; Woodward et al., 1994; Tardif et al., 

2006; Messaoud et al. , 2007; Landhausser et al., 201 0). 

Recruitment and tree growth at transitional zones (termed ecotones, Odum 1983), encompassing 

species distribution limits, are particularly sensitive to environmental changes (Ries et al., 2004), due 

to an increased frequency of sub-optimal environmental conditions causing seedling mortality and 

growth declines (Brubaker, 1986; Lescop-Sinclair and Fayette, 1995; Wang et al., 2006). Climate 

warming since 1950s has induced northward and elevationally upward shifts of tree species at the 

distribution limits (Kullman, 1993; Suarez et al., 1999; Wilmking et al., 2004; Griesbauer and Green, 

2010) and these extensions have been expected to be further ifwarming continues (McKenney et al., 
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2007; Berteaux et al., 2010). Indeed, the evolution and migration of species to higher latitudes and 

altitudes occurred during the warming period of the Holocene (Delcourt and Delcourt, 1987; Richard, 

1993). 

Ecological niches defined as a species can maintain its populations without immigration under a set of 

conditions (Grinnell, 1917). Typically, structure and pattern in species assemblages originate from 

niche differentiation as the way species partition the resources and respond to microclimate. When a 

species' niche changes, it means that position possible move within a multivariate environmental 

niche space (Petitpierre et al., 2012). The process of position change of a species is characterized by 

three distinct stages: introduction, naturalization and spread (Richardson et al. 2000). Invasive species 

often experience substantial shifts in climatic conditions during introduction from their native to 

non-native ranges (Kolbe et al., 2012). Naturalization is defined as the ability to self-sustain 

populations following introduction into a new climatic conditions, whereas invasion is only achieved 

by a subset of naturalized species that spread away from founding populations to become widespread 

and abundant (Pysek et al. 2008). 

0.1.1 Climate change 

Climate change at global scale 

The air temperature, C0 1 concentration, precipitation, and radiation have exhibited significant 

changes during the recent 100 years. Global mean surface temperature has increased 0.74 oc from 

1906 to 2005, (IPCC, 2007). This recent warming is mostly attributed to the effects of greenhouse gas 

(GHG) emissions (Meehl et al., 2004). The mean global atmospheric C01 concentration has increased 

30% since preindustrial times at a progressively faster rate each decade, 70% of the increase occurred 

between 1970 and 2005 (IPCC, 2007). Globally, precipitation over land shows a small upward trend 
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of approximately 1.1 mm per decade since 1901, with trends varying over time and space (IPCC, 

2007). Precipitation has increased significantly in eastern parts of North America and northern Asia, 

while precipitation has declined in the Mediterranean and parts of southern Asia (IPCC, 2007). 

Dimming was widely reported between 1950s and the late 1980s (Abakumova et al., 1996; Stanhill 

and Cohen, 2001), while a pronounced increasing trend in radiation has been observed since the late 

1980s (Wild, 2009). As well, sorne extreme weather events have changed in frequency and/or 

intensity over the last 50 years (IPCC, 2007). It is very likely that cold days, cold nights, and frosts 

have become less frequent over most land areas, while hot days and hot nights have become more 

frequent. It is also likely that the frequency of heavy precipitation events has increased over most 

areas. 

Temperature, precipitation, and phenology in northeastem China 

The climate of northeastem China has become warmer and drier over the last century (Zhai et al., 

1999; Qian and Zhu, 2001; Qian and Qin, 2006). Climate records have shown an increase in annual 

mean temperature by 2 oc between the 1900s and 1990s (Qian and Zhu, 2001) and a decrease in 

summer precipitation by -0.81 mm yr-1 between the 1960s and 2000s (Liang et al. 2011). Climate 

models predict a further increase in temperature by 4.6 oc towards the end of the 21st century (He et 

al. 2005). Regional climate model PRECIS has predicted increases in temperatures of spring (3. 1 °C), 

summer ( 4. 7°C), and autumn (3.6°C), and a rn inor increases in precipitation during these seasons (2, 

1, and 0%, respectively, Xu et al., 2006). These changes in climate appeared to lengthen the growing 

season in northeastern China. The growing season has been extended by 1.4 days per year across 

temperate northeastern China between 1982 and 1993 (Chen et al., 2005). The growing season of 

both boreal and broadleaf forests has be en prolonged during 1982-2003, with obvious advance of the 

beginning dates of growth (Guo et al. , 2010). 
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Temperature, precipitation, and phenology in eastern Canada 

In Canada, annual mean temperature and annual total precipitation over the 20th century have 

increased by 0.5 - 1.5 oc and 5 - 35%, respectively (Zhang et al., 2000) . It may further increase by an 

additional 1.5 - 4.5 oc by 2050, accompanied by 10 to 25% higher amount of precipitation (Boer et 

al., 2000; Plummer et al., 2006). In eastern Canada, climate models predict that temperatures will rise 

by an additional 2.2-3.5 oc by 2050 with more increases in winter (3.0-4.4 °C) than in other seasons. 

Studies project little change in summer precipitation and a decrease in snow accumulat ion during 

winter (Ouranos, 2010). 

The increases in temperatures may translate into a longer growing season. The earlier spring warming 

has induced an increase in the length of the growing season (2 days/decade) since 1950 in Canada and 

the contiguous USA (Bonsal et al., 2001; Easterling, 2002; Bonsal and Prowse, 2003; Feng and Hu, 

2004). Longer growing season was also found in Quebec by an observation in earlier flowering of 

coltsfoot (Tussilago farfara L.) (Lavoie and Lachance, 2006). An average 5 to 6 day advance in 

spring phenol ogy of lilacs has been reported in North America between 1959 and 1993 (Schwartz and 

Reiter, 2000). A simulation study by climate models has indicated that sugar maple (Acer saccharum 

Marsh.) buds could begin to open earlier by 1.5 days in Quebec over recent 100 years (Raulier and 

Bernier, 2000). In the 21st century, leaves of many tree species in Quebec could emerge ear lier by 9.2 

days due to climate warming (Morin et al., 2009). 

0.1.2 Impact of climate change on tree growth and forest at high latitudes of the Northern Hemisphere 

Effects of climate change on tree growth and impacts of natural disturbances on forest structure in 

Changbai Mountain, northeastem China 
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Climatic factors are important in affecting tree growth in Changbai Mountain of northeastem China, 

and recent warming has increased tree and forest growth. Changbai Mountain hasts the major forest 

types of northeastern China with many tree species exhibiting their elevational distribution limits. 

Temperature, precipitation, and drought were found to be the main factors controlling tree growth in 

this area (Yu et al., 2011). In general, tree growth was more limited by precipitation at the low 

elevation and by temperature at the high elevation (Yu et al., 2013; Wang et al., 2013). Growth of 

Erman's birch (Betula ermanii Cham.) at tree line has shawn to positively correlate to temperature of 

the growing season (Wang et al., 2013), and recent climate warming has induced an extension of this 

tree line (Zhang et al., 2001). A tree-ring research has indicated that warming would increase the 

radial growth of tree species in Changbai Mountain (Wang et al., 1995) and there was increased 

carbon sequestration in mixed forests during thel981-2010 period in the area (Dai et al., 2012) . Plant 

growth in northeastern China has shawn an enhancement in recent 30 years, resulting in a significant 

increase not only in greenness but also in forest carbon stocks (Piao et al., 2003, 2005). 

Volcanism and wind are two main natural disturbance factors affecting forest dynamics in Changbai 

Mountain (Manchida et al., 1987; Liu, 1997; Dai et al., 2011). Volcanism results in large-scale (over 

100 km2) and stand-replacing disturbances in the area (Liu, 1997), while wind causes a wide range of 

disturbance events ranging from large blowdowns to single and multiple tree falls (Dai et al., 201 1). 

Wind disturbances are important for the maintenance of the mixed forest in this mountain are a, since 

large scale wind disturbances (> 1000 m2) and wind-induced small canopy gaps are important for 

persistence of shade intolerant species such as Olga bay larch (Larix olgensis R emy) and mid-tolerant 

species such as Korean pine (Pinus koraiensis Siebold et Zuccarini), respectively (Yang et al., 1994; 

Okitsu et al., 1995; Liu, 1997; Dai et al., 2011). 

Effects of climate change on tree growth and impacts of natural disturbances on forest structure in 

eastern Canada 
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Tree growth in northern boreal forest of eastern Canada is enhancing, as a response to recent warming 

associated with the increase in the length of the growing season (Payette and Delwaide, 1994). For 

example, black spruce is a major species in its boreal forests and its growth has been positively 

related to warmer and conditions (Lavoie and Fayette, 1992). In boreal zone of Que bec, radial growth 

rate of black spruce has be en increasing since the 1930s, a trend which is likely associated with recent 

warming (Fayette and Delwaide, 1994). Recent increases in height growth of black spruce and a 

positive trend in leader shoot elongation were also reported in the northern forest-tundra sites of 

Quebec (Garnache and Fayette, 2004). The acceleration of height growth in spruce has been 

suggested to promote the change from krummholz to arborescent trees and reforestation of tundra 

uplands and the northward expansion of the boreal forest (Lescop-Sinclair and Fayette, 1995) . Annual 

GPP and NEP increases in Canadian black spruce (Picea mariana Mill.) forests were positively 

related to increases in net C02 uptake with climate warming (Grant et al. , 2009). Increases of NPP 

have been observed in eastern Canada between 1982 and 1998 (Hicke et al., 2002). 

In southem boreal and mixed-boreal transitional zones of Canada, moisture conditions appeared to be 

more important than temperature for tree growth, since major environment controls upon growth may 

change due to changes in the composition of canopy trees. The effects of drought stress on xylem 

structure of red maple (Acer rubrum L) have be en observed in Central Ontar io (De Silva et al., 2012), 

they found that summer drought negatively affected red maple growth. Negative influences of 

summer water deficits on tree growth in the southem boreal forest of Quebec have been observed in 

sugar maple (Tardif et al., 2001), white oak (Quercus alba L.) (Tardif et al., 2006), trembling aspen 

(Populus tremuloides Michx.), and paper birch (Betula papyrifera Mash.) (Huang et al. , 2010). 

Similar drought stress limiting tree growth has also been reported in Boreal P lains of Manitoba 

(Girardin and Tardif, 2005). 
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Changes in disturbance regimes (forest fire and insect outbreaks) would be another critical factor 

influencing tree growth and forest structure in the boreal forest (Bergeron et al. , 1985; Gillett et al., 

2004; Duchesne and Prévost, 2013). Changes in fire frequency and sever ity are deemed to be of 

particular importance since these factors often control species distribution in boreal and temperate 

landscapes (Bergeron and Gagnon, 1987; Asselin et al., 2003; Tardif et al., 2006). For instance, high 

fire severity has been shawn to be the main factor controlling the northern distribution limit of red 

pine (Pinus resinosa Ait.) (Bergeron and Brisson, 1994). Law fire frequency and small fire area were 

the most important factors determining the northern distribution limit of Jack pine (Asselin et al., 

2003), whereas Jack pine and black spruce were more suitable for short fire cycles than balsam fir 

(Abies balsamea (L.) Mill., Greene and Johnson, 2000). Insect outbreaks often induce huge damage 

of mature and overmature conifers and thus cause changes in forest structure (Messaoud, 2007). It 

may cause change in forest composition after insect outbreaks, if regeneration of affected species is 

insufficient (Bergeron et al., 1995). 

0.2 RATIONALE FOR CARRYING OUT THE STUDY IN TWO ARBAS 

We focus on Changbai Mountains (northeastern China) and the mixed-boreal zones of 

Abitibi-Témiscamingue (eastern Canada). Two features of these areas are vital in the context of our 

project: (1) strong dependence of local economies on forest resources, and (2) geographical location 

at the transition between boreal and temperate biomes ( ecotone ), where one could expect the most 

pronounced changes in vegetation caver as a result of future climatic changes. All these give us a 

background to better understand development of forest in bath areas and vegetation response to 

climate change. 

Forest resources play an important role in economies ofboth Chang bai Mountain and Quebec. Forests 

in northeastern China have been being very important timber source since 1950s (Zhao et al., 1998). 



Figure 3.1. Site locations and distribution range of red maple. 
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Figure 3.2. Cam bi al age BAI chronolo~es of red maple in the !bree bioclima1ic domains at its 

northern distribution limit. Vettical bars represent SD (standard deviations) for a given cambial age. 

Data are fitted by linesr re€Jession with values of slope coefficient b and r2 given for each domain. 
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Figure 3.3. Mean diameter growth rate along the latitude and linear regression between them. 
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Figure 3.4. Pearson product-moment correlations (r) of the response function analysis for red maple 

from previous year July to current year August for the period 1965 -2009 at its northem limit. A black 

bar indicates a significant relationship at p = 0.05. 
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3.9 APPENDICES 

Appendix 3.1. Stand history and soil texture of red maple at the nine sites in western Quebec. 

Site Sand,% Silt, % Clay,% Texture Class 

DUP 95.5 1.0 3.5 Sand 

ROQ 91.3 6.0 2.7 Sand 

SABl 92.5 4.8 2.8 Sand 

SAB2 85.1 9.4 5.5 Sand 

SAB3 90.3 7.0 2.7 Sand 

KEK 87.5 12.2 0.2 Sand 

REM 89.5 4.0 6.5 Sand 

MAR 73.3 17.5 9.2 Sandy loam 

BEA 95.5 1.5 3.0 Sand 
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Appendix 3.2. Soil chemical component of red maple at studied sites in western Que bec. 

Sites C total N total S total pH p K Ca Mg J\1n. Al Fe Na C.E.C. 

% % % Ca Ch mg/kg cmol(+)/kg cmol(+)/kg cmol(+)/kg cmol(+)/kg cmol(+)/kg cmol(+)/kg cmol(+)/kg cmol(+)/kg 

DUP 0.92 0.02 <0,01 4.08 10.86 0.06 0.42 0.11 0.02 14.34 2.66 0.03 17.63 

ROQ 2.21 0.11 0.02 3.99 8.51 0.08 0.62 0.21 0.09 15.39 1.57 0.03 18.00 

SAB1 1.77 0.06 0.01 3.04 16.05 0.06 0.1 7 0.1 2 0.00 4.88 0.60 0.03 5.86 

SAB2 6.50 0.30 0.04 3.51 28.92 0.19 0.57 0.28 0.03 15.89 2.65 0.04 19.65 

SAB3 6.38 0.34 0.06 3.87 13.05 0.18 0.28 0.21 0.02 19.51 2.14 0.04 22.39 

KEK 8.15 0.45 <0,0 1 3.92 7.77 0.24 0.78 0.36 0.1 7 20.58 1.60 0.06 23.79 

REM 3.53 0.18 0.04 3.82 2.84 0.10 0.73 0.36 0.01 18.1 5 2.11 0.03 21.51 

MAR 3.82 0.21 0.03 4.01 23.35 0.16 0.78 0.33 0.05 17.08 2.22 0.06 20.69 

BEA 1.50 0.05 0.01 4.20 161.73 0.17 1.49 0.48 0.11 15.00 3.01 0.03 20.30 



GENERAL CONCLUSION 

Climate and disturbances are major environmental controls of species distribution ranges, driving 

forest dynamics, and affecting forest productivity (Didier, 2001; Bergeron et al., 2004; Boisvenue and 

Running, 2006; Laura Suarez and Kitzberger, 2010). Direct and indirect effects of recent climate 

warming on tree growth and recruitment have induced a profound change in forest structure (IPCC, 

2007). An ecotone, as a transitional ecosystem between two biomes, may spatially exemplify the 

temporal changes in vegetation cover under the climate change. This observation points to the 

importance of understanding the response of ecotone vegetation to climate variability. This response 

can be partitioned as tree growth responses, changes in recruitment patterns, and finally spatial 

changes in ecotones positions. 

The results of our studies suggest that distribution limits of studied species are affected by both direct 

climate control and indirect effects of climate (i.e., changes in natural disturbance regimes) on tree 

growth and recruitment. In this thesis, we studied an elevational gradient (750-1800 rn) in 

northeastern China and a latitudinal gradient ( 46-48 "N) in western Que bec, both covering ecotones 

between mixed and coniferous forest, to evaluate environmental factors controlling ecotones 

dynamics and to project these responses over a wider temporal and geographical climate change 

contexts. In two study areas, both disturbances and climate were important in shaping structure and 

dynamics of ecotone vegetation. In the elevational ecotone of Changbai Mountain in northeastern 

China, gap phase dynamics driven by windthrows was the major factor maintaining coexistence of 

different conifers species. Our study suggested that changes in gap creation rates would induce 

changes in ecotone structure (Chapter I). Along the latitudinal gradient in western Quebec, fire 

frequency would be a crucial factor controlling red maple's northern distribution limit and, 

consequently, affecting forest structure in this transitional zone (Chapter III). 

Following identification of the disturbance-related effects on forest ecotone, we evaluated the direct 
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effects of recent climate change on tree growth along the studied ecotones (Chapter II and Chapter 

III). All the three studied species showed temperature-sensitive at elevational upper (Changbai 

Mountain) or latitudinal northern limits (western Quebec), suggesting that warmer climate may 

favour trees growth. The results of the se studies laid ground for the discussion of potential response of 

tree growth to future climate change and potential changes in position and structure of the studied 

ecotone in two study areas (Chapter I, II, and III). 

CLIMATE EFFECTS ON TREE DISTRIBUTIONS AND ECOTONE POSITION 

Climate affects species distributions by influencing growth rather than regeneration in Changbai 

Mountain (Chapter II), based on analyses of regeneration density, growth rate, and growth sensitivity. 

Our study showed little differences in regeneration density in two out of three studied species along 

the elevational gradient, but presented similar pattern of accumulative basal area increment (BAI) and 

growth sensitivity to climate. The observed highest BAI at the middle distribution range of respective 

three species, together with the high growth sensitivity to climate, indicated an important role of 

climate on biomass accumulation and, ultimately, on determining trees distribution limits. The three 

species were expected to move altitudinally upward under the current climate effects on growth, and 

as a consequence, the altitudinal position of broadleaf-Korean pine/spruce-fir ecotone may shift up. 

Our results supported conclusions of the previous studies which considered exclusively data on 

growth sensitivity to climate (Yu et al., 2011; 2013; Wang et al. , 2013). 

At northern margin range of red maple in western Quebec, annual variability in growth was sensitive 

to temperature in the north of transect and to moisture availability in the south. Mid-summer 

temperature (positive effects) and summer water deficiency (negative effects) were two important 

factors affecting maple growth in the north and south, respectively. In general, recent warm ing 

appeared to benefit frontier population of red maple. Similar results were also reported at red maple's 

northern limit in northeastern Ontario (Pinto et al., 2008) and eastern Quebec (Duchesne and Ouimet, 
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2008; Duchesne and Prévost, 2013). However, if increases in precipitation no longer compensate 

increases in temperature, as a consequence, inducing higher fire frequency, it may offset positive 

influences of direct effects of climate warming on maple's northern extension. 

Annual growth variability showed significant correlations with temperatures and precipitation in both 

study areas, suggesting that future changes in climate would have profound effects on tree growth and 

ecotone vegetation structure. Our study indicated that in Changbai Mountain, all the three species 

may benefit from a warmer climate at their respective upper limits, but more severe drought in 

autumn may limit the growth at their lower limits. The results suggested an upward shift of three 

species at their upper limits and a retreat at the ir lower limits in future . As a consequence, the position 

of studied ecotone may shift upward. In western Quebec, expected climate change would likely favor 

greater growth of red maple in the northern balsam fir-paper birch domain, while maple growth in 

balsam fir-yellow birch and sugar maple-yellow birch domains may face more stressful climate 

condition of summer drought. 

DISTURBANCES EFFECTS ON ECOTONE STRUCTURE 

In the Chapter I, the results suggested that windthrows were the major disturbances affecting the 

dynamics of broadleaf-Korean pine/spruce-fir ecotone in Changbai Mountain. Over the period 

1770-2000, we found frequent small-scale disturbances (the size was 100-250 m2) and two 

medium-scale disturbance events occurred in 1920s and 1980s (1 000 m2) in the studied ecotone, and 

canopy gap was the primary source of small- and medium-scale disturbances. An analysis of 

recruitment pattern and growth release showed differences in response to the disturbances among 

species. Our results indicated that the current disturbance regime of the studied ecotone maintained 

coexistence of light-demanding and shade-tolerant species. 
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Considering the results in a larger spatial context, we conclude that changes in wind climate may be 

particularly important for future forest composition not only in studied forest ecotone but also across 

the entire forest ecosystem in Chang bai Mountain. 

Similar to Changbai Mountain, disturbance (fires) was also important in affecting forest structure 

(Bergeron et al., 1998) in boreal and mixedwood transitional zones of western Quebec. In the chapter 

III, the analyses of growth patterns of red maple demonstrate that stand history of local site may 

override the direct effects of climate on maple growth at its northern distribution limit in western 

Quebec. We found a consistent pattern of initial growth (first 30 years), adult tree growth (recent 10 

years), and average growth of whole tree lifespan showing increased growth rates towards the north, 

suggesting that maples, which recruited after stand replacing fire in the north, appeared to benefit 

higher levels of light for growth than those of gap-origin in the south. Although our result showed a 

higher growth rate of red maple in post-fire stands and red maple can sprout vigorously after fire 

(Walters and Yawney 1990), in a long run, fires may limit red maple's maintenance at landscape sc ale. 

Even moderate fire can kill adult maples due to their thin barks (Walters and Yawney 1990), and 

frequent fires my cause the extinction of local population and reducing the possibility of colonizing in 

the new site (Tremblay et al., 2002). Therefore, we believe that decreased fire frequency since the end 

of Little lee Age (1850) in this mixed forest zone (Bergeron and Archambault, 1993) may positively 

affect red maple's development at its northern limit. 

Our results pointed out the important role of disturbance regimes in influencing forest structure of 

ecotones through affecting species distribution, and were consistent with previous research in similar 

transitional areas. In deciduous-boreal transitional zone of Canada, fires and insect outbreaks were 

two important disturbance agents affecting forest structure. Low fire frequency and small fire area 

were suggested to be limiting factor for the northem expansion of Jack pine (Pinus banksiana Lamb.) 

(Asselin et al., 2003). The northern distribution limits of bath red pine (Pinus resinosa Ait.) and whit 
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oak (Quercus alba) were related to fire regime (Flannigan and Bergeron, 1998; Tardif et al., 2006). 

Recent spruce budworm outbreak (1972-1986) favored widespread of red maple in the northem 

temperate zone of Quebec (Duchesne and Ouimet 2008). Another example is from mixed-boreal 

forest ecotones in Grand Canyon of US. Frequent and severe fires used to favor establishment and 

growth of shade-intolerant ponderosa pine and aspen species (Wolf and Mast, 1998; Fulé et al., 2000). 

Subsequent cessation of the mixed-severity fires resulted in increased density and distribution of 

shade-tolerant conifer species, and a shift in composition from mixed conifer to encroachment of 

subalpine species (White and Vankat, 1993; Fulé et al., 2002; Mast and Wolf, 2006). 

Potential changes in disturbance regimes in two studied areas will likely affect respective forest 

structure. In northeastem China, frequency of extreme climate events such as windstorms will likely 

increase in the future (IPCC 2007). This willlikely increase the frequency of medium and large-scale 

wind disturbances across the forest of northeast China. In Changbai Mountains, such a trend would 

lead to an increase in proportion of light demanding species in the canopies of broadleaf-Korean 

pine/spruce-fir forest ecotone, including Korean pine (Pinus koraiensis Siebold et Zuccarini.) and 

Olga Bay larch (Larix olgensis Henry.). In western Quebec, a predicted increase in fire frequency 

(Bergeron et al., 2010) could restrict red maple's distribution range even a retreat at species northem 

limit. 

IMPLICATIONS IN ANALYZING UNPUBLISHED DATA(CHAPTER IV) 

Chapter I, II, and III have demonstrated the importance of both disturbance and climate effects on tree 

growth and forest dynamics at the transitional zones in two study areas. These results provide us a 

good idea to combine climate, disturbance, and other factors like topography and competition to 

investigate the contribution of each factor in species distribution at the ir distributionallimits. 

Understanding what drives species distributions is a fundamental goal in forest ecology (Gilbert et al., 

2004). Climate, topography, disturbance, and competition are all factors affecting species distributions 
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and forest composition (Archer and Smeins, 1991; Bergeron et al., 1997; Pickering et al. , 2008). 

Climate is often considered as the main factor determining species distributions and thus climate 

change substantially affects dynamics of forest ecosystems (Hamann and Wang, 2006) . Many studies 

have demonstrated shifts in species distribution range with respect to climate change (Beckage et al., 

2008; Leithead et al., 201 0). However, large-scale climate variables can not account for the spatial 

distribution of species at a local scale since variations of microenvironment occurs across landscape, 

and topography significantly affects species distributions through regulation of microclimate and sail 

condition (Archer and Smeins, 1991). Furthermore, disturbance and competition can also modify 

species distributions based on species own characteristics (Bergeron, 2000; Asselin et al., 2003). 

Therefore, understanding relative contribution of factors affecting species distributions can help us 

better understand future forest dynamics in the context of global warming. 

In the Chapter IV, we aim to identify respective contributions of investigated factors that may affect 

red maple distribution at its northem distributionallimit, by 1) investigating recruitment pattern of red 

maple in post-fire stands; 2) examining growth rates and climate-growth relationships of red maple 

along a short altitudinal gradient (100 rn); 3) evaluating relationship between microenvironment 

(topographie attributes and micro-temperature) and maple performance over a 50 ha mountain area. 

We hypothesize that 1) cold temperature is limiting factor for tree growth and recruitment, i. e. 

positive correlations between growing-season temperatures and growth as well as establishment; 2) 

red maple has higher abundance of seedlings and saplings at the sites with warmer temperature due to 

their sensitivity to frost. 

POTENTIAL CHANGES IN FOREST STRUCTURE AT ECOTONES 

Analyses of climate-growth relationships and disturbance effects on tree growth, combined with our 

discussion of effects (bath direct and indirect) of future climate change on growth, may allow us to 

infer potential changes in forest structure of studied ecotones. In Changbai Mountain, 
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broadleaf-Korean pine/spruce-fir ecotone willlikely be rearranged due to changes in optimal-climate 

and microhabitats. Direct increases of temperatures may cause an upward shift of Korean pine at 

upper edge of the studied ecotone and a retreat of Jezo spruce (Picea jezoensis Carr) at ecotone's 

lower edge. Furthermore, increases in wind events may create more open habitats in favouring 

mid-tolerant Korean pine rather than shade-tolerant Jezo spruce. Therefore, we may expect a higher 

abundance of Korean pine and lower abundance of Jezo spruce, accompanied with an upward shift of 

the elevational position of this ecotone. In western Quebec, the future northem limit of red maple 

seems to be a product of direct climatic and disturbance-mediated effects on its recruitment and 

growth. Although warmer climate would benefit frontier population of red maple, increases in fire 

activity may offset this positive influence due to its overriding effects on maple distribution. 

Many efforts have been made to madel biome-level changes at bath temperate and boreal regions 

(Sykes et al., 1996; Koca et al., 2006; Xu et al., 2007). Simulating upward/northward expansion of 

deciduous forest is complex and should consider effects of climates, disturbance regimes, seed 

dispersal, and sail process. A northward movement of deciduous forest into southem boreal forest has 

been modeled in deciduous-boreal transitional zones in Scandinavia (Prentice et al. 1991), East Asia 

(Zhang et al. 2009), and North America (Frelich and Reich, 2009). However, a few field-based 

empirical studies have been carried out (Goldblum and Rigg, 2002). Therefore, our study would 

certainly add contribution to improve the simulation of future forest dynamics in such transitional 

zones. A previous study combined gap madel (linkages) and landscape madel (LANDIS) to predict 

responses of forest ecosystem to warming climate in Changbai Mountain (He et al. , 2005), and they 

reported that Korean pine, Jezo spruce, and Manchurian fir would disappear at lower elevations and 

finally replaced by broadleaved species, but it would take longer time than the time periods predicted 

by the gap models (considering climate effects only). Our empirical data, suggesting upward shifts of 

major conifer species and position of the studied ecotone, agreed the simulation result in a certain 

degree, although we could not estima te exactly time period causing forest transition. 
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IMPLICATIONS FOR FOREST MANAGEMENT 

Potential changes in the forest structure of ecotone may provide guidance for the management 

strategies, although field experiments more focused on different silvicultural options are needed to 

translate results of the current study into a practical context. Our results suggested that the main 

species of broadleaf-Korean pine/spruce-fir ecotone in Changbai Mountain coexisted due to 

interspecific differences in shade tolerance and growth response to canopy disturbances. In particular, 

the establishment of Korean pine was mainly associated with multiple-tree fall gaps, while Jezo 

spruce and Manchurian fir were able to recruit in single-tree fall gaps or under the canopy. Our results 

argue for promoting Korean pine regeneration by creation of large canopy gaps. This is in line with 

group-selective cutting system developed for the better conservation and utilization of this high value 

species and of natural forest resources in northeastem China (Yu et al., 2011). We also suggest that 

the creation of smaller gaps may be necessary for the regeneration and growth of shade-tolerant Jezo 

spruce and Manchurian fir. 

In Que bec, creation of canopy gaps ( 400-600 m2
) can be viewed as a way to increase the presence of 

red maple in the mixed boreal landscapes. Red maple responds positively to gap opening (Fei and 

Steiner, 2009; Duchesne and Prévost, 2013). In addition, light-intensity burning can be used to 

increase the abundance of red maple due to its ability to sprout vigorously after fire (Walters and 

Yawney, 1990). However, frequent and intense burning strategy is not recommended to spread maple 

distribution, since it could limit sexual regeneration level by killing adult trees and consequently, 

causing longer dispersal distances and reducing possibilities of colonizing new sites (Tremblay et al., 

2002). 

Altogether, my Ph.D. study focuses on the growth dynamics of main tree species in the deciduous 

forest-boreal forest ecotones, where little effort has been made to understand its successional 

dynamics (Goldblum and Rigg, 2010). The findings reported in this thesis should contribute to 
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improve our understanding in tree growth response to climate and disturbance regime at forest-forest 

ecotones, and vegetation dynamics under global warming. Renee our study would be a good template 

for exploring factors (climate and disturbance) determining trees distributions and ecotone position in 

other temperate-boreal regions of the Northern Hemisphere. This could aid us to quantitatively assess 

potential changes in forest composition across Mountain or high-latitude ecosystem of the Northern 

Hemisphere, which in turn may help us to make long-term strategies for the sustainable forest 

management in such transitional zones. 
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