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RESUME

Suite aux activités minieres, des résidus (produits a partir du traitement du minerai) et
des roches stériles (produits a partir du développement) sont générés. Les minéraux
extraits ne représentent qu'une petite fraction de l'ensemble du gisement dont
I’essentiel se transforme en résidus. Prés de la moitié des résidus générés sont pompés
dans des aires d’entreposage des résidus (parcs a résidus), mais I’autre moitié de ces
résidus peut généralement étre placée dans les vides miniers souterrains ou les
chantiers desquels le minerai a été extrait sous forme de remblai (méthode de minage
chambre et remblais). L’entreposage des rejets miniers en surface nécessite une
grande attention en raison de l'existence éventuelle de mati¢éres dangereuses comme
les métaux lourds, métalloides, et des produits chimiques. Cependant, toute gestion
efficace des rejets miniers devrait limiter leurs impacts environnementaux potentiels.
Dans le cas des résidus chimiquement réactifs, par exemple, 'oxydation des minéraux

sulfurés produit le drainage minier acide (DM A) qui peut affecter les écosystémes.

Parmi les types de remblai minier possibles il existe le remblai en pate cimenté (RPC)
qui est fait a base des résidus miniers. Comme technique efficace de gestion des
résidus miniers, le RPC permet de minimiser les impacts environnementaux en
réduisant leur quantité a stocker en surface tout en jouant le réle de support
secondaire des terrains. Le RPC est ainsi constitué de résidus filtrés (72-85% en poids
des grains solides), de l'eau (15-28%), et d’'un agent de liant tel que le ciment
Portland ou composé de ciment et de pouzzolanes (2-8% en poids de la masse séche
des résidus). Le RPC est mis en place dans les vides miniers souterrains par pompage
ou par gravité. I.’augmentation de la demande mondiale en métaux a entrainé
I’augmentation de la production miniére et par conséquent la quantité de rejets a
stocker. Puisque l'ajout d'un liant (par exemple, ciment Portland) fait partie de la
gestion des résidus sous la forme de RPC, plus de cycles de remblayage résulteront a

une demande plus élevée de la consommation en liant. Dans ce cas, les compagnies



mini¢res doivent dépenser des millions de dollars chaque année pour acheter des
liants requis pour les opérations de remblayage. Par conséquent, toute petite réduction
de la consommation en liant pourra générer des milliers de dollars d'économie pour
les sociétés miniéres. Ainsi, I’évaluation de la substitution partielle de liant par

d’autres produits ou la réduction de l'utilisation de liant est toujours souhaitable.

I'objectif de cette recherche doctorale est d'étudier trois différents types de mélanges
(les sciures de bois, les nanoparticules, et les poudres de polymeéres ré-dispersibles)
capables d’améliorer les différentes propriétés des RPCs en présence de 1’agent liant.
Les critéres d’utilisation de ces adjuvants dans le RPC sont les suivants : &tre peu
coliteux et abondant (cas des sciures de bois), étre efficace pour affecter I'hydratation
et augmenter le développement de la résistance des matériaux cimentaires (cas des
nanoparticules), influencer 'hydratation du ciment en formant un film polymérique
dans les matériaux cimentaires (cas des poudres de polyméres). Généralement, le prix
unitaire du ciment est inférieur aux prix des nanoparticules et des poudres de
polyméres. Par conséquent, I'ajout de ces adjuvants dans les RPCs doit étre considéré
a grande échelle non seulement comme substitut de liant, mais aussi au niveau des

colts d’opération.

Cette thése de doctorat comprend trois articles, dont deux articles déja publiés dans
deux revues spécialisées (Construction and Building Materials et Cement and
Concrete Composites de Elsevier), et un troisiéme bientdt soumis a la revue
canadienne de génie civil. Le premier article a étudié I'influence des charges de fibres
de bois sur les propriétés mécaniques et la microstructure du RPC. Cet article s est
appuyé sur une étude de laboratoire en utilisant des résidus non sulfurés de la mine
Casa Berardi, Québec, Canada. Les différentes formulations de RPC ont été préparées
par ajout des charges de 12,5 et 14,5% de fibres de bois et les éprouvettes fabriquées
ont subi des essais de compression uniaxiale et une analyse de la microstructure.

I'ajout de sciures de bois d’érable a légerement diminué le développement de la



résistance a court-terme du RPC (quantifiée par la résistance en compression
uniaxiale notée UCS), mais a amélioré cette résistance a plus long terme. Le
deuxieme article a étudié l'influence des nanoparticules colloidales et des
superplastifiants sur la résistance mécanique et la microstructure du RPC durci en
utilisant également des résidus de Casa Berardi. L'influence des nanoparticules et de
superplastifiant a éé étudiée sur les phases hydratées du liant et de la variation de
I’UCS. L'ajout de nanoparticules et de superplastifiant a essentiellement favorisé
I’accélération du durcissement du RPC en améliorant sa résistance mécanique. Le
troisiéme article a étudié l'influence des poudres de polyméres ré-dispersibles sur les
propriétés mécaniques et la microstructure du RPC en utilisant respectivement des
résidus miniers sulfurés et non sulfurés des mines LaRonde et Goldex (Québec,
Canada). La poudre du polymeére Ethyléne-vinyl acétate de Vinylester (EVA/VE) a
été utilisée comme source unique de poudres de polymeéres dans cet article. 1.'ajout
d'EVA/VE a principalement retardé le durcissement du RPC en changeant I'évolution

des phases minérales formées a un age précoce d'hydratation.

Mots-clés : Résidus miniers, Adjuvants, Remblai en pate cimenté (RPC),
Nanoparticules, Superplasticizer, Sciures de bois, Poudre de polymére, Durcissement,

Résistance en compression uniaxiale, Microstructure.



ABSTRACT

Tailings produced from ore processing and waste rock coming from mining
development are the results of mining activities. The recovered minerals represent
only a small fraction of the entire orebody and a significant part of extracted orebody
converts to the tailings. Most of the produced tailings are pumped to tailings storage
facilities (surface tailings ponds), but part of these tailings can also be placed into the
underground mine voids or stopes from which the ore was extracted (mine backfills).
Storage of mine wastes requires significant attention due to the possible existence of
hazardous materials such as heavy metals, metalloids, and chemical additives. Any
effective waste management should restrict the potential environmental impacts of
that mine wastes. In the case of chemically reactive tailings for example, oxidation of
sulfidic minerals produces acid mine drainage (AMD) that can affect both the surface

run-off water and underground water systems.

As an efficient underground mining operation and mine waste management,
cemented paste backfill (CPB) minimizes the environmental impacts by decreasing
the amount of waste storage from the surface and acts as a secondary ground support.
CPB consists of filtered mill tailings (72 — 85 wt% solids), water (15 — 28%), and a
binding agent such as Portland cement or a blend of cement and pozzolanic materials
(2 — 8 wt% by dry mass of tailings). Up to 50% of total produced tailings stream can
be delivered to underground mine voids through the pumping or gravity. Upraising
the mining activities because of high demands of ore minerals increases the rate of
waste production and waste cycling storage. Since the addition of a binder (e.g.,
Portland cement) is part of waste management in CPB, higher backfilling cycles
results in higher demand of binder consumption. In this case, mining companies have
to spend millions of dollars annually to purchase required binder(s) for the backfilling

operations. Hence, a small reduction in binder consumption will bring thousands of



dollars saving for the mining companies, thus investigation in this case of binder

replacement or binder usage reduction is always reasonable.

The objective of this Ph.D. research is to investigate three different types of
admixtures (wood fillers, nanoparticles, and redispersible polymer powders) to affect
different properties of CPB because of binder consumption. Motivations for using
such admixtures in CPB are being inexpensive and abundant (for wood fillers), being
efficient to affect the hydration and increase the strength development of cementitious
materials (for nanoparticles), influencing the cement hydration while forming a
polymer film in cementitious materials (for polymer powders). Generally, the unit
price of cement is lesser than nanoparticles and polymer, hence the addition of such
admixtures should be considered in large CPB plant scale including operational costs

not simply as the binder replacement.

This Ph.D. thesis comprises of three papers including one published journal paper,
one submitted journal paper with minor correction, and one journal article submitted
(under review). The first paper investigates the influence of wood fillers on
mechanical and microstructural properties of CPB. This article was arranged based on
a laboratory experiment using non-sulfidic tailings from Casa Berardi mine, Quebec,
Canada. Different CPB formulations were prepared by addition of 12.5 and 14.5%
wood fillers and underwent mechanical and microstructural analyses The addition of
wood particles decreased the carly strength development of CPB (estimated by
uniaxial compressive strength development or UCS), but at later ages of hydration
some positive influence of wood fillers on UCS values was observed. The second
paper investigates the influence of colloidal nanoparticles and superplasticizer on
mechanical and mineralogical properties of hardened CPB using similar tailings to
the first article. The influence of nanoparticles and superplasticizer were investigated
on minerals produced from the binder hydration and UCS development. The addition

of nanoparticles and superplasticizer mainly accelerated the hydration of binder by



improving the early strength development of CPB. The third paper investigated the
influence of redispersible polymer powders on the mechanical, microstructural, and
mineralogical properties of CPB using both sulfidic and non-sulfidic tailings from
LaRonde and Goldex mine tailings respectively (Quebec, Canada). Ethylene-vinyl
acetate of vinyl ester (EVA/VE) was used as the single source of polymer powders in
this article. The addition of EVA/VE mainly postponed the hydration of binder and

changed the mineralogical evolution of minerals at early ages of hydration.

Keywords: Mine tailings, Admixtures, Cemented paste backfill, Nanoparticles,
Superplasticizer, Wood fillers, Polymer powder, Hydration, Curing, Uniaxial

compressive strength, Microstructure.



CHAPTER 1

GENERAL INTRODUCTION

1.1 Problem statement

Mining activities produce a significant amount of solid waste materials which can be
divided in two main categories including (i) mine tailings, originating from ore
processing plant, and (i1) waste rock, producing from the recovery of ore body (Ledin
and Pedersen, 1996). Since mine wastes may contain different hazardous substances
such as heavy metals, metalloids, and chemical additives, their storage requires a
significant amount of efforts and consideration (Yilmaz, 2010). An effective waste
management system should restrict the potential environmental impacts especially if
the source of waste being chemically reactive to the air and water. For instance,
mining wastes containing sulfide minerals may oxidize and produce acid mine
drainage (AMD) affecting both the surface run-off water and underground water
systems (MEND, 2012).

While the recovered minerals represent only a small fraction of the entire ore body, a
significant part of extracted ore body converts to tailings (Lottermoser, 2010). Most
of the produced tailings are pumped to tailings storage facilities (surface tailings
ponds), but part of these tailings can be placed into the underground mine voids or
stopes from which the ore was extracted (mine backfills). Also, appreciable
proportion of water can be removed from the tailings to produce high-density slurry
or paste tailings prior to discharge for paste technologies (Yilmaz, 2011). As an

efficient underground mining operation and mine waste management, the most



commonly used mine backfills can be divided into three main categories including
rock fill (RF), hydraulic fill (HF), and cemented paste backfill (CPB) (Hassani and
Archibald, 1998). The use of tailings in backfilling method minimizes the
environmental footprints by decreasing the amount of waste storage from the surface.
In the case of tailings containing sulfide minerals, CPB is also advantageous due to
the mixing of tailings with alkaline binders and low oxygen availability condition;
even after mine closure at permanent flooding condition the release of acidity and
metals from sulfidic mine tailings will certainly be decreased. In addition, the use of
CPB for ground support is another advantage for mining operations; in this case, the
dependency of the mine to extracted ore for ground support will be lessened and the

recovery of the leftover ore pillars will be increased (MEND, 2006).

Upraising the mining activities because of high demands of ore minerals increases the
rate of waste production; hence, the waste cycling storage will also be increased.
Since the addition of a binder (e.g., Portland cement) is part of waste management in
CPB, higher backfilling cycles result in higher demand of binder consumption. Apart
from operational costs, mining companies have to spend millions of dollars annually
to purchase required binder(s) for the backfilling operations. A small reduction in
binder consumption will bring thousands of dollars saving for the mining companies,
thus investigation in this case is always legitimate. Since mining companies consume
a considerable amount of cement, any reduction in the usage of cement is also
beneficial for the environment (lesser amount of cement will be produced and
therefore lesser amount of carbon dioxide will be released since cement
manufacturers has a main role in this case) (Worrell et al., 2001). In light of binder
consumption challenge, working on any innovative solution that can meet the CPB
operation requirements in an environmental manner is essential. This idea will be
supported by consistently increasing environmental standards and mine closure
requirements. Since CPB partially consists of binder, to some extent can be compared

with other cementitious materials such as mortar. Therefore, the addition of any



admixture in CPB might be examined in cementitious materials in advance (i.e.,

gelfill as an alkali activator admixture) (Kermani et al.. 2011).

In this Ph.D. thesis, three different admixtures including wood fillers, chemical
nanotechnology (silane), and redispersible polymer powders are used. Such
admixtures are not new in cement-based materials whereas are quietly unused in the
case of CPB. The use of wood fillers/fibres in cementitious materials is common to
produce wood cement composites (Wolfe and Gjinolli, 1996; Bouguerra et al., 1999;
Boustingorry et al., 2005; Sudin and Swamy. 2006; Sierra-Beltran, 2011). Being
inexpensive and abundant are the main reasons of using wood fillers in cementitious
materials (Sudin and Swamy, 2006; Taj et al., 2007). Uses of nanotechnology
including prepared chemical or mechanical nano-particles are growing rapidly in
many applications such as cementitious materials. Structural manipulation of
cementitious materials at the scale of nano 1s extensively efficient since hydration of
Portland cement produces calcium silicate hydrate (C-S-H), which is a nano-
structured material. In fact, addition of nanoparticles in cement-based materials can
affect the structure of C-S-H; this is essential because C-S-H is the main reason of
strength development (Ji, 2005; Kong et al., 2012). Polymer-based admixtures are
also another class of high technology materials that are used in cement-based
materials (Chandra and Flodin, 1987, Khayat. 1998). The addition of polymer
admixtures in cementitious materials can change the hydration of cement in addition
to the formation of a polymer film across the material as a possible reinforcement

agent (Ohama, 1995; Mailvaganam and Rixom, 2002; Silva and Monteiro, 2006).

Apart from being innovative admixtures in CPB, financial justifications should be
reasonable to add high technology admixtures in CPB (nanotechnology and polymer
powders in this case). It should be reminded that one of the main aims of working
with such admixtures is to reduce the binder consumption in CPB whereas the unit

price of cement is lesser than that mentioned high technology admixtures. Hence, the



addition of such admixtures should be considered in large CPB plant scale not simply
as binder replacement. Moreover, a precise evaluation in whole backfilling process
(i.e., operational costs) is required to justify the use of high technology admixtures,
but this Ph.D. thesis just concentrated on the influence of mentioned admixtures on

the mechanical, chemical, and microstructural properties of CPB.

1.2 Cemented paste backfill

As an efficient underground mining operation, cemented paste backfill (CPB)
minimizes the environmental impacts by decreasing the amount of waste storage on
the surface and acting as a secondary ground support. CPB consists of filtered mill
tailings (72 — 85 wt% solids), water (15 — 28%), and a binding agent such as Portland
cement or a blend of cement and pozzolanic materials (2 — 8 wit% by dry mass of
tailings). Up to 50% of total produced tailings stream can be delivered to
underground mine voids through the pumping or gravity (Belem and Benzaazoua,
2004; Coussy et al.. 2011; Koohestani et al., 2013). Depending on the type of binding
agent, mineralogy of the tailings and curing time, uniaxial compressive strength
(UCS) of CPB varies between 0.2 and 4 MPa (Belem and Benzaazoua, 2004, 2008;
Yilmaz et al., 2009; Yilmaz et al.. 2011; Yilmaz et al., 2014). Many are the factors
that can affect the low strength of CPB such as small amount and source of used
binder, excessive amount of water, mineralogy of the tailings, particle size

distribution, and source of additional water (Benzaazoua et al., 2002).

Basically, the available amount of water in CPB is in excess for the hydration of a
binder (water/cement > 3), but in order to make the mixture flowable through the
pipelines, CPB should have sufficient amount of water (Belem et al., 2010).
Basically, slump height measurement is a technique that gives the information

regarding the flowability of the paste; a slump height between 15-25 cm (or 6-10



inches) is required for proper transportation of CPB to underground spaces via
gravity or pumping (Clark et al., 1995). It is also noticeable that if the used tailings in
CPB mixture contains 15 wt% fine particles (with 20 um minimum size) they can act
as a lubricant while preventing the plug in the pipelines during delivery (Landriault et
al., 1997). Basically, grain size distribution (GSD) of tailings can be divided into
three main categories including coarse (15-35 wt% < 20 pum), medium (35-60 wt% <
20 um), and fine (60-90 wt% < 20 um). As the amount of fine particles increases, the
water retention ability of the CPB mixture rises whereas the strength decreases

(Yilmaz, 2010).

It is essential that the chemical composition of mine tailings be analyzed since some
minerals may bring different issues for the paste backfill plant. For example,
oxidation of pyrite and pyrrhotite produce sulfate ions that may result in sulfate attack
followed by short- or long-term strength deterioration (Benzaazoua et al., 1999). Such
interactions between produced sulfate ions and the products of hydration mainly form
secondary minerals including ettringite (AFt), gypsum, and monosulfoaluminate
(AFm). Such produced new sources of minerals are highly expansive and can
generate high internal pressures inside the mine voids resulting in the CPB’s failure

or strength deterioration (Klein and Simon, 2006).

Moreover, spontaneous oxidation of the tailings containing high amount of pyrrhotite
may result in self-heating and excessive heat generation. This phenomenon may
cause in mine fires, producing toxic gas (e.g. SO2) while deplete the oxygen
availability, generating acid mine drainage and even mine closure (Zarassi and

Hassani, 2011).



1.3 Addition of admixtures

An admixture is defined as “a material other than water, aggregates, hydraulic
cement, and fiber reinforcement used as an ingredient for cementitious materials, and
added to the batch immediately before or during the mixing process™ (ACI, 2010). In
general, admixtures can be divided in two main categories including chemical and
mineral admixtures. Addition of admixtures can control and change the configuration,
structure, technical and technological properties and economic preferences of cement-

based materials (Ramachandran, 1996; Rahman et al., 2014).

A chemical admixture basically is soluble in water and either is a water-reducing
agent or a retardant or an accelerator or a combination of which. Those kinds of
chemical admixtures that accelerate the hydration of cement by shortening the initial
and final setting time are called accelerators. Using accelerators mainly increase the
carly strength development of cementitious materials. Most of the accelerators (i.e.,
calcium chloride, CaCly) react with calcium hydroxide (product of hydration, CH)
and produce the higher amount of calcium silicate hydrate (C-S-H). Retardants, on
the other hand, are organic or inorganic substances used to extend the workability of
the cementitious mixture from the time of mixing to the time of placement. Some
examples of retardants include the salts of hydroxycarboxylic acids, esters of
cellulose, derivatives of melamine and naphthalene, carbohydrate sulfates, and
unrefined salts of lignosulfonates. Water reducing admixtures are those that provide
high flowability in lesser water to cement ratio (w/c regulator). In fact, the water to
cement ratio in the range 0.2 - 0.23 is sufficient for the hydration of cement, but the
proper flowability is achievable at w/c 0.7 to 0.8. Water reducing agents are surface-
active substances and have plasticization influence on cementitious materials. For
example, plasticizers and superplasticizers are prone to decrease the water surface

tension and release the hydrated cement grains while adsorbing at the surface of
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Figure B.3-UCS variations between CPBs composed of Laronde tailings

At seven days, the specimens containing admixtures had less UCS values in
comparison to control sample, which again implicates the retarding influence of
admixture at this curing time by affecting the strength development of CPBs. As the
amount of methyl silane increased from 5% to 20%, the UCS values of specimens
increased from ~280 to 350 kPa. The UCS value of LA-MTMS4 at 7 days is 10%
lesser than that of control sample. The negative mnfluence of organosilanes on early

strength development and hydration of cementitious materials is reported in different

studies (évegl, éuput-Stmpi et al. 2008, Kong, Liu et al. 2015)..

At 14 days of curing, LA-TEOS and LA-MTMS]1 specimens display approximately
the same UCS values indicating that the addition of 5% methyl silane was insufficient
to improve the TICS value at 14 days, but in comparison to control sample some
improvement was achieved (~19%). The achieved UCS values of LA-MTMS2 and
LA-MTMS3 specimens at 14 days are approximately similar implicating that the
addition of 10% and 15% methyl silane influenced the CPB formulations similarly.
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The highest UCS value at 14 days was achieved when the amount of MTMS was
increased to 20%. It has to be notified that the UCS values of the specimens
containing 10% to 20% of methyl silane at 14 days are higher than that of control
sample at 28 days. In comparison to control sample, the UCS value of LA-MTMS4 at

14 days is ~68% higher over the control at the same curing time.

At 28 days of curing time, all the formulations containing methyl silane gained higher
mechanical strength (UCS values) in comparison to control and TEOS specimens.
The inefficiency of the TEOS formulation (especially at 28 days) can be attributed to
the agglomeration of nano particles inside the mixture, but it requires more
investigation. The UCS values of LA-MTMS2, and LA-MTMS3 at 28 days are
approximately similar and T.A-MTMS4 specimen obtained the highest UCS
improvement among all the formulations (43% improvement in comparison to control

sample).

From this part of experiment, it was found that the addition of 20% methyl-silane
(based on the volume of TEOS), obtained the best mechanical strength (UCS) to the
CPB specimens although the addition of organo silane retarded the early strength
development. It can also be notified that the addition of TEOS only was not that
efficient and even decreased the UCS value at 28 days.

In the next step of UCS experiment, the most effective amount of MTMS (20%) was
used along with 5% TEOS on Goldex tailings (GOL-MTMS) to observe the
efficiency of the admixtures on the non-sulfidic tailings in comparison to control
sample (GOL-Control). In the preparation of CPBs with Goldex tailings the amount
of water was not changed in the mixtures. The addition of 20% MTMS however
increased the slump height of GOL-MTMS up to 14% in comparison to GOL-

Control. The compositions and specifications of these formulations are mentioned in
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Table B.6 and the obtained UCS results from this phase of UCS experiment are
presented in Fig. B.4.
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Figure B.4-UCS variations between CPBs prepared with Goldex tailings

As can be seen from Fig. B.4, the addition of admixtures hindered the early strength
development of CPB at 3 days by decreasing the UCS value (~10%) of GOL-MTMS
specimen 1n comparison to GOL-Control. At 7 days of curing, the UCS achievement
of GOL-MTMS specimen was approximately similar to than that of GOL-Control
specimen at 28 days. The retarding influence of used admixtures in CPBs prepared
with non-sulfidic tailings was nullified after 3 days whereas in CPBs prepared with
sulfidic tailings lasted up to 14 days. The strength development of GOL-MTMS
specimen at 28 days was approximately 42% higher over the control, which i1s in a

good agreement with the same improvement on CPBs composed of sulfidic tailings.

The obtained UCS results implicates that the retarding influence of admixtures is
more central when used along with sulfidic tailings. This phenomenon is more

noticeable specifically since the grain size distributions of both tailings are not very
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dissimilar (Fig. B.2). More investigations are required in this case to identify the
chemical reactivity of different minerals in the CPBs prepared with different tailings

in the presence of admixtures.

B.3.2 Water content and water consumption

Changes in the water contents of different CPBs prepared with Laronde tailings at
each curing time are included in Table B.7. The maximum water loss occurred from
the time of mixture preparation at completely saturated condition to 3 days of curing
in control specimen from 37.2% to 31.2% (~6%). None of the specimens containing

admixtures cured or hardened at 3 days in order the water content to be measured.

Table B.7- Water content of CPBs prepared with Laronde tailings

Formulation Water content %o

3 days 7 days 14 days 28 days

LA-Control 31.23 29.92 29.33 28.45
TEOS N/A 31.03 29.93 29.21
MTMSI1 N/A 30.55 29.94 29.02
MTMS2 N/A 30.33 28.55 27.92
MTMS3 N/A 30.29 29.01 26.53
MTMS4 N/A 30.76 27.19 26.12

As it is shown in Table B.7, the water content of control sample at 7 days is less than
that of other specimens, but at 14 and 28 days the water contents of specimens
containing admixtures display a minor reduction over the control. It indicates the
higher rate of hydration in control sample up to 7 days whereas the hydration of the
specimens containing admixtures became more noticeable after 7 days. As can be
understood from this part of study the higher rate of water content differentiations
occurred from the time of mixture preparation to 3 days (~6%) whereas from 3 to 28

days the water contents between different specimens approximately changed about
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3%. The water loss of different CPB mixtures after 3 days was approximately similar
although the specimens containing admixtures required lesser amount of water for the
specified slump height (Table B.6). This emphasizes the role of self-weight
consolidation on water loss from the CPB (mainly occurred up to 3 days) apart from
the cement hydration role, thus CPB cannot maintain the saturation condition after
ages. In this experiment some amount of water accumulated at the top of CPB

specimens on the plastic moulds (bleeding influence).

Fig. B.5 displays the water dependency of the mixtures to MTMS content for the
preparation of a target slump height. As can be seen from Fig. B.5, the addition of
MTMS decreased the consumption of water in CPB formulations. As the amount of
MTMS was increased to 20% (LA-MTMS4), a 22% reduction in the consumption of
water was achieved. At this level, the solid concentration of LA-MTMS4 was
increased to 74.4% (Table B.6), which displays 1.5% higher solid concentration in
comparison to control sample (72.9%). As a result, higher amount of tailings can be
delivered to the mine voids on each cycle of backfilling although it is minor. A high
correlation coefficient (0.97) was calculated between the MTMS contents and water
reduction levels for different CPB formulations prepared with Laronde tailings (Fig.

B.5).

By a comparison between Table B.7 and Fig. B.5, it is evident that the specimens
containing admixtures have lesser amount of water, for example, LA-MTMS4
specimen contains 22% lesser amount of water over control, but its water content
differentiates with a small change (~3%) over control. This minor difference can be
justified through the self-consolidation of CPBs that releases or accumulates some

amount of water from CPB in the plastic mould or mine stope.
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Figure B.5-Correlation between water reduction and MTMS content of sulfidic CPBs

B.3.3 DTG results

Differential thermogravimetric analysis was performed on CPB specimens prepared
with Goldex tailings (GOL-Control and GOL-MTMS) at 3 and 28 days of curing time
(Fig. B.6). As can be seen from Fig. B.6, there are four major peaks between the
temperatures 90-95, 320-445, 609 and 750-775 °C. Generally, existing peak at the
range 90 to 95 °Crepresents the dehydration of C-S-H phase (loss of bonded water)
(Alarcon-Ruiz, Platret et al. 2005, Quellet, Bussiére et al. 2006, Cizer 2009, Heikal,
Abd El Aleem et al. 2013). The second major peak between the temperatures 320 to
475 °C 1s generally ascribed to the decomposition of portlandite (Kamel, Sawires ot
al. 1972, Swamy, Prasad et al. 1979, Swamy and Prasad 1981, Jorgensen and Moyle
1982, Blgham, Schwertmann et al. 1990, Hu, Dam-Johansen et al. 2006, Masset,
Poinso et al. 2006). The third major peak and fourth major peaks at 609 °C and 750-
775 °C can display the decomposition of albite, chlorite, and carbonate-based
minerals (present in the Goldex tailings) (Cheyrezy, Maret et al. 1995, Gualtieri and
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Tartaglia 2000, Alarcon-Ruiz, Platret et al. 2005, Maké 2007, Ion, Ion et al. 2010,
Feng, Provis et al. 2012). The aim of DTG analysis was to observe the C-S-H and CH
variations in this study; hence we did not consider the peaks at 609 and 750-775 °C.

As can be seen from Fig. B.6a, the derivative weight loss between the control sample
and specimen containing admixtures regarding the C-S-H at 3 days is minor
(changing from 0.021 to 0.022), but the same weight loss in Fig. B.6b at 28 days is
really noticeable (changing from 0.037 in GOL-Control to 0.047 in GOL-MTMS
specimen). It can be asserted that the formation of C-S-H in control specimen at 3
days was ~5% higher than the other one, but at 28 days the C-S-H content in the
sample containing admixtures became ~38% higher than that of the control. The
formation of portlandite in both of the specimens at 3 davs occurred at 436-442 °C
(Fig. B.6a). As can be observed from Fig. B.6a, the amount of weight loss regarding
the formation of CH in GOL-Control was approximately two times higher than that of
GOL-MTMS changing from 0.0045 to 0.0023 respectively. This phenomenon can
justify the retarding influence of admixtures on the hydration of cement at early ages
by reducing the formation of CH at early ages (Gomes, Ferreira et al. 2005, Kang,
Kim et al. 2015). At 28 days (Fig. B.6b) the formation of CH in GOL-MTMS
specimen cannot be observed in comparison to control that may implicate the
pozzolanic influence of nano silica on CH resulting in additional formation of C-S-H

(Flores-Vivian, Pradoto et al. 2013, Abd El Aleem, Heikal et al. 2014).
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B.3.4 MIP results

MIP analysis was performed on the specimens prepared with Goldex tailings at 3
days of curing. Table B.8 provides the quantitative results of MIP analysis and Fig.
B.7 presents the pore size changes as a function of cumulative intrusion porosity for
the specimens. Basically, threshold diameter (din) and critical pore diameter (der)
represent the influence of curing time, hydration, and binder type and it is stated that
any increase in the amount of binder and curing time will decrease both of which. The
threshold diameter represents the smallest diameter of pores that geometrically are
contintous and the do points out the maximum continuous pore diameter
corresponding to the steepest slope of the cumulative porosity curve. Both of the dn
and d are great of importance since being pertinent to the maximum mercury
intruded throughout the specimen (Ouellet, Bussiére et al. 2007, Yilmaz, Belem et al.
2011).

Table B.8-Quantitative results from MIP experiment - 3 days

CPB mixtures  Binder  Critical pore  Threshold — Total MIP

formulation content diameter diameter porosity
(%) {pm) {pm) (%0)
GOL-Control 4.5 1.79 271 42.82
GOL-MTMS 4.5 1.81 331 42.99

As can be seen from Table B.8, the total porosity (1iwt) of both the specimens are
similar. This indicates that the amount of formed minerals (C-S-H) from the
hydration of Portland cement affecting the porosity is similar. This is in good
agreement with DTG analysis that displayed approximately similar amount of C-S-H
in both specimens at 3 days. It also indicates that the amount of formed CH did not
influence the total porosity either due to the minor formation (Fig. B.7a displays the
amount of CH is approximately 5 times less than C-S-H) or due to the role of CH in
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the microstructural evolution of CPB. The function of CH on the microstructural

evolution of CPB requires more investigation.
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Figure B.7-Pore size distribution curves of CPBs composed of Goldex tailings-3 days

Moreover, the addition of admixtures in this study did not influence both of threshold
and critical pore diameter, which implicates the similar hydration procedure and
formation of pertinent minerals between the specimens. The obtained MIP results are

in a good agreement with DTG achievements at 3 days.

B.3.5 FTIR results

Results of infrared spectroscopy between LA-MTMS4 and LA-Control at 28 days of
curing are plotted in Fig. B.8; the spectra were traced in the range 400 to 4000 cm™
(wavenumber) and the band intensities are expressed in transmittance (%T). The
spectrum ranges for cementitious materials are discussed in different articles
(Bjornstrom, Martinelli et al. 2004, Stepkowska, Blanes et al. 2005, Ylmeén, Jaglid et
al. 2009, Heikal, Abd El Aleem et al. 2013). The peaks in the range of 3629-3425 and
1653 e¢m correspond to —OH bonds in C-S-H phases and silanols (Launer 1987,
Ylmén and Jaglid 2013). The ouly difference between the control and MTMS4
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specimens in Fig. B.8, appeared at 3432 cm™! that may specify the higher availability
of C-S-H and silanols groups in MTMS4 specimen as the consequence of higher
availability of —OH groups. The higher availability of the C-S-H in DTG and FTIR
analyses are in a good agreement, which shows the positive influence of admixtures
to bond with C-S-H phase. The other bands in Fig. B.8 represent the C-H bond at
2358 cm!(Barberena-Fernandez, Carmona-Quiroga et al. 2015, Falchi, Zendri et al.
2015), (C-O) bond in CO37 regarding the carbonate phase at 1869-1793, 1506, and
800 cm™ (Ylmén, Jiglid et al. 2009, Ylmén and Jiglid 2013), the stretching Si-O
mode pertinent to silica gel at 1118 and 1162 cm™ (Barberena-Fernandez, Carmona-
Quiroga et al. 2015) and regarding the formation of C-S-H at 998, 526, and 428 cm™
(Pajares, Martinez-Ramirez et al. 2003), and Si-O-Si bands at 695 and 471 (Garcia
Lodeiro, Macphee et al. 2009).

As can be seen from Fig. B.8, there is not a considerable difference occurred between
the control and MTMS4 specimens (apart from —OH band at 3424). In fact, since the
amount of added admixtures (TEOS and MTMS) in LA-MTMS4 specimen is very
small, it is possible that we could not observe a noticeable distinction between the

two specimens by using FTIR analysis.
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Figure B.8-FTIR spectrum of LA-Control and LA-MTMS4 samples at 28 days

B.3.6 SEM results

SEM observations were performed on LA-Control and LA-MTMS4 specimens at 28
days of curing (Fig. B.9) to observe any difference between the general
microstructural views of both specimens. It is supposed that the reactivity of
admixtures (TEOS-MTMS) within the CPB mixture will influence the total
microstructure of material. As can be observed from Fig. B.9a, control specimen at 28
days of curing displays some discontinuities and fractures inside the CPB matrix
whereas the structure of LA-MTMS4 specimen (Fig. B.9b) is more compact and
dense. Provided micrographs implicate the higher fulfillment of formed minerals
from the hydration of cement (as generally proved via DTG analysis). It can also be
asserted that the hydrolysis and condensation of TEOS and MTMS resulted in higher
physical bonding influence among particles in LA-MTMS4 specimen.
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Figure B.9- SEM micrographs of control (a) and MTMS4 (b) specimens

B.4 Conclusion

In this study, the influence of methyl-trimethoxy silane along with tetraethyl-
orthosilicate was examined on chemical. microstructural and mechanical properties of
CPB. Based on the obtained results, the following conclusion points can be asserted:

e The addition of TEOS only did not generally improve the mechanical strength
(UCS) of CPB and it retarded the hydration of cement up to 7 days. The
addition of TEOS also did not influence the slump height of CPB (Table B.4)
implicating there is no plasticizing effect of TEOS on CPB.
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The addition of MTMS to the specimens containing TEOS improved the UCS
values (up to 43% at 28 days), but the hydration process was still postponed
up to 14 days depending on the type of tailings. The addition of MTMS also
reduced the water requirement of the CPB specimens for a target slump
height. In this case, the higher solid concentration of the CPB specimens was
achievable.

The higher amount of C-S-H was achieved by the addition of MTMS and
TEOS admixtures to the CPB formulations. This was confirmed mainly via
DTG analyses.

The FTIR analysis declared that the addition of admixtures did not create any
new bonding in comparison to control sample. Since the amount of added
admixtures was small (less than 1% of total solid concentration of CPB),
through FTIR analysis we could not observe any significant change between
specimens.

The SEM images highlighted a higher dense and cross-linked matrix over
control as a result of higher formation C-S-H and silica gel, which it was also
confirmed with DTG tests.

The influence of MTMS/TEOS admixtures was not similar on the CPBs
prepared with different tailings (sulfidic and non-sulfidic). In both CPBs a
reduction in early strength development was observes (as a consequence of
retarding influence on hydration), but the retarding influence was more severe

on the CPBs prepared with sulfidic tailings.
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