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ABSTRACT

Generally the geostatistical simulation methods are used to generate

several realizations of physical properties in the sub-surface, these

methods are based on the variogram analysis and limited to measures

correlation between variables at two locations only. In this paper, we

propose a simulation of properties based on supervised Neural network

training at the existing drilling data set. The major advantage is that this

method does not require a preliminary geostatistical study and takes into

account several points. As a result, the geological information and the

diverse geophysical data can be combined easily. To do this, we used a

neural network with multi-layer perceptron architecture like feed-forward,

then we used the back-propagation algorithm with conjugate gradient

technique to minimize the error of the network output. The learning

process can create links between different variables, this relationship can

be used for interpolation of the properties on the one hand, or to

generate several possible distribution of physical properties on the other

hand, changing at each time and a random value of the input neurons,

which was kept constant until the period of learning. This method was

tested on real data to simulate multiple realizations of the density and the

magnetic susceptibility in three-dimensions at the mining camp of Val

d’Or, Québec (Canada).

keyword: Artificial Neural Networks, Stochastic, Simulation, Geophysics,

Density, Magnetic susceptibility

1. INTRODUCTION
During the last 20 years, predictions based on statistical learning processes had been applied
with great success in a wide range of applications, including character recognition, shape
classification or partitioning, filtering, predictions, etc. One of the most popular methods is
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artificial neural networks which mimic the neurons behavior of human brain. This work aims
at applying these methods to quantify uncertainties of results obtained during geophysical
inversion.

Geophysical data inversion is a key step in interpreting geological underground
structures. Inversion methods are generally classified in two groups: (i) the deterministic
approaches, and (ii) the stochastic ones. Deterministic inversions based on global minimum
search offer a unique solution called the best model or the most likely model [1]. They are
based on the iterative least squares minimization of some objective function [2] often
improved by introducing a weighting function [3]. Another class of methods suggest
solving the inverse problem by applying a neural network algorithm to faster the search of
the optimum. They have been applied in geophysics for locating ground targets from
electromagnetic field data [4], estimating basement resistivity distribution [5, 6, 7], seismic
wavelength inversion [8]. At the opposite of these last methods, stochastic methods such as
Monte Carlo [9], genetic algorithms [10], and simulated annealing [11] offer the possibility
of generating several models that can fit to the observations and therefore to estimate the a
posteriori probability model.

Geostatistical simulations such as sequential Gaussian simulation (SGS) [12] or
sequential indicator simulations (SIS) [13], are based on a variogram analysis. They simulate
several equiprobable realizations of a random variable. The integration of geostatistical
simulation methods during the inversion process increases the performance of the stochastic
inversion as it accounts for the rock spatial variability [14, 15]. Furthermore, co-simulations
simulate several possible realizations of a random variable accounting for secondary
parameters, and generally give better results than the simulation of a single variate. Co-
simulations integrate more information in the process of the inversion [16, 17]. In theory, it
would be more interesting to integrate several geophysical properties to account for the
geological complexity. However in practice, it is very difficult to take into account these
secondary variables. In general, it is impossible to find deterministic relationships which
combine all the physical properties, and requires the use of empirical relationships to link a
property to another, or physical properties to the geology or to the lithology. Multiple point
statistics integrating both the spatial variability and the multivariate aspects allow simulating
variables accounting for several secondary parameters [18].

As suggested by [19], neural networks can be an alternative for simulating several
variables. The advantages are: (i) to define statistical relationships either between two points
of the spaces, or/ and between several points of the space variables, (ii) variables can be of
various nature and (iii) to integrate non-linearity relationships between variables. [19] and
[20] suggest using a 2D smooth gridded shape recognition method at the learning step, and
then, a multi-grid approach [21, 18] is used to simulate several realizations at the prediction
step. In this work, we propose a different approach based on pattern recognition neural
networks [20, 22] for simulating the sub-surface physical properties. In this method, the
analysis of physical properties is conditioned by an existing drilling data set and the results
of independent inversions. Their distributions are used for a supervised training of the neural
network, then the simulation is processed by injecting the distributions available at the
prediction step.

2. NEURAL NETWORKS
The neural network is a linear combination of non-linear functions that tries to solve complex
problems. Conceptually, this approach mimic the human brain activity. Their architectures
are interconnected networks similarly to the synapse connections. They request a learning
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phase before being able to make forecasts [23, 24, 25]. The number of input and output
neurons correspond to the number of observed or predictive variables and of variable to be
predicted, respectively. There are several types of neural networks, the most popular ones
being the multi-layer perceptron (MLP) [26]. The choice of the neural network architecture
depends on phenomena and problems to be solved. In this work, we used a multi-layer
perceptron (MLP) architecture with a feed-forward approach that is well adapted for spatial
modeling. This approach has been successfully tested for predicting the metal content of ore
deposits [27, 28, 29]. A back-propagation method is implemented for optimizing weights at
the learning stage using a mean squares criteria to minimize the errors between the
observations and the predicted output, coupled to a conjugate gradient method [30] to find
the optimal values for the connections.

2.1. NETWORK ARCHITECTURE
The input and output layers are of fixed size and are conditioned by the number of observed
variables and by the number of variables to be predicted, respectively. Input variables are of
various nature. It includes among others: coordinates (x, y, z), the magnetic susceptibility
contrast χ1 at the drilling level and χ2 found by the inversion, the density contrast ρ at the
drilling level found by the inversion, the coded geological unit κ for the different rocks types,
a standard error σ = 0.5 for accounting for uncertainties of input variables [31]; the network
outputs are the predicted susceptibility χ or the density ρ. Figure 1 shows the architecture
used for the neural network.

2.2. TRAINING NETWORK AND BACK PROPAGATION
The neural network training process aims at calibrating the optimum weights of the different
connections between neurons by minimizing the error between the predicted output and the
observed values. In this work, we used a back-propagation algorithm [26] together with a
conjugate gradient method. At the beginning of the learning stage, the weights are initialized
by a random number generator with uniform distribution between −0.1 to 0.1 [32]. The errors
corresponding to the difference between the predicted and the observed output are then
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estimated at each step of the learning process. Then, the weights of each layer are recurrently
modified during the learning stage using back-propagation techniques in order to reduce
these errors.

The convergence rate of the algorithm depends on (i) the problem to be solved, (ii) the
number of connections between the various entities and, of course, (iii) on the input and
output layers sizes (based on the available data). The output level of a neuron Xj is given by:

(1)

where f is the sigmoid function Xi is the ith input value; wij the synaptic

weight between neurons i and j, N the total number of neurons and bj is the input bias often
fixed to 0 during the learning stage.

The total error ε between the output and the observations is evaluated as the mean squared
error ei between the output of neurons i and the ith observation:

(2)

with ei = (di – Yi) being the difference between the observation di and the prediction Yi at
the neuron level i. Finally the error calculated at the level of a neuron is distributed on the
related synapses and neurons by the conjugate gradient algorithm [33].

Let ∆wt
ij be the correction to be made on weight wij at iteration t connecting the neurons

i to j, it is given by:

(3)

where wkj is an intermediate path between neuron i and neuron j passing through neuron k ;
µ and Ω are factor ranging between 0 and 1 called the rate and momentum, respectively. 
Ω is an added coefficient used to increase the convergence speed of the back-propagation
algorithm, it accelerates the learning stage and forces to search minima out of local minima.

3. APPLICATIONS
A single case study was chosen to demonstrate the ability of the proposed method to integrate
different types of data when interpolating and simulating multi variables. The study area is
located in the Val d’Or mining camp in the Abitibi province, Québec, Canada (Figure 2). The
geological formations are composed of volcanic rocks and volcano clastic Archaean mafic to
ultramafic and felsic formations [34, 35]. These volcanic formations are separated by a
narrow band of younger sedimentary units [36]. The major part of the ore deposits are of
Volcanogenic Massive Sulfide (VMS) type. During the learning stage, the neural network
establishes non linear complex relationships between the different rock types defined in the
input and the location of ore deposits in the output, especially regarding the spatial
distribution of the susceptibility in the sub-surface. The neural weights obtained after the
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learning stage can then be studied carefully to better understand the link between each rock
type and the known mineralizations, and thus can be used to derive 3D potential maps.

3.1. INTERPOLATION
Integrating several variables impacts the interpolation results given by the neural network.
In this example, only the magnetic susceptibility and the density contrast obtained from the
magnetic and gravity inversions have been considered as the primary variable together
with the rock types as secondary variables. Figures 3 .a, .b and .c show the horizontal
predicted geological map at a depth of 930 m, the prediction is compatible with the
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Figure 3 Normalized (a) coded geological map (b) density contrast, (c) magnetic
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inverted density contrast and magnetization, respectively. As seen in Figures 3 e) and f),
properties interpolated using neural network account for rock types. Integrating the
geological information at the prediction step had improved the property estimation
especially in low contrast zones. These interpolations are conditioned by boreholes data as
they have been included at the training stage. Predictions respect data conditioning as
shown in Figures 3. d).

3.2. SIMULATION
The position of the selected points, rock types, magnetization, density contrast and neurons
with a constant value of 0.5 for the learning process are taken as input to the neural network.
In order to simulate several rock types, magnetic susceptibility and density realizations after
the training stage of the neural network, the prediction is performed by injecting an input data
set and by randomly varying between 0 and 1 the neuron values of the last layer at each
realization. Figures 4.a .b and .c give three selected possible realizations for the rock types.
Figures 5 .a .b and .c show three possible realizations of the sub surface magnetic
susceptibility. The most upper figures show horizontal maps at a depth of 930 m, at the
center, vertical cross-sections down to a depth of 1600 m. Lower figures show the total
magnetic field induced by the three selected realizations. The magnetic field produced by the
selected models are very similar, the latter step is essential to validate the simulations, and
thus for keeping the most realistic models that have similar potential field (gravity or
magnetic) considered as a reference.

3.3. COMPUTER PERFORMANCES
The study area is modeled using a centered regular 3D grids (Voxet) comprising 150 ∞
150 ∞ 75 elementary cells. The magnetic susceptibility and the density calculated from the
inversion are stored at the center of each elementary cells. Ore deposits are retrieved using a
regular 2D grid. The learning stage takes about 15 mn on the Intel Core 2 Duo (2.40 GHz).
This is the longest step in implementing the suggested method. The prediction of a 3D cube
is relatively fast, this prediction time depends on the number of simulations and the spatial
resolution of the study area.
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4. DISCUSSION AND CONCLUSIONS
This work proposes to use a stochastic simulation method based on training neural networks.
The benefits of this method are: (i) to be available to integrate several variables, (ii) it does
not request a preliminary geostatistical study such as the variograms analysis to capture the
spatial variability, (iii) it does not need empirical relationships between the different input
and output variables. The spatial correlations are studied capture during the training stage of
the neural network. These same benefits could be viewed as disadvantages as neural
networks behave like black box and need a set of training images including both the sub-
surface geophysical responses and a careful knowledge of the underground regarding ore
deposits. Posterior analysis of the predictions allow to cross validate the results. However,
other advantages of the proposed methodology are the ability of neural networks to be used
not only as predictors but also as simulators. This is a very interesting tool to quantify the
uncertainty related to a given exploration area. Once the neural network is completely
trained, changing randomly weight neurons values of the output layer impacts the predicted
results and allow generating several realizations which are conditioned by the drill holes data
(considered as points). In some case, up-scaling procedure might be necessary depending on
the cell sizes of the grid. Neural networks are well adapted to investigate mature brownfields
in which several deposits are already been discovered at the learning stage. Assuming green
fields behave like brown ones, it is then possible to apply this methodology to investigate
new areas containing potential undiscovered deposits and to produce potential 3D map
accounting for uncertainty.
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