RECHERCHER

Prédiction et gestion de l’énergie dans un réseau de capteurs sans fil récolteurs d’énergie vibratoire pour les applications industrielles de l’internet des objets

Téléchargements

Téléchargements par mois depuis la dernière année

Plus de statistiques...

Mouapi, Alex (2021). Prédiction et gestion de l’énergie dans un réseau de capteurs sans fil récolteurs d’énergie vibratoire pour les applications industrielles de l’internet des objets. (Thèse de doctorat). Université du Québec en Abitibi-Témiscamingue. Repéré dans Depositum à https://depositum.uqat.ca/id/eprint/1297

[thumbnail of RAPPORT POUR DEPÔT FINAL.pdf]
Prévisualisation
PDF
Télécharger (12MB) | Prévisualisation

Résumé

La question de l’autonomie énergétique des capteurs sans fil (WS pour Wireless Sensor),
indispensables pour l’automatisation de nombreux procédés industriels, est aujourd’hui une limite
fondamentale dans l’atteinte des objectifs de l’industrie 4.0. Pour surmonter cette limite, la piste
de solution la plus prometteuse est celle de la récolte de l’énergie ambiante (EH pour Energy
Harvesting). L’EH consiste à identifier une source d’énergie primaire (soleil, vibrations, ondes
radiofréquences, chaleur, etc.), disponible dans l’environnement immédiat du capteur et de la
transformer en énergie électrique pour son alimentation. Cette thèse est une contribution dans ce
domaine de recherche en pleine expansion, pour des applications dans l’environnement industriel.
Les vibrations qui abondent dans la plupart des procédés industriels sont considérées comme source
d’alimentation des WS capables de remplacer les capteurs filés actuellement utilisés. Prenant en
considération le caractère aléatoire de la quantité d’énergie récoltable, deux contributions majeures
sont proposées dans cette thèse à savoir la conception d’un Prédicteur de l’Énergie Récoltable des
vibrations (PERV) et la mise en place d’une solution permettant de gérer efficacement l’énergie
récoltée à travers un Protocole Hiérarchique à Équilibrage d’Énergie (PHEE).
La conception du PERV est basée sur des données de vibrations enregistrées à 12 emplacements
différents, et ce pendant un mois, sur le processus de concassage des minerais par un broyeur semiautogène.
La périodicité observée dans les signaux est exploitée pour minimiser la quantité de
données devant être stockées pour l’estimation de la puissance à un instant donné. Les
performances du PERV sont ensuite comparées à un prédicteur de l’état de l’art le EWMA
(Exponentially Weighted Moving-Average qui utilise l’historique des données d’énergie pour
estimer les quantités d’énergie récoltable dans le futur) et il est obtenu que l’erreur quadratique
moyenne pour les 12 points de mesure subie des améliorations allant de 10 % à 90.5 % comparé
au prédicteur EWMA. Le PERV permet ainsi d’augmenter la précision dans la prédiction tout en
réduisant la quantité des données devant être stockées. Sous la base de l’énergie prédite, le PHEE
est conçu avec pour objectif d’optimiser à la fois la Qualité de Service individuelle de chacun des
noeuds, mais aussi celle du réseau en entier. De façon plus spécifique, sous la base de l’énergie
prédite, les noeuds capteurs contrôlant le procédé sont capables d'opérer de façon perpétuelle
lorsque le coût énergétique par cycle de mesure est inférieur à 160

Type de document: Thèse ou mémoires (Thèse de doctorat)
Directeur de mémoire/thèse: Hakem, Nadir
Codirecteurs de mémoire/thèse: Kandil, Nahi
Mots-clés libres: Réseau de capteurs sans fil, Internet des Objets, Industrie 4.0, Prédiction de l'énergie, Protocole hiérarchique à équilibrage d'énergie
Divisions: Génie > Doctorat en ingénierie
Date de dépôt: 01 sept. 2021 15:23
Dernière modification: 01 sept. 2021 15:23
URI: https://depositum.uqat.ca/id/eprint/1297

Actions (Identification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt