Impact of Future Climate on Radial Growth of Four Major Boreal Tree Species in the Eastern Canadian Boreal Forest

Téléchargements

Téléchargements par mois depuis la dernière année

Huang, Jian-Guo, Bergeron, Yves, Berninger, Frank, Zhai, Lihong, Tardif, Jacques C. et Denneler, Bernhard (2013). Impact of Future Climate on Radial Growth of Four Major Boreal Tree Species in the Eastern Canadian Boreal Forest. PLoS ONE , 8 (2). e56758. doi:10.1371/journal.pone.0056758 Repéré dans Depositum à https://depositum.uqat.ca/id/eprint/1159

[thumbnail of huangetal_plos_fev2013.pdf]
Prévisualisation
PDF
Télécharger (1MB) | Prévisualisation

Résumé

Immediate phenotypic variation and the lagged effect of evolutionary adaptation to climate change appear to be two key processes in tree responses to climate warming. This study examines these components in two types of growth models for predicting the 2010-2099 diameter growth change of four major boreal species Betula papyrifera, Pinus banksiana, Picea mariana, and Populus tremuloides along a broad latitudinal gradient in eastern Canada under future climate projections. Climate-growth response models for 34 stands over nine latitudes were calibrated and cross-validated. An adaptive response model (A-model), in which the climate-growth relationship varies over time, and a fixed response model (F-model), in which the relationship is constant over time, were constructed to predict future growth. For the former, we examined how future growth of stands in northern latitudes could be forecasted using growth-climate equations derived from stands currently growing in southern latitudes assuming that current climate in southern locations provide an analogue for future conditions in the north. For the latter, we tested if future growth of stands would be maximally predicted using the growth-climate equation obtained from the given local stand assuming a lagged response to climate due to genetic constraints. Both models predicted a large growth increase in northern stands due to more benign temperatures, whereas there was a minimal growth change in southern stands due to potentially warm-temperature induced drought-stress. The A-model demonstrates a changing environment whereas the F-model highlights a constant growth response to future warming. As time elapses we can predict a gradual transition between a response to climate associated with the current conditions (F-model) to a more adapted response to future climate (A-model). Our modeling approach provides a template to predict tree growth response to climate warming at mid-high latitudes of the Northern Hemisphere.

Type de document: Article
Informations complémentaires: Licence d'utilisation : CC-BY 4.0
Mots-clés libres: tree growth; climate change; environmental impact assessment; environmental monitoring; evolutionary adaptation; temperature sensitivity; boreal forest; Betula papyrifera; black spruce; Pinus banksiana; Populus tremuloides
Divisions: Forêts
Date de dépôt: 13 mai 2020 15:42
Dernière modification: 13 mai 2020 15:42
URI: https://depositum.uqat.ca/id/eprint/1159

Gestion Actions (Identification requise)

Dernière vérification avant le dépôt Dernière vérification avant le dépôt